
On Testing Delay Faults In Macro-Based Combinational Circuits

Irith Pomeranz and Sudhakar M. Reddy +

Electrical and Computer Engineering Department
University of Iowa

Iowa City, IA 52242

Abstract
We consider the problem of testing for delay faults in macro-
based circuits. Macro-based circuits are obtained as a result of
technology mapping. Gate-level fault models cannot be used for
such circuits, since the implementation of a macro may not have
an accurate gate-level counterpart, or the macro implementation
may not be known. Two delay fault models are proposed for
macro-based circuits. The first model is analogous to the gate-
level gross delay fault model. The second model is analogous to
the gate-level path delay fault model. We provide fault simula-
tion procedures, and present experimental results.

1. Introduction
A macro is a logic block implementing a specific function. A
macro-based circuit is constructed by interconnecting macros to
perform a given function. A macro-based circuit is obtained as a
result of technology mapping [1-3]. During technology mapping,
an abstract description of a circuit, e.g., a gate-level description,
is translated into a hardware representation using a given set of
macros in a specific technology. Logic faults in macro-based
circuits were considered before [12].

In this work, we address the problem of testing macro-
based circuits for delay defects. For gate-level circuits, the need
to test delay defects led to the definition of several delay fault
models. Gross delay faults [4] model delay defects that affect
single lines in the circuit, causing the propagation delay through
them to be "very large". The gate delay fault model [5] also
addresses defects affecting single lines, however, no assumption
is made on the delay size. The path delay fault model [6]
addresses distributed, or accumulated delays due to propagation
through several lines, each affected by a delay defect. Every one
of these models provides a gate-level representation for the phy-
sical delay defects that can be present in a circuit, such that the
gate-level model is significantly easier to handle than the physi-
cal defect. The differences between delay testing of gate-level
circuits [4-6] and delay testing of macro-based circuits result
from the different types of components that need to be con-
sidered (gates as opposed to macros). We show that due to these
differences, new definitions of delay faults are required to model
delay defects. Such definitions are proposed in this work.

In defining the various fault models for macro-based cir-
cuits, we attempt to capture the possible effects of delay defects
on the behavior of a macro-based circuit. The models thus pro-
vide a way of defining a fault list for the purposes of test genera-
tion and fault simulation, such that the fault coverage with
respect to this fault list would give an indication of the coverage
hhhhhhhhhhhhhhhhhhhhh
+ Research supported in part by Motorola Semiconductor Products Sector,
Semiconductor Systems Design Technology, by NSF Grant No. MIP-
9220549, and by NSF Grant No. MIP-9357581

of delay defects. At the same time, our goal is to make the
models generally applicable and independent of the technology
and the implementation of a macro. As a result, the definitions
proposed and the procedures developed are applicable to any
macro-based circuit. The only assumption we make is that a
complete functional description is given for every macro, e.g., in
terms of a complete truth table. If a specific implementation of a
macro is known, for example, if gate-level implementations are
given, then methods available for gate-level circuits should be
applied. The approach taken here is applicable when gate level
descriptions are not available and/or do not accurately describe
the operation of the macros, as well as when tools which are
independent of specific technology or macro libraries are needed.
Like other fault models, the proposed models are not unique, and
hence other models may be proposed.

We point out that in macro-based circuits implemented
using Field-Programmable Gate Arrays (FPGAs), special
hardware may be placed in the physical circuit, that helps in test-
ing it. For example, in Xilinx FPGAs, programming of an FPGA
is done by scanning in certain bit strings that determine the
macro functions and their interconnections. Testing in this case
can be done by scanning in and scanning out the appropriate bit
strings. However, even in this environment, the proposed fault
models may be required to model delay defects and generate the
appropriate test sets. The fault models proposed are also useful
in deriving tests when the special test hardware is not present, or
when the test sets through scan are very large.

The paper is organized as follows. In Section 2 we intro-
duce delay fault testing of macro-based circuits. In Section 3 we
propose a gross delay fault model for macro-based circuits,
analogous to the gross delay fault model in gate level circuits.
This model associates delay faults with input transitions of the
various macros in the circuit. We give a fault simulation pro-
cedure and present experimental results for this model. In Sec-
tion 4 we consider a model called the function-robust path delay
fault model, which is analogous to the path delay fault model in
gate-level circuits. We describe a fault simulation procedure for
function-robust testing of such faults and present experimental
results. The experimental results demonstrate that the problems
encountered in using the path delay fault model in gate-level cir-
cuits are even more significant in macro-based circuits, i.e., the
number of path delay faults is sometimes very large [7], and the
fault coverage is sometimes very low [8]. One of the solutions
used for gate-level circuits is to consider a subset of path delay
faults [9]. We take a similar approach here and propose two
methods of restricting the number of faults to be considered.
Section 5 concludes the paper and discusses future work.

2. Preliminaries
An example of a macro-based circuit is shown in Figure 1.
Macro i is denoted by Mi . The numbers in parentheses in Figure

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0332 $3.50

1 will be explained later. Throughout this work, we assume that
the only information available regarding the macros is their truth
tables (alternatively, equivalent descriptions such as BDDs or
Boolean equations can be used). Truth tables are given in Table
1 for the macros in Figure 1.

M 4

M 3

M 1

M 2

A (1)

B (1)

C (1)

D (1)

E (1)

g 1(2)

g 2(3)

g 3(5)

g 4(4)

Figure 1: A macro-based circuit
Table 1: Truth tables for the macros of Figure 1

M 1 M 2
B E g 1 g 4 A C g 2 g 3iiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiii

0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 1 1 0 1 1 0
1 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0
1 1 0 0 1 1 0 1
1 1 1 1 1 1 1 1c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

M 3 M 4
B C D g 2 C D g 1iiiiiiiiiiiiiiiiii iiiiiiiiiiiii

0 0 0 1 0 0 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 c

c
c
c
c
c

0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1c

c
c
c
c
c
c
c
c
c

The need for special delay fault models in macro-based
circuits results from the fact that a delay defect in a macro may
delay a transition from an input of a macro to its output only for
certain macro input combinations, and not for others. For exam-
ple, consider a defect causing a very large delay (a gross delay
fault). In a gate-level circuit, if such a defect delays the propaga-
tion of a rising transition from a gate input to its output, then the
rising transition on the same gate input is delayed regardless of
the other gate input values, as long as these input values allow
the transition to propagate to the output of the gate. On the other
hand, consider a macro implemented using table look-up (e.g., in
certain FPGA circuits, the macro may contain a memory where
every macro input combination causes the contents of a different
memory location to appear on the macro output). Two-pattern
input combinations <u 1,v 1> and <u 2,v 2>, that create a rising
transition on the same input of the macro may not use the same
logic internal to the macro. Therefore, a defect affecting the
logic traversed by an input transition under <u 1,v 1> may not
affect the logic traversed by an input transition under <u 2,v 2>.
Thus, the delay incurred by the two transitions may be different.
Consequently, a fault must be independently associated with
each one of <u 1,v 1> and <u 2,v 2>. An extreme consequence of
this observation could be to associate a delay fault with every

two-pattern input combination of each macro. However, this
may result in a large number of faults, some of which do not
have physical meaning. The goal of fault modeling is to define
which two-pattern input combinations should be applied to the
different macros in order to ascertain that they do not suffer from
delay defects. Fault modeling is the subject of Sections 3 and 4.

Next, we demonstrate how logic simulation is carried out
for a macro-based circuit.
Example : Consider the macro-based circuit of Figure 1. To
compute the primary output values for input pattern
(ABCDE) = (01100), we perform the following computations.
For M 4, (CD) = (10) implies g 1 = 1.
For M 3, (BCD) = (110) implies g 2 = 0.
For M 2, (ACg 2) = (010) implies g 3 = 1.
For M 1, (BEg 1) = (101) implies g 4 = 1. `

In our experiments, we consider Berkeley PLA bench-
mark circuits, synthesized into multi-level circuits and then
translated into macro-based circuits using the procedures of [10].
Two types of translations are done in [10]. The translation called
bl minimizes the number of macros in the macro-based circuit,
thus attempting to minimize its area. The translation called fc
uses testability of non-delay faults as a primary optimization
objective. A complete description of these procedures can be
found in [10]. For all macro-based circuits considered in this
work, the number of macro inputs is limited to five. Information
regarding the circuits we use is given in Table 2. After circuit
name, we give the number of primary inputs, the number of pri-
mary outputs and the number of macros in the macro-based cir-
cuit for both types of translations.

Table 2: Circuit parameters

macros macros
circ inp out bl fc circ inp out bl fc

iiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiii

Z9sym 9 1 83 128 dk48 15 17 37 43
add6 12 7 23 45 mish 94 34 40 40
adr4 8 5 10 13 radd 8 5 9 15
alu1 12 8 8 8 rckl 32 7 48 64
alu2 10 8 31 33 rd53 5 3 3 3
alu3 10 8 32 36 vg2 25 8 34 32
co14 14 1 12 30 x1dn 27 6 28 32
dk17 10 11 30 36 x9dn 27 7 36 31
dk27 8 9 13 13 z4 7 4 7 10cc

c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

3. Gross delay faults
For gate-level circuits, the gross delay fault model [4], also
called the transition fault model, is used to model defects that
cause very large delays compared to the system clock period.
Such delay defects are assumed to increase the delay of all paths
through the defect site beyond the system clock period. This
fault model is the easiest to handle among all the delay fault
models proposed for gate-level circuits. In addition, this model is
useful for circuits where all physical paths have the same propa-
gation delay [11]. In this section, we define a gross delay fault
model for macro-based circuits, and present gross delay fault
coverages for the circuits of Table 2.

3.1 The fault model
To define the gross delay fault model, we make the following
assumptions. We assume that gross delay defects cause a large
extra delay, such that any gross delay defect affecting the propa-
gation of a transition t through macro Mi causes the circuit to
exceed its designated operation time whenever t is propagated

through Mi to a primary output. We also make the following
assumption. Consider a transition on the inputs of a macro from
u to v, where u and v differ in the value of more than one input.
Since, in practice, input values do not change simultaneously,
the transition between u and v occurs in a sequence of single
input changes. Let it be <u = w 0,w 1, . . . ,wk = v >, where wi
differs from wi +1 in the value of a single input, for 0 ≤ i ≤ k −1.
We assume that if a gross delay defect affects the transition from
u to v, then there exists at least one transition <wj ,wj +1> which
is affected by the defect, for some 0 ≤ j ≤ k −1. The following
example illustrates the assumptions and the fault model.
Example : Consider a macro with the truth table shown in Table
3. Consider the input combinations u = (000) and v = (011). If
the macro input combination is changed from u to v, then the
change occurs in one of the following sequences. (000) -> (001)
-> (011), or (000) -> (010) -> (011). Suppose that each one of
the input changes (000) -> (001), (001) -> (011), (000) -> (010),
and (010) -> (011) has been verified to be fault free. Then the
input change (000) -> (011) is also guaranteed to occur in a fault
free manner, by the assumption that the transition will occur
through one of the sequences above, and that any single faulty
transition is enough to cause a detectable fault (it is a gross delay
defect). Thus, the fault model does not have to include (000) ->
(011), since we do not have to verify correct operation for this
transition separately. For the macro of Table 3, the fault model
includes only the following two-pattern input combinations, that
differ in a single bit. The symbol <-> indicates that two gross
delay faults are included, from the input combination on the right
to the one on the left and vice versa. (000) <-> (001), (000) <->
(010), (000) <-> (100), (001) <-> (011), (001) <-> (101), (010)
<-> (011), (010) <-> (110), (011) <-> (111), (100) <-> (101),
(100) <-> (110), (101) <-> (111), and (110) <-> (111).

Note that we include transitions such as (000) -> (001) in
the fault model, although the truth table indicates that the output
value does not change during this input transition. One of the
reasons for this is that logic hazards [15] may cause the output to
change momentarily to 1, and a gross delay defect may cause the
hazard value to "linger", causing faulty output values (a logic
hazard may cause the output of a macro to change momentarily,
even when the functional representation of the macro does not
indicate that such a change is possible). `

Table 3: An example of gross delay faults

input 000 001 010 011 100 101 110 111ii
output 0 0 0 1 1 0 0 1cc

c

The previous example indicates that for every macro, the
gross delay fault model should include every two-pattern input
combination <u,v > such that the Hamming distance between u
and v, denoted dH(u,v), is 1 (the Hamming distance between two
input combinations is equal to the number of bits in which they
differ). In the following, we develop the fault model further.

The gross delay fault model as defined above has the fol-
lowing shortcoming. When a macro is embedded in a circuit, it
may not be possible to obtain all of its input combinations. In
such a case, the model as defined above may not be sufficient to
ensure testing of all macro input transitions. Consider the fol-
lowing example.
Example : Consider the three-input macro of Table 3, and sup-
pose that the input combination (100) cannot be obtained. The
following transitions involving single input changes cannot be
tested in this case.

(000) <-> (100), (110) <-> (100) and (101) <-> (100).

As a result, some of the transitions that involve input combina-
tions at Hamming distance two may not be verified.
Specifically, the following transitions that may go through (100)
will not be verified.

(000) <-> (110), (000) <-> (101), (110) <-> (101).
All these transitions must be added to the gross delay fault
model. However, we do not need to include the transitions (000)
<-> (111), that may also go through (100). This is because once
the transitions above are verified, the transitions (000) <-> (111)
are also verified. For example, one of the sequences that can be
followed to go from (000) to (111) is (000) -> (100) -> (110) ->
(111). This sequence is fault free if the sequences (000) -> (110)
and (110) -> (111) are fault free. Both are included in the transi-
tion fault model, therefore, (000) -> (111) does not have to be
included. `

To find the two-pattern input combinations included in
the gross delay fault model due to a macro Mi , we use the fol-
lowing procedure, illustrated by an example below.
Procedure 1: Finding the set of gross delay faults for macro Mi

(1) Mark all the input combinations that cannot be obtained
on the inputs of Mi (a method is described in Section 3.2).
Set Fi = φ (Fi is the set of gross delay faults for Mi).

(2) For every input combination u that can be obtained on the
inputs of Mi:
(a) Set S = {(u)} (S will contain sequences of macro

input combinations at distance one).
(b) Select the first sequence in S. Let the sequence be

W = <w 0w 1
. . . wk −1>. For every input combi-

nation wk which is at distance j from wk −j ,
1 ≤ j ≤ k:

If wk is marked (it cannot be obtained on the
inputs of Mi), then add the sequence
<w 0w 1

. . . wk −1wk> to S.
Else, add the two-pattern input combination
<w 0,wk> to F.

Remove W from S.
(c) If S ≠ φ, go to Step 2(b).

Example: Consider the three-input macro shown in Table 3. Sup-
pose that input combinations (100) and (110) cannot be obtained.
Procedure 1, when applied to u = (010), results in the following
gross delay faults. Initially, F = φ and S = {(010)}. We check
the input combinations at distance one from (010), namely,
(011), (000) and (110). (011) and (000) can be obtained as input
combinations of the macro. Therefore, we add to F the faults
<(010),(000)> and <(010),(011)>. (110) cannot be obtained as
an input combination of the macro, therefore, we add
<(010),(110)> to S. (010) is now removed from S.
Next, we consider <(010),(110)>. The input combinations at
Hamming distance one from (110) and at distance two from
(010) are (111) and (100). (111) can be obtained as an input
combination to the macro. Therefore, we add to F the fault
<(010),(111)>. (100) cannot be obtained as an input combina-
tion to the macro, therefore, we add <(010),(110),(100)> to S.
<(010),(110)> is removed from S.
Next, we consider <(010),(110),(100)>. We check the input
combinations at Hamming distance one from (100), two from
(110) and three from (010). The only such input combination is
(101). (101) can be obtained as an input combination to the
macro, therefore, we add to F the fault <(010),(101)>. After
removing <(010),(110),(100)> from S, S remains empty. The set
of gross delay faults starting with (010) is F = {<(010),(000)>,

<(010),(011)>, <(010),(111)>, <(010),(101)>}.
If all pairs of input patterns are included in the fault model, then
56 faults are included in F, of which 30 involve only input com-
binations that can be obtained on the inputs of Mi . Using the pro-
posed fault model, the size of the fault list is reduced to 22. `

3.2 The input combinations applicable to a macro
The gross delay fault model as defined above requires
knowledge of which input combinations can be obtained for each
macro. Checking whether an input combination u can be
obtained on the inputs of macro Mi can be done in several ways.

Logic simulation of a large number of randomly deter-
mined primary input patterns can be used to obtain most of the
input combinations that can be obtained on the inputs of every
macro. For the remaining input combinations, that were not
obtained during logic simulation, the line justification procedure
of a test generation system can be used [12] to determine
whether or not they can be obtained. Alternatively, it is possible
to define the gross delay fault model with respect to the input
combinations obtained during logic simulation of random pat-
terns. It is expected that a very small number of patterns that can
be obtained would not be obtained when simulating random pat-
terns, therefore, the inaccuracy in defining the gross delay fault
model based on random patterns would be very small.

3.3 Fault simulation and experimental results
Simulation of gross delay faults under a two-pattern primary
input combination <u,v > is similar to simulation of gate-level
transition faults [13], and proceeds as follows. Logic simulation
of u and v separately is first used to obtain the values throughout
the circuit under u and v. Then, we consider every macro Mi .
Let u bring the input combination a to Mi and let v bring the
input combination b to Mi . If the two-pattern input combination
<a,b > of Mi belongs to the fault model, then we check whether
a delayed output value of Mi under v causes a faulty primary out-
put value. In other words, we check whether the output of Mi is
sensitized to a primary output under v.

We incorporated the gross delay fault model into a fault
simulation process and used it to simulate 100,000 random two-
pattern input combinations. Results are given in Table 4. After
circuit name, we consider two translations of the circuit into a
macro-based circuit. For each translation, we first give the
number of all two-pattern input combinations that can be
obtained on the inputs of a macro, for all the macros. This
number is given for comparison with the number of faults
included in the proposed fault model, which is given next. The
number of faults is followed by the number of faults detected by
100,000 random two-pattern tests, and the fault coverage. It can
be seen that very high fault coverage is obtained for gross delay
faults, similar to the situation for gate-level circuits. Thus, the
added complexity due to the macros does not affect the fault
coverage that can be achieved. It can also be seen that the
number of faults due to the proposed model is significantly lower
than the number of faults if all two-pattern input combinations
that can be obtained for each macro are included in the fault
model. In addition, in some cases there are large differences
between the fault coverage for the circuits obtained from the two
translation procedures. This indicates that translation can be per-
formed appropriately, to increase the testability of a circuit to
gross delay faults.

Table 4: Simulation of gross delay faults
(100,000 random two-pattern tests)

bl fc
circuit 2-patt flts det f.c 2-patt flts det f.ciii

Z9sym 23275 7316 5347 73.09 6916 2926 2607 89.10
add6 7168 1740 1615 92.82 7581 1594 1487 93.29
adr4 3760 792 779 98.36 3801 702 679 96.72
alu1 1856 472 472 100.00 1856 472 472 100.00
alu2 10978 2920 2708 92.74 11821 2552 2433 95.34
alu3 11349 3128 3075 98.31 12314 2926 2820 96.38
co14 3976 1112 532 47.84 3551 826 539 65.25
dk17 9269 2448 2008 82.03 13162 2400 2054 85.58
dk27 4240 888 863 97.18 5104 928 886 95.47
dk48 15564 3154 1840 58.34 12619 2426 1555 64.10
mish 12904 2388 2367 99.12 12904 2388 2367 99.12
radd 2736 632 631 99.84 3257 662 640 96.68
rckl 29538 5662 1395 24.64 24290 4678 951 20.33
rd53 3072 480 480 100.00 3072 480 480 100.00
vg2 9085 2690 2481 92.23 9309 2188 2014 92.05
x1dn 8008 2220 1984 89.37 9333 2200 1997 90.77
x9dn 9522 3046 2328 76.43 10498 2622 2190 83.52
z4 3472 712 672 94.38 2793 542 526 97.05c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

To give an indication for the reason why the transition
fault coverage is not complete, we considered for every macro,
every input combination b that can be obtained on the inputs of
the macro. We checked whether a primary input combination v
can be found, that sets b on the inputs of the macro, and sensi-
tizes its output. If such a vector v cannot be found, then the gross
delay faults of the form <a,b > are not detectable, for any a that
can be obtained on the inputs of the macro. For Z 9sym, primary
input combinations v could be found only for 75.66% of the b
vectors under the bl translation, and for 90.59% under the fc
translation. For rckl, primary input combinations v could be
found only for 39.83% under the bl translation, and for 39.01%
under the fc translation. Thus the incomplete coverage of gross
delay faults is due to the presence of undetectable faults.

4. Function-robust path delay faults
In this section, we first describe a value system for path delay
faults in macro-based circuits. We then define function-robust
propagation through a macro and review a procedure for count-
ing the number of physical paths in a circuit. We define a path
delay fault model, called the function-robust path delay fault
model. Contrary to the gate-level path delay fault model, this
model includes only faults that can potentially be function-
robustly propagated. Thus, faults that cannot be function-
robustly propagated are eliminated from the model in advance.
We explain the motivation for this model, describe a fault simu-
lation procedure for the proposed model and present experimen-
tal results of fault simulation.

4.1 A value system
Delay fault testing requires two pattern tests. Line values under
a two-pattern primary input combination <u,v > are represented
in this work as α1α2α3 [14], where α1 is the value after the cir-
cuit stabilizes under primary input combination u, α3 is the value
after the circuit stabilizes under primary input combination v,
and α2 is the value during the transition from u to v. For primary
inputs, the value of α2 is determined as follows.

If α1 = α3, then α2 = α1 = α3.
If α1 ≠ α3, then α2 = x, where x is the unspecified value.

For example, 0x 1 represents a rising transition and 000
represents a stable 0.

Given the input value triples of a macro, the computation
of the output triple is described next. We use the following nota-
tion. Consider an m-input macro with input values α1jα2jα3j ,
1 ≤ j ≤ m. We define, for 1 ≤ k ≤ 3, a macro input combination
ak = (αk 1,αk 2, . . . ,αkm), comprised of the k-th value in the triple
of every macro input. Thus, ak is the macro input combination
corresponding either to the first pattern of a two-pattern input
combination (k = 1), or to the second pattern of a two-pattern
input combination (k = 3), or to the transition between them
(k = 2). The computation of the macro output triple is first illus-
trated by an example and then generalized.
Example : Consider the macro-based circuit of Figure 1 under
the two-pattern input combination (ABCDE) = <(10100),
(11001)>. We have the following primary input triples.

A = 111, B = 0x 1, C = 1x 0, D = 000 and E = 0x 1
Consider M 4. Its input triples are C = 1x 0 and D = 000, result-
ing in the following values on (CD). a 1 = (10), a 2 = (x 0) and
a 3 = (00). a 1 = (10) results in g 1 = 1. a 3 = (00) also results in
g 1 = 1. a 2 = (x 0) implies that any one of the combinations
(CD) ∈ {00,10} covered by (x 0) can be obtained on the inputs
of M 4 during the transition period. The corresponding output
values on g 1 are {1,1}. Thus, g 1 is 1 regardless of the manner in
which C changes. The triple on g 1 is thus 111. We point out
that in setting g 1 to 111, we ignore the possibility of having
logic hazards [15] (a logic hazard may cause the output of a
macro to change momentarily, even when the functional
representation of the macro does not indicate such a change).
Logic hazards are discussed in more detail in Section 4.2.
Considering M 3, the input triples B = 0x 1, C = 1x 0 and D = 000
result in a 1 = (010), a 2 = (xx 0) and a 3 = (100), yielding
g 2 = 1x 0.
Consider M 2. Its input triples are A = 111, C = 1x 0 and
g 2 = 1x 0, resulting in a 1 = 111, a 2 = 1xx and a 3 = 100.
a 1 = (111) results in g 3 = 1. a 3 = (100) results in g 3 = 1.
a 2 = (1xx) implies that any one of the combinations
{100,101,110,111} covered by 1xx can be obtained. The
corresponding output values on g 3 are {1,0,1,1}. Thus, g 3 is
unknown during the transition. The triple on g 3 is 1x 1, which is
a static 1-hazard. `

In general, for a given k, if αkj is specified (0 or 1) for
every j, then the vector ak = (αk 1,αk 2, . . . ,αkm) defines a fully
specified input combination (a minterm) of Mi , and the output
value can be found from the truth table of the macro. If some of
the αkjs are unspecified, we consider all the minterms covered by
the vector ak = (αk 1,αk 2, . . . ,αkm). If all the minterms result in
the same output value γ, then γ is the k-th component of the out-
put value triple. If there is at least one minterm that results in the
value 0 and at least one minterm that results in the value 1, then
the k-th component of the output value triple is x.

4.2 Function-robust propagation
In gate-level circuits, we say that a transition propagates robustly
from an input j of a gate G to its output g under a two-pattern
test <u,v >, if g does not change unless input j changes, and the
effect of input j changing propagates to g independent of the
order or speed at which other inputs of G change. When a
macro-based circuit is considered, we assume that only the func-
tional description of the macros (e.g., their truth-tables) is
known, and that we have no information regarding logic hazards.
Due to the potential for logic hazards, we cannot use the gate-
level definition for robust propagation from the input j of macro
Mi to its output g. For example, consider the first input of a

three-input macro Mi under the macro two-pattern input combi-
nation <(000),(110)>. Suppose that the transition from (000) to
(110) occurs through the sequence (000) -> (010) -> (110). Let
the macro output values produced by (000) and (010) be 0, and
let the macro output value produced by (110) be 1. During the
transition from (000) to (010), a logic static hazard may cause
the output to go momentarily to 1. As a result, during the change
from (000) to (110), the output is initially 0, then it changes to 1,
back to 0, and finally it reaches the value 1 when input 1
changes. In other words, the change from (000) to (110) involves
a dynamic hazard. In this case, we cannot say that the transition
on input 1 propagates robustly to the macro output, since the
macro output may change even before the change on input 1
affects the output. However, if we consider only the functional
behavior of the macro, then during the sequence (000) -> (010)
-> (110), the output does not change until the change on input 1
affects the output. We conclude that due to logic hazards, that
cannot be anticipated from the functional description of the mac-
ros, robust propagation similar to gate-level circuits cannot be
modeled in macro-based circuits. However, if we ignore logic
hazards and consider only functional behavior, a definition simi-
lar to the gate-level definition can be given, as follows. We say
that a transition propagates function −robustly from an input j of
Mi to its output g, if g does not change unless input j changes,
independent of the order or speed at which other inputs of Mi
change. Testing under this definition is referred to as function-
robust testing, and the path delay fault model defined under this
definition is referred to as the function-robust path delay fault
model. The following example illustrates how the condition of
function-robust propagation is checked.
Example : Consider the circuit of Figure 1 under the two-pattern
primary input combination of Section 4.1. For M 3, we had input
values B = 0x 1, C = 1x 0 and D = 000, and output value
g 2 = 1x 0. To check whether the transition of B function-
robustly propagates to g 2, we keep B at the value 0, and check
whether the changes on the other inputs may cause g 2 to change
to 0. C changes between 1 and 0, therefore we must consider
both values of C, or C = x. D is stable at 0, therefore, we need
only consider D = 0. The resulting vector is (BCD) = (0x 0), and
it covers the two input combinations (000) and (010). For both
input combinations, the resulting value on g 2 is 1, the same as
the value for the initial vector (010). Therefore, we conclude that
as long as B does not change, g 2 remains at 1 regardless of the
speed or order in which the other inputs change. As a result, the
transition on B propagates to g 2 function-robustly.
To check whether the transition of C function-robustly pro-
pagates to g 2, we consider the input values (BCD) = (x 10). It
covers the two input combinations (010) and (110). Since (110)
results in g 2 = 0, we conclude that g 2 may change as a result of a
change in an input other than C, and the transition on C does not
propagate to g 2 function-robustly. `

Next, we formally define function-robust propagation.
Definition 1: Let a two-pattern input combination <u,v > set the
triple α1jα2jα3j on the jth input of Mi . Let the output response of
Mi to the input vector ak = (αk 1,αk 2, . . . ,αkm) be αk , for
1 ≤ k ≤ 3. A γxγ

h
(γ ∈ {0,1}) transition is said to propagate

function-robustly from input j of Mi to its output under <u,v > if
the following conditions hold.
(1) α1j = γ and α3j = γ

h
(there is a γxγ

h
transition on input j).

(2) α1 ≠ α3 (there is a transition on the macro output).
(3) Let b = (β1,β2, . . . ,βm) be the macro input combination
where β j = γ and βp = α2p for p ≠ j (i.e., input p has a specified

value if it is stable under <u,v >, otherwise, it has the value x).
Then the output response of Mi to every input vector covered by
b must be α1 (i.e., the output of the macro does not change
unless j changes). `

It can be verified that when Mi implements the function of
a single m-input gate such as AND, OR or EOR, Definition 1
corresponds to the conventional notion of robust propagation of
transitions through such a gate in a gate-level circuit. We omit
the details due to space considerations.

4.3 Counting the number of physical paths
A physical path in a macro-based circuit is any sequence of
lines, such that the first line is a primary input, every two con-
secutive lines are a macro input and its output (in this order), and
the last line is a primary output. For example, (C,g 2,g 3) and
(D,g 1,g 4) are physical paths in the macro-based circuit of Figure
1. The number of physical paths in a macro-based circuit can be
computed using Procedure 1 of [7]. We present a variation on
this procedure, that is more suitable for our purposes. We assign
to every line g in the macro-based circuit a label NP(g), which is
equal to the number of paths from the primary inputs to line g.
For a primary input g, NP(g) = 1. We then propagate the labels
from primary inputs to primary outputs. If line g is the output of
a macro with inputs j 1, j 2, . . . , jm , then line g is labeled by

k =1
Σ
m

NP(jk). The total number of physical paths is
g
Σ{NP(g) : g is

a primary output}. For illustration, the labeling of the circuit of

Figure 1 is shown in parentheses in the figure. The total number
of paths is nine, obtained by adding the labels of g 3 and g 4.

4.4 Function-robust path delay faults
We assume that any two-pattern input combination of Mi that
propagates a transition from an input of Mi to its output may
independently incur an extra delay. Consequently, every physi-
cal path may be associated with several different path delay
faults, that differ in the two-pattern input combinations assigned
to the macros along the path. It is possible to include in the path
delay fault model every physical path with every combination of
macro input patterns that result in the propagation of a transition
along the physical path. Later, we call this set of faults F 1. How-
ever, many of the faults defined in this way involve non-robust
propagation of transitions, and thus, are meaningless for the pur-
poses of robust testing. We therefore restrict the fault model to
include only faults that can potentially be tested robustly.

To define the path delay faults, we first consider the path
delay faults going from a given input of a macro to its output.
We then show how the path delay faults associated with a single
macro can be used to find the path delay faults in an arbitrary
macro-based circuit. In all cases, we are interested only in path
delay faults that can potentially be function-robustly tested. This
is analogous to considering two path delay faults for every phy-
sical path in a gate-level circuit, one corresponding to a rising
transition at the source of the path, and one corresponding to a
falling transition at the source of the path.

Considering a single macro, Mi , a path delay fault is asso-
ciated with every two-pattern input combination <u,v > and
input j such that both u and v can be obtained on the inputs of
Mi , <u,v > sets a transition on input j, and function-robustly pro-
pagates it to the macro output.
Example : Consider input B of M 1 in the macro-based circuit
shown in Figure 1. The truth table of the macro is given in Table

1. All input combinations can be obtained for every macro in this
case. To find the path delay faults associated with the physical
path (B,g 4), we consider every two-pattern input combination
with a transition on B and a transition on g 4. For future refer-
ence, we distinguish among four subsets of input combinations,
setting a rising/falling transition on B and a rising/falling transi-
tion on g 4. The two-pattern input combinations setting a rising
transition on B and a rising transition on g 4 are the following.
<(000),(101)>, <(000),(111)>, <(001),(101)>, <(001),(111)>,
<(010),(101)> and <(010),(111)>. For each pair, we check
whether the transition on B function-robustly propagates to g 4.
This happens only for the pairs <(000),(101)> and
<(001),(101)>. Thus, there are two path delay faults associated
with the physical path (B,g 4), that assign rising transitions to
both B and g 4. The path delay faults are represented as
(B, [g 4,000,101]) and (B, [g 4,001,101]), where the brackets con-
tain a macro output and the two input combinations of the
macro. For simplicity of notation, we use the decimal values of
the input combinations, and represent the faults as (B, [g 4,0,5])
and (B, [g 4,1,5]). Note that (B, [g 4,0,7]) is not a path delay
fault, since <(000),(111)> does not function-robustly propagate
the transition on B to g 4. Thus, according to our model, it does
not create a logical path in the macro-based circuit, and hence no
corresponding path delay faults exist in our model. All other
two-pattern input combinations can be considered in a similar
way. There is a total of four path delay faults associated with the
physical path (B,g 4), namely, (B, [g 4,0,5]), (B, [g 4,1,5]),
(B, [g 4,5,1]) and (B, [g 4,7,1]). `

As implied by the example above, there is a one-to-one
correspondence between path delay faults and logical paths. In
the sequel, we use these terms interchangeably.

Next, we consider path delay faults in an arbitrary circuit.
Consider the physical path (D,g 1, g 4) in the macro-based circuit
of Figure 1. Every path delay fault f of M 4 associated with the
physical path (D,g 1) can be continued in M 1 as follows. If f
brings a rising transition to g 1, then it can be continued with a
path delay fault of M 1 that starts with a rising transition on g 1.
In this case, a transition on D is function-robustly propagated to
g 1 as a rising transition, and from there it is function-robustly
propagated to g 4. Similarly, path delay faults of M 4 that bring a
falling transition to g 1 can be continued with path delay faults of
M 1 that start with a falling transition on g 1. To describe a path
delay fault, we associate with every macro output along the phy-
sical path a two-pattern input combination of the macro. Such a
two-pattern input combination <u,v > has to function-robustly
propagate the appropriate transition from the input of the macro
that is on the path to the macro output. From the discussion
above, we arrive at the following definition.
Definition 2: A path delay fault in a macro-based circuit is a
sequence (g 0,[g 1,u 1,v 1], [g 2,u 2,v 2], . . . [gK ,uK ,vK]), such that
(g 0,g 2, . . . ,gK) is a physical path, {ui ,vi} can be obtained on
the inputs of the corresponding macro for every i, and the two-
pattern macro input combinations {<ui ,vi>} function-robustly
propagate a transition from g 0 through g 1, . . . ,gK −1 to gK . In
other words, <ui ,vi> function-robustly propagates a t′i ∈
{rising,falling} transition from gi −1 to gi , reaching gi as a ti ∈
{rising,falling} transition, and t′i = ti −1, for 2 ≤ i ≤ K. `

We also define the set of path delay faults F, that includes
every path delay fault according to Definition 2.

It is important to consider the following issue regarding
the fault model based on Definition 2. Consider two macro-
based circuits C 1 and C 2 that have different numbers of path

delay faults N 1 and N 2, however, the same number of detectable
path delay faults ND . Let N 1 < N 2. Then the fault coverage in

C 1,
N 1

NDhhhh is higher than the fault coverage in C 2, which is
N 2

NDhhhh .

However, the reason N 1 is lower than N 2 may be that many of
the macro input transitions cannot be function-robustly pro-
pagated to the macro outputs. Thus, a circuit comprised of less
testable macros may be considered more testable. To check
whether such a problem arises, we considered the benchmark
circuits of Table 2 under F, and under a fault model where the
requirement for function-robust propagation is omitted from
Definition 2. We refer to this set of faults as F 1. It turned out
that for all circuits, the macro-based circuits considered gave
similar proportions between the sizes of the F sets and between
the sizes of the F 1 sets. Thus, the problem of an untestable cir-
cuit seeming testable did not occur in these examples.

The number of path delay faults in F is computed in the
following subsections, and it is shown to be very high even for
small circuits. To generate a reduced list of faults for test genera-
tion or fault simulation, it is possible to consider only the path
delay faults associated with the longest physical paths, similar to
the approach taken for gate-level circuits [9]. Next, we propose
two other approaches to reduce the list of target faults. Each one
of them can be used with the complete set of physical paths, or
only with longest paths. Under both approaches, the definition of
a path delay fault remains Definition 2, however, the set of faults
is reduced by imposing additional constraints. As with other
reduced models, a test set for these models is expected to cover a
large number of faults not included in the model.

The first alternative to reduce F requires that for every
physical path p (cf. Section 4.3), every line g on p would be
tested twice, once with a rising transition and once with a falling
transition. Thus, we remove the requirement for testing each
physical path under all two-pattern input combinations that pro-
pagate a transition function-robustly through every macro, and
require only that both a rising and a falling transition would pro-
pagate through each line on every path. The motivation for
defining this subset of faults is that it is similar to the path delay
fault model in gate-level circuits. In gate-level circuits, for every
line g on every path p, the slow-to-rise and the slow-to-fall path
delay faults associated with p bring both a rising and a falling
transition to g. The resulting set of faults, denoted F 2, is
significantly smaller than the set F.

The second alternative removes the requirement for test-
ing every physical path, and requires only that every line g in the
circuit would be included in any r path delay faults bringing a
rising transition to g and any r path delay faults bringing a fal-
ling transition to g. In this case, r is a predetermined constant. If
r is made large enough, this model becomes similar to F 2. For
small values of r, the resulting set of faults, denoted F 3, is
significantly smaller than the sets F and F 2.

4.5 The number of path delay faults
In this section, we describe a procedure for computing the
number of path delay faults in a macro-based circuit according to
Definition 2. We denote this number by NF . It is used as the
denominator in our fault coverage figures. We also compute the
number of faults in F 2.

The number of path delay faults from input j of macro Mi
to its output under Definition 2 is denoted N (i, j). For future use,
we distinguish between the following four components of N (i, j).

N α1α2α3,β1β2β3
(i, j), for α1α2α3, β1β2β3 ∈ {0x 1,1x 0}, is

the number of macro input combinations <u,v >, such
that (1) both u and v can be obtained on the inputs of Mi ,
(2) input j assumes a transition α1α2α3, (3) the output of
Mi assumes a transition β1β2β3, and (4) the transition on
j is function-robustly propagated to the macro output.

For example, we previously considered input B of M 1 in the
macro-based circuit shown in Figure 1. We found six two-
pattern input combination with a rising transition on B and a ris-
ing transition of g 4. Of these, only two were seen to function-
robustly propagate the transition from B to g 4. Consequently,
N 0x 1,0x 1(1,B) = 2. In a similar, way we obtain that
N 0x 1,1x 0(1,B) = 0, N 1x 0,0x 1(1,B) = 0, and N 1x 0,1x 0(1,B) = 2.

To compute the total number of path delay faults, we use
the following procedure. We assign to every line g a label indi-
cating the number of path delay faults from the primary inputs to
g. We distinguish between path delay faults associated with a
rising transition on g, and path delay faults associated with a fal-
ling transition on g. Accordingly, every line is assigned two
labels, denoted (NP 0x 1(g),NP 1x 0(g)). The primary inputs are
assigned the label (1,1). The label at the output g of a macro Mi
is computed as follows. Let input j of the macro be labeled
(NP 0x 1(j),NP 1x 0(j)). Then the path delay faults bringing a 0x 1
transition from the primary inputs to input j result in
NP 0x 1(j).N 0x 1,0x 1(i, j) path delay faults bringing a 0x 1 transition
from the primary inputs to the macro output. More generally,
the labels of the output g of Mi are computed as follows.

NP 0x 1(g) =
j =1
Σ
m I

L
NP0x 1(j).N 0x 1,0x 1(i, j)+NP 1x 0(j).N 1x 0,0x 1(i, j) M

O

NP 1x 0(g) =
j =1
Σ
m I

L
NP0x 1(j).N 0x 1,1x 0(i, j)+NP 1x 0(j).N 1x 0,1x 0(i, j) M

O
By propagating these labels from primary inputs to primary out-
puts, we can compute the number of path delay faults as

g
Σ{NP 0x 1(g)+NP 1x 0(g) : g is a primary output}.

Next, we consider the number of path delay faults con-
tained in the set F 2 defined at the end of Section 4.4. In F 2,
every line on every physical path is included twice, once with a
rising and once with a falling transition. Let NPT(g) be the
number of physical paths through g. Then the total number of
faults is 2.

g
ΣNPT(g). To compute NPT(g), we use two pro-

cedures. The first procedure computes the number of paths from
the primary inputs to g, and the second procedure computes the
number of paths from g to the primary outputs. The product of
the two numbers of paths yields NPT(g). The details of the pro-
cedures are omitted for space considerations.

4.6 Simulation of path delay faults
To find the faults detected by a given two-pattern primary input
combination, we first perform logic simulation using triple
values α1α2α3. During the simulation process, we also record
the following information, similar to the gate-level case [7]. For
every macro output g, we include in a set R (g) every macro
input j such that (1) R (j) ≠ φ, and (2) the transition from j is
function-robustly propagated to g. Initially, we set R (g) = {g}
for the primary inputs carrying 0x 1 or 1x 0 transitions and
R (g) = φ for all other lines. The R sets are then updated during
the simulation process whenever a transition is function-robustly
propagated from an input of a macro to its output. Once the R
sets are computed, by tracing the R sets starting from the primary
outputs and proceeding towards the primary inputs, we can iden-

tify the path delay faults detected.
Let the number of path delay faults detected be ND . Then

the fault coverage under Definition 2 is
NF

NDhhhh . To find the number

of detected path delay faults which are included in F 2, we con-
sider every detected path delay fault f. Let f go through physical
path p. If g is on p, then we check whether g carries a rising or a
falling transition. We then record that p with the appropriate
transition is detected. The number of faults recorded is then used
to compute the fault coverage.

4.7 Experimental results
We incorporated the path delay fault model into a fault simula-
tion procedure and applied it to the macro-based circuits of Sec-
tion 2. We applied 100,000 randomly generated two-pattern
input combinations to each circuit. The results obtained for the
bl circuits are shown in Table 5, in the following format. After
circuit name, we give the number of function-robust path delay
faults, the number of path delay faults detected, and the fault
coverage. It can be seen that the fault coverage obtained for
most circuits is very low, similar to the path delay fault coverage
obtained in gate-level circuits. We also report in Table 5 the
fault coverage using the set of target faults F 2. Under the F 2
columns of Table 5, we give the total number of faults, the
number of detected faults, and the fault coverage for the set of
target faults F 2. Also reported in Table 5 is the average number
of times a line is included in a distinct, detected path delay fault
by Definition 2, with a rising or falling transition. This is given
in the last column of Table 5. It can be seen that the the number
of path delay faults included in F 2 is significantly smaller than
the number of faults included in F. Nevertheless, the average
number of times a line is exercised is high.

Table 5: Fault coverage for path delay faults in bl circuits
(100,000 random two-pattern tests)

F F 2
circuit flts det f.c flts det f.c av.iii

Z9sym 9.22E8 1702 0.00 3192 2905 91.01 99.29
add6 310064 3078 0.99 846 768 90.78 287.97
adr4 4672 1479 31.66 204 204 100.00 226.61
alu1 603 603 100.00 124 124 100.00 60.30
alu2 184360 10689 5.80 760 694 91.32 873.80
alu3 104461 6850 6.56 798 736 92.23 567.02
co14 4024980 238 0.01 392 196 50.00 38.50
dk17 93096 7145 7.67 1126 913 81.08 712.85
dk27 2409 1668 69.24 344 326 94.77 244.62
dk48 314400 1435 0.46 2066 988 47.82 103.90
mish 3905 3712 95.06 530 530 100.00 59.88
radd 1840 1285 69.84 172 172 100.00 199.76
rckl 3.95E7 883 0.00 2146 215 10.02 28.44
rd53 600 600 100.00 60 60 100.00 150.00
vg2 2.24E7 16551 0.07 1812 1133 62.53 1102.47
x1dn 1.97E7 22465 0.11 1668 1003 60.13 1553.85
x9dn 1.14E7 14804 0.13 2750 1362 49.53 977.29
z4 4336 2592 59.78 150 150 100.00 529.71c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

5. Concluding remarks
We proposed two delay fault models for macro-based circuits. A
gross delay fault model was defined, where a subset of two-
pattern input combinations of a macro are each associated with a
fault. The two-pattern input combinations were selected to cover
all possible transitions of each macro, assuming that a transition
involving multiple input changes occurs through a sequence of

single input changes. The fault coverage achievable for this
model was shown to be high for the macro-based circuits con-
sidered, similar to the situation in gate-level circuits. To define a
path delay fault model, function-robust propagation from an
input to the output of a macro was defined, requiring that the out-
put would change only if the input change occurs. A path delay
fault was defined as a physical path associated with two-pattern
input combinations for the macro along the path, such that a
transition is function-robustly propagated from the input to the
output of every macro along the path. Simulation results showed
that this model suffers from limitations due to large numbers of
paths and low testability of these paths. Reduced sets of path
delay faults were therefore defined.

Future work includes the following topics. (1) The exper-
imental results presented indicate that different translations of a
circuit into a macro-based circuit result in different testabilities
to delay faults. Thus, translation procedures to achieve high
delay fault testability will be investigated. (2) Test generation
for delay faults in macro-based circuits was not considered in
this work, and is the subject of future work. (3) The fault models
were developed in this work independent of the details of any
specific macro. The suitability of different models to different
macros will be studied.

References
[1] K. Keutzer, "DAGON: Technology binding and local optimiza-

tion by DAG Matching", 24th Design Autom. Conf., 1987, pp.
341-347.

[2] U. Schlichtmann, F. Brglez and M. Hermann, "Characterization
of Boolean Functions for Rapid Matching in EPGA Technology
Mapping", 29th Design Autom. Conf., June 1992, pp. 374-379.

[3] S. D. Brown, R. J. Francis, J. Rose and Z. G. Vranesic Field-
Programmable Gate Arrays, Kluwer Academic Publishers, 1992.

[4] Z. Barzilai and B. Rosen, "Comparison of AC Self-Testing Pro-
cedures," 1983 Intl. Test Conf., pp. 89-94.

[5] J. L. Carter, V. S. Iyengar and B. K. Rosen, "Efficient Test Cov-
erage Determination for Delay Faults", 1987 Intl. Test Conf.,
Sept. 1987, pp. 418-427.

[6] G. L. Smith, "Model for Delay Faults Based Upon Paths," 1985
Intl. Test Conf., pp. 342-349.

[7] I. Pomeranz and S. M. Reddy, "An Efficient Non-Enumerative
Method to Estimate the Path Delay Fault Coverage in Combina-
tional Circuits", IEEE Trans. on CAD., Feb. 1994, pp. 240-250.

[8] C. J. Lin and S. M. Reddy, "On delay fault testing in logic cir-
cuits," IEEE Trans. CAD, pp. 694-703, Sept. 1987.

[9] W.-N. Li, S. M. Reddy and S. K. Sahni, "On path Selection in
Combinational Logic Circuits", IEEE Trans. on CAD, Jan. 1989,
pp. 56-63.

[10] I. Pomeranz and S. M. Reddy, "Testability Considerations in
Technology Mapping", 3rd Asia Test Symp., Nov. 1994.

[11] T. W. Williams, B. Underwood and M. R. Mercer, "The Inter-
dependence between Delay-Optimization of Synthesized Net-
works and Testing", 28th Design Autom. Conf., June 1991, pp.
87-92.

[12] M. Abramovici, M. Breuer, A. D. Friedman, Digital Systems
Testing and Testable Design, Computer Science Press, 1990.

[13] J. Waicukauski, E. Lindbloom, B. Rosen and V. Iyengar, "Transi-
tion Fault Simulation," IEEE Design & Test, April 1987, pp. 32-
38.

[14] M. Yoeli and S. Rinon, "Applications of Ternary Algebra to the
Study of Static Hazards", JACM, pp. 84-97, Jan. 1964.

[15] E. J. McCluskey, Logic Design Principles with Emphasis on
Testable Semicustom Circuits, Prentice-Hall, 1986.

