
On Testing Non-testable Programs

Elaine J. Weyuker
Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, New York 10012, USA

A frequently invoked assumption in program testing is that there is an oracle (i.e. the tester or an external mechanism
can accurately decide whether or not the output produced by a program is correct). A program is non-testable if either
an oracle does not exist or the tester must expend some extraordinary amount of time to determine whether or not the
output is correct. The reasonableness of the oracle assumption is examined and the conclusion is reached that in many
cases this is not a realistic assumption. The consequences of assuming the availability of an oracle are examined and
alternatives investigated.

1. INTRODUCTION

It is widely accepted that the fundamental limitation of
using program testing techniques to determine the
correctness of a program is the inability to extrapolate
from the correctness of results for a proper subset of the
input domain to the program's correctness for all elements
of the domain. In particular, for any proper subset of the
domain there are infinitely many programs which
produce the correct output on those elements, but produce
an incorrect output for some other domain element.
None the less we routinely test programs to increase our
confidence in their correctness, and a great deal of
research is currently being devoted to improving the
effectiveness of program testing. These efforts fall into
three primary categories: (1) the development of a sound
theoretical basis for testing; (2) devising and improving
testing methodologies, particularly mechanizable ones;
(3) the definition of accurate measures of and criteria for
test data adequacy.

Almost all of the research on software testing therefore
focuses on the development and analysis of input data. In
particular there is an underlying assumption that once
this phase is complete, the remaining tasks are straight-
forward. These consist of running the program on the
selected data, producing output which is then examined
to determine the program's correctness on the test data.
The mechanism which checks this correctness is known
as an oracle, and the belief that the tester is routinely able
to determine whether or not the test output is correct is
the oracle assumption.' •2

Intuitively, it does not seem unreasonable to require
that the tester be able to determine the correct answer in
some 'reasonable' amount of time while expending some
'reasonable' amount of effort. Therefore, if either of the
following two conditions occur, a program should be
considered non-testable: (1) there does not exist an oracle;
(2) it is theoretically possible, but practically too difficult
to determine the correct output.

The term non-testable is used since, from the point of
view of correctness testing, if one cannot decide whether
or not the output is correct or must expend some
extraordinary amount of time to do so, there is nothing
to be gained by performing the test.

In Section 2 we examine the reasonableness of the
oracle and related assumptions and discuss characteris-

tics of programs for which such assumptions are not
valid. Section 3 considers how to test such programs,
Section 4 looks at techniques which are particularly
applicable to numerical and scientific computations, and
Section 5 discusses the consequences of accepting the
oracle assumption. Section 6 concludes with suggestions
for software users and procurers.

2. THE ORACLE ASSUMPTION AND NON-
TESTABLE PROGRAMS

Although much of the testing literature describes meth-
odologies which are predicated on both the theoretical
and practical availability of an oracle, in many cases
such an oracle is pragmatically unattainable. That is not
to say that the tester has no idea what the correct answer
is. Frequently the tester is able to state with assurance
that a result is incorrect without actually knowing the
correct answer. In such a case we shall speak of a partial
oracle.

Some years ago, while working as a programmer for a
major oil company, the author received a telephone call
from the company comptroller's office. As standard
practice, the company ran a program at the beginning of
each month to determine the company's total assets and
liabilities. The program had been running without
apparent error for years. The person in the comptroller's
office said that the program had 'suddenly gone crazy'—
it had stated that the company's assets totalled $300.
This is a simple example of the ability to detect incorrect
results without knowing the correct result. $300 is not a
plausible result, nor is $1000. $1000000 might be
considered by the tester a potentially correct result, but
a specialist, such as the corporation's comptroller, might
have enough information to determine that it is incorrect
although $1 100000 is plausible. It is unlikely that the
comptroller can readily determine that $1134 906.43 is
correct, and $1 135 627.85 is incorrect. Thus even an
expert may accept incorrect but plausible answers as
correct results. The expert can usually restrict the range
of plausible results to exclude more incorrect results than
a non-expert.

Even if the tester does not know the correct answer, it
is sometimes possible to assign some measure of
likelihood to different values. For example, if a program
which is to compute the sine function is to be tested, and

CCC-0010-4620/82/0025-0465 $03.00

© Wiley Heyden Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 6 5

E. J. WEYUKER

one of the test values selected is 42°, one could begin by
saying that if the output is less than — 1 or greater than
1, then there is an error. Thus an answer of 3 is known to
be incorrect without the actual value of sin 42° being
known. What one frequently tries to do is repeatedly
refine the range of plausible outputs until very few
answers are acceptable. To continue with the sine
example, we know that sin 30° = 0.5000 and sin 45°
= 0.7071 and that the sine function is strictly increasing
on that interval. Thus the plausible range for sin 42° has
been further restricted. Furthermore, since the curve
between 30° and 45° is convex upwards, a straight line
approximation provides a lower bound of 0.6657. This
type of analysis has allowed us to say that 0.6657 < sin
42° < 0.7071. At this point the tester may not have
available any additional information to allow the further
restriction of the range of allowable values. None the
less, the tester may know that since the sine curve is
relatively flat between 30° and 45°, the straight line
approximation should be quite good. Therefore it follows
that the actual value of sin 42° is much more likely to fall
near the low end of the acceptable range than near the
high end. Note that we have not assumed or established
a probability distribution, but none the less have a notion
of likelihood.

It is interesting to attempt to identify classes of
programs which are non-testable. These include: (1)
programs which were written to determine the answer. If
the correct answer were known, there would have been
no need to write the program; (2) programs which
produce so much output that it is impractical to verify all
of it; (3) programs for which the tester has a misconcep-
tion. In such a case, there are two distinct specifications.
The tester is comparing the output against a specification
which differs from the original problem specification.

A common solution to the problem for programs in
both categories 1 and 2 is to restrict attention to 'simple'
data. This will be discussed in the next two sections.
Note that a program need not produce reams of output to
fall into the second category described above. A single
output page containing columns of 30 digit numbers may
simply be too tedious to check completely. Typically,
programs in this class are accepted either by the tester
'eyeballing' the output to see that it 'looks okay' or by
examining in detail portions of the output (particularly
portions known to be error-prone) and inferring the
correctness of all the output from the correctness of these
portions.

Testing programs in the third category presents
radically different problems. In the other cases, the tester
is aware that there is no oracle available (either because
of lack of existence or inaccessibility) and must find
approximations to an oracle. In this third case, however,
the tester believes that there is an oracle, i.e. he believes
he knows or can ascertain the correct answers. This
implies that if selected test data are processed correctly
by the program rather than in accordance with the
tester's misconception, the tester/oracle will believe that
the program contains an error and will therefore attempt
to debug it. The consequences of this situation are
discussed in Section 5.

The existence of tester misconceptions argues convinc-
ingly for testing by people who are independent of the
programmers, and when possible the involvement of
several different testers in order to minimize the

likelihood of coinciding misconceptions. It also argues
for precise specification and documentation, before
implementation begins.

3. TESTING WITHOUT AN ORACLE

Since we believe that many programs are by our
definition non-testable, we are faced with two obvious
questions. The first is why do researchers assume the
availability of an oracle? There seem to be two primary
reasons. Many of the programs which appear in the
testing literature are simple enough to make this a
realistic assumption. Furthermore, it simply allows one
to proceed. The second and more fundamental question
is how does one proceed when it is known that no oracle
is available? We are certainly not arguing for the
abandonment of testing as a primary means of determin-
ing the presence of software errors, and feel strongly that
the systematization and improvement of testing tech-
niques is one of the foremost problems in software
engineering today.

Perhaps the ideal way to test a program when we do
not have an oracle is to produce a pseudo-oracle, an
independently written program intended to fulfill the
same specification as the original program. This tech-
nique is frequently called dual coding, and has been used
historically only for highly critical software. The two
programs are run on identical sets of input data and the
results compared. The comparison might be done
manually, although frequently a comparison program
will also be necessary. In particular, if the program was
deemed non-testable because of the volume or tediousness
of the output, it would be just as impractical to compare
the results manually as to verify them initially. In a sense,
this pseudo-oracle program might be considered an
oracle, for if the results of the two programs agree, the
tester will consider the original results correct. If the
results do not match, the validity of the original results is
at least called into question.

The notion of writing multiple independent programs
or subroutines to accomplish a single goal has been
proposed in other contexts, particularly in the area of
fault tolerant computing.3"5 The motivation there,
however, is fundamentally different. In the case of fault
tolerant systems, an alternative program is run only after
it has been determined that the original routine contains
an error. In that case a partial oracle must also be
assumed. There have also been suggestions of 'voting'
systems3 for which the programmer writes multiple
versions of routines and a consensus is used to determine
the correct output. Again, this is generally only proposed
for highly critical software. We, in contrast, are discussing
the use of an alternative program to determine whether
or not the original program functions correctly on some
inputs.

Of course the use of a pseudo-oracle for testing may
not be practical. Obviously such a treatment requires a
great deal of overhead. At least two programs must be
written, and if the output comparison is to be done
automatically three programs are required to produce
what one hopes will be a single result. In order for the use
of a pseudo-oracle to be reasonable, Davis and Weyuker6

note that it is essential that such a program be produced

4 6 6 THE COMPUTER JOURNAL. VOL. 25, NO. 4.1982

ON TESTING NON-TESTABLE PROGRAMS

relatively quickly and easily. For this reason, a very high
level language such as SETL7 might be used for
implementing the pseudo-oracle. The advantages of
writing in very high level languages are that programs
can be produced quickly, they are less likely to be
incorrect than programs in traditional languages, and
they can be quickly and easily modified. Developers and
experienced users of SETL indicate that the ratio of the
number of lines of SETL code to the number of lines of
PL/I or a similar high level language range froml :4 to
1:10 depending on the nature of the program and
primitive data structures used. Similar ratios are pre-
dicted for the total time to produce a running version of
the program. Of course, even more advantageous ratios
can be expected for programs written in an assembly
language.

It is true that a very high level language program may
not be suitable as a production program owing to the
inefficiency of the compiled object code. However, since
pseudo-oracle programs will be in use only during the
testing and debugging phases, such inefficiencies do not
present a serious problem, especially when balanced
against the ease and speed of development of the pseudo-
oracle.

Gilb8 argues that writing dual code does not necessarily
add substantially to the overall cost of software since
writing source code contributes only a minor part of the
total cost. In addition, he states that this practice will cut
down substantially the amount of work which a human
tester/oracle must perform, and therefore offset the
increased coding costs. More experimental research
should be done to determine the real costs of using
multiple versions of programs as a testing technique.

A different, and frequently employed course of action
is to run the program on 'simplified' data for which the
correctness of the results can be accurately and readily
determined. The tester then extrapolates from the
correctness of the test results on these simple cases to
correctness for more complicated cases. In a sense, that
is what is always done when testing a program. Short of
exhaustive testing, we are always left to infer the
correctness of the program for untested portions of the
domain. But in this case we are deliberately omitting test
cases even though these cases may have been identified
as important. They are not being omitted because it is
not expected that they will yield substantial additional
information, but rather because they are impossible, too
difficult, or too expensive to check.

For those programs deemed non-testable due to a lack
of knowledge of the correct answer in general, there are,
none the less, frequently simple cases for which the exact
correct result is known. A program to generate base 2
logarithms might be tested only on numbers of the form
2". A program to find the largest prime less than some
integer n might be tested on small values of n.

In the case of programs which produce excessive
amounts of output, testing on simplified data might
involve minor modifications of the program. For exam-
ple, a police officer stopped by The Courant Institute a
few years ago to ask whether we could produce a listing
of all possible orders in which the teams of the American
Baseball League could finish. Since there were ten teams
in the league, such a program would have to generate all
3,628,800 permutations of ten elements, surely too many
to check or even count manually. The addition of a

counter to the program could be used to verify that the
correct quantity of output is produced, but not that the
output is correct. One might modify the program slightly
and make the number of elements to be permuted a
program parameter. If the tester then tests the program
on a small input such as 4, the correctness of these results
could be readily checked, as there are only 24 such
permutations.

Note that this example is of interest for another reason:
it is an inputless program. In other words it is a program
intended to do a single computation. If the proper result
is not known in such a case, the program should be
parameterized and the more general program tested on
input for which the results are known.

The problem with relying upon results obtained by
testing only on simple cases is obvious. Experience tells
us that it is frequently the 'complicated' cases that are
most error-prone. It is common for central cases to work
perfectly whereas boundary cases cause errors. And of
course by looking only at simple cases, errors due to
overflow conditions, round-off problems, and truncation
errors may well be missed.

We have now argued that programs are frequently
non-testable, in the sense of lacking ready access to an
oracle, and suggested two ways of testing such programs.
The first of these suggestions, writing multiple independ-
ent routines, is frequently discarded as being impractical.
The second technique of looking at simplified data is
commonly used by testers and is satisfactory for locating
certain types of errors but is unsatisfactory for errors
which are particularly associated with large or boundary
values.

The third alternative is to simply accept plausible
results, but with an awareness that they have not been
certified as correct. As in the case of the sine program
described in Section 2, a useful technique is to attempt to
successively narrow the range of plausible results and
even assign a probabilistic measure to potential plausible
answers or at least some relative measure of likelihood.

One other class of non-testable programs deserves
mention. These are programs for which not only an
oracle is lacking, but it is not even possible to determine
the plausibility of the output. One cannot be expected to
have any intuition about the correct value of the one
thousandth digit of n. Furthermore there is no acceptable
tolerance of error. The result is either right or wrong.
Since plausibility may be thought of as an unspecified,
yet intuitively understood, level of acceptable error, the
tester is faced with a serious dilemma. Both the use of a
pseudo-oracle and the use of simplified data might be
useful. The limitations associated with these approaches
must be borne in mind. For this example, the program
could be slightly modified to generate the first n digits of
n rather than just the desired one thousandth digit, and
then tested with n = 10. Since these values are well-
known, and can be easily checked, one might deduce,
subject to the serious limitations discussed earlier, that
provided these digits are correct, the desired one is also
correct.

4. NUMERICAL AND SCIENTIFIC
COMPUTATIONS

Although we believe that non-testable programs occur in

THE COMPUTER JOURNAL, VOL. 25. NO. 4,1982 4 6 7

E. J. WEYUKER

all areas of data processing, the problem is undoubtedly
most acute in the area of numerical computations,
particularly when floating point arithmetic is used. For
this reason, numerical analysts and scientific program-
mers have developed some additional techniques to deal
with these problems. Note that we will not consider the
question of techniques to minimize the error in a
computation. Although this is an important and related
area, we are concerned only with the question of
determining whether or not the computed results are
correct.

One should bear in mind when performing such
computations that there are three distinct sources of
error: the mathematical model used to describe the
problem, the program written to implement the compu-
tation, and features of the environment such as round-off
error. In general, techniques developed to assess one of
these aspects assume that the other two are error-free.

Another point to keep in mind is that there is rarely a
single correct answer in these types of computations.
Rather, the goal is generally an approximation which is
within a designated tolerance of the exact solution.
Sometimes knowing that the result falls within the
specified tolerance in all but a small percentage of the
cases is sufficient.

The first rule-of-thumb used is obvious: test the
program on data for which the correct solution is known.
Frequently one has analytic or empirical solutions for at
least a few points in the domain. Even if these are the
simplest cases, they do permit one to determine whether
the program 'works at all.'

Although the value of dual code or redundancy of at
least certain computations is well recognized, it seems
generally to be discarded as being too costly. However, a
commonly used technique is related to this and the rule-
of-thumb cited above: run the program on a set of
'standard problems' which have been used to test and
compare programs intended to perform the same task. In
essence, the results are being compared to those of
independently produced software without the overhead
of having to produce the alternative versions.

An important and useful technique involves the use of
properties of the computation which are known from the
theory. The theory might tell us that some conservation
laws hold, or that certain properties should remain
invariant, or give an indication of an error bound. These
should be checked repeatedly throughout the computa-
tion. If such a property fails to hold at some point, we
know immediately that the results will not be correct. We
know when calculating values of the sine and cosine, for
example, that sin2(x) + COS2(JC) = 1. Care should be taken
to see that this check is really being performed at each
stage. If the cosine is calculated by finding the square
root of (1 — sin2(x)), checking for this invariant cannot
be expected to be revealing.

A more sophisticated example involves the use of
Newton's method to find the zeros of a function/ This
iterative method uses local linearization to find each
successive iterate: xk+l = xk - (/(**)//'(**)) provided
/'(**) * 0.

To test a program which uses Newton's method, we
first note that we need routines to compute f(x) and
/'(*)• Considering these routines as black boxes, they
should at this stage be checked for consistency. That is,
is / ' really the derivative o f / ? Using the Taylor series

expansion we know that

fix + e) =/(*) + ef'(x) + O(e2)

By computing a table which includes the value of
f(x + e)- (f(x) + ef'(x)) for such values of e as 1, 0.1,
0.01,0.001, etc. one can see at a glance whether/' could
be the derivative of/ Once it has been determined that
these routines are consistent, it remains to check the code
intended to implement Newton's method.

The rate of convergence can frequently be used to
detect errors in iterative methods. In discussing the use
of multi-level adaptive techniques to solve partial
differential equations, for example, Brandt9 states:
'Because of the iterative character of the method,
programming (or conceptual) errors often do not manifest
themselves in catastrophic results, but rather in consid-
erably slower convergence rates.'

The theory tells us that Newton's method is a
quadratically convergent method; i.e. each successive
iteration approximately squares the error. Thus we can
expect that the number of correct digits in the computa-
tion should be roughly doubled at each iteration. That
this is actually happening should be checked.

One must always be careful to check, however, that
the theory is really applicable. Rice and Rice10 give the
example of the use of an algorithm to estimate the value
of n. The theory says that even estimates are smaller than
n and odd estimates are greater than n. Using the
algorithm it is determined that the 10000th estimate is
3.14134410 and the 10001st estimate is 3.14154407, so
3.14134410 < n < 3.14154407. Use of the 49999th and
50000th estimates gives 3.14074582 < n < 3.14078581.
This is obviously a contradiction. The point is that the
theory assumes perfect arithmetic, whereas computer
arithmetic involves round-off errors which may render
the theory inapplicable.

The determination of the effects of finite precision of
computer arithmetic on the accuracy of results is a
fundamental problem in numerical calculations. This
problem of significance arises, for example, when
automatic normalizing floating point arithmetic is used.
In recognition of this important problem, Goldstein and
Hoffberg1 i modified the CDC 6600 Fortran compiler to
associate with each floating point number an extra word
which indicated the number of significant bits. This was
determined by keeping track of the number of shifts
necessary to normalize the number following an opera-
tion. A similar tool, SigPac, was developed by Bright and
Coles.12 A program run under SigPac will produce its
regular numerical output as well as a bound on the
number of valid digits for selected quantities. This
permits the tester to determine whether or not there has
potentially been a degradation of significance in the
course of the calculation.

Essentially, these techniques address the question:
'What is the worst error that can occur?' Like all worst
case analysis, such techniques tend to be highly pessi-
mistic and are most useful for telling the tester that there
is no problem, not for indicating that a problem really
does exist.

In contrast to this type of analysis is the notion of
backwards error analysis. Essentially the question asked
in this type of analysis is not 'How close is the computed
solution to the actual solution?' but rather the reverse:
'For what problem of the same type is this the exact

4 6 8 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

ON TESTING NON-TESTABLE PROGRAMS

solution?' This is a particularly interesting idea since it
does not require that the correct solution be known. In
addition, numerical values in the statement of the
problem are frequently not exact—they may be the result
of empirical observations or previous inexact computa-
tions. Thus, as long as we have computed the exact
solution of a 'relatively close' problem, we may be
perfectly satisfied. A large backward error, i.e. a large
difference between the correct input data and the input
data for which the computed solution is the exact
solution, may indicate that the algorithm used was not
acceptable. Rice13 gives the following example:

Solving f(x) = 2.23x2cos(x/4) + 2.41*4 - 5.06e"64jc

+ 0.832 = 0, assume the result x = 0.256 was obtained.
Substituting this into/we get/(0.256) = 0.005086. Thus
0.256 is the exact solution to

2.23x2cos(x/4) + 2.41*4 - 5.06e~64* + 0.82691 = 0

Since the data have been changed by more than the
implied accuracy of three digits in the problem's original
coefficients, we would probably not accept this solution.

Another way of proceeding to check a computation for
significance when tools such as SigPac are not available
is to redo the computation in some different but
theoretically equivalent way, and compare the results.
For example, although (l—x2) and (l -x) (l + x) and
((0.5 — x) + 0.5)(l + x) are all mathematically equiva-
lent, they may not yield the same results. If it turns out
that they agree in some, but not all of the digits, an
estimate of the number of correct digits has been
provided. Frequently it is sufficient to simply perturb the
order in which the operations are performed in order to
check whether significance has been lost. For example,
rearranging the order in which three variables x, y, and
z are added may be sufficient to produce different results,
particularly when the values of some of the variables are
much greater than the final result. A very simple way to
perform this perturbation is to run a given high-level
language program using different compilers. Since each
compiler has its own way of translating the high-level
language code into machine language, it is likely that this
is sufficient to expose problems and give an estimate of
the number of correct digits.

Rice and Rice10 suggest running a given (high-level
language) program on machines with different amounts
of precision. They present an example in which a
computation was performed using 4, 8, and 16 digit
precision. For a particular value of the argument, the 4
digit and 8 digit results were completely different,
whereas the 8 and 16 digit results agreed. Thus they
conclude 'we feel justified in assuming these several digits
are correct.'

Occasionally, knowledge of which errors are most
commonly made can be helpful. Hartree14 mentions, for
example, that the interchange of adjacent digits is an
easy error to make. Since the result of such an error is
always a multiple of 9 and the difference between the
interchanged digits, this fact coupled with the knowledge
that this is a likely error may be useful in locating and
identifying a mistake of this type.

A final technique which is sometimes useful in
detecting a computational error in a table of results is
difference checks. The idea is that the effect of a
difference of t, in one element of the table will be
magnified by computing successive differences, and

thereby permit the tester to detect an error. Dahlquist
and Bjorck15 include the following exercise:

Locate and correct the misprint in the following table of
the values of a 'well-behaved' function:

0852 2251 3651 5045 6458 7864 9272

Computing the differences we get the following table:

0852
1399

2251 +1
1400 - 7

3651 - 6
1394 +25

5045 +19
1413 - 2 6

6458 - 7
1406 +9

7864 +2
1408

9272
Since a difference of £, will be reflected in the third
differences by +£, -3£, + 3£, - £ , it follows that £ is
approximately — 26/3 « — 9, and hence the fourth entry
in the table should have been 5054 rather than 5045.

5. THE CONSEQUENCES OF TESTING
WITHOUT AN ORACLE

We now consider the consequences of accepting the
oracle assumption. Two distinct situations deserve
mention and consideration. The first is when an output
result is actually correct, but the tester/oracle determines
that it is incorrect. This is the less common of the two
cases and frequently represents a tester misconception.

There are several possible consequences of such an
incorrect 'oracle' output. In any case, time is wasted
while someone tries to locate the non-existent error. It
may also cost time if it causes a delay in the release of the
program while useless debugging is going on. Of course
an even more serious problem occurs when the tester or
debugger modifies the correct program in order to 'fix' it
and thereby makes it incorrect.

The other, and more common situation, is when the
actual result is incorrect, but the tester/oracle believes it
is correct. It is well known that many (if not most)
programs which have been tested and validated and
released to the field, still contain errors. However, we are
discussing a fundamentally different situation. In general
whenever non-exhaustive testing has been done, there
remains a potential for error. But it is expected that the
aspects of the program which have been tested and
accepted as correct, actually are correct. At the very least
the specific data points on which the program has been
run are understood to yield correct results. When this is
not the case, even exhaustive testing does not guarantee
freedom from error.

6. CONCLUSIONS

Although much of the testing literature routinely assumes
the availability of an oracle, it appears, based on

THE COMPUTER JOURNAL. VOL. 25, NO. 4,1982 4 6 9

E. J. WEYUKER

discussions with testing practitioners (i.e. people who
work in independent testing groups) that testers are
frequently aware that they do not have an oracle
available. They recognize that they have at best a good
idea of the correct result (i.e. plausibility on a restricted
range) and sometimes very little idea what the correct
result should be.

It is apparent that the software user community has by
and large willingly accepted a caveat emptor attitude. We
suggest that the following five items be considered an
absolute minimal standard part of documentation:

(1) The criteria used to select the test data. For example,
were they selected to cause the traversal of each
program branch, were they cases that proved trou-
blesome in previous versions of the software, were
data selected to test each program function, or were
the test cases simply chosen at random?

(2) The degree to which the criteria were fulfilled. Were
100% of the branches traversed or 30%?

(3) The test data the program was run on.
(4) The output produced for each test datum.
(5) How the test results were determined to be correct or

acceptable.

Although such information does not solve the problem
of non-testable programs, it does at least give the user
more information to use in deciding whether or not the
program should be accepted as adequately tested, rather
than simply accepting the programmer's or tester's
assurances that the software is ready for use or
distribution.

As the fields of software engineering in general, and
program testing in particular develop, it appears likely
that increased emphasis will be placed upon the devel-
opment of criteria for determining the adequacy of test
data. Not only will we have to write programs to fulfill
specified tasks, we will also have to be able to certify that

they work as claimed. Such certification is routinely
required of hardware producers.

To develop adequacy criteria, we must be able to state
precisely what we have been able to show about the
program. One of the currently used criteria for adequacy
requires the traversal of each branch of the program.16

Many people including Goodenough and Gerhart17 and
Weyuker and Ostrand18 have discussed at length why
this criterion is a poor indicator of program test adequacy.
It might be argued, however, that its virtue is clear. We
are able to state precisely what has been demonstrated;
i.e. we are able to make statements such as 'all but three
of the branches of the program have been traversed', or
'96% of the branches have been traversed'. But even
these are not quite accurate statements of what is known.
Implicit in such statements is the assumption that the
branches have been traversed and yielded the correct
results. But as we have argued, this cannot in general be
determined. Hence this and any other such criterion of
adequacy suffers from the fundamental flaws which we
have discussed. Therefore, as testing research progresses
and testing methodologies continually improve, we see
that there are two fundamental barriers which must be
faced. The first involves unsolvability results,19'20 but
these are largely of a theoretical nature. The second
barrier, however, is a real, pragmatic problem which
must in some sense be faced each time a program is
tested. We must ask, and be able to determine, whether
or not the results obtained are correct. This, we believe,
is the fundamental limitation that testers must face.

Acknowledgements
I am grateful to Paul Abrahams, Tom Anderson, Tom Ostrand and
Sandi Rapps for their comments and helpful suggestions. I am also
grateful to my colleagues at the Courant Institute for their interesting
and helpful discussions of how to deal with these problems in numerical
and scientific computations. In particular I thank Octavio Betancourt,
Martin Davis, Max Goldstein, Mai Kalos, Peter Lax, Michael Overton,
Charlie Peskin and Michael Weinstein.

REFERENCES

1. W. E. Howden and P. Eichhorst, Proving properties of programs
from program traces, in Tutorial: Software Testing and Valida-
tion Techniques, ed. by E. Miller and W. E. Howden, pp. 46-56.
IEEE Computer Society, New York (1978).

2. L. J. White and E. I. Cohen, A domain strategy for computer
program testing. IEEE Transactions on Software Engineering
SE-6, 247-257 (1980).

3. A. Avizienis and L. Chen, On the implementation of N-version
programming for software fault-tolerance during program
execution. Proceedings of COMPSAC Conference, 149-155
(1977).

4. J. J. Horning, H. C. Lauer, P. M. Melliar-Smith and B. Randell,
A program structure for error detection and recovery, in Lecture
Notes in Computer Science 16, pp. 177-193. Springer, Berlin
(1974).

5. B. Randell, System structure for software fault tolerance. IEEE
Transactions on Software Engineering SE-1,220-232 (1975).

6. M. Davis and E. Weyuker, Pseudo-oracles for non-testable
programs. Proceedings of ACM 81 Conference (1981).

7. R. B. K. Dewar, A. Grand, S.-C. Liu and J. T. Schwartz,
Programming by refinement, as exemplified by the SETL
representation sublanguage. ACM TOPLAS 1 (1), 27-49
(1979).

8. T. Gilb, Software Metrics, Winthrop, Englewood Cliffs, New
Jersey (1977).

9. A. Brandt, Multi-level adaptive techniques for partial differential
equations: ideas and software, in Mathematical Software III,
ed. by J. R. Rice, pp. 277-318. Academic Press, London
(1977).

10. J. K. Rice and J. R. Rice, Introduction to Computer Science,

Holt Rinehart Winston, New York (1969).
11. M. Goldstein and S. Hoffberg, The estimation of significance,

in Mathematical Software, ed. by J. R. Rice, pp. 93-104.
Academic Press, New York (1971).

12. H. S. Bright and I. J. Coles, A method of testing programs for
data sensitivity, in Program Test Methods, ed. by W. C. Hetzel,
pp. 143-162. Prentice-Hall, Englewood Cliffs, New Jersey
(1973).

13. J. R. Rice, Matrix Computations and Mathematical Software,
McGraw-Hill, New York (1981).

14. D. R. Hartree, Numerical Analysis, 2nd Edn, Oxford (1958).
15. G. Dahlquist and A. Bjorck, Numerical Methods, Prentice-Hall,

Englewood Cliffs, New Jersey (1974).
16. J. C. Huang, An approach to program testing. Computing

Surveys!, 113-128(1975).
17. J. B. Goodenough and S. L. Gerhart, Toward a theory of testing:

data selection criteria, in Current Trends in Programming
Methodology Vol. 2, ed. by R. T. Yeh, pp. 44-79. Prentice-Hall,
Englewood Cliffs, New Jersey (1977).

18. E. J. Weyuker and T. J. Ostrand, Theories of program testing
and the application of revealing subdomains. IEEE Transactions
on Software Engineering SE-6, 236-246 (1980).

19. W. E. Howden, Reliability of the path analysis testing strategy.
IEEE Transactions on Software Engineering SE-2, 208-215
(1976).

20. E. J. Weyuker, The applicability of program schema results to
programs. International Journal of Computer & Information
Sciences 8 (5). 387-403 (1980).

Received November 1981

470 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

