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1. Introduction

In balanced models the ANOVA-method leads to exact tests. In the general un-

balanced mixed linear model, when the uniformly most powerful test does not exist,
the situation becomes more demanding. Here we consider two approaches to test

hypotheses on variance components in such models.

The first approach is based on the distribution of the maximal invariant with re-
spect to the group of translations in mean. We suggest to consider the exact Wald

test (if it exists) and several approximate tests, in particular, the ANOVA-like test
and the Zmyślony-Michalski test. We do not consider, however, the locally best in-

variant test in this situation. The distribution of the test statistic of the approximate
tests depends on the nuisance parameters from the composite null hypothesis, so the

level and the power of such tests depends on those parameters.

*Research for this paper was supported in part by the Grant VEGA 1/4196/97 and the
Grant VEGA 1/7295/20 from the Science Grant Agency of the Slovak Republic.
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The second approach is based on the reduction of the general model to the model

with only two variance components. If there exists such linear transformation that
reduces the model, then for testing the significance of the given variance component
we can use any of the known tests for testing the variance component in a model

with two variance components. According to Seifert [17] the class of such tests is
called the class of Bartlett-Scheffé tests. We note that such tests are exact.

For each of those tests we provide the formulae for calculating the critical value and
the power function. Under the given assumptions the test statistics are distributed as

a linear combination of independent chi-square variables. The desired critical values
and the power functions are calculated numerically by applying Imhof’s algorithm,

see [4]. Another option would be to use the algorithm due to Davies [1].

2. Mixed linear model

We consider the general mixed linear model

(1) y = Xβ + Uα + ε,

where y is an n-vector of observations of the response variable, X is a fixed and

known n × p matrix with rank(X) = k, k � p, and U = (U1, . . . , Ur) is an n × m

matrix, m =
r∑

i=1
mi, R(Ui) �⊆ R(X), where R(A) denotes the linear space spanned

by the columns of the matrix A, β is a k-vector of unknown fixed effects, and α and ε

are uncorrelated random m- and n-vectors. Here α = (α′1, . . . , α
′
r)′ represents the

joint vector of r random effects and ε represents the unexplained random error.

If not otherwise stated, we consider the natural ordering of random effects,
i.e. i � j whenever R(Ui) ⊆ R(Uj). Throughout this paper we assume the normal

distribution of random vectors. We assume αi ∼ N(0, σ2i Imi), i = 1, . . . , r, and
ε ∼ N(0, σ2r+1In); then

(2) E(y) = Xβ, Var(y) =
r+1∑

i=1

σ2i Vi,

where Vi = UiU
′
i , i = 1, . . . , r, and Vr+1 = I.

We will study the tests for testing statistical significance of the variance compo-
nent σ2i for any i = 1, . . . , r, i.e. for testing the hypothesis

(3) H0 : σ2i = 0 against the alternative H1 : σ2i > 0

or equivalently for testing H0 : θi = 0 against H1 : θi > 0, i = 1, . . . , r, where

θi = σ2i /σ2r+1.
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3. Tests in model with more than two variance components

In this section we consider three tests of the hypothesis (3) which are based on the
maximal invariant statistic (with respect to the group of transformations y �→ y + Xβ

for all β ∈ �
p ), t = BXy, where BX is an (n − k) × n matrix such that MX =

I −XX+ = B′
XBX and BXB′

X = In−k. Then

(4) E(t) = 0, Var(t) =
r+1∑

i=1

σ2i Wi,

where Wi = BXViB
′
X , i = 1, . . . , r, and Wr+1 = In−k.

3.1. Wald test
The Wald test, if it exists, leads to an exact F -test for testing the hypothesis (3).

The test was introduced by Wald [18], [19] and extended by Seely and El-Bassiouni
[15]. They showed that the test exists only for a small number of hypotheses in

general unbalanced ANOVA models (highest interactions, highest nested effects).
Consider model (1) in the form

(5) y = Xβ + Uiαi + U∗α∗ + ε

with U∗ = (U1, . . . , Ui−1, Ui+1, . . . , Ur) and α∗ = (α′1, . . . , α
′
i−1, α

′
i+1, . . . , α

′
r)′. Let

t = BXy, then

(6) t = BXUiαi + BXU∗α∗ + ε∗

with ε∗ = BXε.

Let Z = BXU∗ and q = rank(Z). Denote by BZ an (n− q)× n matrix such that
B′

ZBZ = MZ = I − ZZ+ and BZB′
Z = In−q. Then define z = BZt and notice that

(7) z = BZBXUiαi + ε∗∗

with ε∗∗ = BZBXε, i.e. E(z) = 0 and Var(z) = σ2i BZBXViB
′
XB′

Z + σ2r+1In−q.

Let Pi denote the orthogonal projector onto the linear space R(BZBXUi) and let
Mi = I − Pi. Then Piz and Miz are independent random vectors and the statistic

(8) FW =
z′Piz/f1
z′Miz/f2

=
t′B′

ZPiBZt/f1
t′B′

ZMiBZt/f2

has under H0 a central F -distribution with f1 and f2 degrees of freedom, where

f1 = rank(Pi) = rank(BZBXUi) and f2 = rank(Mi) = n − q − f1. The Wald test
exists if BXUi and BZ(BXUi) are nonzero matrices, i.e. f1 �= 0 and f2 �= 0.
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Denote AW = B′
ZPiBZ/f1 − Ff1,f2(α)B′

ZMiBZ/f2 where Ff1,f2(α) is the critical

value of the Ff1,f2 random variable such that P (Ff1,f2 > Ff1,f2(α)) = α. Notice that

P (t′AW t > 0) = P
( h∑

i=1
λiχ

2
νi

> 0
)

where λi are the distinct non-zero eigenvalues of

AW Σ, where Σ = Var(t), νi are their respective multiplicities and χ2νi
are independent

χ2 variables with νi degrees of freedom. This, together with Imhof’s procedure,
allows to calculate the power of the test at different points in the alternative H1.

3.2. Seifert’s ANOVA-like test
Seifert [16] and Kleffe and Seifert [6] suggested the ANOVA-like test for variance

components. It is an approximate test on significance level α. As the author noticed
the test is heuristically motivated, leads to the optimal ANOVA-test or to Satterth-

waite’s approximate test in balanced situations and is asymptotically correct and
optimal.

ANOVA-like test statistic is based on MINQE(U,I), the minimum norm quadratic
estimator (unbiased and invariant), of the linear function of the variance components.

For more details see e.g. Rao [13] and [14].
Let σ2 = (σ21 , . . . , σ

2
r , σ2r+1)

′ ∈ Θ, Θ representing the parameter space, denote the

vector of variance components. For a fixed prior choice σ20 of σ2, the MINQE(U,I) of
the linear function g′σ2 (g is a fixed known vector such that g ∈ R(KUI), i.e. there
exists a vector λ such that g = KUIλ) is given by

(9) ĝ′σ2 = g′K−
UIq = λ′q,

where K−
UI is a g-inverse of the MINQE(U,I) criteria matrix KUI defined by the

elements

(10) {KUI}ij = tr
(
Σ−10 WiΣ

−1
0 Wj

)
, i, j = 1, . . . , r + 1,

and q = (q1, . . . , qr+1)′ is the MINQE(U,I) vector of quadratics with

(11) qi = t′Ait, i = 1, . . . , r + 1,

where Ai = Σ−10 WiΣ
−1
0 . The symbol tr(A) denotes the trace of the matrix A and

Σ0 = Σ(σ20) =
r+1∑
i=1

σ2i 0Wi. Here, we implicitly assume that the inverse Σ−10 exists.

Notice that ĝ′σ2 is an unbiased estimator of g′σ2, and under normality assumptions
we have

(12) Var(ĝ′σ2) = 2g′K−
UIg = 2λ′KUIλ

locally at σ2 = σ20 .
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Let σ20 ∈ H0 be a fixed vector of priors, i.e. σ2i 0 = 0. Assume for simplicity that the

inverse matrix K−1
UI exists. Then z = Lσ̂2 denotes the vector of locally uncorrelated

linear combinations of σ̂2—the MINQE(U,I) of σ2. Here L is an upper triangular
matrix with unit main diagonal and such that locally at σ20

(13) Var(z) = L Var(σ̂2)L′ = 2LK−1
UI L′ = D,

where D = Diag(Dii), i = 1, . . . , r + 1, is a diagonal matrix. We note that L could
be obtained by Cholesky decomposition of KUI .

For testing H0 : σ2i = 0, Seifert [16] proposed the test statistic based on the ratio

of locally uncorellated functions of σ̂2:

(14) FS =
zi

zi − σ̂2i
=

σ̂2i +
r+1∑

j=i+1
Lij σ̂

2
j

r+1∑
j=i+1

Lij σ̂2j

.

By construction the local covariance of the numerator and denominator is zero.

Seifert suggested to reject H0 for large values of FS . Witkovský [21] suggested the
critical region defined by

(15) zi − cα(zi − σ̂2i ) > 0,

where cα is the critical value of the distribution such that P (zi−cα(zi−σ̂2i ) > 0) = α,
under the assumption that true σ2 = σ20 ∈ H0.

Let ei = (0, . . . , 0, 1, 0, . . . , 0)′, then zi = e′iLK−1
UI q, zi − σ̂2i = e′i(L − I)K−1

UI q and

zi − cα(zi − σ̂2i ) = e′i(L − cα(L − I))K−1
UI q. If moreover AS =

r+1∑
j=1

κjAj with κ =

e′i(L− cα(L− I))K−1
UI and Aj = Σ−10 WjΣ−10 , j = 1, . . . , r + 1, then the critical region

is given by the inequality t′ASt > 0. Further, P (t′ASt > 0) = P
( h∑

i=1
λiχ

2
νi

> 0
)

,

where λi denote distinct non-zero eigenvalues of ASΣ, Σ = Var(t), νi are their

respective multiplicities, and χ2νi
are independent χ2 variables with νi degrees of

freedom. Imhof’s procedure allows to calculate the critical value cα, the level of the

test for any fixed point in H0, as well as the power of the test at an arbitrary point
from the alternative H1.

3.3. Zmyślony-Michalski test
Michalski and Zmyślony [10] proposed a test of the hypothesis (3) based on the

decomposition of an unbiased and invariant estimator of σ2i , i = 1, . . . , r. Let t′At
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be such estimator (e.g. the MINQE(U,I) of σ2i ). Let A be decomposed as A+ −A−,

where A+ and A− are both nonnegative definite and nonzero matrices. Since t′At is
an unbiased estimator, then

(16) E(t′A+t) = E(t′A−t) + σ2i ,

and under H0 : σ2i = 0 we get E(t′A+t) = E(t′A−t). The Zmyślony-Michalski test
rejects the null hypothesis for large values of

(17) FZM =
t′A+t

t′A−t
.

The authors have derived the distribution of FZM under the null hypothesis under

the specific condition that the matrices Wi commute and are linearly independent.
In general, we can derive the critical region of an approximate test which is locally

on a significance level α, based on FZM . Let Σ0 = Σ(σ20) be a fixed matrix such that
σ20 ∈ H0, then reject H0 for

(18) t′A+t− cαt′A−t > 0

where cα is such that under the assumption Var(t) = Σ0 we get

P (t′A+t− cαt′A−t > 0) = α.

Denote AZM = A+ − cαA−, then P (t′AZM t > 0) = P
( h∑

i=1
λiχ

2
νi

> 0
)

where

λi are the distinct non-zero eigenvalues of AZM Σ, Σ = Var(t), νi are the respec-

tive multiplicities and χ2νi
are independent χ2 variables with νi degrees of freedom.

Imhof’s procedure allows to calculate the critical value cα, the level of the test for

any fixed point in H0, as well as the power of the test at an arbitrary point from the
alternative H1.

4. Tests in model with two variance components

The model with two variance components is a special case of the general model (1)

with r = 1. In particular, we consider a model

(19) y = Xβ + Uα + ε

with independent random vectors α ∼ N(0, σ21Im) and ε ∼ N(0, σ2In). The maximal

invariant t = BXy is distributed as t ∼ N(0, σ21W + σ2In−k), where W = BXV B′
X ,

V = UU ′. In this setup, we are interested in testing the hypothesis

(20) H0 : θ = 0 against H1 : θ > 0,
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where θ = σ21/σ2. Notice that this is equivalent with testing H0 : σ21 = 0 against

H1 : σ21 > 0. We note that Lin and Harville [8] considered testing a generalized
hypothesis H0 : θ = θ0 against H1 : θ ∈ Θ∗, where Θ∗ is a general interval 〈θl, θu).

Let λ1 > λ2 > . . . > λh � 0 be h distinct eigenvalues of the matrix W with their re-

spective multiplicities ν1, . . . , νh. The spectral decomposition of W is W =
h∑

i=1
λiQi,

where Qi = EiE
′
i, and Ei is a matrix of orthonormal eigenvectors corresponding to

the eigenvalue λi.

Olsen, Seely and Birkes [12] derived the minimal sufficient statistic for the family

of distributions of the maximal invariant t: It is a set of h independent quadratics
Zi = t′Qit/νi such that νiZi/(σ21λi + σ2) ∼ χ2νi

. Moreover, Z = (Z1, . . . , Zh)′ is

a complete statistic if and only if h = 2.

The tests suggested for testing variance components in the general model are valid
also in the model with two variance components. Moreover, there are other tests and

theoretical results which are valid only for the model with two variance components.
The present section gives a brief overview of the tests and their distributions. We

note that the tests are exact. For more details see [7], [9], [20], [8], [2] and [5].

4.1. Neyman-Pearson test

The Neyman-Pearson test is the optimum test (most powerful test) for testing
H0 : θ = 0 against the simple alternative H1 : θ = θ∗, θ∗ > 0. The NP test is based

on the test statistic

(21) FNP (θ∗) =
t′t

t′(I + θ∗W )−1t
=

h∑
i=1

νiZi

h∑
i=1

νiZi/(θ∗λi + 1)

.

The NP test rejects the null hypothesis if FNP (θ∗) > cα(θ∗), where cα(θ∗) is a critical

value such that

(22) P

( h∑

i=1

(
1− cα(θ∗)

(θ∗λi + 1)

)
χ2νi

> 0

)
= α,

and χ2νi
are independent chi-square variables. Under the alternative H1 : θ > 0 the

power βNP (θ|θ∗) of the test is

(23) βNP (θ|θ∗) = P

( h∑

i=1

(
1− cα(θ∗)

θ∗λi + 1

)
(θλi + 1)χ2νi

> 0

)
.
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The limiting properties of the NP test are of some interest:

(24) lim
θ∗→θ0=0

FNP (θ∗) =

h∑
i=1

λiνiZi

h∑
i=1

νiZi

,

and, moreover,

lim
θ∗→∞

FNP (θ∗) =1 +

h−1∑
i=1

νiZi

νhZh
if λh = 0,(25)

lim
θ∗→∞

FNP (θ∗)/θ∗ =

h∑
i=1

νiZi

h∑
i=1

νiZi/λi

if λh �= 0.(26)

For more details see [20] and [8].

4.2. UMPI and LBI tests
Mathew [9] and Westfall [20] derived an optimum test for testing (20). They

noticed that the testing problem is invariant under the group of transformations
y �→ c(y + Xβ) for arbitrary c > 0 and β, and the maximal invariant is t/‖t‖. Gnot,

Jankowiak-Ros�lanowska and Michalski [2] proved that a necessary and sufficient
condition that guarantees the existence of the UMPI test (uniformly most powerful

invariant test) is that h = 2, h being the number of different eigenvalues of W .
There are two important cases to distinguish, see [5, Theorem 6.2.2]:

a) the nonzero eigenvalues of W are all equal, and
b) the nonzero eigenvalues of W are not equal.

Let ν = rank(W ) and suppose 0 < ν < n − k, i.e. W is singular. If the nonzero
eigenvalues of W are all equal to λ1 > 0 then the UMPI test rejects H0 for large

values of

(27) FUMPI =
n− k − ν

ν

t′Q1t
t′(I −Q1)t

.

Under H0, FUMPI ∼ Fν,n−k−ν . The test rejects H0 on a significance level α if
FUMPI > Fν,n−k−ν(α), where Fν,n−k−ν (α) is the critical value of the Fν,n−k−ν

distribution and P (Fν,n−k−ν > Fν,n−k−ν (α)) = α. Under the alternative H1 : θ > 0
the power βUMPI (θ) of the test is

(28) βUMPI(θ) = P
(
(n− k − ν)(θλ1 + 1)χ2ν − νFν,n−k−ν(α)χ2n−k−ν > 0

)
,
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where χ2ν and χ2n−k−ν are independent chi-square variables.

If the nonzero eigenvalues of W are not all equal then the LBI test (locally best

invariant test) rejects H0 for large values of

(29) FLBI =
t′Wt

t′t
=

t′(
h∑

i=1
λiQi)t

t′(
h∑

i=1
Qi)t

=

h∑
i=1

λiνiZi

h∑
i=1

νiZi

.

The LBI test rejects the null hypothesis if FLBI > cα, where cα is a critical value
such that

(30) P

( h∑

i=1

(λi − cα)χ2νi
> 0

)
= α,

and χ2νi
denote independent chi-square variables. Under the alternative H1 : θ > 0

the power βLBI(θ) of the test is

(31) βLBI(θ) = P

( h∑

i=1

(λi − cα)(θλi + 1)χ2νi
> 0

)
.

Westfall [20] proved that the NP test is equivalent to the LBI test as θ∗ approaches

0, see (24).

4.3. Wald test
In the model with two variance components (19) and under the assumption that W

is a singular matrix, i.e. λh = 0, the Wald test statistic (8) becomes

(32) FW =
t′Pt/f1
t′Mt/f2

=
f2
f1

h−1∑
i=1

νiZi

νhZh
,

P = BXU(U ′B′
XBXU)−U ′B′

X is the orthogonal projector onto R(BXU) = R(W )

and M = I − P , f1 = rank(P ) = rank(W ) =
h−1∑
i=1

νi and f2 = n− k − f1 = νh.

The Wald test rejects the null hypothesis if FW > Ff1,f2(α). Under the alternative

H1 : θ > 0 the power βW (θ) of the test is

(33) βW (θ) = P

(
f2

h−1∑

i=1

(θλi + 1)χ2νi
− Ff1,f2(α)f1χ2νh

> 0

)
.
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Notice that according to (25) the Wald test is equivalent to the limit case of the

NP test for θ∗ → ∞. Mathew [9] noticed that the Wald test is equivalent to the
UMPI test if h = 2.

4.4. Modified Wald tests

4.4.1. Lin-Harville test. According to (26), it is natural to consider the test
based on the statistic

(34) FLH =

h∑
i=1

νiZi

h∑
i=1

νiZi/λi

as a modification of the Wald test provided λh > 0. In such a case the test rejects

the null hypothesis if FLH > cα, and cα is a critical value such that

(35) P

( h∑

i=1

(1 − cα/λi)χ2νi
> 0

)
= α

and under the alternative H1 : θ > 0 the power βLH(θ) of the test is

(36) βLH(θ) = P

( h∑

i=1

(1 − cα/λi)(θλi + 1)χ2νi
> 0

)
.

4.4.2. LaMotte-McWhorter test. LaMotte, McWhorter and Prasad [7] sug-

gested a modification of the Wald test based on the test statistic

(37) FLM =

h∑
i=h∗+1

νi

h∗∑
i=1

νi

h∗∑
i=1

νiZi

h∑
i=h∗+1

νiZi

,

where h∗ is a chosen number from 1, . . . , h− 1. Notice that by choosing h∗ = h− 1
the test statistic coincides with the FW statistic. The test is well defined for both

cases: λh = 0 and also for λh > 0.
Under H0 : θ = 0 the LM test rejects the null hypothesis if FLM > Ff1,f2(α), with

f1 =
h∗∑
i=1

νi and f2 =
h∑

i=h∗+1
νi. Under the alternative H1 : θ > 0 the power βLM (θ)

of the test is

(38) βLM (θ) = P

(
f2

h∗∑

i=1

(θλi + 1)χ2νi
− Ff1,f2(α)f1

h∑

i=h∗+1

(θλi + 1)χ2νi
> 0

)
.
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4.4.3. Gnot-Michalski test. Gnot and Michalski [3] suggested a modified Wald

test which is based on the ratio of the non-negative admissible invariant quadratic
and unbiased estimators of 
Uσ21 + σ2 and 
Lσ21 + σ2, where

(39) 
L =





(λ1 tr(W+)− rank(W ))
(λ1 tr(W+W+)− tr(W+))

for λh > 0,

0 for λh = 0,

and

(40) 
U =
(tr(W 2)− λh tr(W ))

(tr(W )− λh rank(W ))
.

Notice that such a test exists even for W nonsingular. The test statistic is then

(41) FGM =





h∑
i=1

(λi − λh)νiZi

h∑
i=1

(λ1 − λi)νiZi

for λh > 0,

h−1∑
i=1

λiνiZi

νhZh
for λh = 0.

The test rejects the null hypothesis for FGM > cα, where cα is such that under H0

we get

(42) P

( h∑

i=1

(
(λi − λh)− cα(λ1 − λi)

)
χ2νi

> 0

)
= α

if λh > 0, and

(43) P

(h−1∑

i=1

λiχ
2
νi
− cαχ2νh

> 0

)
= α

if λh = 0.
Under the alternative H1 : θ > 0 the power βGM (θ) of the test is

(44) βGM (θ) = P

( h∑

i=1

(
(λi − λh)− cα(λ1 − λi)λ

−2
i

)
(θλi + 1)χ2νi

> 0

)

for λh > 0, and

(45) βGM (θ) = P

(h−1∑

i=1

λi(θλi + 1)χ2νi
− cαχ2νh

> 0

)

for λh = 0.
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4.5. ANOVA-like test
In the model with two variance components, the MINQE(U,I) criteria matrix (10)

has the form

(46) KUI =
1
σ40

(
tr(W 2) tr(W )
tr(W ) n− k

)
,

where tr(W 2) = tr
( h∑

i=1
λ2i Qi

)
=

h∑
i=1

λ2i νi and tr(W ) =
h∑

i=1
λiνi. Then the matrix

(47) L =

(
1

tr(W )
tr(W 2)

0 1

)

fulfils the required condition 2LK−1
UI L′ = D, where D is a diagonal matrix. Notice

that L does not depend on σ20 . Then, considering MINQE(U,I) of (σ21 , σ
2)′,

(48) (σ̂21 , σ̂
2)′ = K−1

UI q =
1

Det

(
n− k − tr(W )
− tr(W ) tr(W 2)

)(
t′Wt

t′t

)
,

where Det = (n− k) tr(W 2)− tr(W )2. By solving z = L(σ̂21 , σ̂
2)′ we get

z1 =
1

tr(W 2)
t′Wt,(49)

z1 − σ̂21 =
1

Det

(
tr(W )t′t− tr(W )2

tr(W 2)
t′Wt

)
.

Notice that z1 is a nonnegative definite quadratic form in t. The ANOVA-like test
statistic for testing H0 : θ = 0 against H1 : θ > 0, θ = σ21/σ2, is then given by

(50) FS =
z1

z1 − σ̂21
=

h∑
i=1

aλiνiZi

h∑
i=1

(b− cλi)νiZi

,

where

a = Det = (n− k)
h∑

i=1

λ2i νi −
( h∑

i=1

λiνi

)2
,

b = tr(W ) tr(W 2) =

( h∑

i=1

λiνi

)
×
( h∑

i=1

λ2i νi

)
,

c =

( h∑

i=1

λiνi

)2
.
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The test rejects the null hypothesis for FS > cα, where cα is such that under H0

we get

(51) P

( h∑

i=1

(
aλi − cα(b − cλi)

)
χ2νi

> 0

)
= α.

Under the alternative H1 : θ > 0 the power βS(θ) of the test is

(52) βS(θ) = P

( h∑

i=1

(
aλi − cα(b− cλi)

)
(θλi + 1)χ2νi

> 0

)
.

Witkovský [21] proved that the ANOVA-like test with the critical region z1 −
cα(z1− σ̂21) > 0 is equivalent to the optimum test (UMPI test if it exists or LBI test,
otherwise) for testing (20).

4.6. Zmyślony-Michalski test
Let t′At be a MINQE(U,I) of σ21 , see (48). Let A = A+ −A−. Then the ZM test

statistic is

(53) FZM =
t′A+t

t′A−t
=

∑
λ∗i >0

λ∗i νiZi

∑
λ∗i <0

−λ∗i νiZi
,

where λ∗i = λi − tr(W )/ rank(W ) = λi −
( h∑

i=1
λiνi

) / ( h∑
i=1

νi

)
. The test rejects the

null hypothesis for FZM > cα, where cα is such that under H0 we get

(54) P

(∑

λ∗i >0

λ∗i χ
2
νi

+ cα

∑

λ∗i <0

λ∗i χ
2
νi

> 0

)
= α.

Under the alternative H1 : θ > 0 the power βS(θ) of the test is

(55) βZM (θ) = P

(∑

λ∗i >0

λ∗i (θλi + 1)χ2νi
+ cα

∑

λ∗i <0

λ∗i (θλi + 1)χ2νi
> 0

)
.
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5. Reduction of the general mixed linear model

Seifert [17] proposed a new class of exact Bartlett-Scheffé tests for variance com-
ponents. The basic idea is to find a linear transformation of the general model to

a model with just two variance components. Then, standard techniques for testing
in the model with two variance components can be applied.

Consider the general model (1). Suppose that we want to test H0 : σ21 = 0 against

H1 : σ21 > 0, otherwise reorganize the ordering of the effects. Let T be a matrix such
that

(56) w = Ty = Ũ1α1 + α̃,

where α1 ∼ N(0, σ21I) and α̃ ∼ N(0, σ̃2I) are independent random effects and σ̃2 =
c2σ

2
2+ . . .+ cr+1σ

2
r+1 for some coefficients c2, . . . , cr+1. Notice that w ∼ N(0, σ21W +

σ̃2I), where W = Ũ1Ũ
′
1.

We can use the above tests for testing the hypothesis H0 : θ̃ = 0 against H1 : θ̃ > 0,
where θ̃ = σ21/σ̃2, in the model (56). Those tests are exact Bartlett-Scheffé tests for

testing H0 : σ21 = 0 against H1 : σ21 > 0 in the original model (1).

5.1. Algorithm for reduction of the model
The following stepwise procedure reduces the model by one variance component

in each step.

Consider model (1), y = Xβ+U1α1+. . .+Urαr+ε, with r+1 variance components.

Let us introduce a step-counter m, and set m = 1. The algorithm starts with an
n(m)-dimensional maximal invariant t(m) = BXy, where BX is a full rank matrix such

that B′
XBX = MX = I −XX+ and BXB′

X = In(m) , n(m) = n− k, k = rank(X).

Denote T (m) = BX and further U
(m)
i = BXUi, V

(m)
i = U

(m)
i U

(m)′

i and σ
2(m)
i = σ2i

for i = 1, . . . , κ(m), where κ(m) = r + 1 is the number of variance components; then

(57) t(m) = U
(m)
1 α1 + . . . + U

(m)
κ(m)−1ακ(m)−1 + U

(m)
κ(m)

ε

and t(m) ∼ N
(
0, σ

2(m)
1 V

(m)
1 + . . . + σ

2(m)
κ(m)−1V

(m)
κ(m)−1 + σ2(m)In(m)

)
with m = 1.

After m steps the algorithm proceeds as follows:

Step 0
Compute and remember the vector of ‘residuals’ which could be useful later in
Step 5 of the algorithm: Let

(58) M (m) = In(m) − P[
U
(m)
1 ,...,U

(m)

κ(m)−1

],
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and let B(m) be a matrix such that M (m) = B(m)
′
B(m) and B(m)B(m)

′
= If(m) ,

f (m) = rank
(
M (m)

)
. Then the vector of residuals is defined as

(59) γ(m) = B(m)t(m),

and we have γ(m) ∼ N
(

0, σ
2(m)
κ(m)

If(m)

)
.

Step 1
The algorithm succeeded if the number of variance components κ(m) = 2 and if

rank
(
U
(m)
1

)
> 0.

We note that if rank
(
U
(m)
1

)
= n(m), the Wald test does not exist.

Step 2
The algorithm failed if rank

(
U
(m)
1

)
= 0.

Step 3
If there is such i0, i0 ∈ {2, . . . , κ(m) − 1} that R

(
U
(m)
i0

)
⊆ R

(
U
(m)
1

)
, then use

the n(m+1)-dimensional vector

(60) t(m+1) = B
U
(m)
i0

t(m),

where B
U
(m)
i0

is a full rank matrix such that M
U
(m)
i0

= B′
U
(m)
i0

B
U
(m)
i0

and

B
U
(m)
i0

B′
U
(m)
i0

= In(m+1) . Reduce the number of variance components to

κ(m+1) = κ(m) − 1 and denote by σ
2(m+1)
i the remaining variance components

for i = 1, . . . , κ(m+1), and U
(m+1)
i = B

U
(m)
i0

U
(m)
i , V

(m+1)
i = U

(m+1)
i U

(m+1)′

i ;

then

(61) t(m+1) ∼ N

(
0,

κ(m+1)∑

i=1

σ
2(m+1)
i V

(m+1)
i

)
.

Notice that σ
2(m+1)
1 = σ21 and V

(m+1)
κ(m+1)

= In(m+1) .
Finally, denote

(62) T (m+1) = B
U
(m)
i0

T (m),

set m := m + 1 and restart the algorithm.

Step 4
If there is such i0, i0 ∈ {2, . . . , κ(m)−1} that U

(m)
i0

is not comparable with U
(m)
1 ,

i.e. neither R
(
U
(m)
i0

)
⊂ R

(
U
(m)
1

)
nor R

(
U
(m)
i0

)
⊃ R

(
U
(m)
1

)
, use an n(m+1)-

dimensional vector

(63) t(m+1) = B
U
(m)
i0

t(m),
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where B
U
(m)
i0

is a full rank matrix such that M
U
(m)
i0

= B′
U
(m)
i0

B
U
(m)
i0

and

B
U
(m)
i0

B′
U
(m)
i0

= In(m+1) . Reduce the number of variance components to

κ(m+1) = κ(m) − 1 and denote by σ
2(m+1)
i the remaining variance components

for i = 1, . . . , κ(m+1), and U
(m+1)
i = B

U
(m)
i0

U
(m)
i , V

(m+1)
i = U

(m+1)
i U

(m+1)′

i ;

then

(64) t(m+1) ∼ N

(
0,

κ(m+1)∑

i=1

σ
2(m+1)
i V

(m+1)
i

)
,

and notice that σ
2(m+1)
1 = σ21 and V

(m+1)
κ(m+1)

= In(m+1) .
Finally, denote

(65) T (m+1) = B
U
(m)
i0

T (m),

set m := m + 1 and restart the algorithm.

������. There is no unique method for handling cross-classified effects. As
pointed out by Seifert [17] an alternative step would be

(66) t(m+1) = B[
U
(m)
1 ,U

(m)
i0

]t(m),

where B[
U
(m)
1 ,U

(m)
i0

] is a full rank matrix such that

(67) P
U
(m)
i0

+ M[
U
(m)
1 ,U

(m)
i0

] = B′[
U
(m)
1 ,U

(m)
i0

]B[
U
(m)
1 ,U

(m)
i0

],

where P
(m)
Ui0

is an orthonormal projector onto R(U (m)i0
) and M[

U
(m)
1 ,U

(m)
i0

] is an or-

thonormal projector onto the null space of
[
U
(m)
1 , U

(m)
i0

]′
, and

B[
U
(m)
1 ,U

(m)
i0

]B′[
U
(m)
1 ,U

(m)
i0

] = In(m+1) .

This formula uses intra-block information about the effect i0 and makes that effect

nested in the first effect. The second approach is suggested if the true σ
2(m)
i0

is small.
Here T (m+1) = B[

U
(m)
1 ,U

(m)
i0

]T (m).

Step 5
If there is such i0, i0 ∈ {2, . . . , κ(m) − 1} that R

(
U
(m)
i0

)
⊆ R

(
U
(m)
i

)
holds true

only for i = κ(m) (notice that R
(
U
(m)
κ(m)

)
= R(In(m) )), compute

(68) c
(m)
i0

= λmax
(
V
(m)+
i0

)
,
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the maximal eigenvalue of the Moore-Penrose g-inverse of V
(m)
i0

. Let P
U
(m)
i0

denote the orthogonal projector onto R
(
U
(m)
i0

)
and let BP denote a matrix

such that P
U
(m)
i0

= B′
P BP and BP B′

P = If , where f = rank(P
U
(m)
i0

). We assume

that f (m) � f , then compute

(69) t = BP t(m) + η(m),

where η(m) denotes the artificial vector of disturbances,

(70) η(m) =
(
BP

(
c
(m)
i0

V
(m)
i0

− In(m)

)
B′

P

) 1
2

Dγ(m)

with D = [If

... 0f,f(m)−f ], and A
1
2 denotes a matrix such that A

1
2A

1
2
′

= A.
BP t(m) and η(m) are independent random vectors with the distribution

BP t(m) ∼ N

(
0,

κ(m)∑

i=1

σ
2(m)
i BP V

(m)
i B′

P

)
,(71)

η(m) ∼ N
(

0, c
(m)
i0

σ
2(m)
κ(m)

BP V
(m)
i0

B′
P − σ

2(m)
κ(m)

If

)
.(72)

By adding noise to BP t(m) we have reduced the number of variance components

by one, and

(73) Var(t) =
κ(m)−1∑

i�=i0

σ
2(m)
i BP V

(m)
i B′

P +
(
σ
2(m)
i0

+ c
(m)
i0

σ
2(m)
κ(m)

)
BP V

(m)
i0

B′
P .

Further, compute

(74) t(m+1) = Bt,

where B is such that BBP V
(m)
i0

B′
P B′ = Inm+1 . Denote the new number of

variance components by κ(m+1) = κ(m)− 1 and rename and denote by σ
2(m+1)
i ,

i = 1, . . . , κ(m+1), the remaining variance components. In particular, denote

σ
2(m+1)
κ(m+1)

=
(
σ
2(m)
i0

+ c
(m)
i0

σ
2(m)
κ(m)

)
. Further, U

(m+1)
i = BBP U

(m)
i , V

(m+1)
i =

U
(m+1)
i U

(m+1)′

i for i = 1, . . . , κ(m+1), and Vκ(m+1) = In(m+1) .

Then

(75) t(m+1) ∼ N

(
0,

κ(m+1)∑

i=1

σ
2(m+1)
i V

(m+1)
i

)
,
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and notice that σ
2(m+1)
1 = σ21 and V

(m+1)
κ(m+1)

= In(m+1) .
Finally, denote

(76) T (m+1) = B
{
BP +

(
BP

(
c
(m)
i0

V
(m)
i0

− In(m)
)
B′

P

) 1
2DB(m)

}
T (m),

set m := m + 1 and restart the algorithm.

If the algorithm succeeds, denote T = T (m) and compute w = Ty. According
to (56), the distribution of w depends only on two variance components.

6. Example

We consider an unbalanced random two-way cross-classification model with inter-
actions and with some empty cells

(77) yijk = µ + αi + βj + γij + εijk

with i = 1, . . . , 3, j = 1, . . . , 4 and k = 1, . . . , nij , where nij are given by the following
incidence matrix:

j
1 2 3 4

1 4 0 0 0
i 2 5 5 4 0

3 6 5 4 3

We will assume that µ is an unknown constant, α ∼ N(0, σ21I3), β ∼ N(0, σ22I4),

γ ∼ N(0, σ23I8) and ε ∼ N(0, σ24I36) are independent random vectors. The present
model was considered in [6], [17] and [5].

Let us assume that the hypothesis of interest is

(78) H0 : σ21 = 0 against H1 : σ21 > 0.

We note that there is no uniformly optimum test for testing H0 and the Wald test
based on (8) does not exist, either.

6.1. ANOVA-like test
Let us assume that σ20 = (0, 1, 1, 1)′ denotes a chosen prior value of the parameter,

σ20 ∈ H0. Then, according to (15), the modified ANOVA-like test rejects the null
hypothesis for z1 − c0.05(z1 − σ̂21) > 0, where the critical value is c0.05 = 15.5150.

Tab. 1 reports the significance levels of the test, calculated under different values of
the true parameter σ2 = (0, σ22 , σ

2
3 , 1)′, σ2 ∈ H0. Assuming that the true parameter
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σ22
0 0.1 0.5 1 5 10 100

0 0.0426 0.0457 0.0554 0.0640 0.0977 0.1168 0.1685
0.1 0.0431 0.0455 0.0530 0.0600 0.0889 0.1066 0.1630
0.5 0.0436 0.0448 0.0489 0.0531 0.0730 0.0869 0.1469

σ23 1 0.0437 0.0444 0.0471 0.0500 0.0650 0.0763 0.1336
5 0.0438 0.0440 0.0447 0.0455 0.0512 0.0565 0.0948

10 0.0438 0.0439 0.0443 0.0447 0.0480 0.0514 0.0801
100 0.0438 0.0438 0.0439 0.0439 0.0443 0.0448 0.0515

Power 0.0500 0.0651 0.1195 0.1732 0.3629 0.4405 0.5731

Table 1. ANOVA-like test. The levels of significance P (z1 − 15.5150 (z1 − σ̂21) > 0) for
different values of the true parameter σ2 ∈ H0, where σ2 = (0, σ22 , σ

2
3 , 1)

′. The
last row reports the power of the test for different alternatives σ2 ∈ H1, where
σ2 = (σ21, 1, 1, 1)

′ and σ21 = 0, 0.1, 0.5, 1, 5, 10, 100.

coincides with σ20 , the last row reports the power of the test for alternatives σ2 ∈ H1,

where σ2 = (σ21 , 1, 1, 1)′ and σ21 = 0, 0.1, 0.5, 1, 5, 10, 100.

6.2. Zmyślony-Michalski test
Let us assume that σ20 = (0, 1, 1, 1)′ denotes a chosen prior value of the parameter,

σ20 ∈ H0. Then calculate MINQE(U,I) of σ21 and, according to (18), the Zmyślony-
Michalski test rejects the null hypothesis for t′A+t− cαt′A−t > 0 where the critical

value is c0.05 = 7.2442.

Tab. 2 reports the significance levels of the test, calculated under different val-

ues of the true parameter σ2 = (0, σ22 , σ
2
3 , 1)′, σ2 ∈ H0. The last row reports

the power of the test for alternatives σ2 ∈ H1, where σ2 = (σ21 , 1, 1, 1)′ and σ21 =

0, 0.1, 0.5, 1, 5, 10, 100.

σ22
0 0.1 0.5 1 5 10 100

0 0.0605 0.0517 0.0321 0.0211 0.0043 0.0018 0.0001
0.1 0.0625 0.0560 0.0391 0.0280 0.0070 0.0030 0.0001
0.5 0.0649 0.0616 0.0513 0.0424 0.0162 0.0083 0.0004

σ23 1 0.0656 0.0636 0.0568 0.0500 0.0247 0.0142 0.0009
5 0.0665 0.0660 0.0641 0.0619 0.0486 0.0381 0.0059

10 0.0666 0.0663 0.0654 0.0642 0.0561 0.0484 0.0121
100 0.0667 0.0667 0.0666 0.0665 0.0655 0.0643 0.0482

Power 0.0500 0.0687 0.1404 0.2154 0.4987 0.6258 0.8953

Table 2. Zmyślony-Michalski test. The levels of significance P (t′A+t − 7.2442 t′A−t > 0)
for different values of the true parameter σ2 ∈ H0, where σ2 = (0, σ22 , σ

2
3 , 1)

′. The
last row reports the power of the test for different alternatives σ2 ∈ H1, where
σ2 = (σ21, 1, 1, 1)

′ and σ21 = 0, 0.1, 0.5, 1, 5, 10, 100.
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6.3. Bartlett-Scheffé tests

By applying the algorithm for the reduction of the general model to the model
with two variance components, we get a 4-dimensional vector w = Ty such that

(79) w ∼ N(0, σ21W + (σ23 + 0.25 σ24)I4),

where

(80) W =




0.2823 −0.4468 −0.1704 0.0508
−0.4468 0.8415 0.2373 −0.6891

−0.1704 0.2373 0.1106 0.1157
0.0508 −0.6891 0.1157 2.7656


 .

The matrix W has three distinct eigenvalues: 3, 1, and 0 with their respective
multiplicities 1, 1, and 2.

Now we can apply the results from Section 3. Denote θ = σ21/
(
σ23 + 0.25 σ24

)
; then

the hypothesis of interest is

(81) H0 : θ = 0 against H1 : θ > 0.

Tab. 3 reports the critical values of Bartlett-Scheffé tests calculated on the signif-
icance level 0.05.

Test c0.05 Formula Test statistic Power
Neyman-Pearson test (θ∗ = 1) 2.7199 (22) (21) (23)
Locally Best Invariant test 2.4019 (30) (29) (31)
Wald test 19.000 F2,2 (32) (33)
Gnot-Michalski test 37.762 (43) (41) (45)
Zmyślony-Michalski test 2.1054 (54) (53) (55)

Table 3. Critical values of Bartlett-Scheffé tests calculated on the significance level α =
0.05.

Figs. 1 and 2 plot the powers of the tests for the alternatives θ ∈ (0, 10) and
θ ∈ (0, 100).

All critical values and powers were calculated numerically by Imhof’s procedure.

The Matlab code of Imhof’s procedure is available on request from the authors.
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Fig. 1. Powers of the tests for the alternatives θ ∈ (0, 10). 1—Gnot-Michalski test, 2—Wald
test, 3—Neyman-Pearson test (θ∗ = 1), 4—Zmyślony-Michalski test, 5—Locally
Best Invariant test.
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Fig. 2. Powers of the tests for the alternatives θ ∈ (0, 100). 1—Wald test, 2—Gnot-
Michalski test, 3—Neyman-Pearson test (θ∗ = 1), 4—Zmyślony-Michalski test, 5—
Locally Best Invariant test.

211



References

[1] R. B. Davies: The distribution of a linear combination of chi-square random variables.
J. Roy. Statist. Soc. Ser. C 29 (1980), 323–333.

[2] S. Gnot, M. Jankowiak-Ros�lanowska and A. Michalski: Testing for hypothesis in mixed
linear models with two variance components. Listy Biometryczne—Biometrical Letters
29 (1992), 13–31.

[3] S. Gnot, A. Michalski: Tests based on admissible estimators in two variance components
models. Statistics 25 (1994), 213–223.

[4] J. P. Imhof: Computing the distribution of quadratic forms in normal variables. Bio-
metrics 48 (1961), 419–426.

[5] A. I. Khuri, T. Mathew and B. K. Sinha: Statistical Tests for Mixed Linear Models.
J. Wiley, New York, 1998.

[6] J. Kleffe, B. Seifert: On the role of MINQUE in testing of hypotheses under mixed
linear models. Comm. Statist. Theory Methods 17 (1988), 1287–1309.

[7] L. R. LaMotte, A. McWhorter and R. A. Prasad: Confidence intervals and tests on the
ratio in random models with two variance components. Comm. Statist. Theory Methods
17 (1988), 1135–1164.

[8] T. H. Lin, D. Harville: Some alternatives to Wald’s confidence interval and test. J. Amer.
Statist. Assoc. 86 (1991), 179–187.

[9] T. Mathew: Optimum invariant tests in mixed linear models with two variance com-
ponents. In: Statistical Data Analysis and Inference (Y. Dodge, ed.). North-Holland,
Amsterdam, 1989, pp. 381–388.
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