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1. INTRODUCTION

In balanced models the ANOVA-method leads to exact tests. In the general un-
balanced mixed linear model, when the uniformly most powerful test does not exist,
the situation becomes more demanding. Here we consider two approaches to test
hypotheses on variance components in such models.

The first approach is based on the distribution of the maximal invariant with re-
spect to the group of translations in mean. We suggest to consider the exact Wald
test (if it exists) and several approximate tests, in particular, the ANOVA-like test
and the Zmys$lony-Michalski test. We do not consider, however, the locally best in-
variant test in this situation. The distribution of the test statistic of the approximate
tests depends on the nuisance parameters from the composite null hypothesis, so the
level and the power of such tests depends on those parameters.

* Research for this paper was supported in part by the Grant VEGA 1/4196/97 and the
Grant VEGA 1/7295/20 from the Science Grant Agency of the Slovak Republic.
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The second approach is based on the reduction of the general model to the model
with only two variance components. If there exists such linear transformation that
reduces the model, then for testing the significance of the given variance component
we can use any of the known tests for testing the variance component in a model
with two variance components. According to Seifert [17] the class of such tests is
called the class of Bartlett-Scheffé tests. We note that such tests are exact.

For each of those tests we provide the formulae for calculating the critical value and
the power function. Under the given assumptions the test statistics are distributed as
a linear combination of independent chi-square variables. The desired critical values
and the power functions are calculated numerically by applying Imhof’s algorithm,
see [4]. Another option would be to use the algorithm due to Davies [1].

2. MIXED LINEAR MODEL

We consider the general mixed linear model
(1) y=XB+Ua+c¢,

where y is an n-vector of observations of the response variable, X is a fixed and
known n x p matrix with rank(X) =k, k < p, and U = (Uy,...,U,) isan n x m

”
matrix, m = > m;, R(U;) € R(X), where R(A) denotes the linear space spanned

by the columr;s_ i)f the matrix A, ( is a k-vector of unknown fixed effects, and « and ¢
are uncorrelated random m- and n-vectors. Here a = (of,...,al)’ represents the
joint vector of r random effects and ¢ represents the unexplained random error.

If not otherwise stated, we consider the natural ordering of random effects,
i.e. ¢ < j whenever R(U;) C R(U;). Throughout this paper we assume the normal
distribution of random vectors. We assume «; ~ N(0,021,,,), i = 1,...,7, and
e~ N(0,02,,1I,); then

r+1
(2) E(y) = X8, Var(y) = ZU?VZ'?
i=1

where V; = U, U/, i=1,...,r,and V41 = I.
We will study the tests for testing statistical significance of the variance compo-
nent o? for any i = 1,...,r, i.e. for testing the hypothesis

(3) Hpy: o? =0 against the alternative Hy: o2 >0

or equivalently for testing Hy: 6; = 0 against Hy: 6; > 0, i = 1,...,r, where
0; = 0?0l .

192



3. TESTS IN MODEL WITH MORE THAN TWO VARIANCE COMPONENTS

In this section we consider three tests of the hypothesis (3) which are based on the
maximal invariant statistic (with respect to the group of transformationsy — y + X
for all B € RP), t = Bxy, where Bx is an (n — k) X n matrix such that My =
I - XX =DBy\Bx and BxB = I,,_j. Then

r+1
(4) E(t)=0, Var(t)=>» oiW;,
i=1

where W; = BxV;B%,i=1,...,r, and W41 = L,,_y.

3.1. Wald test

The Wald test, if it exists, leads to an exact F-test for testing the hypothesis (3).
The test was introduced by Wald [18], [19] and extended by Seely and El-Bassiouni
[15]. They showed that the test exists only for a small number of hypotheses in
general unbalanced ANOVA models (highest interactions, highest nested effects).

Consider model (1) in the form

(5) y=Xp+U,a; + U " +¢

with U* = (Uy,...,Ui—1,Uiq1,...,U;) and o = (o, ..., a;_1, & q,...,0;) . Let
t = Bxy, then

(6) t = BxU;a; + BxU*a* + &*

with ¢* = Bxe.
Let Z = BxU* and ¢ = rank(Z). Denote by Bz an (n — ¢) X n matrix such that
B,B; =My =1—-Z7ZZ" and BzB, = I,_,. Then define z = Bzt and notice that

(7) z = BzBxUa; +¢**

with ¢** = BzBxe, i.e. FE(z) = 0 and Var(z) = 02BzBxV,B\ B/, + JE_HIH,,].
Let P; denote the orthogonal projector onto the linear space R(BzBxU;) and let
M; =1 — P;. Then P;z and M,z are independent random vectors and the statistic

z'PZ-z/fl o t/B/ZPiBZt/fl
Z/Miz/fg - t/B/ZMith/fg

(8) Fy =

has under Hy a central F-distribution with f; and fo degrees of freedom, where
f1 = rank(P;) = rank(BzBxU;) and f2 = rank(M;) = n — ¢ — f1. The Wald test
exists if BxU,; and Bz (BxU,;) are nonzero matrices, i.e. f; # 0 and fo # 0.
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Denote Aw = B, P;Bz/fi1 — Fy, s,(a)B, M;Bz/ fa where Fy, g, () is the critical

value of the Fy, ¢, random variable such that P(FYy, r, > FY, (o)) = a. Notice that
h

P(t'Awt > 0) = P(Z Nix2, > O) where \; are the distinct non-zero eigenvalues of

i=1

Aw X, where ¥ = Var(t), v; are their respective multiplicities and Xgi are independent
x? variables with v; degrees of freedom. This, together with Imhof’s procedure,
allows to calculate the power of the test at different points in the alternative Hy.

3.2. Seifert’s ANOVA-like test

Seifert [16] and Kleffe and Seifert [6] suggested the ANOVA-like test for variance
components. It is an approximate test on significance level a. As the author noticed
the test is heuristically motivated, leads to the optimal ANOVA-test or to Satterth-
waite’s approximate test in balanced situations and is asymptotically correct and
optimal.

ANOVA-like test statistic is based on MINQE(U,I), the minimum norm quadratic
estimator (unbiased and invariant), of the linear function of the variance components.
For more details see e.g. Rao [13] and [14].

Let 02 = (03,...,02, U%+1)/ € O, O representing the parameter space, denote the
vector of variance components. For a fixed prior choice 03 of 02, the MINQE(U,I) of
the linear function ¢’0? (g is a fixed known vector such that g € R(Kyy), i.e. there
exists a vector A such that g = K1) is given by

9) go? =g K;q=Ng,

where K/, is a g-inverse of the MINQE(U,I) criteria matrix Ky; defined by the
elements

(10) {Kur}ij = tr(S ' Wisg 'w;), ihj=1,...,r+1,
and ¢ = (q1,...,qr+1)" is the MINQE(U,I) vector of quadratics with
(11) g =tAt, di=1,...,7r+1,

where A4; = X7 'W; 55 . The symbol tr(A) denotes the trace of the matrix A and
r+1
Yo = X(02) = > 02,W;. Here, we implicitly assume that the inverse X' exists.
i=1
Notice that g’c? is an unbiased estimator of ¢’0?, and under normality assumptions
we have

(12) Var(g’/a\Q) =2¢'K;;9 = 2N Ky
locally at 0% = oZ.
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Let 02 € Hy be a fixed vector of priors, i.e. 02-20 = 0. Assume for simplicity that the
inverse matrix K. [}Il exists. Then z = L&? denotes the vector of locally uncorrelated
linear combinations of 2—the MINQE(U,I) of o2. Here L is an upper triangular
matrix with unit main diagonal and such that locally at o3

(13) Var(z) = L Var(6*)L' = 2LK;;L' = D,

where D = Diag(D;;), i = 1,...,r + 1, is a diagonal matrix. We note that L could

be obtained by Cholesky decomposition of K.

2
=

For testing Hy: o 0, Seifert [16] proposed the test statistic based on the ratio

of locally uncorellated functions of &2:

2 H 2
i 67 + > Lijo;
i j=i+1
(14) Fg=——> = !
zi — 0 Til I 52
ijO5
J=1+1 I

By construction the local covariance of the numerator and denominator is zero.
Seifert suggested to reject Hy for large values of Fg. Witkovsky [21] suggested the
critical region defined by

(15) zi — ca(z; — &2»2) >0,

where c,, is the critical value of the distribution such that P(z; —ca(2;—62) > 0) = a,
under the assumption that true o = o2 € Hy.

Let e; = (0,...,0,1,0,...,0), then z; = /LK }q, z; — 62 = e}(L — I)K;q and
r+1
2 — co(zi — 62) = el(L — co(L — I))K7q. If moreover Ag = 3 k;A; with xk =

j=1
e’Z-(Lché(LfI))K,;I1 and A; = EgleEal, j=1,...,74+1, then the critical region

h
is given by the inequality ¢’ Agt > 0. Further, P('Ast > 0) = P(Z )\ixgi > 0),
i=1
where )\; denote distinct non-zero eigenvalues of Ag¥, ¥ = Var(t), v; are their
respective multiplicities, and X?ji are independent Y2 variables with v; degrees of
freedom. Imhof’s procedure allows to calculate the critical value c,, the level of the

test for any fixed point in Hy, as well as the power of the test at an arbitrary point
from the alternative Hj.

3.3. Zmyslony-Michalski test
Michalski and Zmys$lony [10] proposed a test of the hypothesis (3) based on the
decomposition of an unbiased and invariant estimator of o2, i = 1,...,7. Let t' At
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be such estimator (e.g. the MINQE(U,I) of 0?). Let A be decomposed as A, — A_,
where A} and A_ are both nonnegative definite and nonzero matrices. Since ' At is
an unbiased estimator, then

(16) E{t'At)=BE({t'A_t) + o2,

K2

and under Hy: 02 = 0 we get E(' A t) = E(t'A_t). The Zmyslony-Michalski test
rejects the null hypothesis for large values of

tALt

17 Fyy = ——.
(17 M YA

The authors have derived the distribution of Fzj; under the null hypothesis under
the specific condition that the matrices W; commute and are linearly independent.
In general, we can derive the critical region of an approximate test which is locally
on a significance level o, based on Fizys. Let Xg = %(02) be a fixed matrix such that
02 € Hy, then reject Hy for

(18) ALt —cot’! At >0
where ¢, is such that under the assumption Var(t) = Xy we get

P(t'Ast —cot’ At > 0) = a.

h
Denote Azy = Ay — coA—, then P(t' Azymt > 0) = P(Z )‘in%i > 0) where
i=1

A; are the distinct non-zero eigenvalues of Az ¥, ¥ = Var(t), v; are the respec-
tive multiplicities and Xﬁi are independent y? variables with v; degrees of freedom.
Imhof’s procedure allows to calculate the critical value ¢, the level of the test for
any fixed point in Hy, as well as the power of the test at an arbitrary point from the
alternative H;.

4. TESTS IN MODEL WITH TWO VARIANCE COMPONENTS

The model with two variance components is a special case of the general model (1)
with 7 = 1. In particular, we consider a model

(19) y=Xpg+Ua+e

with independent random vectors o ~ N(0,0%1,,,) and € ~ N(0,021I,,). The maximal
invariant t = Bxy is distributed as t ~ N(0,0?W + 0%1,,_), where W = BxV B,
V = UU’. In this setup, we are interested in testing the hypothesis

(20) Hy: 6 =0 against Hi: 0>0,
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where § = 02 /0%, Notice that this is equivalent with testing Hy: o7 = 0 against
Hy: o? > 0. We note that Lin and Harville [8] considered testing a generalized
hypothesis Hy: 6 = 0y against Hy: 6 € ©,, where O, is a general interval (0;,6,,).

Let Ay > Ao > ... > Ay > 0 be h distinct eigenvalues of the matrix W with their re-
spective multiplicities v1,...,v,. The spectral decomposition of W is W = Xh: Qi
where Q; = E;E!, and E; is a matrix of orthonormal eigenvectors correspozn_(iing to
the eigenvalue \;.

Olsen, Seely and Birkes [12] derived the minimal sufficient statistic for the family
of distributions of the maximal invariant ¢: It is a set of h independent quadratics
Z; = t'Qit/v; such that v;Z;/(0fX\; + 02) ~ x2.. Moreover, Z = (Z1,...,2y) is
a complete statistic if and only if h = 2.

The tests suggested for testing variance components in the general model are valid
also in the model with two variance components. Moreover, there are other tests and
theoretical results which are valid only for the model with two variance components.
The present section gives a brief overview of the tests and their distributions. We
note that the tests are exact. For more details see [7], [9], [20], [8], [2] and [5].

4.1. Neyman-Pearson test

The Neyman-Pearson test is the optimum test (most powerful test) for testing
Hy: 6 =0 against the simple alternative Hy: 6 = 0,, 6, > 0. The NP test is based
on the test statistic

' =
21 Fxp(0,) = -
(21) wp(0:) (I +6.W)1t

The NP test rejects the null hypothesis if Fiyp(6.) > co(0s), where ¢, (0.) is a critical
value such that

(22) P<:1 (1 — %) Xo, > 0) =aq,

and X; are independent chi-square variables. Under the alternative H;: 6 > 0 the
power By p(0]0.) of the test is

(23) Bnr(06.) (Zh: < )1> (0N + 1)x2, > 0).

i=1
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The limiting properties of the NP test are of some interest:

h
Z )\inZz
. _ =l
(24) 9*33.}20 Fyp(0.) = =——,
> viZ
i=1
and, moreover,
h—1
Z Vi Z;
2 lim Fyp(6.) =1+=—— if Ay =
( 5) 9*111100 NP(Q) + VhZh ! /\h 0’
h
Z Vi Z;
(26) Jim Fyp(6.)/0. ——=——  if A\ #0.

For more details see [20] and [8].

4.2. UMPI and LBI tests

Mathew [9] and Westfall [20] derived an optimum test for testing (20). They
noticed that the testing problem is invariant under the group of transformations
y — c(y + X ) for arbitrary ¢ > 0 and 3, and the maximal invariant is ¢t/||¢||. Gnot,
Jankowiak-Rostanowska and Michalski [2] proved that a necessary and sufficient
condition that guarantees the existence of the UMPI test (uniformly most powerful
invariant test) is that h = 2, h being the number of different eigenvalues of W.

There are two important cases to distinguish, see [5, Theorem 6.2.2]:

a) the nonzero eigenvalues of W are all equal, and

b) the nonzero eigenvalues of W are not equal.

Let v = rank(W) and suppose 0 < v < n — k, i.e. W is singular. If the nonzero
eigenvalues of W are all equal to A\; > 0 then the UMPI test rejects Hy for large
values of

n—k—v tQit

(27) Fumpr = ” POt

Under Ho, Fumpr ~ Fopn—k—v. The test rejects Hy on a significance level « if
Fuympr > Fon—g—v(a), where F, ,,__, () is the critical value of the F, ,_j_,
distribution and P(F, n—k—p > Fyn—k—v(a)) = a. Under the alternative Hy: 6 > 0
the power Syarpr(0) of the test is

(28) Bumpr(0) = P((n—k —v)(0A + 1)X2 — vE, n_k—v(a)X2_ 4, > 0),
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where x2 and XfF x_,, are independent chi-square variables.
If the nonzero eigenvalues of W are not all equal then the LBI test (locally best
invariant test) rejects Hy for large values of

(i AiQi)t i AiviZ;
(29) Frpr = = - == .
t/(g Qi)t > viZ;

The LBI test rejects the null hypothesis if Frgr > ¢4, where ¢, is a critical value
such that

(30) P(Xh:(/\i —Ca)X2, > 0) =

i=1

and X?,i denote independent chi-square variables. Under the alternative Hy: 6 > 0
the power 81, 57(0) of the test is

h

(31) Bre1(f) = P<Z()\i —ca) (0N +1)X2, > 0>.

i=1

Westfall [20] proved that the NP test is equivalent to the LBI test as 6. approaches
0, see (24).

4.3. Wald test
In the model with two variance components (19) and under the assumption that W
is a singular matrix, i.e. A\, = 0, the Wald test statistic (8) becomes

h—1
I/Z'Zi
YRR f 2

t/Mt/fQ o f1 I/hZh

(32) Fw =

P = BxU((U'B\BxU)~U’'BY is the orthogonal projector onto R(BxU) = R(W)
and M =1 — P, f; =rank(P) = rank(W) = Zyzandfg—n—k‘ f1 =

The Wald test rejects the null hypothesis if FW > Ff, t,(a). Under the alternative
Hiy: 6 > 0 the power Sy (6) of the test is

h—1
(33) Bw (0) = P<f2 DX+ X2, — Frop (@) fixg, > 0)-

i=1

199



Notice that according to (25) the Wald test is equivalent to the limit case of the
NP test for 6, — oco. Mathew [9] noticed that the Wald test is equivalent to the
UMPT test if h = 2.

4.4. Modified Wald tests

4.4.1. Lin-Harville test. According to (26), it is natural to consider the test
based on the statistic

h
Yo viZ;
i=1

h

Yo viZif A

i=1

(34) Frp =

as a modification of the Wald test provided A;, > 0. In such a case the test rejects
the null hypothesis if Fr.ig > co, and ¢, is a critical value such that

(35) P<Xh:(1 — ca/N)XE, > o> =a

i=1
and under the alternative Hy: 6 > 0 the power 3. (6) of the test is

h

(36) 1) = P01 - ca/N)ON + D2, >0).

i=1

4.4.2. LaMotte-McWhorter test. LaMotte, McWhorter and Prasad [7] sug-
gested a modification of the Wald test based on the test statistic

h B
> VU ViZi
i=h* i=
(37) Fpuy ="
Z Vi Z ViZi
i=1 i=h=+1
where h* is a chosen number from 1,..., 2 — 1. Notice that by choosing h* = h — 1

the test statistic coincides with the Fy statistic. The test is well defined for both
cases: A\, = 0 and also for A\, > 0.
Under Hp: 6 = 0 the LM test rejects the null hypothesis if Frar > Fy, 5, (o), with
h* h
fi=>viand fo = > v;. Under the alternative Hy: 6 > 0 the power 81 (6)
i=1

i=h*+1
of the test is

h* h
(38) ﬂLMw)P(fZZ(eAﬁl)xiFfl,f2<a>f1 > (0Az—+1>x3i>0).
=1 i=h*+1
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4.4.3. Gnot-Michalski test. Gnot and Michalski [3] suggested a modified Wald
test which is based on the ratio of the non-negative admissible invariant quadratic
and unbiased estimators of oyyo? + 02 and or0% + 02, where

(A1 tr(WT) — rank(W))
(39) or = { Mtr(WHW) —tr(WH))
0 for A\, =0,

for A\ > 0,

and

(tr(W2) — Ap tr(W))

(40) ev = (tr(W) — A, rank(W))

Notice that such a test exists even for W nonsingular. The test statistic is then

h
Z ()\i - )\h)ViZi
’21 for A\, > 0,
> (A1 = A Z;
(41) Fom = i=1
h—1
> AiviZ;
i=1
f =0.
oz or \p, =0

The test rejects the null hypothesis for Fgpr > co, where ¢, is such that under Hy

we get
h
(42) P(Z(()\z — )\h) — Ca(/\l — )\’))ng > 0) =
i=1
if A, > 0, and
h—1
(43) P(Z )‘inQIi - CaXlQ/h, > 0) =
i=1
if \p, =0.

Under the alternative Hy: 6 > 0 the power Sgar(6) of the test is

h

(44) Bam(0) = P(Z(()\i — M) = ca(A1 = A)AZ) (0N + 1)xE, > 0)
for A\p, > 0, and
(45) Ben (0 (ZA (O + )X — cax?, > o>

for \j, = 0.
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5. ANOVA-like test
In the model with two variance components, the MINQE(U,I) criteria matrix (10)
has the form

1 (te(W?) (W)
(46) KUI_U—é(tr<W) n_k),

h h h
where tr(W?) = tr(Z )\?Qi) = Y A2y; and tr(W) = Y A\iv;. Then the matrix

1 tr(W)
(47) L= ( tr(W?2) )
0 1

fulfils the required condition 2L K [;}L’ = D, where D is a diagonal matrix. Notice
that L does not depend on 2. Then, considering MINQE(U,I) of (0%, 02)/,

where Det = (n — k) tr(W?2) — tr(W)2. By solving 2z = L(6%,52)" we get

1

(49) T tr(W?2)

t'Wit,

. 1 tr(W)?
_ A2 - = ry /
21 =61 = g <tr(W)tt tr(WZ)t W t) .

Notice that z; is a nonnegative definite quadratic form in ¢t. The ANOVA-like test
statistic for testing Ho: 6 = 0 against Hy: 6 > 0, § = 0?2 /02, is then given by

h

Z CL)\Z'I/Z‘ZZ'
21 i=1
(50) Fs = = = ,
Z1 — 079 h
Z (b — C)\Z)VZZZ
i=1
where
h
a = Det =(n—k) Z)\QUZ <Z/\ yz) ,
i=1
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The test rejects the null hypothesis for Fg > c,, where ¢, is such that under H
we get

h

(51) P<Z(a)\i —calb—c\))X2 > o> = o

i=1

Under the alternative Hy: 6 > 0 the power 8g(6) of the test is

h
(52) 55(0) = P00 — calb = A0 + D, > 0).

i=1

Witkovsky [21] proved that the ANOVA-like test with the critical region z; —
ca(z1 — %) > 0 is equivalent to the optimum test (UMPI test if it exists or LBI test,
otherwise) for testing (20).

4.6. Zmyslony-Michalski test
Let t' At be a MINQE(U,I) of 0%, see (48). Let A= A, — A_. Then the ZM test
statistic is

> NviZ;
t/A_;,_t _ )\:>0 e

F = =
(53) M t'A_t Z 7)\;ViZi7
AF<0
h h
where Af = \; — tr(W)/rank(W) = \; — (Z )\iyi) / (Z Vi). The test rejects the
i=1 i=1

null hypothesis for Fzy; > c,, where ¢, is such that under Hy we get

(54) P(Z NXE Fea Y AXE > 0) =a.

Ar>0 A7 <0

Under the alternative Hy: 6 > 0 the power 8g(6) of the test is

(55) Bz (0) = P( SONON DX +ca D A(ON +1)XE, > 0).

A7 >0 A; <0
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5. REDUCTION OF THE GENERAL MIXED LINEAR MODEL

Seifert [17] proposed a new class of exact Bartlett-Scheffé tests for variance com-
ponents. The basic idea is to find a linear transformation of the general model to
a model with just two variance components. Then, standard techniques for testing
in the model with two variance components can be applied.

Consider the general model (1). Suppose that we want to test Hy: o7 = 0 against
Hy: 0% > 0, otherwise reorganize the ordering of the effects. Let T be a matrix such
that

(56) w=Ty= Uiaq + &,

where a; ~ N(0,0%1) and & ~ N(0,52I) are independent random effects and 52 =
C203+ ..+ cr+1af+1 for some coefficients ca, . . ., ¢,41. Notice that w ~ N(0,03W +
52I), where W = U, U].

We can use the above tests for testing the hypothesis Hy: 6=0 against Hy: 6 > 0,
where § = 07 /52, in the model (56). Those tests are exact Bartlett-Scheffé tests for

testing Ho: o} = 0 against Hy: o7 > 0 in the original model (1).

5.1. Algorithm for reduction of the model

The following stepwise procedure reduces the model by one variance component
in each step.

Consider model (1), y = X+Uia1+. . .+ U, ¢, with r+1 variance components.
Let us introduce a step-counter m, and set m = 1. The algorithm starts with an
n(™)-dimensional maximal invariant (") = Bxy, where By is a full rank matrix such
that By Bx = Mx = I — XX+ and BxBY = L,m), n\™ =n — k, k = rank(X).

Denote 7™ = By and further Ui(m) = Bx U, Vi(m) = Ui(m) Ui(m)/ and U?(m) = o?
for i =1,...,k") where k(™ = r 4 1 is the number of variance components; then

(57) tm) — Ul(m)al +...+ U’EZL,L)>71QK("L)_1 + U}iﬁ%s

and t(™ ~ N (0, Uf(m)Vl(m) Fo+otm ym LT o™ ) with m = 1.

rk(m) 1V je(m) _
After m steps the algorithm proceeds as follows:

Step 0

Compute and remember the vector of ‘residuals’ which could be useful later in
Step 5 of the algorithm: Let

(58) M = L,my — P[Ufm)7<<<7U(m) ],

w(m) 1



and let B(™) be a matrix such that M (™) = Bm) B(m) anq gim) gpim)" — If<m),
fm = rank(M(m)). Then the vector of residuals is defined as

(59) m) — plm)gm)

and we have ’y(m) ~ N (0, Ui(n?))ff(m).

(m

Step 1
The algorithm succeeded if the number of variance components ("™ = 2 and if
rank (Ul(m)) > 0.

We note that if rank (Ul(m)) = (™) the Wald test does not exist.

Step 2
The algorithm failed if rank <U1(m)) =0.

Step 3
If there is such ig, 39 € {2,...,x(™) — 1} that R(Ui(om)) C R(Ul(m)), then use
the n(™+V_dimensional vector

(60) tm+1) — BU_(m)t(m),
0
. . R
where BUI;S,Z) is a full rank matrix such that MUfgn) = BU}(’)”)BUE(:") and
BUW)B;J(m) = I,m+1. Reduce the number of variance components to
i io

k(1) = k(M) _ 1 and denote by U?(m—i_l) the remaining variance components
for i — 1’_._’%(m—',-1)7 and Ui(erl) _ BUi((;”)Uz’(m)’ Vi(erl) _ Ui(m+1)Ui(m+1) :

then
e (m+1)
(61) Hm+1) N<0, Z U?(m+1)‘/;(m+l)>-
i=1
Notice that O’f(m—i_l) =0? and Véaﬂ)) = I m+1).
Finally, denote
(62) T(m+1) = BU%”)TW,

set m :=m + 1 and restart the algorithm.

Step 4
If there is such ig, 79 € {2, ..., x("™) —1} that Ui(:l) is not comparable with Ulm),
i.e. neither R(Ui(om)) C R(Ul(m)) nor R(Ui(om)) ) R(Ulm)), use an n(m+1)

dimensional vector

(63) gm+1) = BUi((;n>t(m)7

205



where BU;S,Z) is a full rank matrix such that MU;SL) = B;](m BU_(SW,> and

B B i i

o I (m+1. Reduce the number of variance components to

u(m n

iQ

k(1) = k(M) _ 1 and denote by U?(m—i_l) the remaining variance components
. +1 +1 +1 +1)’

for i = 1,..., 6™, and U = By U, VI = oo

then

o (m+1)

(64) HmtD) N<0’ Ji2<m+1)vi<m+1>>’
i=1
and notice that crf(mﬂ) = 0? and ka(mﬂ)) = I, (m+1).
Finally, denote

(65) Tt = B oy T,
K

set m := m + 1 and restart the algorithm.

Remark. There is no unique method for handling cross-classified effects. As
pointed out by Seifert [17] an alternative step would be

(66) pm+1) _ B[U“") U;7,L>]t(m),
1 L 14}
where B[U("") U“”)] is a full rank matrix such that
1 Y
67 Py + Mr oy om] = BTy o1 Blom grom]s
o v M 0] = Pom ) Pl o]

where PI(JZZ) is an orthonormal projector onto R(Ui(om)) and M [ ] is an or-

um) rm
1 VYig
thonormal projector onto the null space of [Ulm), Ui(gn)]/, and

B[U1("L>,Ui((;”>] /[U}”‘)’U;;")] = In(m+1).

This formula uses intra-block information about the effect iy and makes that effect

nested in the first effect. The second approach is suggested if the true U?O(m)

Here T(m+1) = B[ ]T(m).

is small.
(m) 7(m)
u{™,ul

Step 5
If there is such ig, ig € {2,...,x(™ — 1} that R(Ui(om)) - R(Ui(m)) holds true
only for i = k(™) (notice that R(U(m) ) = R(I,em)), compute

o (m)

(m) _ Ao (V(m)+),

) 10

(68) c



the maximal eigenvalue of the Moore-Penrose g-inverse of Vif)m). Let P m)

denote the orthogonal projector onto R(Ui(om)) and let Bp denote a matrix
such that PUi%n) = BpBp and BpB)p = Iy, where f = rank(PUfgn)). We assume

that f(") > f. then compute
(69) t= Bpt(m) + n(m)’

where 7(™) denotes the artificial vector of disturbances,
1
(70) n(m) = <3P< (myytm) _ n(m)> 333)2 DAy

with D = [I 50f7f(m>_f], and A% denotes a matrix such that AZA% = A,
Bpt(™ and n(™ are independent random vectors with the distribution

(M)

(71) Bpt™ ~ N<0, 3 ai?(m)BpVi(m)B;D),
=1
(72) 0~ N (0,20 BV By - 21 ).

By adding noise to Bpt("™) we have reduced the number of variance components
by one, and

(m) 1
(73) Var(t)= Y o2"B V(m)BP+( 2<m>+c(m>az(m>) BpV ™ B,

io T im)
1710
Further, compute
(74) tm+Y) — B,

where B is such that BBpV(m)B’ B’ = I, m+1. Denote the new number of
2(m+1)

)

variance components by £t = k(") —1 and rename and denote by o;
i =1,...,Mm"  the remaining variance components. In particular, denote
O’iE:Z_:rll)) = ( 2(om) + c(m)JZET))) Further, Ui(mﬂ) = BBpUi(m), Vi(mH) =

m+1 m+1 1
UZ-( )UZ—( Y for i = L.,k and Vs = I mrn) -
Then
(A1)

(75) mt1) N<0, g2 mr Dy mt ”)

i=1

)
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2(m+1 1)
and notice that o7 (m+1) _ = 0% and Vé{f:l) = I, (m+1).

Finally, denote
(76) T(m+1) _ B{Bp + (BP( (m)V(m n(wz))B/ ) DB(m)}T(m),

set m := m + 1 and restart the algorithm.

If the algorithm succeeds, denote 7' = 7™ and compute w = T%. According
o (56), the distribution of w depends only on two variance components.

6. EXAMPLE

We consider an unbalanced random two-way cross-classification model with inter-
actions and with some empty cells

(77) Yijk = v+ o6 + B + 755 + Eije

withi=1,...,3,7=1,...,4and k = 1,...,n;;, where n;; are given by the following
incidence matrix:

J
1 2 3 4
1 4000
1 2 5540
3 6 5 4 3

We will assume that p is an unknown constant, o ~ N(0,0%13), 3 ~ N(0,0314),
v ~ N(0,0313) and ¢ ~ N(0,02136) are independent random vectors. The present
model was considered in [6], [17] and [5].

Let us assume that the hypothesis of interest is

(78) Hy: 0?2 =0 against Hy: o7 > 0.

We note that there is no uniformly optimum test for testing Hy and the Wald test
based on (8) does not exist, either.

6.1. ANOVA-like test

Let us assume that o2 = (0,1,1,1)’ denotes a chosen prior value of the parameter,
02 € Hy. Then, according to (15), the modified ANOVA-like test rejects the null
hypothesis for z; — cg.05(21 — 67) > 0, where the critical value is ¢y o5 = 15.5150.

Tab. 1 reports the significance levels of the test, calculated under different values of

the true parameter 02 = (0,0%,02,1), 02 € Hy. Assuming that the true parameter
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a3

0 0.1 0.5 1 5 10 100
0 0.0426  0.0457 0.0554 0.0640 0.0977 0.1168 0.1685
0.1 0.0431 0.0455 0.0530 0.0600 0.0889 0.1066 0.1630
0.5 0.0436 0.0448 0.0489 0.0531 0.0730 0.0869 0.1469
o3 1 0.0437 0.0444 0.0471 0.0500 0.0650 0.0763 0.1336
5 0.0438 0.0440 0.0447 0.0455 0.0512 0.0565 0.0948
10 0.0438 0.0439 0.0443 0.0447 0.0480 0.0514 0.0801
100 0.0438 0.0438 0.0439 0.0439 0.0443 0.0448 0.0515
Power 0.0500 0.0651 0.1195 0.1732 0.3629 0.4405 0.5731

Table 1. ANOVA-like test. The levels of significance P(z; — 15.5150 (21 — &%2 > 0) for

different values of the true parameter o> € Hg, where o2 = (0,02,03, 1)’. The

last row reports the power of the test for different alternatives o € Hjp, where
02 =(6%,1,1,1)" and 62 = 0,0.1,0.5, 1, 5, 10, 100.

coincides with o2, the last row reports the power of the test for alternatives o2 € Hy,
where 0% = (07,1,1,1) and 0? = 0,0.1,0.5, 1, 5, 10, 100.

6.2. Zmyslony-Michalski test

Let us assume that 02 = (0,1,1,1)" denotes a chosen prior value of the parameter,
03 € Hp. Then calculate MINQE(U,I) of o7 and, according to (18), the Zmy$lony-
Michalski test rejects the null hypothesis for ¢’ At — cot’ A_t > 0 where the critical
value is ¢g.g5 = 7.2442.

Tab. 2 reports the significance levels of the test, calculated under different val-
ues of the true parameter o> = (0,0%,03,1)', 02 € Hy. The last row reports
the power of the test for alternatives 0? € Hjp, where 02 = (07,1,1,1)" and 0?7 =
0,0.1,0.5,1,5,10,100.

2

02

0 0.1 0.5 1 5 10 100
0 0.0605 0.0517 0.0321 0.0211 0.0043 0.0018 0.0001
0.1 0.0625 0.0560 0.0391 0.0280 0.0070 0.0030 0.0001
0.5 0.0649 0.0616 0.0513 0.0424 0.0162 0.0083 0.0004
o3 1 0.0656 0.0636 0.0568 0.0500 0.0247 0.0142 0.0009
5 0.0665 0.0660 0.0641 0.0619 0.0486 0.0381 0.0059
10 0.0666 0.0663 0.0654 0.0642 0.0561 0.0484 0.0121
100 0.0667 0.0667 0.0666 0.0665 0.0655 0.0643 0.0482
Power 0.0500 0.0687 0.1404 0.2154 0.4987 0.6258 0.8953

Table 2. Zmyslony-Michalski test. The levels of significance P(t'At — 7.2442t'A_t > 0)
for different values of the true parameter = Hy, where o? = (0, 0'%, U%, 1)’. The
last row reports the power of the test for different alternatives o“ € Hyp, where
0?2 =(06%,1,1,1)" and 07 = 0,0.1,0.5, 1, 5, 10, 100.
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6.3. Bartlett-Scheffé tests
By applying the algorithm for the reduction of the general model to the model
with two variance components, we get a 4-dimensional vector w = T’y such that

(79) w~ N(0,03W + (02 + 0.2503) 1),

where

0.2823 —0.4468 —0.1704  0.0508
—0.4468  0.8415  0.2373 —0.6891
—-0.1704  0.2373  0.1106  0.1157

0.0508 —0.6891  0.1157  2.7656

(80) W

The matrix W has three distinct eigenvalues: 3, 1, and 0 with their respective
multiplicities 1, 1, and 2.

Now we can apply the results from Section 3. Denote 6 = 6%/ (03 + 0.2507%); then
the hypothesis of interest is

(81) Hy: 6 =0 against Hpi: 0> 0.

Tab. 3 reports the critical values of Bartlett-Scheffé tests calculated on the signif-
icance level 0.05.

Test €0.05 Formula  Test statistic Power
Neyman-Pearson test (6, =1)  2.7199 (22) (21) (23)
Locally Best Invariant test 2.4019 (30) (29) (31)
Wald test 19.000 Fso (32) (33)
Gnot-Michalski test 37.762 (43) (41) (45)
Zmys$lony-Michalski test 2.1054 (54) (53) (55)

Table 3. Critical values of Bartlett-Scheffé tests calculated on the significance level @ =
0.05.

Figs. 1 and 2 plot the powers of the tests for the alternatives § € (0,10) and
6 € (0,100).

All critical values and powers were calculated numerically by Imhof’s procedure.
The Matlab code of Imhof’s procedure is available on request from the authors.
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Powers of different exact Bartlett-Scheffe tests

0.7 T T T T T
0.6 : -
1
0.5
0.4r-
9]
2
o
a
0.3
1- GM test
2 - Wald test
3-NPtestatl B
02 4 - ZM test
5 - LBl test
0.1 4
0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

6 — The alternative

Fig. 1. Powers of the tests for the alternatives 6 € (0,10). 1—Gnot-Michalski test, 2—Wald
test, 3—Neyman-Pearson test (fx = 1), 4—Zmyslony-Michalski test, 5—Locally
Best Invariant test.

Powers of different exact Bartlett—Scheffe tests

1 T T T T T
0.9
0.8
0.7
0.6
g
205
o
0.4
1 - Wald test
2 - GM test
0.3 3-NPtestat1 n
4 - ZM test
5 - LBl test
0.2 o
0.1 o
0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

6 — The alternative

Fig. 2. Powers of the tests for the alternatives 6 € (0,100). 1—Wald test, 2—Gnot-
Michalski test, 3—Neyman-Pearson test (6x = 1), 4—Zmyslony-Michalski test, 5—
Locally Best Invariant test.
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