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Abstract. In the analysis of spatial point patterns, an important role is played by
statistical tests based on simulation envelopes, such as the envelope of simulations of Ripley’s
K function. Recent ecological literature has correctly pointed out a common error in the
interpretation of simulation envelopes. However, this has led to a widespread belief that the
tests themselves are invalid. On the contrary, envelope-based statistical tests are correct
statistical procedures, under appropriate conditions. In this paper, we explain the principles of
Monte Carlo tests and their correct interpretation, canvas the benefits of graphical procedures,
measure the statistical performance of several popular tests, and make practical recommen-
dations. There are several caveats including the under-recognized problem that Monte Carlo
tests of goodness of fit are probably conservative if the model parameters have to be estimated
from data. Finally, we discuss whether graphs of simulation envelopes can be used to infer the
scale of spatial interaction.
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INTRODUCTION

Recent literature in statistical ecology has questioned

the validity of a well-established technique for testing

hypotheses about spatial point patterns. Pioneered by

Ripley (1977) and popularized in statistical ecology by

Kenkel (1988), this technique is based on computing a

summary function of the point pattern, such as Ripley’s

K function, and comparing it with the envelope of the

same functions obtained from several simulations of the

null model.

In an influential article, Loosmore and Ford (2006)

correctly pointed out a common error in the interpre-

tation of such simulation envelopes. As an alternative to

simulation envelopes, they advocated a test procedure

that does not require graphical display, and is based on a

numerical index of deviation between the summary

functions. However, their findings have been widely

misinterpreted as meaning that simulation envelopes do

not have any valid interpretation as a significance test.

Many writers have agreed, advising that ‘‘envelope tests

should not be thought of as formal tests of significance’’

(Law et al. 2009:619) and drawing a distinction between

invalid envelope tests and valid deviation tests (Gra-

barnik et al. 2011).

This opinion is at odds with the viewpoint widely held

in statistical science, especially in spatial statistics

(Diggle 2003, Illian et al. 2008:455–459) and nonpara-

metric statistics (Bowman and Azzalini 1997, Chandler

and Scott 2011), that simulation envelopes do have a

valid statistical interpretation. Indeed envelope tests and

deviation tests have the same statistical rationale, that of

a Monte Carlo test (Barnard 1963, Hope 1968), so it

cannot be true that envelope tests are invalid while

deviation tests are valid.

It is, therefore, not surprising that the scientific

literature has become confusing and contradictory about

questions of the validity of statistical inference for

spatial point patterns, and about practical recommen-

dations. This paper is intended to clarify these matters.

It also contributes some new insights, based partly on

new experimental findings.

Envelopes discusses several different kinds of simula-

tion envelopes and their interpretation. Monte Carlo

tests and envelopes explains the fundamental principles

of Monte Carlo tests and their application to simulation

envelopes. Null models with parameters mentions an

important caveat on the validity of Monte Carlo tests

that appears to have been overlooked in ecological

literature. Performance evaluates the performance (pow-

er) of these tests and makes recommendations for

maximizing performance. Interaction warns about the

difficulty of using summary functions to infer the scale
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of spatial interaction. Conclusions are summarized in

Conclusions.

ENVELOPES

In this section, we introduce several different kinds of

envelopes and briefly discuss their interpretations.

Fig. 1 shows a typical spatial point pattern that might

have been obtained by mapping the locations of

seedlings in a survey plot. It was actually generated

synthetically, so that the correct answer is known. The

points are spatially inhibited at distances up to 4 m,

where the survey plot is a square with sides of 100 m.

Pointwise envelopes

Fig. 2 shows the type of graphic discussed by Kenkel

(1988) and Loosmore and Ford (2006) and originating

from Ripley (1977). Ripley’s K function was computed

from the data in Fig. 1, and transformed to Besag’s L

function L(r) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðrÞ=p

p
. This is plotted as the solid

black curve in Fig. 2A. Then 39 simulated, random

point patterns were generated according to complete

spatial randomness (CSR), the L functions of each

simulated pattern were computed, and the maximum

and minimum L values were plotted as the limits of the

gray-shaded envelope in Fig. 2A. Fig. 2B shows the

same information after subtracting the theoretical value

for CSR and restricting the distance variable r in L(r) to

the range 0–10 m, which highlights the important

details. Since the solid black line wanders outside the

gray-shaded envelope in some places, there is a

suggestion that Fig. 1 is not a completely random

pattern.

This procedure can be used for any null hypothesis

that can be simulated. In this example, we took the null

model to be CSR to keep the exposition simple, and

because it is used to illustrate a technical point in Null

models with parameters. We hasten to add that CSR is

usually not the most appropriate null hypothesis in

ecological applications (Loosmore and Ford 2006:1929).

The null hypothesis should not be chosen naively, but

should correspond to a scientifically meaningful scenario

in which ‘‘nothing is happening’’ (Strong 1980). In a

study of the spatial pattern of plants, the appropriate

null hypothesis might involve spatial inhomogeneity due

to known environmental factors, and spatial clustering

and regularity due to known processes of dispersal and

competition. Exceptions occur in the initial investigation

(Diggle 2003:12; Baddeley 2010), where CSR serves as a

dividing hypothesis that is often known to be false (Cox

1977:51–52).

A fundamental issue raised by Loosmore and Ford

(2006) concerns the statistical significance of a simula-

tion envelope. In Fig. 2, the L function for the data

point pattern wanders outside the envelope of the L

functions of 39 simulated patterns generated under
FIG. 1. Synthetic data, illustrating the locations of seedlings

in a 100 3 100 m survey plot, exhibiting inhibition between
points at distances up to 4 m.

FIG. 2. Analysis of spatial pattern using a pointwise
envelope. Panel (A) shows the L function (defined in Envelopes:
Pointwise envelopes); panel (B) shows the centered L function,
L(r)� r (where r is a distance variable). Solid lines represent the
value computed from the data pattern from Fig. 1. Shading
indicates the envelope of values obtained from 39 simulations of
complete spatial randomness (CSR). Dashed lines show the
theoretical value for CSR.
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CSR. Kenkel (1988) and many subsequent writers attach

a statistical significance of 2/(39 þ 1) ¼ 0.05 to this

outcome. An intuitively reasonable explanation is that,

if the data were also CSR, it would be a chance of 1 in 40

that the data would give an L value smaller than all 39

simulated values, and another 1:40 of giving a value

larger than all the simulated values.

Loosmore and Ford (2006:1926) correctly point out

that this reasoning would be valid only if we had decided

in advance to inspect the L function at one particular

interpoint distance (on the horizontal axis). For example

in Fig. 2, if we had fixed the distance of 4 m in advance

of seeing the data, then the outcome would indeed be

statistically significant at the level 0.05. However, it

would be very rare to have such accurate knowledge of

the scale of spatial patterning. The usual practice is to

plot the simulation envelope without any preconceived

idea, and look for deviations from the envelope at any

position. This practice leads to invalid statistical

inferences. The probability that the L function will

wander outside the envelope somewhere is very much

higher than 0.05, so that the results in Fig. 2 cannot then

be declared statistically significant at the 0.05 level.

The same caveat was already mentioned in Ripley’s

pioneering paper (Ripley 1977:181) and has been

emphasized by many expositors of spatial statistics

(e.g., Diggle 1983:12). It was certainly correct of

Loosmore and Ford (2006) to draw attention to this

common error.

However, this caveat does not imply that simulation

envelopes are statistically invalid. The pointwise enve-

lope does give a valid significance test when it is

correctly interpreted (see Monte Carlo tests and enve-

lopes: Monte Carlo tests based on functional summary

statistics). Moreover, there are other types of simulation

envelopes that do not suffer from the same problem (see

Envelopes: Global envelopes).

One benefit of graphically displaying a summary

function like the K function is that it contains

information from different spatial scales. However,

extracting this information is not straightforward. Many

writers estimate the scale of spatial interaction by

reading off the position where the observed K function

lies furthest outside the simulation envelope. Loosmore

and Ford (2006) correctly point out some flaws in this

logic. We discuss this further in Scales of interaction.

As an alternative to envelope tests, Loosmore and

Ford (2006) advocate a different, statistically valid test

for spatial pattern, which does not require graphical

display. This test is discussed in Monte Carlo tests and

envelopes: Monte Carlo tests based on functional

summary statistics.

Global envelopes

Another statistically valid test based on simulation

envelopes is shown in Fig. 3. Distinct from the pointwise

envelope in Fig. 2, the global envelope in Fig. 3 is a zone

of constant width. The width is determined by finding

the most extreme deviation from the theoretical L

function that is achieved by any of the 39 simulated L

functions, at any distance r along the horizontal axis.

Global envelopes were also proposed by Ripley (1977,

1979, 1981), but do not appear to have been used in the

ecological literature; in particular, they are not discussed

by Kenkel (1988) or Loosmore and Ford (2006).

The global envelope in Fig. 3 is based on 19 simulated

point patterns. The centered L function of the data point

pattern wanders outside the global envelope; this is

statistically significant at the level 1/(1þ19)¼0.05, often

reported in terms of the P value as P , 0.05. The global

envelope test is statistically valid; the critique of

Loosmore and Ford does not apply. Further explana-

tion is given in Monte Carlo tests and envelopes: Monte

Carlo tests based on functional summary statistics.

Confidence envelopes

Many writers describe the simulation envelope as a

confidence envelope, confidence interval, or similar

(Kenkel 1988:1020, Loosmore and Ford 2006:1926).

FIG. 3. Analysis of spatial pattern using a global envelope
(zone of constant width). Figure components are defined as in
Fig. 2. The gray region has constant width and encloses the L
functions of 19 simulations of CSR.
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Such usages are not standard statistical terminology and

may be a source of confusion.

In brief, a confidence interval is designed to contain

the true value of the target quantity with a specified

degree of confidence. A confidence interval is usually

centered around an estimated value of the target

quantity. By contrast, an acceptance interval (or non-

rejection interval) represents a statistical hypothesis test;

it is the range of values that are not significantly

different from the null value. An acceptance interval is

usually centered around the hypothesized value of the

target quantity.

True confidence intervals or confidence bands for the

K function can be constructed using several well-

established methods. Fig. 4 shows a pointwise 95%

confidence band for the true K function of the natural

process that generated the data in Fig. 1. The confidence

band was obtained using a bootstrap method proposed

by Loh (2008). Note that the bands are centered around

the K function of the data. Such confidence bands might

be useful in some applications of statistical ecology; they

may be a better alternative to formal hypothesis testing

(Yates 1951, Cox 1977).

MONTE CARLO TESTS AND ENVELOPES

All statistical tests described in this paper are based on

the same underlying rationale, namely that of a Monte

Carlo test (Barnard 1963, Hope 1968), which we now

describe.

Fundamentals of Monte Carlo tests

There are two essential requirements of any Monte

Carlo test. First, we must reduce the observed data to a

single numerical value, the test statistic tobs. There is

considerable latitude in how we do this. In a forest

survey, if the observed data are the spatial coordinates

of trees, we could take tobs to be any single number that

is a summary of the spatial locations, for example, the

Clark and Evans (1954) statistic, the mean nearest-

neighbor distance, or the value K(4) of the K function at

a fixed distance of 4 m. (However, note that the K

function itself is not a single number summary, since it

depends on the variable r.)

Secondly we must be able to generate simulated

random outcomes under the null hypothesis. These are

synthetic (computer-generated) sets of observations,

similar to the original set of observations, but generated

under the assumption that the null hypothesis is true. To

perform the Monte Carlo test, we generate m sets of

simulated random observations, where typically m is 19,

39, or 99.

For example, in a forest survey, if the null hypothesis

is that the tree locations are CSR, then we must be able

to generate a random point pattern according to that

(spatial) model. Suppose that we first generate m ¼ 19

such patterns independently. Then we reduce each

pattern to a single number summary, using the same

technique as was applied to the original observations,

yielding t1, t2, . . . , t19, and we determine the largest of

these values tmax (for a one-sided test).

In this case, the Monte Carlo test procedure is that if

the value tobs for the observed data is larger than the

maximum of the simulated values tmax, then reject the

null hypothesis at a significance level of a ¼ 0.05 (often

reported in terms of the P value as P , 0.05, although in

this case the P value is exactly equal to 0.05).

The rationale of the Monte Carlo test is as follows.

Assume the null hypothesis is true (and that any

parameters of the null model are known). Then the

original data and the 19 simulated patterns are

statistically equivalent, so the test statistic value tobs
calculated for the original data, and the test statistic

values t1, t2, . . . , t19 calculated for the simulated

patterns, are statistically equivalent. By symmetry, there

is a 1:20 chance that the test statistic value tobs is the

largest of these 20 numbers, that is, that tobs is larger

than (each of ) the other 19 values t1, t2, . . . , t19. Hence

the result is statistically significant at level a¼ 1/20 or a
¼ 0.05.

FIG. 4. Pointwise 95% confidence bands for (A) the L
function and (B) the centered L function of the pattern in Fig.
1, using the bootstrap method of Loh (2008). The dot-dash line
is the expected value under CSR.
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There are several modifications of this basic test.

Instead of a one-sided test that rejects the null

hypothesis when tobs is large, we could have a two-sided

test that rejects the null hypothesis when tobs is either the

largest or smallest of the m þ 1 numbers. This has a

significance level of a ¼ 2/(m þ 1). If we want the

standard significance level of 0.05, then we would

typically choose m¼ 39 simulations giving a significance

level of 2/40 ¼ 0.05.

Instead of taking the maximum and minimum of the

simulated values, a Monte Carlo test can be performed

using the kth largest and kth smallest values out of m

simulations, where k is a chosen rank. For a one-sided

test, we reject the null hypothesis if the observed value

tobs is larger than the kth largest simulated value. This

test has significance level a¼ k/(mþ 1). For a two-sided

test, we reject the null hypothesis if the observed value

tobs is either larger than the kth largest simulated value,

or smaller than the kth smallest simulated value. This

test has a significance level of a ¼ 2k/(m þ 1).

Many choices of m and k will give a test of significance

level a ¼ 0.05. Examples include a one-sided test using

the fifth largest simulated value out of 99 simulations,

and a two-sided test using the fifth largest and fifth

smallest simulated values out of 199 simulations.

Researchers are free to make their own choices of m

and k with an eye to computational cost, standards of

evidence, performance, and other factors. This flexibility

may explain the apparent inconsistencies in Table 1 of

Loosmore and Ford (2006).

If we prefer to compute a P value instead of specifying

a fixed significance level a, the test procedure is as

follows. Count the number of simulated values ti that

are greater than the observed value tobs. If there are j

such values then the P value is ( jþ 1)/(mþ 1) for a one-

sided test, or 2 min( jþ 1, mþ 1� j )/(mþ 1) for a two-

sided test, where min(a, b) denotes the minimum (the

smaller) of the two numbers a and b.

Monte Carlo tests based on functional summary statistics

Monte Carlo tests for spatial pattern, based on

simulation envelopes, were pioneered by Ripley (1977)

and their statistical rationale was set out in detail by

Besag and Diggle (1977) and Ripley (1979, 1981; see also

Marriott 1979).

The test may be performed using any distance-based

summary function for the point pattern. Typical choices

would be the K function, the L function, or the nearest-

neighbor distance function G (Diggle 2003). The letter H

stands for any summary function of our choice. To

perform the test, we first calculate the H function

estimate for the observed data, Hobs(r). Next we

generate m random simulated point patterns, and obtain

their H function estimates, H1(r), . . . , Hm(r).

The Monte Carlo test principle in Monte Carlo tests

and envelopes: Fundamentals of Monte Carlo tests cannot

be applied to the function H(r) directly, because

functions cannot be ranked from smallest to largest.

We need to reduce the function H(r) to a single number,

T, which will serve as the test statistic. Three possible

strategies are described here.

Pointwise test.—One strategy is to take T as the value

of the H function at a fixed distance. For example, T ¼
H(4) would be the numerical value of the H function at

the prespecified distance of 4 m. This reduces the data to

a single number T.

The two-sided Monte Carlo test (in the simplest case)

rejects the null hypothesis if the observed value tobs ¼
Hobs(4) lies outside the range of all the simulated values

t1, . . . , tm, that is H1(4), . . . , Hm(4). This rule is

equivalent to plotting the envelope of the simulated H

functions H1(r), . . . , Hm(r), and rejecting the null

hypothesis if the data H function Hobs(r) lies outside

this envelope at the prespecified distance r¼ 4 m. In the

more general case, the upper and lower boundaries of

the envelope are, for each value of r, the kth largest and

kth smallest of the simulated values of H(r).

Thus if the distance value r were fixed in advance of

performing the analysis, for example if prior informa-

tion indicates that (under the alternative hypothesis)

seedlings are likely to compete over distances up to r¼ 4

m, then a valid test of statistical significance is to reject

the null hypothesis if the H function lies outside the

simulation envelope at distance r ¼ 4 m. Admittedly,

such situations are somewhat artificial.

Different values of the distance variable r correspond

to different Monte Carlo tests. Plotting the pointwise

envelope over a range of r values (see Fig. 2) displays the

outcomes of these different tests. Each test is valid if

performed on its own, but it is generally not valid to

perform all the tests and to combine their results in some

arbitrary fashion. In particular, it is not valid to scan the

plot searching for values of r where the empirical

function Hobs(r) falls outside the envelope. This is a

problem of multiple testing or multiple comparison

(Hochberg and Tamhane 1987, Shaffer 1995, Hsu 1996).

However, plotting the envelope over a range of r

values enables us to assess, for different distance values

of r, what the result of the test would have been if we

had chosen that distance value to perform the test. This

is a useful diagnostic, since it indicates the sensitivity of

the test outcome to the choice of the distance value of r.

The use of such significance traces is standard practice in

other fields of statistics (Bowman and Azzalini 1997,

Chandler and Scott 2011). However, we concede that the

interpretation of the pointwise envelope is fraught with

danger in the wrong hands.

Global or MAD test.—An alternative choice of test

statistic is the maximum deviation between the H

function of the observed data and the theoretical

(expected) H function of the null model.

In some cases, the theoretical value of the H function

under the null model is known. For example under CSR,

the K function takes the form K(r)¼ pr2 and so L(r)¼ r.

In such cases, we may take the test statistic T to be the

maximum deviation, in absolute value, between H(r)

August 2014 481TESTS BASED ON SIMULATION ENVELOPES



and its theoretical value Htheo(r) under the null model,

where the maximum is taken over the range of distances

from 0 to R m, where R is a chosen upper limit on the

interaction distance (to be discussed in Null models with

parameters: Tests of goodness of fit of a clustered model ).

That is, we choose

T ¼ max
0�r�R

jHðrÞ � HtheoðrÞj: ð1Þ

Then T is the maximum vertical separation between

the graphs of H(r) and Htheo(r) over the chosen range of

distances. This procedure reduces the data to a single

number T called the maximum absolute deviation

(MAD).

The one-sided Monte Carlo test procedure (in the

simplest case) rejects the null hypothesis if tobs is greater

than the maximum tmax of all the simulated values

t1, . . . , tm. This rule is equivalent to plotting an envelope

of constant width tmax centered on the theoretical curve

Htheo(r), and rejecting the null hypothesis if the observed

H function Hobs(r) ever wanders outside this envelope.

This is a global envelope test or MAD test, with

significance level a¼ 1/(mþ1). See Fig. 3 for an example

with m¼19 so that a¼0.05. In the general case, the one-

sided Monte Carlo test rejects the null hypothesis if tobs
is greater than the kth largest of the simulated values,

and this has significance level a ¼ k/(mþ 1).

If the theoretical value Htheo(r) is not known for every

r, then it could be estimated from a separate set of

simulations of the null model (Diggle 1983), which

guarantees the basic requirement of symmetry. Alterna-

tively, using only a single set of simulations, we can

replace Htheo(r) with

��HðrÞ ¼ 1

mþ 1
ðH1ðrÞ þ . . .þ HmðrÞ þ HobsðrÞÞ ð2Þ

the average of all the simulated and observed H

functions. This preserves symmetry and ensures that

the test has significance level 1/(m þ 1).

Test proposed by Loosmore and Ford.—As an alter-

native to envelope tests, Loosmore and Ford (2006)

propose a Monte Carlo test based on the test statistic

T ¼
Z R

0

ðHðrÞ � HtheoðrÞÞ2 dr ð3Þ

the integral of the squared difference between the H

function and its theoretical value under the null

hypothesis. The formula given in Loosmore and Ford

(2006: Eq. 3) is different, but is equivalent to our Eq. 3,

as shown in the Appendix.

Tests of this kind were previously proposed by Diggle

(1986:122, 2003:12) and Cressie (1991:667), so we shall

call this the Diggle-Cressie-Loosmore-Ford (DCLF)

test. If the theoretical value Htheo has to be estimated

then Eq. 3 is replaced by

T ¼
Z R

0

ðHðrÞ ���HðrÞÞ2 dr ð4Þ

where again ��H is the average of the simulated and observed

H functions as in Eq. 2. This is not precisely as advocated

by Loosmore and Ford (2006), but is algebraically

equivalent, as shown in the Appendix.

At face value, this test does not appear to have a

graphical representation in terms of simulation enve-

lopes. However, such an interpretation does exist. The

test statistic T in Eqs. 3 or 4 depends on the choice of the

upper limit on distances, R. For any specified value of R,

suppose tobs(R) is the observed value of the test statistic

and ti(R) is the ith simulated value. Then the DCLF test

at significance level a ¼ 1/(m þ 1) based on the interval

[0, R] is to reject the null hypothesis if tobs(R) . tmax(R)

where tmax(R)¼maxiti(R) is the largest simulated value.

Thus, by plotting tobs(R) and tmax(R) against R, we can

represent the outcome of the DCLF test for each R. We

call this the envelope representation of the DCLF test.

Fig. 5 shows the envelope representation for the DCLF

test applied to the data of Fig. 1 using the L function. Fig.

5A shows the outcome based on the same 19 simulations

as were used to generate Fig. 3. The DCLF test statistic

tobs(R) and the Monte Carlo critical value maxiti(R) are

plotted against R. The DCLF test rejects the null

hypothesis at the 0.05 level when R is between 1 and 15

m, but not when R is greater than 15 m.

The same principle applies when we take the kth

largest of the simulated values. Fig. 5B is based on m¼
1999 simulations and rank k ¼ 100, giving the same

significance level a ¼ 0.05. The DCLF test statistic

tobs(R) is plotted against R, and the gray shading shows

the acceptance region (non-rejection region) delimited

by the Monte Carlo critical value, the kth largest of the

m values t1(R), . . . , tm(R). Based on this larger suite of

simulations, the DCLF test now rejects the null

hypothesis at the 0.05 level for all values of R.

Choice of test.—The three strategies outlined above

are equally valid. The choices of summary function H

and test statistic T materially affect the performance of

the test, but not its basic validity. It will often be sensible

to transform the summary function H (for example,

transforming the K function to the L function) or to

weight the values of H according to their variances

under the null hypothesis (Cressie 1991:642) in order to

improve performance. Factors that affect performance

are discussed later in this paper.

NULL MODELS WITH PARAMETERS

An important caveat about Monte Carlo tests is that

they ‘‘are strictly invalid, and probably conservative, if

parameters have been estimated from the data’’ (Diggle

2003:89). This seems to have received little attention in

applications.

To be more precise, the problem arises when the null

hypothesis is a model depending on a parameter or

parameters h that must be estimated from the data

(known as a composite hypothesis). The usual procedure

is to fit the model to the observed point pattern,

obtaining an estimate ĥ of the parameter value, and then
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to generate the simulated point patterns from the model

using this fitted parameter value ĥ. But this violates the
essential requirement of Monte Carlo testing, that the

observed and simulated point patterns should be

statistically equivalent if the null hypothesis is true.

Under the procedure just described, the simulated point

patterns have been generated from the null model with

parameter value ĥ, while (if the null hypothesis is true)

the observed point pattern came from the null model

with unknown parameter value h. Since the estimate ĥ is

usually not exactly equal to the true parameter value h,
the simulated and observed point patterns do not come

from the same random process, so the Monte Carlo test

is invalid.

This effect often causes Monte Carlo tests to be

conservative. A test is called conservative if the true

significance level (the true probability of Type I error) is

smaller than the reported significance level, or the

significance level that we quote in reporting the outcome

of the test. A conservative test may conclude that the

data are not statistically significant when in fact they

should be declared statistically significant.

Tests of CSR

This problem arises even in the simplest case of testing

CSR. The null hypothesis of CSR has one free

parameter, namely the intensity k (the average number

of points per unit area). Typically we estimate k from

our observed data by k̂ ¼ nobs/A where nobs is the

number of points in the observed point pattern and A is

the area of the survey region. Then the simulated point

patterns are generated by CSR with intensity k̂. Hence,

any Monte Carlo test based on these simulations is

strictly invalid and probably conservative.

To investigate whether conservative Monte Carlo

tests are a substantial problem, we evaluated the true

significance level of the DCLF Monte Carlo test of the

null hypothesis of CSR with nominal significance level a
¼ 0.05 based on 19 simulations. Results are shown in

Table 1 and explained here.

The test was repeated 100 000 times using a super-

computing cluster. For each replicate of the test, a

synthetic data set X was generated according to CSR in

a 100-m square, with intensity k ¼ 0.005 points per

square m, giving a mean of 50 points. For the row

labeled ‘‘unconditional,’’ the test was performed in the

usual way, first estimating the intensity from the

observed pattern by k̂ ¼ n(X )/A (where A ¼ 104 m2 is

the window area) and then generating 19 simulations of

CSR with intensity k̂. Summary statistics were Ripley’s

K and its transformed version L, the nearest-neighbor

distance function G and its transformed version G�,
explained in Performance: Factors that affect power. The

domain of integration for the DCLF test statistic was (0,

25) m for K and L and (0, 10) m for G and G�, based on

standard conventions (Ripley 1981, Diggle 2003).

Entries in the table show the proportion of rejections of

the null hypothesis at nominal significance level a¼ 0.05,

counted in 100000 applications of the test. The standard

error of these estimates is roughly
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05 3 0:95=100 000

p
¼ 0.0007. The ‘‘unconditional’’ row of Table 1 shows that

the usual Monte Carlo test is quite conservative, with true

significance as low as 0.025 against a nominal significance

of 0.05. Using a test statistic that is more sensitive to the

point process intensity (e.g., using G rather than K )

makes the test more conservative.

In the case of CSR, a solution to this problem is to

hold the number of points fixed. We generate the

simulated patterns with the same number of points as

the observed pattern. This exploits a special property of

CSR that, if the number of points is known, the

locations of the points are independent and uniformly

distributed, whatever the value of the intensity. That is,

conditional on the observed number of points, the

FIG. 5. Envelope representation for the Diggle-Cressie-
Loosmore-Ford (DCLF) test of CSR with a¼ 0.05, applied to
the data of Fig. 1 and considering the full range of distance
values from 0 m to 25 m. DCLF test statistic T (solid lines) and
Monte Carlo acceptance/non-rejection region (shaded) are
plotted as a function of the length R of the distance interval.
Panel (A) is based on 19 simulations of CSR; critical value is the
maximum of the simulated values. Panel (B) is based on 1999
simulations of CSR; critical value is the 100th largest of the
simulated values.
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spatial distribution of the points does not depend on the

intensity parameter. It follows that the Monte Carlo test

of CSR, when conditional on the number of points, is

exact (non-conservative).

For the row labeled ‘‘conditional’’ in Table 1, the test

was performed conditionally on the observed number of

points n(X ), so that 19 simulated random patterns were

generated containing n ¼ n(X ) independent uniformly

distributed random points. The true significance levels

shown in the table are equal to the nominal value 0.05

within sampling error.

Tests of goodness of fit of a clustered model

In the more realistic scenario where the null hypoth-

esis is a model involving interpoint interaction, requiring

several parameters to be fitted, the problem of conser-

vatism may be greater and yet harder to handle.

As an example, we took a clustered point process

model defined by Matérn (1960:46–47; see Diggle

2003:64–67). Parents form a homogeneous Poisson

process (CSR) with intensity j. Each parent, indepen-

dently, produces a random number of offspring,

according to a Poisson distribution with mean l. Each
offspring, again independently, is placed randomly and

uniformly within a circle of radius R centered on the

parent point. The parents are then discarded, and the

offspring constitute the cluster process.

For this model, Table 1 shows the true probability of

a Type I error for the DCLF test of goodness of fit. The

table is based on 50 000 replicates of the test. For each

replicate, a synthetic realization of the cluster process

was generated with parent intensity j¼ 0.005, l¼ 5, and

R ¼ 14 m in a 100-m square. To perform the test on a

given data set, the model was fitted to the data using the

method of minimum contrast (Pfanzagl 1969, Diggle

and Gratton 1984) and 19 simulations were generated

from this fitted model. Table 1 shows that this test is

extremely conservative.

The correct handling of P values for composite null

hypotheses is regarded as an unresolved research

problem in statistical inference (Brooks et al. 1997,

Bayarri and Berger 2000, and Robins et al. 2000).

Various strategies have been suggested, including

adjusting the test statistic so that its mean value is less

sensitive to the parameter (Robins et al. 2000), using a

summary function that is unrelated to the model fitting

procedure (Diggle 2003:89), and adjusting the P value

itself by performing additional simulations (Brooks et

al. 1997, Dao and Genton 2014).

A conservative test may be tolerable in some

applications, since it effectively applies a standard of

statistical significance that is more stringent than

intended. Our experiments suggest that Monte Carlo

tests using the K and G functions are likely to be very

conservative when model parameters must be estimated.

The current usage of Monte Carlo tests (envelope or

deviation tests) in spatial statistics is defensible for some

purposes, such as exploratory data analysis. However,

for goodness-of-fit testing, a very conservative test is

problematic, since a non-significant outcome (where the

null hypothesis is not rejected) is often misinterpreted as

confirmation of the fitted model. For definitive formal

inference and for goodness-of-fit tests, it would be wise

to adjust the P values or the test statistic as discussed

above.

PERFORMANCE

The performance of a test is measured by its power

(the probability of making the correct decision if the null

hypothesis is false). Here we discuss various strategies

that can improve the power of a Monte Carlo test, and

we measure the power of tests that are based on

summary functions.

Factors that affect power

The power of a test is defined as the probability of

rejecting the null hypothesis when the null hypothesis is

false and a specified alternative hypothesis is true (i.e.,

when the data were actually generated in some other

specified way). The test power depends on this

alternative hypothesis and can be regarded as a measure

of the sensitivity of the test to the specified alternative. A

test may have strong power against one alternative and

weak power against another alternative.

All the choices involved in designing a Monte Carlo

test will affect the power of the test. The power typically

increases if we increase the number of simulations m, for

a fixed level of significance a. The power is affected by the

choice of summary function H and the test statistic T.

TABLE 1. Estimated actual significance level (probability of Type I error) of Diggle–Cressie–
Loosmore–Ford (DCLF) test with nominal significance 0.05 in three applications.

Model Simulations

Summary function

K L G G�

CSR unconditional 0.0433 0.0390 0.0239 0.0257
CSR conditional 0.0498 0.0498 0.0504 0.0502
Cluster unconditional 0.0115 0.0103 0.0018 0.0028

Notes: CSR is complete spatial randomness with a mean of 50 points in the window. Cluster is a
Matérn Cluster process with a mean of 250 points in the window. K is Ripley’s K function; L is
Besag’s transformation of the K function; G is the nearest-neighbor distance distribution function;
and G� is the variance-stabilized version of G.
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The choice of summary function is pivotal in

determining the sensitivity of the test to different types

of spatial pattern. For example, an envelope test based

on the nearest-neighbor distance distribution G is

usually very sensitive to the presence of inhibition

between points, but insensitive to clustering. In extreme

cases, two different spatial point process models may

have exactly the same summary function. Baddeley and

Silverman (1984) constructed a point process that has

the same K function as CSR, but is manifestly different

from CSR. A test of CSR based on the K function has

no utility against this alternative.

The power of the test depends partly on the sampling

variability of the summary function H. For the K

function, pointwise envelopes tend to have a funnel

shape, because the mean and variance of K(r) for a

random point pattern are approximately proportional to

r2. This means that the MAD test statistic (Eq. 1) and

the DCLF test statistic (Eq. 4) tend to be more

influenced by fluctuations of K(r) occurring at larger

distances r. In a discussion of Ripley (1977), Besag

(1977) proposed transforming K(r) to L(r) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðrÞ=p

p
before applying the MAD test. This transformation

stabilizes the variance, making L(r) approximately

constant as a function of r. Variance stabilization

substantially improves the power of the MAD test and

of the DCLF test.

The nearest-neighbor distance distribution function G

and the empty space function F (Ripley 1981, Diggle

2003, Illian et al. 2008) have greatest variability for

intermediate values of r. The variance of G(r) for

random point patterns is approximately proportional to

G(r) 3 (1 � G(r)). The appropriate variance-stabilizing

transformation is due to Fisher (1915; see Aitkin and

Clayton 1980) and involves replacing G(r) by G�(r) ¼
arcsin(

ffiffiffiffiffiffiffiffiffiffi
GðrÞ

p
). Similar comments apply to F.

Measurements of power

We have compared the power of the DCLF test and

the MAD test, based on different summary functions, in

a series of simulation experiments. Following is a

summary of our findings; more detail will be reported

in a forthcoming paper (Baddeley et al., unpublished

manuscript). A detailed description of experiments to

measure the power of a test has been given by Kornak et

al. (2006).

In all our experiments, the null hypothesis was CSR,

while a range of alternative hypotheses were studied.

For each choice of alternative hypothesis, we measured

the power of the test by generating 1000 simulated

realizations of the alternative hypothesis, performing the

test on each simulated pattern, and counting the

proportion of correct outcomes of the test. For

comparison, both the DCLF and MAD tests were

performed, using different choices of summary statistics

and different choices of the length of the interval R. The

estimated power was plotted against R.

Two examples are shown in Figs. 6 and 7. Fig. 6 is the

power curve for an alternative hypothesis that is an

inhibitory (regular) point process, namely the Strauss

process (Strauss 1975, Kelly and Ripley 1976), with

intensity parameter b¼ 0.025, interaction parameter c¼
0.5 and interaction range s ¼ 4 m. (For further

information, see Diggle 2003:75, Illian et al.

2008:141, 147). Fig. 7 is the power curve when the

alternative is the cluster point process of Matérn

(1960:46–47), as described in Null models with param-

eters: Tests of goodness of fit of a clustered model.

We found that the power of each test is maximized

when the interval length R is slightly larger than the

range of spatial interaction. Additionally, the power of a

test based on the L function is greater than the power of

the corresponding test based on the variance-stabilized

G function G�(r) ¼ arcsin
ffiffiffiffiffiffiffiffiffiffi
GðrÞ

p
.

If the alternative hypothesis is a point process with

inhibition at distance s, and we use the L function, then

for R . s the power of the DCLF test declines sharply as

FIG. 6. Performance curve for the DCLF test (solid lines)
and the maximum absolute deviation (MAD) test (dashed lines)
for detecting spatial inhibition. The power is plotted against the
length of the interval of distance values used in the test. The null
hypothesis is CSR and the alternative hypothesis is an
inhibitory point process with interaction range s ¼ 4 m. Panel
(A) is a test based on the L function. Panel (B) test is a test
based on the variance-stabilized G function.
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R increases, while the power of the MAD test is

(essentially) constant, as shown in the left panel of Fig.

6. Thus, the DCLF test is more powerful than the MAD

test when R is close to s, but less powerful when R is
large.

If we use instead the variance-stabilized G function

with the same alternative hypothesis, then the DCLF is

always more powerful than the MAD test, as shown in
the right panel of Fig. 6. The power of each test rises

sharply from R¼ 0 to R¼ s, then declines slightly before

reaching a plateau.

If the alternative hypothesis is a point process with

clustering at distance s, and we use either the L function
or variance-stabilized G function, then for R . s the

power of both tests is (essentially) constant, and the

DCLF test is more powerful, as shown in Fig. 7.

Our power analysis showed that the DCLF test is

more powerful than the MAD test in most cases;
optimal power is achieved when the interval of distance

values used for the test is slightly larger than the range of

spatial interaction; and power is improved by variance-

stabilization. An exception to the assertion that DCLF

tests are more powerful than MAD tests occurs when

the data are spatially inhibited and the interval of

distance values is much greater than the range of spatial

interaction, as shown in the left panel of Fig. 6. We

expect the findings of this study to hold more widely,

because they are consistent with the general pattern

found in classical goodness-of-fit testing (Stephens

1986). The DCLF and MAD tests are analogous,

respectively, to the Cramér-von Mises and Kolmogo-

rov-Smirnov tests of goodness of fit, and the former is

usually more powerful than the latter.

Consequently our recommendation is to use the

DCLF test, provided the range of spatial interaction is

known approximately (and the interval length is chosen

accordingly). If there is no information about the range

of spatial interaction, then it may be prudent to use the

MAD test, choosing the interval length to be as large as

practicable.

SCALES OF INTERACTION

Summary functions like Ripley’s K function convey

information across a range of spatial scales. This is an

important motivation for using empirical functions,

rather than simple summary statistics, and for display-

ing them graphically.

Many researchers use a graph of the K function or L

function to infer the scale of spatial interaction in a

point pattern. This scale is often estimated by reading

off the position where the empirical function lies furthest

outside the simulation envelope. For example, in Fig. 2,

the L function envelopes are breached at distances

between about 3 and 5 m; this would be taken as an

estimate of the scale of spatial interaction. This estimate

is consistent with the true interaction range, 4 m, in that

simple synthetic example.

Loosmore and Ford (2006) criticize such approaches

on the grounds that simulation envelopes are invalid and

that the summary functions K, L, G, and F are

cumulative. ‘‘Results at any distance reflect both the

instantaneous value at that distance as well as the

combined results from all smaller distances. Results for

an observed pattern could, therefore, lie outside the

envelope at a distance where the instantaneous value

was not different than the specified model’’ (Loosmore

and Ford 2006:1927).

In our opinion, Loosmore and Ford (2006) reach the

correct conclusion here, but for the wrong reasons.

Firstly, as we have shown earlier, there is nothing invalid

about envelope tests correctly applied. More subtly, it is

not obvious that the cumulative nature of the summary

functions K, L, G, and F prevents them from correctly

identifying the scale of interaction.

Consider, for example, the Gibbs hard-core point

process in which points are forbidden to occur closer

than a specified range s whose value unambiguously

defines the scale of interaction of the process (Illian et al.

2008). In this case, both the K function and the L

function show their greatest deviation from CSR at

FIG. 7. Performance curve for the DCLF test (solid lines)
and the MAD test (dashed lines) for detecting spatial clustering.
The null hypothesis is CSR and the alternative hypothesis is the
clustered process of Matérn (1960) with cluster radius s¼ 14 m.
Panel (A) is a test based on the L function. Panel (B) is a test
based on the variance-stabilized G function.
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distance s. Fig. 8A illustrates this by plotting L(r) � r

against r, with L(r) estimated by simulating 10 000

realizations of a hard-core process with range s ¼ 4 m.

If we were to accept the objection of Loosmore and

Ford (2006), we might be tempted to identify the scale of

interaction from the behavior of the non-cumulative

counterpart of the K function, namely the pair

correlation function g(r) ¼ (2pr)�1K0(r). Under CSR,

g(r) ¼ 1. Fig. 8B plots g(r) against r, again estimated

from 10 000 simulated realizations. The shark-fin shape

of the pair correlation at distances between 4 and 7 m,

the trough at 7.5 m, and the subsequent small peak at 10

m, might naively suggest the existence of multiple scales

of interaction in the underlying process; in fact, the

peaks and troughs in the plot beyond 4 m are simply

echoes of a single scale of interaction. The parameter

values in this example ensure that the points are very

tightly packed, subject to the hard-core restriction. Each

point is very likely to have a neighbor lying just beyond

the critical distance s ¼ 4 m, and this gives rise to the

shark-fin shape. Close neighbors inhibit the presence of

other neighbors, giving rise to the trough at 7.5 m. The

essential problem here is that correlation is not

causation.

A second example is provided by a cluster process,

identical to the model of Matérn described in Null

models with parameters: Tests of goodness of fit of a

clustered model, except that each offspring point is

displaced relative to its parent according to a bivariate.

Normal distribution centered on the parent point, with

standard deviation (r) on each coordinate axis. This is

usually called the modified Thomas process (Thomas

1949, Diggle et al. 1976). Its K function and pair

correlation function are respectively (Diggle 2003, Illian

et al. 2008)

KðrÞ ¼ pr2 þ j�1 1� expð�0:25r2=r2Þ
� �

gðrÞ ¼ 1þ ð4r2pjÞ�1
expð�0:25r2=r2Þ:

In common with the hard-core process, this cluster

process embodies a single scale of interaction, as a

consequence of the property that only offspring of the

same parent interact. Unlike the hard-core process

however, it is not obvious how we might assign a

numerical value to the scale. One reasonable suggestion

would be to use some property of the distribution of the

distance between two offspring of the same parent. This

depends only on r. Another might be some property of

the distribution of the maximum distance between any

two offspring of the same parent. This depends on both

r and l. We cannot think of any justification for

involving the parameter j, yet this clearly features in the

expressions for K(r) and g(r), whereas l does not. Also,

K(r) – pr2 and g(r) � 1 are, respectively, increasing and

decreasing functions of r, so in neither case would it be

sensible to identify the scale of the process as the

distance at which the function in question deviates

maximally from its theoretical value under CSR. The

maximum deviation of L(r) from its value under CSR

does occur at a finite, nonzero value of r but, as Table 2

illustrates, this value depends on both r and j.
In both of our examples, we have considered possible

definitions of a scale of interaction only in terms of

properties of the underlying stochastic process, not of

any observed point pattern. We would argue that this is

the correct way to think about the issue, since the

objective of any data analysis is to understand what

FIG. 8. (A) Centered L function and (B) pair correlation
function g(r) of the hard-core process with range s ¼ 4 m and
base intensity b ¼ 0.06 in a 100-m square, estimated by
simulating 10 000 realizations. The 95% confidence interval in
panel (A) is so narrow that it is not visible in this graphic. The
dot-dash line is the expected value of the pair correlation for
CSR.

TABLE 2. The distance, r, at which L(r) deviates maximally
from its value under CSR, in a cluster process with parent
intensity j and cluster standard deviation r.

j

r

0.01 0.02 0.05

2 0.039 0.070 0.149
5 0.036 0.065 0.137

10 0.034 0.061 0.130
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natural processes may or may not have generated the

data. In summary, the notion of a scale of interaction is

useful for heuristics, but can only be quantified precisely

within the confines of a declared family of parametric

models. It must be expressible as some function of the

model parameters, and can only be estimated by first

estimating those parameters.

CONCLUSIONS

Statistical tests of spatial pattern based on simulation

envelopes, and those based on measures of deviation

have the same statistical rationale, namely the Monte

Carlo test principle. Both are valid statistical tests under

appropriate conditions (including conditions on the way

they are applied and interpreted). Simulation envelopes

can be of several different kinds, including pointwise

envelopes (Fig. 2) and global envelopes (Fig. 3), all of

which are statistically valid when used appropriately.

Pointwise envelopes carry a higher risk of misinterpre-

tation or misuse, due to the problem of multiple testing.

If model parameters must be estimated from the data,

then both envelope tests and deviation tests are strictly

invalid, and probably conservative, so that significance

will be under-reported. In the examples studied, this

effect was quite substantial.

The test advocated by Loosmore and Ford (2006)

generally performs better than competing methods, and

is recommended, provided there is some prior informa-

tion about the range of spatial interaction. If no such

information is available, the global envelope test

(maximum deviation test) should be used.

Envelopes are not confidence intervals. True confi-

dence intervals for the K function of a spatial pattern

can be constructed using bootstrap techniques. Confi-

dence intervals may be preferable to significance tests in

many investigations. Envelopes and other graphical

devices are useful for investigation of data but cannot be

used directly to identify scales of spatial interaction

without a parametric model.
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Grabarnik, P., M. Myllymäki, and D. Stoyan. 2011. Correct
testing of mark independence for marked point patterns.
Ecological Modelling 222:3888–3894.

Hochberg, Y., and A. Tamhane. 1987. Multiple comparison
procedures. John Wiley and Sons, New York, New York,
USA.

Hope, A. C. A. 1968. A simplified Monte Carlo significance test
procedure. Journal of the Royal Statistical Society B 30:582–
598.

Hsu, J. C. 1996. Multiple comparisons: theory and methods.
Chapman and Hall, London, UK.

Illian, J., A. Penttinen, H. Stoyan, and D. Stoyan. 2008.
Statistical analysis and modelling of spatial point patterns.
John Wiley and Sons, Chichester, UK.

Kelly, F. P., and B. D. Ripley. 1976. A note on Strauss’ model
for clustering. Biometrika 63:357–360.

ADRIAN BADDELEY ET AL.488 Ecological Monographs
Vol. 84, No. 3



Kenkel, N. C. 1988. Pattern of self-thinning in jack pine: testing
the random mortality hypothesis. Ecology 69:1017–1024.

Kornak, J., M. E. Irwin, and N. Cressie. 2006. Spatial point
process models of defensive strategies: detecting changes.
Statistical Inference for Stochastic Processes 9:31–46.

Law, R., J. Illian, D. F. R. P. Burslem, G. Gratzer, C. V. S.
Gunatilleke, and I. A. U. N. Gunatilleke. 2009. Ecological
information from spatial patterns of plants: insights from
point process theory. Journal of Ecology 97:616–628.

Loh, J. M. 2008. A fast and valid spatial bootstrap for
correlation functions. Astrophysical Journal 681:726–734.

Loosmore, N. B., and E. D. Ford. 2006. Statistical inference
using the G or K point pattern spatial statistics. Ecology
87:1925–1931.

Marriott, F. H. C. 1979. Barnard’s Monte Carlo tests: how
many simulations? Applied Statistics 28:75–77.

Matérn, B. 1960. Spatial variation: stochastic models and their
application to some problems in forest surveys and other
sampling investigations. Meddelanden från Statens Skogs-
forskningsinstitut 49(5):1–144.

Pfanzagl, J. 1969. On the measurability and consistency of
minimum contrast estimates. Metrika 14:249–276.

Ripley, B. D. 1977. Modelling spatial patterns (with discus-
sion). Journal of the Royal Statistical Society B 39:172–212.

Ripley, B. D. 1979. Tests of randomness for spatial point
patterns. Journal of the Royal Statistical Society B 41:368–
374.

Ripley, B. D. 1981. Spatial statistics. JohnWiley and Sons, New
York, New York, USA.

Robins, J. M., A. van der Vaart, and V. Ventura. 2000.
Asymptotic distribution of P values in composite null
models. Journal of the American Statistical Association
95(452):1143–1156.

Shaffer, J. P. 1995. Multiple hypothesis testing. Annual Review
of Psychology 46:561–584.

Stephens, M. A. 1986. Tests based on EDF statistics. Pages 97–
193 in R. B. D’Agostino and M. A. Stephens, editors.
Goodness-of-fit techniques. Volume 68. Statistics: textbooks
and monographs. Marcel Dekker, New York, New York,
USA.

Strauss, D. J. 1975. A model for clustering. Biometrika 63:467–
475.

Strong, D. R., Jr. 1980. Null hypotheses in ecology. Synthese
43:271–285.

Thomas, M. 1949. A generalization of Poisson’s binomial limit
for use in ecology. Biometrika 36:18–25.

Yates, F. 1951. The influence of statistical methods for research
workers on the development of the science of statistics.
Journal of the American Statistical Association 46:19–34.

SUPPLEMENTAL MATERIAL

Appendix

Notes on Loosmore and Ford’s test statistic (Ecological Archives M084-017-A1).

Supplement

R code for tests of spatial pattern (Ecological Archives M084-017-S1).
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