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ON THE 2k-TH POWER MEAN VALUE OF

THE GENERALIZED QUADRATIC GAUSS SUMS

Yanfeng He and Wenpeng Zhang

Abstract. The main purpose of this paper is using the elementary and
analytic methods to study the properties of the 2k-th power mean value
of the generalized quadratic Gauss sums, and give two exact mean value

formulae for k = 3 and 4.

1. Introduction

Let q ≥ 2 be an integer, χ denotes a Dirichlet character modulo q. For any
integer n, we define the generalized quadratic Gauss sums G(n, χ; q) as follows:

G(n, χ; q) =

q∑
a=1

χ(a)e

(
na2

q

)
,

where e(y) = e2πiy. This sum is important, because it is a generalization of
the classical quadratic Gauss sums G(n, q), which is defined by

G(n; q) =

q∑
a=1

e

(
na2

q

)
.

About the properties ofG(n, χ; q), some authors had studied it, and obtained
many interesting results. For example, for any integer n with (n, q) = 1, from
the general result of Cochrane and Zheng [2] we can deduce that

|G(n, χ; q)| ≤ 2ω(q)q
1
2 ,

where ω(q) denotes the number of all distinct prime divisors of q. The case
where q is a prime is due to Weil [4]. Zhang [5] proved that for any odd prime
p and integer n with (n, p) = 1, we have∑
χ mod p

|G(n, χ; p)|4 =

{
(p− 1)[3p2 − 6p− 1 + 4(np )

√
p], if p ≡ 1 mod 4;

(p− 1)(3p2 − 6p− 1), if p ≡ 3 mod 4.
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and ∑
χ mod p

|G(n, χ; p)|6 = (p− 1)(10p3 − 25p2 − 4p− 1), if p ≡ 3 mod 4,

where (np ) is the Legendre symbol.

Besides, W. Zhang and H. Liu [6] also proved the following conclusion:
Let q ≥ 3 be a square-full number. Then for any integers n, k with (nk, q) =

1 and k ≥ 1, we have the identity∑
χ mod q

|G(n, χ; q)|4 = q · ϕ2 (q)
∏
p|q

(k, p− 1)2
∏
p|q

(k, p−1)=1

ϕ(p− 1)

p− 1
,

where
∏

p|q denotes the product over all prime divisors of q, ϕ(q) is the Euler

function.
In this paper, we use the elementary and analytic methods to study the

calculating problem of the 2k-th power mean value of the generalized quadratic
Gauss sums, and give two exact calculating formulae for k = 3 and 4. That is,
we shall prove the following:

Theorem 1. Let odd number q > 1 be a square-full number (i.e., for any prime
p, p | q if and only if p2 | q). Then for any integer n with (n, q) = 1, we have
the identity ∑

χ mod q

|G(n, χ; q)|6 = 16ω(q) · q2 · ϕ2 (q) ,

where ω(q) denotes the number of all distinct prime divisors of q.

Theorem 2. Let odd number q > 1 be a square-full number. Then for any
integer n with (n, q) = 1, we have∑

χ mod q

|G(n, χ; q)|8 = 64ω(q) · q3 · ϕ2 (q) .

From our theorems we know that the estimates in reference [2] is the best
one. In fact from Theorem 2 we know that there exists at least one Dirichlet
character modulo q such that the inequality:

| G(n, χ; q) |≥ 2
3
4ω(q)q

3
8ϕ

1
8 (q).

For general integer k ≥ 5, we believe that the following conclusion is correct:

Conjecture. Let odd number q > 1 be a square-full number, k ≥ 2 be an
integer. Then for any integer n with (n, q) = 1, we have the identity∑

χ mod q

|G(n, χ; q)|2k = 4(k−1)ω(q) · qk−1 · ϕ2 (q) .

The proposed method is supposed to be capable of proving this formula.
However, the calculation will be so complex when k ≥ 5 that such a general
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conclusion cannot be obtained. For general positive integer q > 3, it is an open
problem whether there is a formula to calculate the 2k-th power mean value of
the generalized quadratic Gauss sums.

2. Several lemmas

To complete the proof of our theorems, we need the following several lemmas.

Lemma 1. For any integer q ≥ 1, we have the identity

G(1; q) =
1

2

√
q(1 + i)

(
1 + e

−πiq
2

)
=


√
q, if q ≡ 1 (mod 4);

0, if q ≡ 2 (mod 4);
i
√
q, if q ≡ 3 (mod 4);

(1 + i)
√
q, if q ≡ 0 (mod 4).

Proof. This is a remarkable formula of Gauss. See Theorem 9.16 of [1]. □
Lemma 2. Let p be an odd prime and α ≥ 2 be an integer. Then for any
integer n with (p, n) = 1, we have the identity

pα∑′

b=1

e

(
nb2

pα

)
= 0.

Proof. First we know that for any positive integers q ≥ 2 and integer n with
(n, q) = 1, we have the identity

q−1∑
u=0

e

(
un

q

)
= 0.

From this identity and the properties of reduce residue system we have

pα∑′

b=1

e

(
nb2

pα

)
=

p−1∑
u=0

pα−1∑′

v=1

e

(
n(upα−1 + v)2

pα

)
=

p−1∑
u=0

pα−1∑′

v=1

e

(
2nuvpα−1 + v2

pα

)

=

pα−1∑′

v=1

e

(
v2

pα

) p−1∑
u=0

e

(
2nuv

p

)
= 0.

This proves Lemma 2. □
Lemma 3. Let m, n ≥ 2 and u be three integers with (m,n) = 1 and (u,mn) =
1. Then for any character χ = χ1χ2 with χ1 mod m and χ2 mod n, we have
the identity

G(u, χ;mn) = χ1(n)χ2(m)G(un, χ1;m)G(um,χ2;n).

Proof. See Lemma 6 of [6]. □
Lemma 4. Let p be an odd prime, α ≥ 2 and n be two integers with (n, p) = 1.
Then we have ∑

χ mod pα

|G(n, χ; pα)|6 = 16ϕ2 (pα) p2α.
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Proof. From the definition of G(n, χ; pα) we have

|G(n, χ; pα)|2 =

pα∑′

a=1

pα∑′

b=1

χ(a)χ(b)e

(
n(a2 − b2)

pα

)

=

pα∑′

a=1

χ(a)

pα∑′

b=1

e

(
nb2(a2 − 1)

pα

)
.

Then by this formula and the orthogonality relation for character sums modulo
pα we may get ∑

χ mod pα

|G(n, χ; pα)|6

= ϕ (pα)

pα∑′

a=1

pα∑′

b=1

pα∑′

c=1
abc≡1 mod pα

 pα∑′

u=1

e

(
nu2(a2 − 1)

pα

)

×

 pα∑′

v=1

e

(
nv2(b2 − 1)

pα

) pα∑′

w=1

e

(
nw2(c2 − 1)

pα

) .(1)

Let (a2 − 1, pα) = pm. If m ≤ α − 2, note that (n(a2 − 1)/pm, p) = 1, then
from Lemma 2 we have

pα∑′

u=1

e

(
nu2(a2 − 1)

pα

)
= pm

pα−m∑′

u=1

e

(
nu2(a2 − 1)/pm

pα−m

)
= 0.

If m = α, then
pα∑′

u=1

e

(
nu2(a2 − 1)

pα

)
= ϕ (pα) .

If m = α − 1, then a = rpα−1 ± 1, 1 ≤ r ≤ p − 1. Note that for any prime p
with p ∤ n, by Theorem 7.5.4 of [3] we have

G(n; p) =

(
n

p

)
G(1; p).(2)

Then from (2) and Lemma 1 we may get

pα∑′

u=1

e

(
nu2(a2 − 1)

pα

)
= pα−1

p∑′

u=1

e

(
nu2(a2 − 1)/pα−1

p

)
= pα−1

[(
±2rn

p

)
G(1; p)− 1

]
.

Note that the number of the solutions of the congruent equation 1 ≤ a, b, c ≤
pα − 1 with pα | a2 − 1, pα | b2 − 1, pα | c2 − 1 and abc ≡ 1 mod pα are 4, the
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number of the solutions of the congruent equation 1 ≤ a, b, c ≤ pα − 1 with
pα | a2 − 1, pα | b2 − 1, pα−1 ∥ c2 − 1 and abc ≡ 1 mod pα are 0, and

pα∑′

a=1
pα|a2−1

pα∑′

b=1
pα−1∥b2−1

pα∑′

c=1
pα−1∥c2−1

abc≡1 mod pα

 pα∑′

u=1

e

(
nu2(a2 − 1)

pα

)

×

 pα∑′

v=1

e

(
nv2(b2 − 1)

pα

) pα∑′

w=1

e

(
nw2(c2 − 1)

pα

)
= ϕ (pα)

pα∑′

a=1
pα|a2−1

pα∑′

b=1
pα−1∥b2−1

pα∑′

c=1
pα−1∥c2−1

abc≡1 mod pα

 pα∑′

v=1

e

(
nv2(b2 − 1)

pα

) pα∑′

w=1

e

(
nw2(c2 − 1)

pα

)

= 4ϕ (pα) p2(α−1)

p−1∑
r=1

[(
−1

p

)
G2(1; p) + 1

]

− 4ϕ (pα) p2(α−1)

p−1∑
r=1

[(
−2rn

p

)
+

(
2rn

p

)]
G(1; p)

= 4ϕ (pα) p2(α−1)(p2 − 1).

So combining the above several cases and (1) we have∑
χ mod pα

|G(n, χ; pα)|6

= 4ϕ4 (pα) + 12ϕ2 (pα) p2(α−1)(p2 − 1)

+ ϕ (pα) p3(α−1)
p−1∑
r=1

p−1∑
s=1

p−1∑
t=1

(rpα−1±1)(spα−1±1)(tpα−1±1)≡1 mod pα

[(
±2rn

p

)
G(1; p)− 1

]

×
[(

±2sn

p

)
G(1; p)− 1

] [(
±2tn

p

)
G(1; p)− 1

]
= 4ϕ4 (pα) + 12ϕ2 (pα) p2(α−1)(p2 − 1)

+ ϕ (pα) p3(α−1)

p−1∑
r=1

p−1∑
s=1

p−1∑
t=1

r+s+t≡0 mod p

[(
2rn

p

)
G(1; p)− 1

]

×
[(

2sn

p

)
G(1; p)− 1

] [(
2tn

p

)
G(1; p)− 1

]
+ 3ϕ (pα) p3(α−1)

p−1∑
r=1

p−1∑
s=1

p−1∑
t=1

s+t≡r mod p

[(
2rn

p

)
G(1; p)− 1

]



14 YANFENG HE AND WENPENG ZHANG

×
[(

−2sn

p

)
G(1; p)− 1

] [(
−2tn

p

)
G(1; p)− 1

]
= 4ϕ4 (pα) + 12ϕ2 (pα) p2(α−1)(p2 − 1)

+ 4ϕ (pα) p3(α−1)

p−1∑
r=1

p−1∑
s=1

p−1∑
t=1

r+s+t≡0 mod p

[(
2rn

p

)
G(1; p)− 1

]

×
[(

2sn

p

)
G(1; p)− 1

] [(
2tn

p

)
G(1; p)− 1

]
.(3)

From the properties of the Legendre symbol (see reference [1]) we know that

p−1∑
r=1

p−1∑
s=1

p−1∑
t=1

r+s±t≡0 mod p

(
r

p

)(
s

p

)(
t

p

)
=

p−1∑
r=1

p−1∑
s=1

(
∓rs(r + s)

p

)

=

p−1∑
r=1

p−1∑
s=1

(
∓rs2(rs+ s)

p

)
=

p−1∑
r=1

(
∓r(r + 1)

p

) p−1∑
s=1

(
s

p

)
= 0,(4)

p−1∑
r=1

p−1∑
s=1

p−1∑
t=1

r+s±t≡0 mod p

(
r

p

)(
s

p

)
=

p−1∑
r=1

p−1∑
s=1

(
rs

p

)
−

p−1∑
r=1

p−1∑
s=1

r+s≡0 mod p

(
rs

p

)

= −
p−1∑
r=1

(
−r2

p

)
= −

(
−1

p

)
(p− 1),(5)

p−1∑
r=1

p−1∑
s=1

p−1∑
t=1

r+s±t≡0 mod p

(
r

p

)
=

p−1∑
r=1

p−1∑
s=1

(
r

p

)
−

p−1∑
r=1

p−1∑
s=1

r+s≡0 mod p

(
r

p

)
= 0,(6)

p−1∑
r=1

p−1∑
s=1

p−1∑
t=1

r+s±t≡0 mod p

1 =

p−1∑
r=1

p−1∑
s=1

1−
p−1∑
r=1

p−1∑
s=1

r+s≡0 mod p

= (p− 1)(p− 2).(7)

Note that (−1
p )G2(1; p) = p, from (3), (4), (5), (6) and (7) we may get∑
χ mod pα

|G(n, χ; pα)|6 = 4ϕ4 (pα) + 12ϕ2 (pα) p2(α−1)(p2 − 1)

+12ϕ2 (pα) p2α−1 − 4ϕ2 (pα) p2(α−1)(p− 2)

= 16ϕ2 (pα) p2α.

This proves Lemma 4. □
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3. Proof of theorems

In this section, we shall complete the proof of our theorems. We only prove
Theorem 1. Similarly, we can deduce Theorem 2. In fact if q is an odd square-
full number, let q = pα1

1 pα2
2 · · · pαk

k be the factorization of q into prime powers,
then αi ≥ 2, i = 1, 2, . . . , k. Then for any integer n with (n, q) = 1, from
Lemma 3, Lemma 4 and the properties of Dirichlet character we have∑

χ mod q

|G(n, χ; q)|6 =
∏
pα∥q

 ∑
χ mod pα

|G(nq/pα, χ; pα)|6


=
∏
pα∥q

[
8ϕ2 (pα) p2α

]
= 8ω(q) · q2 · ϕ2 (q) ,

where
∏

pα∥q denotes that pα | q and pα+1 ∤ q.
This completes the proof of Theorem 1.
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