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On the "3jc + 1" Problem

By R. E. Crandall

Abstract.   It is an open conjecture that for any positive odd integer m the function

C(m) = (3m + l)/2e(m),

where e(m) is chosen so that C(m) is again an odd integer, satisfies Cr(m) = 1 for

some h.   Here we show that the number of m < x which satisfy the conjecture is

at least x   for a positive constant c.   A connection between the validity of the con-

jecture and the diophantine equation 2    — 3y = p is established.   It is shown that

if the conjecture fails due to an occurrence m = C (m), then k is greater than 17985.

Finally, an analogous "qx + r" problem is settled for certain pairs (q, r) ¥= (3, 1).

1. Introduction.  The "3x + 1" problem enjoys that appealing property, often

attributed to celebrated number-theoretic questions, of being quite easy to state but

difficult to answer.  The problem can be expressed as follows:   define, for odd posi-

tive integers x, the function:

(1.1) C(x) = (3x + l)/2eM,

where 2e^ is the highest power of two dividing 3x + 1. Since C(x) is again an odd

integer, one can iterate the C function any number of times. The problem: for any

initial odd positive x is some iterate C*(x) equal to one?

This "3jc + 1 " problem has found a certain niche in modern mathematical

folklore, without, however, having been extensively discussed in the literature.  The

function C defined in equation (1.1) is essentially Collatz' function [1] but the true

origin of the problem seems obscure.  The algorithm defined by successive iteration

of C has been called the "Syracuse algorithm" [2].  Some authors [3], [8] have

defined functions equivalent to C and proclaimed the conjecture, that Ck(x) = 1 for

some k(x), a long-standing one.  Some partial results concerning the conjecture are

known, but for the most part the behavior of the C function remains shrouded in

mystery.   It is hoped that the partial results contained in the next sections will shed

some light on the problem.

2. Preliminary Observations.   Let Z+ denote the positive integers and let D +

denote the odd elements of Z+.  Some elementary properties of the function C;

D+ —► D+ as defined in (1.1) will now be discussed.

Definition.   For m E D+ the trajectory of m is the sequence Tm =

{C(m), C2(m), . . . },  where it is understood that the sequence terminates upon the

first occurrence of Ck(m) = 1, k EZ +.    If there is no such k, then Tm is an in-

finite sequence.
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1282 R- E- CRANDALL

Definition.   For m E D+ the height of m, denoted h(m), is the cardinality of

the trajectory Tm.  In the case that Tm is a finite sequence, h(m) will be the least

number of iterations of C required to reach 1.

Definition. For m E D+, we denote by inf Tm the least positive integer in

the sequence Tm. Further, if Tm is bounded, we denote by sup Tm the greatest in-

teger in the sequence Tm.  If Tm is unbounded, we say that sup Tm is infinite.

The following table should serve as an example for the previous notation:

m Tm h(m) sup Tm

1 {1} 11

7 {11,17,13,5,1} 5 17

27 {41,..., 1} 41 3077
2iooo_1 {?} 4316 >io476

2iooo + 1 {?j 2417 <10301

24096_j {?} 19794 ?

It is partly the erratic behavior of the height function h that gives interest to the

"3x + 1" problem.  The main conjecture is:

Conjecture (2.1). For every m E D+, h{m) is finite.

This unsolved conjecture has been verified for m < 109 [1], [5].   One of the

few partial results concerning the problem is that of Everett [3] :

Theorem (2.1) (Everett).   For almost all mED+, inf Tm < m.

This theorem is interesting because if inf Tm < m for all 1 < m E D+, then the

main conjecture (2.1) is clearly true. It should be noted, however, that while Theo-

rem (2.1) reveals a definite tendency for trajectories Tm to descend below their gen-

erating integers m, the theorem has little to say concerning Conjecture (2.1). In fact,

it is not even known whether a positive density of odd integers m satisfy the conjec-

ture.

The next observation gives further indication of computational difficulties

encountered in the "3x + 1 " problem.

Theorem (2.2).   As m E D+ increases, (sup Tm )/m is unbounded.

Proof.   Define, for k EZ+, the number mk = 2k - 1.  It is readily verified that

C{mk) = 3 • 2k_1 - 1 if * > 1, and in general C'{mk) = 3/2k-/' - 1 if* >/.   Thus,

for k > 1 the number

Ck~x{mk) = 3k-X2-1

is a member of the trajectory of mk.  Therefore, for k > 1 :

sup Tm       3fc_12-l .   ,

-->   „ft     ,    >(3/2)*-'mk 2k - 1

and the right-hand side grows without bound as k runs through the positive integers.
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ON THE "3x + I" PROBLEM 1283

It is evident that numerical calculations of the heights of various numbers by

computer methods must necessarily involve the storage of trajectory elements which

are, in proportion to the starting numbers m, arbitrarily large; unless, of course, some

theoretical method is discovered to simplify such computations.   It is natural to ask

whether (sup Tm)/ma is unbounded for various powers a.  The set of integers used

in Theorem (2.2) is sufficient to show unboundedness only for a < log2 3.  The ir-

rational number t = log2 3 = log 3/log 2 will arise in a natural way in later results.

3. A Random-Walk Argument. An heuristic argument that lends credibility to

the main conjecture (2.1) can be stated as follows. Assume that for odd integers m

sufficiently large the real number log(C(m)/m) is a "random variable" with a distribu-

tion determined by the behavior of the function e{m) as defined in Eq. (1.1).

One "expects" that e{m) = k with probability 2~k. Thus, log{C{m)/m) is approxi-

mately log 3 - k log 2 with probability 2~k. Therefore, one "expects" the number

log{C{m)/m) to be:

Z    2-Mog(3/2fc) = -log(4/3),
tEZ+

indicating a tendency for C{m) to be less than m. If one then imagines that iteration

of the C function induces a random walk beginning at log m on the real number line,

an heuristic estimate for the height function h{m) might be:

ti i\ ^ log m
(3.1) h{m)

log(4/3)

What is notable about this argument, aside from its lack of precision, is that estimate

(3.1) is not too far from the mark in a certain sense.  Since we expect the h function

to behave erratically, we define a smoother function called the average order of h :

(3.2) #(*) = -    Z  Km).
X    m<x

meD +

The heuristic estimate (3.1) translates into an estimate for H{x):

(3.3) H{x) ~ 2(log(16/9))_1 log x = (3.476 . . . ) log x.

This simple statistical argument seems to be partially supported by the following

data:

x H{x)/log x

11 1.440..

101 2.546 . .

1001 3.206 . .

10001 3.330 . .

100001 3.298 . .

It would be of interest to compute H(x)/log x for some much larger value of x, say
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1284 R. E. CRANDALL

1010.  In the absence of such knowledge, we simply conjecture:

CONJECTURE (3.1).   H(x) ~ 2 log jc/log(16/9).

This conjecture is stronger than the main conjecture (2.1) in the sense that if

there be even one m E D+ with infinite height, then (3.1) is false.

4.   Uniqueness Theorem.  We shall presently establish a certain uniqueness theo-

rem which is useful in obtaining partial results concerning the main conjecture (2.1).

Define, for a E Z+ and n rational the function:

(4.1) Ba(n) = (2an-l)/3.

In general, Ba(n) is not an integer.  Further define, for (backwards-ordered) sequences

{at\i = k, k - 1, . . . , 2, l;a¡, kEZ+},

the functions

(4-2) Bak.,Ml(n) = Bak(Bak_v„ai(n)) = (2a^afc_j...ai(«) - l)/3.

Every function Bra.\(n) is thus rational by construction for any sequence {a-, a¡x,

. . . ,a2,ax} = {a¡}.

Lemma (4.1).   Ifn E D+ and Ba. ai(n) is an integer, then for 1 <i <j all

numbers Baj ai(n) are odd integers; and further

C(Ba¡+, ...a j («)) = Ba.„_a , (n),      C(Ba j (n)) = n.

Proof.   Assume for some k with 1 <k </' that Bak_a (n) E Z+.  Then from

(4.2) we conclude 2"kBak_l   ax(n) is also an integer.   But by construction,

Bak_x...axin) = y/3        for some integer y since n is an integer.    Since 2 and 3 are

coprime it follows that Ba¡(_l...ax(n) Is an integer itself.   Thus, as ¿?a....ai(") is an

integer it follows by induction that all Ba.  a (n) for 1 < /' </ are integers.   Further,

from (4.2) we conclude that 3Ba¡...ax(n)+ 1 is even so each Ba....ax(n) must be odd.

Finally,

C(Ba¡+x...ax(n)) = Ba....ai(n)2ai+i-e = Ba..,Ml(n)

from (4.2), (1.1), and the fact that application of the C function on an odd integer

yields another odd integer.  That C(Ba An)) = n follows from (4.1).

Lemma (4.2). If an integer m = Ba. ...ai(l) and ax > 2, then the trajectory of

m is

Tm = {Bahx...axH),Bai_2...ax{l), ..., Z?aj(l), 1}.

Proof.   From Lemma (4.1) the assumption m = Ba. _a (1) is an integer yields

the correct iterations for the trajectory.   It remains to show that none of the

Bai...axil) is equal to 1.  This follows from the fact that C(l) = 1, so that we only

need show Ba (1) =£ 1.   But this follows from the assumption ax > 2.

Definition.   Denote by G the set of finite sequences {ay, a¡_x, . . . , ax },

where each a¡ E Z + ;ax > 2; and the following congruences are satisfied:
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ON THE "3x + I" PROBLEM 1285

2fli = 1 (mod 3)

p 1 (mod 9),

2^,^(1)=! (mod 3)     for2<I.</.1)
f 1 (mod 9)

2*»iH-i,0)s1 (mod 3).

Lemma (4.3).  ¿er {a¡} = {a-, a-_j, . . . , ax }.   77/e« 5{aj.}(l) /'s an integer of

height j if and only if {a¡} E G.

Proof.   Assume B = Ba„,aX{1) is an integer of height /.   Then from Lemma

(4.2) each Ba.  a (1) is in the trajectory of B, and thus Bai{l) =£ 1, so ax > 2.  The

congruences (mod 3) follow from Eq. (4.2) and the congruences (mod 9) follow

from (4.2) applied twice.  Thus, the sequence {a¡\i = j, j - 1, . . . , 1} is in G.

Now assume {a¡} is in G.   Then the last congruence implies Ba. a (1) is an in-

teger, and Lemma (4.2) shows this integer has height /'.

The previous lemmas and definition of the set of sequences G enable us to

prove the uniqueness theorem:

Theorem (4.1).  Consider the set of integers which satisfy the main conjecture

(2.1):

M = {mED+,m> l\h{m)finite}.

Then, for each m EM there is a unique sequence {a¡} EG such that

m=Ban(my..axH),

and conversely, for each {a¡} E G, i?{a/}(l) E M.

Proof.   If m EM, then define the integers

a,. = e(Ch<m)-'(w))    for 1 < / < h(m),

where the e function is as defined in (1.1).   Then by inspection we have m =

Bah(m)...ai(l) an(l by Lemma (4.3) we have {a,} E G.   To show uniqueness, assume

for some {b¡\i = k, k - 1, . . . , 1} we have m = Bbk  b (1).   Then from Lemma

(4.2) k = him) and, since the C function is well defined, the exponents b¡ must

agree termwise with the a¡ so the sequences {a¡} and {£,} are equal.   For the con-

verse, we note that {a¡} E G implies B{a.j(l) has finite height by Lemma (4.3)

5.  Numbers with Given Height.   The set M of integers m> l, m E D+ of

finite height is naturally partitioned by the height function h.   There are infinitely-

many numbers m with h{m) = 1, in fact these m are just numbers of the form

(4k - l)/3.  It is natural to ask whether there are always numbers of any given

height.  This question can be answered in the affirmative.  We shall give an estimate

of the relative density of the odd integers with given height.

Lemma (5.1).  Ba   ai{\) < 2ai+a2+-+«//3/.

Proof.   Since Ba (1) = (2ai - l)/3, the assertion is true for/ = 1.   From Eq.

(4.2) the result follows by induction.
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We shall also need a lower bound for the number of solutions to the congruences

that define the set G:

Lemma (5.2).  For a real number z > 0 the number of sequences of length j in

the set G with ax + • • • + ay <z is greater than or equal to (2[(z - 2)/6j] )'.

Proof.   Solutions can be restricted by the inequalities

a, - 2 < (z - 2)/j;   a, < (z - 2)1)   for 1< / < /,

which together force the sum a2 + • • ■ + a- to be < z - ax.  The number of ways of

choosing the quantity ax - 2 < (z - 2)1 j is at least 2[(z - 2)/6/] ; since only 2"1 =

4 or 7 (mod 9) is required, and out of every six consecutive integers at least two

must satisfy the congruence.  Similarly, once ax is chosen there must be at least

2[(z - 2)/6/] choices for a2 since the congruence 2"2Ba (1) = 4 or 7 (mod 9) has

at least two solutions a2 out of every set of six consecutive integers.  In this way the

number of solutions to ax + • • • + a, < z is seen to be at least the /th power of the

quantity 2 • [(z - 2)/6/].

These lemmas can be used to estimate the number of m E D+, m < x which

have a given height h.

Theorem (5.1).   Let nh(x) be the number of m EM with h{m) = h and m

< x.   Then there exist real positive constants r, x0 independent of h such that for

x > max(*0, 2h,r),

irh(x)>(logh2(xr))/h\.

Remark.   This theorem shows that for any positive integer h there are infinitely

many m E D+ with height h.

Proof.   From the uniqueness theorem (4.1) and Lemma (5.1) it follows that

irh(x) is at least as large as the number of sequences {a¡} E G, of length h, with

at + • • ■ + an < log2(3'Ijc).  By Lemma (5.2) this implies

/log,(3\/4)
"■^y——2

obtained by bounding the square-brackets from below.  Now we choose xQ such

that x > x0 implies x/4 > xx ¡2 ; and choose a real number r, 0 < r < 1, such that

r log2(3/64) + l/2>3er>0.

Then, noting from Stirling's formula that h\eh > hh, we can transform our last in-

equality for ^(jc), in the case that x is greater than both x0 and 2hlr, to

_. /iog2xrlo*2(3/64)+112 W      \ogh2(xr)

«h(x)>h-iy-j    >-_

6.  An Estimate for n(x).  Let n(x) be the number of integers m < x which

belong to the set M of Theorem (4.1).   Conjecture (2.1) is equivalent to the statement

that ir(x) is precisely the number of odd integers greater than one but not greater

than x.  We establish here a lower bound for the function n(x).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE "3x + 1" PROBLEM 1287

Lemma (6.1).
t"      i

lim e '   y     — = -•

«<[fl

Remark.   This lemma can be proved using asymptotic expansions of certain

error functions.  An exposition of various formulas pertaining to the lemma can be

found in [4].

Using the results of the last section, we now prove

Theorem (6.1). There exists a positive constant c such that for sufficiently

large x

tt(x) > xc.

Proof.   Using Theorem (5.1), we can find r > 0 and x0 > 0 such that x > x0

implies

,,      ^ l'1^] log^iX)

hez+ h=l «!

From Lemma (6.1) we deduce that for any d > 0 there is an xx > x0 such that x >

xx implies

Tr(x)>(l/2-d)erlo^x,

which is enough to obtain the lower bound xc.

7.  Cycles.  Assume that all trajectories Tm for m E D+ are bounded, and assume

that no m > 1 appears in its own trajectory.  Then the main conjecture (2.1) is true,

for under the two assumptions, the iterates C(m), C2(m),. . . , C*apTm(m) are dis-

tinct except for possible ones; and since each iterate is less than sup Tm, the number 1

must in fact appear in the list of iterates.  It is not known whether either of the two

assumptions is true.  We shall show that numbers m > 1 which appear in their own

trajectories, if they exist at all, are necessarily difficult to uncover.  More precisely,

we shall establish a lower bound for the period of an infinite cyclic trajectory in terms

of its smallest member.

Let m = 5ftfc.../,j(n) for some positive integer sequence {b¡}.  Define

k

(7.1) A, =    £     bf   for 1 < i < *;
j=k-i+ I

AQ=0.

Then the B function can be expanded to give the identity:

fc-i
(7.2) 2A*n - 3km = Z 2Ai3k~x->.

j=o

The identity always follows from the statement that n ETm, for if « appears at the

kth position of Tm then the assignment bj = e(Ck~'(m)) gives m = Bb]ç...Dx(n) and

finally (7.2).  Conversely, if (7.2) holds for some monotone sequence of increasing
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integers 0 = A0 <AX < • • ■ < i4k, then the assignment d¡ = Ak_¡+ x - Ak_x gives

m = Bdk  d (n), so by Lemma (4.1) C {m) = n, implying either n = 1 or n appears

in the fcth position of Tm.  In either case n E Tm and we have demonstrated

Theorem (7.1).  Let m, n E D+.   Then nETm if and only if there exists a

sequence of integers

0 =A0 <AX <A2 <   ■   <Ak

such that Eq. (7.2) holds.    Further, if such a sequence {A¡} exists, then n = 1

or the kth element of Tm is n.

Corollary (7.1).   If 1 <mED+ and mETm and the period of Tm is k,

then there exists a sequence of integers 0=Ao<Ax<--<Ak such that

(7.3) m(2Ak - 3k) = £ 2Ai3k~x-'.

/=o

Conversely, if Eq. (7.3) holds for such a monotone sequence, then m E Tm and

either m = 1 or m is the kth element of Tm.

It is of interest that if m appears in its own trajectory, then in Eq. (7.3)

the factor 2^fc - 3fe must divide the right-hand side. If Conjecture (2.1) is true, the

diophantine equation (7.3) must have no solutions for m > 1, subject to the constraint

of monotonicity on the {A¡}.  It is known that the equation 2X - 3y = z has only

finitely-many solutions in integers x, y for each value of z [9] and, in fact, can have

at most one solution for sufficiently large z [10].  But sharp results for special prime

values of z can be obtained on the assumption that the main conjecture (2.1) is true.

If Conjecture (2.1) is true, then the impossibility of solutions to the diophan-

tine equation (7.3) can be shown to imply that if 2 is a primitive root of a prime p,

any solution in integers x, y to 2X - 3y = p must have y < p/(t - 1), where t =

log2 3.

It is of interest that if a pair of integers (a, b) can be found such that b > 1 and

0<2a-3ö    divides    2a-ft-l,

then the main conjecture (2.1) is false. Indeed, if we write

2°-» - 1 = d(2" - 3b),

then the number m = 2bd - 1 satisfies:

m(2a - 3b) = 3b - 2b = Z 2/3*-''-1,

/=o

and since m > 1, Corollary (7.1) implies h(m) is infinite.

Corollary (7.1) shows that if the main conjecture is true then powers of two and

three tend to be poor approximations of each other.   The number r = log2 3 must

be accordingly difficult to approximate with rational numbers.  This notion will be

made precise shortly.   For the moment we display the first 50 elements of the contin-

ued fraction for t = log2 3
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r= [1,1,1,2,2,3, 1,5,2,23,2,2, 1, 1, 55, 1, 4, 3, 1, 1,15,

1, 9, 2, 5, 7, 1, 1, 4, 8, 1, 11, 1, 20, 2, 1, 10, 1, 4, 1, 1, 1

1,1,37,4,55,1, 1,49, .. .]

= [a0,aj,a2, . . . ,a4g].

The convergents to this fraction are determined by recurrences [6], [7]

P0=a0;     p_x = l;

(7.6) 4o = 1;       4_i=0;

Pn=anPn-l+Pn-2      for n E Z+;

«n = Wn-l  + Qn-2     for « £ Z+ ■

The ratio pjqn is called the nth convergent to t.

The next three lemmas stem from the theory of rational approximation.   Rele-

vant material can be found in [6] and [7].

Lemma (7.1). Let pjqn denote the nth convergent to t = log2 3.  Then for

any pair of integers (x, y) with y <qn,

\p„ -q„t\< \x-yt\.

Lemma (7.2). For p„/q„ convergents to t,

^Pn-lnt^iln + 4n+lT% •

Lemma (7.3).  For p„/q„ convergents to t, let y <qm.  Then

\2X-y \> y log2\pm-qmt\.

Proof.

12* - 3*1 = 3*lexp(* log 2 -y log 3) - 11

>3J'log2ljc-yfl.

When y <qm, Lemma (7.1) implies the desired inequality.

We now focus our attention on numbers m > 1 for which m E Tm.  It is clear

that every infinite cyclic trajectory contains such an m.

Lemma (7.4).  If 1 < m = inf Tm, then for the A¡ as defined in Eq. (7.1),

2Ai<{3 + l/m)>.

Proof.   From C(x) = (3x + 1)/2C**) we infer, since m < C'{m) for each/, that

C'+X(m) < C'(m)(3 + l//«)/2e<c/(m».

But this implies

m < C'(m) < w(3 + l/m)'/2Ai

giving the desired inequality.

Lemma (7.5).  Let Km = inf Tm and let k be the period of the trajectory

Tm.   Then

m <ki3 + l/mf-x H2Ak - 3k).
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Proof.   From Corollary (7.1) and Lemma (7.4) we have

k-i

m{2Ak - 3k) < Z (3 + l/mf-1
f=o

and the desired inequality follows from direct evaluation of the sum.

These lemmas enable us to establish a connection between the size of the period

of a possible cyclic trajectory and the continued fraction for / = log2 3.

Theorem (7.2). Let p„/qn be convergents to t.  Let 1 < m = inf Tm and let

k be the period of Tm.   Then for n > 4:

k > min{qn, 2m/{qn + qn+x)).

Proof.   If k > q„, the result is trivial so assume k <qn.  Then from Lemmas

(7.3) and (7.5) we have

k{3 + l/m)k-x
m <-,

3k log 2 lp„-<?„/!

from which we see that

k > m{log 2)(3 + l/m)\pn - qnt\{l - k/3m).

But n > 4 implies qn + qn+x  > 20 using Eq. (7.5).    Thus, if k > m/10, the

result of the theorem is trivially true.  So we assume k < m/10.  But this implies

(1 - k/3m) > 29/30 and from Lemma (7.2),

{3m + 1) log 2                       2m
k > -—— (29/30) >-.

In+ln+l In+ln+l

Corollary (7.2). For any given k there are finitely many cyclic trajectories

with period k.

Proof.   This corollary follows directly from the observation that

min(qn, (2 inf Tm)/(qn + qn+ x)) is unbounded for any infinite set of trajectories as

n increases.

The known result that no 1 < m < 109 appears in its own trajectory can be used

to establish a lower bound for any period k.

Theorem (7.3). Assume m> 1 and Ck(m) = m.   Then k > 17985.

Proof.   For 1 < m = Ck(m) the trajectory Tm is infinite cyclic, and there is

thus an m0 = inf Tm with m0 > 109.  Since m0 = Ck(m0), the number k is greater

than or equal to the period of Tm  .  Therefore, from Theorem (7.2) we infer that

A:>min(í7n,2-109/(í7n+í7n + 1))

for any n> 4.  From Eq. (7.5) we compute:

qx0 =31867;      ?u =79335;

so either k > 31867 or k > 2 • 109/111202.  The latter bound is greater than 17985.
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8.  The "qx + r" Problem.  Define for q, r E D+ ; q > 1 the function

(8.1) Cqr(m) = (qm + r)/2<V(m>

valid for m E D+ with eqr(m) always chosen to force Cqr(m) E D+.  The generalized

"qx + r" problem can be stated thus:   given (q, r), for every m E D+ is there a k

such that Ck(m) = 1 ?  What is remarkable about this problem is that strong evidence

points to the following rather curious conjecture:

Conjecture (8.1). In the "qx + r" problem, with q, r E D+ and q > 1, some

mED+ fails to satisfy an equation Ck(m) = 1 ; except in the case (q, r) = (3, 1).

This conjecture says in a word that unless q = 3 and r = 1, the generalized

height function h   (m) will be infinite for some m E D+.  We shall presently attempt

to argue the plausibility of the conjecture.

It is easy to prove Conjecture (8.1) in the special case r > 1.  Indeed for such an

r choose any m = 0 (mod r). Then Cqr{m) • 2e<7r(m^ = qm + r = 0 (mod r) and, as

r is odd, Cqr{m) = 0 (mod r).  But this means all iterates of m are destined to be

divisible by r, hence Ck(m) = 1 is impossible for r > 1 and m = 0 (mod r).

The status of Conjecture (8.1) is unsettled for most of the remaining "qx + 1"

problems.  It is known that the conjecture is true for q = 5, 181, and 1093; but all

other cases remain elusive.

The case q = 5 is settled by the observation that m = 13 gives rise to a cyclic

trajectory {33, 83, 13,.. . }, whose occurrence can be traced back to the diophantine

equation 27 - 53 = 3; and an equation similar to (7.3) exists with 3 replaced by 5

and k set equal to 3.

The case q = 181 is resolved by the observation that m = 21 gives rise to a cy-

clic trajectory {611, 27, ... }; arising from the diophantine equation 215 - 1812

= 7.

The third solvable case, q = 1093, is rather peculiar.  In this problem, a number

m has height one if and only if it is of the form

m = (2364P - 1)/1093;

but, as it turns out, all other m have infinite height.  This follows from the fact that

in the "1093* + 1" problem, no m can have height 2, since Eq. (7.2), with 3

replaced by 1093, n = 1, and k set equal to two, is easily seen to be impossible.

This case is the only one for which it is known that almost all m have infinite height.

The examples q = 5, 181, 1093 being the only known q for which Conjecture

(8.1) is true (with r = 1), why is the conjecture plausible?  The answer is, simply, it

is likely that for any q > 3, some m has a diverging trajectory in the "qx + 1" prob-

lem.   In fact, the heuristic arguments of Section 3 indicate that log{CqX{m)/m) should

be about log(í¡r/4), which is positive for odd q > 3, so that numbers should tend to be

"pushed upward" by application of the C, function.

In spite of the above considerations, it is unknown whether even a single m in

a single "qx + 1" problem gives rise to an unbounded trajectory.  The outstanding

unsolved case is the "Ix + 1" problem, for which there may be no infinite cyclic
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trajectories.  What makes the "Ix + 1" problem all the more interesting is the empiri-

cal observation that the number m = 3 gives rise to a trajectory reaching to 102000

and beyond, with no apparent tendency to return.
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