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Abstract For any positive integer n, let mq4(n) denote the integer part of k-th root of n.
That is, mq(n) = n* | . In this paper, we study the properties of the sequences

{mq(n)}, and give an interesting asymptotic formula.
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§1. Introduction

For any positive integer n, let my(n) denote the integer part of k-th root of
n. That is, mg(n) = [nﬂ . For example, m4(1) =1, my(2) = 1, my(3) =1,
mg(4) =1, -+, mg(2F) = 2,my(2¥ +1) = 2, ---, my(3%) = 3, - - -. In prob-
lem 83 of [1], Professor F. Smarandache asked us to study the properties of the
sequence {m,(n)}. About this problem, it seems that none had studied it, at
least we have not seen related paper before. In this paper, we use the elemen-
tary methods to study the properties of this sequence, and give an interesting
asymptotic formula. That is, we shall prove the following:

Theorem. m is any fixed positive integer, c is a real number . For any real
number x > 1, we have the asymptotic formula

(2k — 1)o1-o(m)

mlfa

> oal(mg(n),m)) =

n<zx

x4+ 0 (a:lfiﬁ) ,
where oo (n) = 34, d° € is any fixed positive number.
When a = 0, 1, we have

Corollary. For any real number x > 1, we have the asymptotic formula

(2k — 1)o(m)

m

> d((mg(n),m)) =

n<x

> al(mg(n),m)) = (2k = Dd(m)z + O (2! ),

n<x

z+ 0 (xlfiﬁ?) ,
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where d(n) is divisor function, o(n) is divisor sum function

§2. One lemma

To prove the theorem, we need the following lemma
m is any fixed positive integer, « is a real number. For any real

Lemma. ]
number x > 1, we have the asymptotic formula
_ 01-a(m) Lope
Z oa((n,m)) = —ia ¥ + 0 (as% ) ,

n<x
Zd\n d®, € is any fixed positive number.

where o, (n) =
Proof. Let -
ga((m,n
o(s) = 3 Zetlm),

n=1
(m,n) is a multiplicative function.we can

For m is a fixed number, f(n)
proof that o, ((m, n)) is a multiplicative function too

From the Euler product formula, we have

g
g(s) = 1+
() 1;[( ps p2s
= H(1++ +- )
ptm
St S ehe
< 1 1+1+pa+--+i:°p +i:°p +-
ps pﬁs p(ﬁ+l)s
pBlim
p=1 3
> ()T X))
=0
1

1+p® i=0 i=
B T s

1
= H 1 H 1+ ps

ptm L7 5% pjm
1 1 1
= ((S) H <1+ps—a+pQ(s—a)+”.+pﬂ(s—a)>

pPlm

And for
loa((m,n))| < K = H(z),

where K is a constant only about m and «, o > 1 is real part of s. So we
let so = 0, b = 2, T = 2%/2. When z is a half odd, we let N = = — 1/2

oc—1

n=1

||z|| = |x — N|. By Perron formula, we have
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S oalf) = o [

xS
_ R “d 0] 1/2+4¢ )
57 . &R ds £ O(!/>+)
Where

1 1 1
R(s) = (1+++---+>
( ) p;[m ps—a p2(sfo¢) pﬁ(sfa)
To estimate the main term

1 2+4+1T R xsd
o / SR s,

we move the integral line from 2 4 ¢7"to 1/2 & ¢7". This time, the function

C(s)R(s)—
S
have a simple pole point at s = 1, so we have

1 244T 1/244T 1/2—iT 24T 25
— / - / - + ¢
2me \ Jo—iT 2

s)R(s)—ds = R(1)x
+iT 1/2+iT 1/2—iT s
Taking T' = J;%, we have
1 3T 2—iT e
— +/ s )R(s)—ds
21 (/QJriT ;w) C(s)R(s) S
2 22
< / (o +iT)R(s) 2| do
3
« T_gb
—_— = 2
T~
And we can easy get the estimate
1 /éiTC( JR(s)Zd <</T (5 +it)R( )x% dt < w7t
— dl - il sTE.
o Jyyir s)R(s)—-ds A 5 T $)= P
For

1 1 1
R(1) = (1+++~--+ >
pﬁl_[m pl—a p2(1—a) pﬁ(l—a)
We can have

al_a(m)

ml—a

Z oa(f(n)) = Ulm?(am)x + O (a:%ﬁ)

This completes the proof of Lemma.
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§3. Proof of the theorem

In this section, we shall complete the proof of Theorem. For any real number
x > 1, let N be a fixed positive integer such that

NF <z < (N+ 1)k

from the definition of m,(n) we have

3 gal(mg(n)m)) = 3 oal([nF],m))

= Y el m)+ S oal([it],m)
1k <i<2k 2k<j<3k
b ot 3 a(([i¥],m)) + O(N®)t)

NE<i<z<(N41)k
= (2" = Doa((1,m)) + (3" — 2")0a((2,m))
+ -+ [(N+1DF = N¥oo ((N,m)) + O(N?)
= > G+ 1D = Moal((4,m)) + O(N®),
J<N

where € is any fixed positive number.

Let A(N) = Z o4((7,m)). From Lemma, we have
J<N

AN = Yoa((om) = T2y 4o (W)
J<N

And letting f(j) = [(j + 1)* — j*]. By Abel’s identity, we have

> (G + 18 = Moa((Gm))

J<N

N
= AN = AW - [ AWf @t

= [U;‘;‘_(T)N +0 (NTH)[(N + 1)F — N*
N
—AM ) - /[‘Wt +0 (t3+9)]

1
[k(t+ 1)1 — ktbat
From the binomial theorem, we have

(2k — D)o1—a(m)

mlfa

STIG+ DY = iMoa((f,m)) =

J<N

Nk + 9] (Nk—%—ke)
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So
> Gal(mg(n).m)) = 3 oa((fn¥],m))
= > [+ 1)F = j*oa((j,m)) + O(N?)
J<N

This completes the proof of Theorem.
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