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ON  THE A.E.  CONVERGENCE  OF
WALSH-KACZMARZ-FOURIER  SERIES

wo-sang young

Abstract. It is shown that partial sums of Walsh-Kaczmarz-

Fourier series of functions in the Orlicz class L(log+ L)2 converge

a.e. The proof utilizes an estimate of P. Sjölin on the partial sums

of the usual Walsh-Fourier series.

The Walsh-Kaczmarz system is a reordering of the usual Walsh system

within dyadic blocks of indices 2N to 2N+1, N=0, 1, • • •. The a.e. con-

vergence properties of Fourier series with respect to this system have

been investigated by L. A. Balashov [1] and K. H. Moon [7]. Balashov

showed that there exist functions in the Orlicz class F(log+ F)1-e, 0<e<l,

whose Walsh-Kaczfnarz-Fourier series diverge a.e. Moon established

the a.e. convergence of Walsh-Kaczmarz-Fourier series of L2 functions.

In this note we prove, using a theorem of P. Sjölin [9] on the a.e. con-

vergence of Walsh-Fourier series, the a.e. convergence result for functions

in the class F(log+ F)2.

The author would like to thank Professor Richard A. Hunt for many

helpful conversations.

We recall the definition of the Walsh system {wn}. Let rn, where

/■„(x) = sgn(sin 2"+17tx), be the nth Rademacher function. For any non-

negative integer n, with dyadic expansion « = 2£U ej2J, wn=Ylf=0 r'j.

The Walsh-Kaczmarz system {<f>n} is defined as follows: <f>0=l, ^i='o>

and for N= 1, 2, ■ ■ ■ , 2NSn<2N+1, with n= 2?=o efi', where e,=0 or 1

if OSjSN-l, and eN=l, <j>n=rN n£?rSU-i- The system {<f>n} so

defined is a rearrangement of {wn} within dyadic blocks of indices 2^^

«<2iV+1,JV=l,2,---.

For /g F^O, 1), let Snf= 2?~¿ <t>¡ J¿ f<f>¡ dt denote the nth partial sum
of the Fourier series of / with respect to the Walsh-Kaczmarz system
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Theorem.   //"JJ |/|(log+|/|)2 dx<co, then Snf converges to f a.e.

We will show that there exist absolute constants Cx and C2 such that

(1) m{sup \SJ\ > y) S y-^Cx Jj/I 0<>g+ l/l)2 dx + C2\

for all_y>0,/G F(Iog+ F)2. The Theorem will follow from (1) by the usual

density argument.

Before we proceed to prove (1) we need to make the following obser-

vation. Let t be a permutation of the set of all nonnegative integers.

An ordering {0,,} of the Walsh functions is said to be the Paley ordering

generated by {rrin)} if for any nonnegative integer n with dyadic expansion

rt=2¿Lo e¡2\ 6n=YY?=o Kb)- We will need several properties of the partial

sums Rnf of the Fourier series of/ with respect to {0n}. These facts can

easily be deduced from the corresponding ones of the Walsh-Fourier

series since there is a 1-1 measure-preserving transformation F from (0, 1)

onto itself such that rT(N)(x) = rN(Ex) a.e., N=0, !,••-, and hence

0„(x) = w»„(Fx) a.e., n = 0, 1, ■ • • .

First, if//=2°10 ftfif, it follows from the definition that

Rnf = 0» 2 £i(R2i+1(ön/) - RAOJ))-
3=0

(See Paley [8].) Now, for any g e L1, R2,(g) is the average of g over sets

of the form \rrW-c9, ••■ , rr(j_1)=ci_i} where c*=±l, k = 0, ■ ■ ■ ,j-l,

or, in terms of conditional expectation,

(2) RAg) = E(g | r,,,,,, ■ • • , rTlj_x)),      j = 1, 2, • • •.

Thus we have
QO

(3) Rnf = 0n 2 e>(E(6nf | '"r(O), " - " , >V<;>) ~ E(8nf | rr(0), ■ •' •, rr{j_x))).
3=0

In the above equation, when y'=0 the term F(0„/|rr(o), • • •, rrU_x)) is

interpreted as the integral J0 0„fdt.

Similarly, if2NSn<2N+1, n=yf=0 gJf,

Rnf -   ̂ 2*/ =  rr(N)Rn-2-"(rriN)f)

(4) = 6n 2 e,(£(ö„/1 rT(0„ • • • , rr(i)) - £(0,/1 rT(0), ■■■, rT(j_x))).
3=0

Finally, from a theorem of Sjölin [9], we have

(5) fsup \RJ\ dx S C, f|/| (log+ l/l)2 dx + C2,
Jo     n Jo

where Cx and C2 are absolute constants.
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We now return to the proof of (1). We note that

sup |S„/| S sup    sup     \S„f- S2Nf\ + sup |S2y/|.
n N 2"S3i<2if+1 JV

Since S2*f coincides with the 2]Vth partial sum of the Walsh-Fourier

series, (2) and Doob's inequality [10, p. 91] give

(6)    m sup \S2»f\ > y  = m sup \E(f \r„• • •, rN^x)\ > y) S y'1     |/| dx.

Hence it is sufficient to prove that for every positive integer N0,

ml sup       sup      \Snf— S2yf\ > y)
\NiNo2x£n<2Ii+l }

(7) ,     fl v

^r1(Qjol/l(log+|/|)2dx-r-C2j.

To this end we observe that for 2NSn<2x+1, N=l, ■ • • , N9, <j>n is

equal to the /zth term of the Paley ordering of the Walsh functions gener-

ated by the sequence rN_x, rx_2, • • ■ , r0, rN, rN+x, ■ ■ ■ . Hence, it follows

from (4) that for 2NSn<2N+1, with n=2to e3(«)23',

N-l

/0,     Snf - S2.v/ = <f>n 2 ejin)iEi4>nf \ rK_x, •■, f^.^i)
(ö) 3=0

- Ei<j>J | rN_x, • • ■ , rN_A).

Again, in the above equation, wheny'=0 the term Ei<f>nf\rN_x, • • ■ , rN_A

is interpreted as the integral ¡l <f>nfdt.

At this point we observe that for any F1 function g, and any integers

n, m, /^0,

(")     E(g | rn,        , rn+m) = E(t(g | rn,       , rn+m+l) | /*0, • ■ • , rn+m).

To see this we first note that

•*Háf I rn' '     ' > rn+m) == E(E(g | Tn, , rn+m+l) | /"„, , rn+m).

The equality

E(E(S\r    ■■■   r        )\r    ■■■   r     )^V^-VS | '«> » 'n+m+l/ | 'n> > ' n+mJ

= ii(£(g | /■„,       , rn+m+l) | /"0, • • • , rn+m)

is a consequence of the independence of the Rademacher functions

{/„} and the following fact: (See, for example, [3, p. 285].)

Suppose !FX, F2, iF3 are three Borel fields such that !Fx\ltF2, the Borel

field generated by ¿Fx\jF2, is independent of 1F3. Then, for each inte-

grable, J^-measurable function h, we have Eih\^2) = E(h\F2J¡F3).
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Moreover, by the independence of the Rademacher functions, we have

(10) f4>n dt = EiEif<f>n | rN, • - •, rNe) [>„••-, rA_x).

Substituting (9) and (10) into (8), we obtain

(A'-l

2 £i(n)(E(f<t>n I rN-j-i, rN_j, ■■ ■ , rN)
3=0

- E(f<f>n | rN_j, rN_j+x, ■• ■ , rNJ) | r0, ■ ■ ■ , rNA

Now we consider the Paley ordering {yn} of the Walsh functions gen-

erated by the sequence rN<¡, rNo_x, ■ ■ • , r0, rNg+x, rN<)+2, ■ ■ ■. For each

2NSn<.2N+1, there corresponds an integer m=m(ri) such that

JV-l

<£« = >> 2    ̂ -Ft*  Vm-
3=0

In fact, we have m=2i=o vi¡(m)2j, where

Í0 if; < N0 - N,

Vj(m)=\l ifj = No-N,

WpttirM   i{J > N0- N.
Therefore,

No(No

2     Vj(™)(E(fV>m \rNo,- • ■ , rN^¡)
j=N„-N+l

- E(fym | rNo, ■ ■ ■ , rNo_j+x))   r0, • ■ • , rNA

(No

2 Vi(m)iEifWm | rNt, • • •, r^,)
3=0

- E(fWm\ rNo, ■■■ , rNo_j+x)) | r0, ■ ■ ■ , rN_x\

- ymE((E(fipm I rNo, ■•■, rN)

- E(fy>m | rNt, • • •, rjv+j)) | r0, ■ ■ ■ , rN_x).

The last term vanishes since the independence of the Rademacher

functions implies

EiEiffm | rNo, ■ • •, rN) J r0, • • •, rAr_,) = J /y»m di

= £(£(/ym I r„, • • • , rN+x) | r0, • • • , r^).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1974] A.E.   CONVERGENCE  OF  WALSH-KACZMARZ-FOURIER  SERIES 357

Also, from (3), if Tnf is the nth partial sum of the Fourier series of/

with respect to {y>n},

No

^Vi(m)(E(fWm | rNt, ■ ■ ■ , rNo_A - Eifxpm \rNy ■ •, rNa_i+J)) = fJTmf).
3=0

Hence, for 2NSn<2N+1, NSN0,

S„f - S^tf = fmEiipmTmf | /-„, • ■ • , rN_x).

Consequently,

v suPvJSnf- S*xf\ = » SUP»   Ei\Tmin)f\ | r0, ■ ■ ■ , rN_x)

S £Ísup|Tt/| j r0, ■ • ■ ,rN_x\

for all NSN0. Therefore

[ I
ml sup       sup     |5„/- S2*/| > y\

\N¿Na !"ín<*<r„<-o*+l

S ml sup Flsup \Tkf\ \ r0, • • • , r^l > y
lA'SA'o     \   * I )

S y"1 psup |TJ| dx

^ /^(CiJ Vl 0og+ l/l)2 ̂ + C2)

Here we have made use of Doob's inequality (see (6)) and (5). This

proves (7) and thus completes the proof of the Theorem.

Remarks. For the usual Walsh-Fourier series, there is a gap between

a.e. convergence results and a.e. divergence results. It is known that the

Walsh-Fourier series converge a.e. for functions in the Orlicz class

F(log+ F)log+ log+ F (Sjölin [9]), and that there are functions in the class

F(log+log+F)1-£ (0<e<l) whose Walsh-Fourier series diverge a.e.

(Moon [7]). Such a gap also exists in the Walsh-Kaczmarz-Fourier series,

where we have a.e. convergence for the class F(log+ F)2 and a.e. divergence

for the class F(log+ F)1_£ (0<£< 1) (Balashov [1]).

Another proof involving modifications of the Carleson-Hunt technique

[2], [5], [6] and estimates on maximal functions of the Hardy-Littlewood

type yields a.e. convergence results for functions in the smaller class

F(log+ F)2 log+ log+ F. That proof, however, also works for more

general rearrangements. It also gives various estimates on sup„|<SB/|.

(See [11], [12] and [4].)
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