ON THE ABEL SUMMABILITY OF MULTIPLE FOURIER SERIES BY SPHERICAL MEANS

Kazuaki Takeda

(Received June 25, 1958)

1. Introduction. Let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a point in the k dimensional Euclidian space and $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a function of the Lebesgue class L having the period 2π in each variables; let

$$
\begin{equation*}
\left.f(x) \sim \sum a_{n_{1}, n_{2}} \quad n_{k} e^{i\left(n_{1} x_{1}+u_{2} x_{2}+\right.} \quad \ddagger n_{k} x_{k}\right) \tag{1.1}
\end{equation*}
$$

be its Fourier series, that is

$$
\begin{equation*}
a_{n_{1} n_{2}} \ldots, n_{k}=\frac{1}{(2 \pi)^{k}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} f\left(x_{1}, x_{2}, \ldots ., x_{k}\right) e^{-i\left(n, k_{1}+\ldots \mid n_{k}+x_{k}\right.} d x_{1} \ldots d x_{i} \tag{1.2}
\end{equation*}
$$

We shall consider the spherical means of the series (1.1). This method was inaugurated by Prof. Bochner [1] and developed by other writers.

By the spherical sum of (1.1) we mean

$$
\begin{align*}
& S_{k}(x)=\sum_{\nu<h} a_{n_{1}, \ldots n_{k}} e^{i\left(n_{1} x+\ldots,+n_{k} x_{k}\right)} \tag{1.3}\\
& \quad n_{1}^{\prime \prime}+n_{2}^{\prime \prime} \ldots+n_{k}^{\prime \prime}=\nu
\end{align*}
$$

and write the spherical mean of the function $f(x)$ at a point x by

$$
\begin{equation*}
f_{x}(t)=\frac{\Gamma(k / 2)}{2(\pi)^{k 2}} \int_{\sigma} f\left(x_{1}+t \xi_{1}, x_{2}+i \xi_{2}, \ldots, x_{i}+t \xi_{i}\right) d \sigma \xi \tag{1.4}
\end{equation*}
$$

where σ denotes the unite sphere $\xi_{1}^{2}+\xi_{2}^{2}+\ldots+\xi_{k}^{2}=1$, and $d \sigma_{\xi}$ its $k-1$ dimensional volume element.

The general Abel mean of the series (1.3) is given by

$$
\begin{equation*}
\frac{1}{\varepsilon} \int_{0}^{\infty} \frac{(t / \varepsilon)^{k-1}}{\left[(\bar{t} / \bar{\varepsilon})^{2(1+m)}+1\right]^{(k+1) / 2}} f_{x}(t) d t \tag{1.5}
\end{equation*}
$$

If we put $m=0,(1.5)^{\prime}$ becomes ordinary Abel mean, which is established by Bochner [1]. The formula (1.5)' is reduced to

$$
\begin{equation*}
\frac{1}{\varepsilon} \int_{0}^{1} \frac{(t / \varepsilon)^{2}-1}{\left[(t / \varepsilon)^{2(1+m)}+1\right]^{(h+1), 2}} f_{x}(t) d t+o(1), \quad \text { as } \varepsilon \rightarrow 0, \tag{1.5}
\end{equation*}
$$

by the localization theorem, where $m>-\frac{1}{k+1}$, since

$$
\left(\frac{1}{\varepsilon}\right) \int_{1}^{\infty} \frac{(t / \varepsilon)^{k-1}}{\left[(t / \varepsilon)^{2(1 t m)^{2}+1}\right]^{(k+1), 2}} f_{x}(t) d t
$$

$$
\begin{aligned}
& \leqq \varepsilon^{m k \cdot m+1} \sum_{j=1}^{\infty} \int_{j}^{2+1} \frac{1}{t^{i+1+m)(h+i)}}\left|t^{(k-1} f_{x}(t)\right| d t \\
& \leqq \varepsilon^{m k+m+1} \sum_{j=1}^{\infty} \stackrel{1}{j^{(1+m)(\bar{k}+1)}} \cdot O\left(j^{k-1}\right) \cdot \int_{-\pi}^{\pi} \cdots \cdot \int_{-\pi}^{\pi}\left|f\left(t_{1}, \ldots, t_{k}\right)\right| d t_{1} \ldots . d t_{k} \\
& =\varepsilon^{m h+m+1} \cdot O\left(\sum_{l=1}^{\infty} \frac{1}{j^{m i+m} \xi_{j}}\right)=o(1) \text {. }
\end{aligned}
$$

The general Abel mean of the function (1.4) is given by

$$
\begin{equation*}
\varepsilon \int_{0}^{1}\left(\frac{\varepsilon}{t}\right)^{\alpha} e^{-\left(\frac{\varepsilon}{\iota}\right)^{1+n}}\binom{t}{\varepsilon}^{k-1} f_{x}(t) \frac{d t}{t^{2}} \tag{1.6}
\end{equation*}
$$

where $n>-1$.
The formulas (1.5) and (1.6) were given by N.Levinson [3] for the case of one variable.

The object of this paper is to establish the relations between (1.5) and (1.6).
2. Tauberian lemmas. The following lemmas are essentially due to N . Levinson [3]. and N. Wiener [7].

Lemma 1. Let

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{1} N_{1}\left(\frac{t}{\varepsilon}\right) f(t) d t=0 \quad \text { boundedly, }(k \geqq 1) \tag{2.0}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{0}^{1}|f(t)| d t<\infty, \quad f(t)=t^{t-1} f_{x}(t) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|N_{1}(t)\right|<A . \tag{2.2}
\end{equation*}
$$

Let $R(t)$ be a function such that

$$
\begin{equation*}
\int_{0}^{\infty} t^{k-1}|R(t)| d t<\infty \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty}|R(t)| \frac{d t}{t}<\infty . \tag{2.4}
\end{equation*}
$$

Then, if

$$
\begin{equation*}
N_{2}(t)=\int_{0}^{\infty} R(y) N_{1}\left(\frac{t}{y}\right)-d y \tag{2.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{1} N_{z}\left(\frac{t}{\varepsilon}\right) f(t) d t=0 \tag{2.6}
\end{equation*}
$$

Proof. Since the following integral is absolutely convergent, we have

$$
\begin{align*}
& \left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{\infty} R\left(\frac{y}{\varepsilon}\right) \frac{d y}{y} \int_{0}^{1} N_{1}\left(\frac{t}{y}\right) f(t) d t \tag{2.7}\\
& =\left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{1} f(t) d t \int_{0}^{\infty} R\left(\frac{y}{\varepsilon}\right) N_{1}\left(\frac{t}{y}\right) \frac{d y}{y}=\left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{1} N_{2}\left(\frac{t}{\varepsilon}\right) f(t) d t .
\end{align*}
$$

(2.0), (2.1) and (2.2) yields

$$
\left(\frac{1}{y}\right)^{k} \int_{0}^{1} N_{1}\left(\frac{t}{y}\right) f(t) d t<M
$$

and we get

$$
\begin{aligned}
& \left.\left|\left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{\infty} R\left(\frac{y}{\varepsilon}\right) \frac{d y}{y} \int_{0}^{1} N_{1}\left(\frac{t}{y}\right) f(t) d t\right|=\left\lvert\,\binom{ 1}{\varepsilon}^{k} \int_{0}^{\infty} y^{k-1} R_{\backslash}^{(} \frac{y}{\varepsilon}\right.\right) \left.\frac{d y}{y^{k}} \int_{0}^{1} N_{1}\left(\frac{t}{y}\right) f(t) d t \right\rvert\, \\
& \leqq\left|\left(\frac{1}{\varepsilon}\right)^{k}\left\{\int_{0}^{\delta}+\int_{\delta}^{\infty}\right\} R\binom{y}{\varepsilon} \frac{d y}{y} \int_{0}^{1} N_{1}\binom{t}{y} f(t) d t\right| \\
& \leqq\left|\left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{\delta} y^{k-1} R\binom{y}{\varepsilon} d y\left\{\frac{1}{y^{k}} \int_{0}^{1} N_{1}\binom{t}{y} f(t) d t\right\}+M\binom{1}{\varepsilon}^{k} \int_{\delta}^{\infty} R\left(\frac{y}{\varepsilon}\right) y^{k-1} d y\right| .
\end{aligned}
$$

Let we take small $\delta>0$, we have $\left|\binom{1}{y}^{k} \int_{0}^{1} N_{1}\binom{t}{y} f(t) d t\right|<\eta$ for any small $\eta>0$, by (2.0). Therefore the last term is less than

$$
\eta\left|\int_{0}^{\infty} R(u) u^{k-1} d u\right|+M \int_{\delta / \epsilon}^{\infty}\left|u^{k-1} R(u)\right| d u .
$$

Therefore for sufficiently small η the first term is arbitrarily small independent of ε, and for small ε and fixed δ the second term is arbitrarily small. Combined this fact with (2.7) we have

$$
\lim _{\epsilon \rightarrow 0}\binom{1}{\varepsilon}^{k} \int_{0}^{1} N_{2}\binom{t}{\varepsilon} f(t) d t=0
$$

which proves the lemma.
Lemma 2. Lemma 1 remains valid if (2.4) is replaced by

$$
|R(t)|<A, \quad \text { for } t<\frac{1}{2}
$$

and

$$
\int_{0}^{\infty}\left|N_{l}(t)\right| \frac{d t}{t}<\infty .
$$

Proof. The proof is the same as that of N.Levinson [3].
Lemma 3. Let for some fixed b, $t^{-b} N_{1}(t)$ and $t^{-b} N_{2}(t)$ belong to $L(0, \infty)$, and let

$$
\begin{aligned}
k_{1}(w) & =\int_{0}^{\infty} N_{1}(t) t^{-w} d t, \\
k_{2}(w) & =\int_{0}^{\infty} N_{2}(t) t^{-w} d t, \\
\gamma(w) & =\frac{k_{2}(w)}{k_{1}(w)} .
\end{aligned}
$$

If $\gamma(w)$ is analytic, and

$$
\int_{-\infty}^{\infty}|\gamma(u+i v)|^{2} d v<M<\infty
$$

in the strip, $b-\delta \leqq u \leqq b+\delta$, for some fixed $\delta>0$, then

$$
\begin{equation*}
R(t)=1 . \underset{-1 \rightarrow \infty}{1 . \mathrm{m} .} \frac{1}{2 \pi i} \int_{-1,1+n}^{1.1+u} \gamma(w) t^{w-1} d w, \quad(b-\delta \leqq u \leqq b+\delta), \tag{2.8}
\end{equation*}
$$

is a solution of the equation (2.5) and

$$
\begin{equation*}
t^{-1} R(t) \tag{2.9}
\end{equation*}
$$

belongs to the class $L(0, \infty)$.
Proof. The proof is analogous to that of N.Levinson [3].
3. Summability theorems. Let $P^{\prime}(m)$ represent
and $E(n, \alpha)$ represent

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 11} \varepsilon \int_{0}^{1}\binom{\varepsilon}{t}^{\alpha} e^{-\left(\frac{f}{\iota}\right)^{1+n}}\binom{t}{\varepsilon}^{k-1} f_{x}(t) \frac{d t}{t^{2}}=0, \quad n>-1, \quad \alpha \geqq k-1 . \tag{3.2}
\end{equation*}
$$

Theorem 1. $E(n, \alpha)$ for $n>m$, implies $P(m)$; while $P(m)$ for $m>n$,
implies $E(n, \alpha)$.
Proof. Let

$$
N_{1}(t)=\frac{1}{\left[t^{2(1+m)}+1\right]^{(k+1) 2} \quad \text { and } \quad N_{L}(t)=t^{-\alpha-2} e^{-\left(\frac{1}{1}\right)^{1+n}}, ~}
$$

then

$$
\begin{equation*}
P(m) \quad \text { means } \lim _{\epsilon \rightarrow 0}\left(\frac{1}{\varepsilon}\right)^{h} \int_{0}^{1} N_{1}\left(\frac{t}{\varepsilon}\right) t^{k-1} f_{.}(t) d t=0 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
E(n, \alpha) \text { means } \lim _{\epsilon \rightarrow 0}\left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{1} N_{\because}\binom{t}{\varepsilon} t^{k-1} f_{x}(t) d t=0 \tag{3.4}
\end{equation*}
$$

In the sequel we shall use the notations of Lemmas 1,2 and 3. Then we have

$$
\begin{equation*}
\left|N_{1}(t)\right|<A \text { and }\left|N_{2}(t)\right|<A \tag{2.2}
\end{equation*}
$$

for $m>-\begin{gathered}1 \\ k+1\end{gathered}, \quad n>-1$ and $t \in(0, \infty)$. Also, we have

$$
\int_{0}^{\infty}\left|N_{2}(t)\right| \frac{d t}{t}<\infty
$$

By the Mellin transforms, we have

$$
\begin{equation*}
k_{1}(w)=k_{1}(u+i v)=\frac{1}{2(1+m) \Gamma\left(\frac{k+1}{2}\right)} \Gamma\left(\frac{1-w}{2(1+m)}\right) \Gamma\left(\frac{k+1}{2}-\frac{1-w}{2(1+m)}\right) \tag{3.5}
\end{equation*}
$$

for $1>u>-m(k+1)-k$, and

$$
\left.k_{2}(w)=k_{2}(u+i v)=\begin{array}{c}
1 \tag{3.6}\\
1+n \\
\Gamma
\end{array} \frac{1+w+\alpha}{1+n}\right)
$$

for $u>-(\alpha+1)$, (c.f. Titchmarsh [4] p. 192), where $\Gamma(x)$ denotes Gamma function.

First we prove that $P(m)$ implies $E(n, \alpha)$ if $m>n$ and $\alpha \geqq k-1$. We use the Lemma 1 and Lemma 3. Since $t^{(k-1)} N_{1}(t)$ and $t^{(h-1)} N_{2}(t)$ belong to the class $L(0, \infty)$ under the hypothesis of the theorem, we have
(3.7) $\gamma(w)=\gamma(u+i v)=\frac{k_{2}(w)}{k_{1}(w)}=\frac{2(1+m) \Gamma\left(\frac{k+1}{2}\right)}{1+n} \cdot \frac{\Gamma\left(\frac{1+w+\alpha}{1+n}\right)}{\Gamma\binom{1-w}{2(1+m)} \Gamma\left(\frac{k+1}{2}-\frac{1-w}{2(1+m)}\right)}$.

The well known formula of Γ-function

$$
\begin{equation*}
|\Gamma(u+i v)| \sim \sqrt{ } 2 \pi|v|^{u-\frac{1}{2}} \exp \left\{-\frac{\pi}{2^{-}}|v|\right\}, \text { as }|v| \rightarrow \infty, \tag{3.8}
\end{equation*}
$$

implies that

$$
\begin{equation*}
|\gamma(u+i v)| \sim C|v|^{\substack{1+u \nmid+\alpha \\ 1+n}}-\frac{k}{2} \exp \left\{-\frac{\pi}{2}\left[\left|1 \frac{v}{1+n}-\left|\frac{v}{1+m}\right|\right]\right\}, \text { as }|v| \rightarrow \infty,\right. \tag{3.9}
\end{equation*}
$$

in the strip $-(k-1)-\delta \leqq u \leqq-(k-1)+\delta$ for some fixed $\delta>0$, and some constant C. Since $\gamma(u+i v)$ is analytic in that strip, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}|\gamma(u+i v)|^{2} d v<M, \text { in }-(k-1)-\delta \leqq u \leqq-(k-1)+\delta . \tag{3.10}
\end{equation*}
$$

By Lemma 3, if we put $b=-(k-1)$, there exists a function $R(t)$ such that (2.3) and (2.5) of Lemma 1 are satisfied. Since $1 / \Gamma(w)$ is an entire function, the regular property of the function $\gamma(u+i v)$ depends only on the behavior of numerator of the function. Consider the same way as above in the strip $-\delta \leqq u \leqq 1+\delta$, we have (2.9) in Lemma 3 for $b=-1$. (The details of this statement, see N.Levinson [3].) Thus we have (2.4).

Therefore all the conditions of Lemma 1 are satisfied, we have the theorem in this case.

Finally, we shall prove that $E(n, \alpha)$ implies $P(m)$ for $n>m$ and $\alpha \geqq k-1$. In Lemmas 1,2 and 3 , interchange N_{1}, N_{2}, k_{1} and k_{2} with N_{2}, N_{1}, k_{2} and k_{1} respectively. We have

$$
\begin{gather*}
\gamma(w)=\gamma(u+i v)=\frac{k_{1}(w)}{k(w)}=\frac{1+n}{2(1+m) \Gamma\binom{k+1}{2}} \frac{\Gamma\binom{1-w}{2(1+w)} \Gamma\left(\frac{k+1}{2}-\frac{1-w}{2(1+m)}\right)}{\Gamma\left(\frac{1+w+\alpha}{1+n}\right)}, \tag{3.12}\\
\left.|\gamma(u+i v)| \sim C|v|^{\frac{k}{2}-\frac{1+u+x}{1+n}} \exp \left\{-\frac{\pi}{2}\left|\frac{v}{1+m}\right|-\left|\frac{v}{1+n}\right|\right]\right\}, \text { as }|v| \rightarrow \infty, \tag{3.13}
\end{gather*}
$$

in the strip $-(k-1)-\delta \leqq u \leqq-(k-1)+\delta$ for some fixed $\delta>0$, and some constant $C . \gamma(w)$ is analytic in the strip $1>u>-m(k+1)-k$ and by (3.13), it belongs to L^{2} on any ordinate of this strip. Thus as before, the conditions of Lemma 1 are satisfied except for (2.4). Again by Lemma 3, if we put $b=0$, we have an absolutely integrable

$$
\begin{equation*}
R(t)=\frac{1}{2 \pi \iota} \int_{-\infty}^{i \infty} \gamma(w) t^{m-1} d w \tag{3.14}
\end{equation*}
$$

The integrand of (3.14) has poles at $w=1$ and $w=2 m+3$, but it has no pole in the strip $1<u<2 m+3$. We displace the path of integration to the right of $w=1$ and observe that $w=1$ is a pole, we have

$$
\begin{align*}
& R(t)=\begin{array}{c}
1+n \\
2(1+m) \Gamma\left(\begin{array}{c}
\Gamma\binom{k+1}{2} \\
\left.\frac{k+1}{2}\right)
\end{array} \cdot \begin{array}{c}
1+1+\alpha \\
1+n
\end{array}\right)
\end{array} \tag{3.15}\\
& +\begin{array}{c}
1+n \\
\left.2(1+m) \Gamma\binom{k+1}{2}^{2 \pi i} \int_{-i \infty++2+\ldots /}^{i \infty+2+m} \Gamma\binom{1-w}{2(1+m)} \Gamma \frac{k+1}{2}-\frac{1-w}{2(1+m)}\right)_{t^{w-1}} d w, \\
\Gamma\left(\frac{1+w+\alpha}{1+n}\right)
\end{array}
\end{align*}
$$

so that
(3.16)

$$
|R(t)| \leqq A+A^{\prime} t^{1+2 m}
$$

where A and A^{\prime} are some positive constants. Since $m>-\frac{1}{2}, R(t)$ is bounded for finite t and the conditions of Lemma 2 are fulfilled. This proves the theorem of this case.

Remark. The essential parts of our theorem are as follows; $E(n, \alpha)$ for $n>0, \alpha \geqslant k-1$ implies $P(0)$, while $P(0)$ implies $E(n, \alpha)$ for $0>n>-1$ and $\alpha \geqq k-1$.
4. Absolute summability theorems. The Tauberian treatment of the absolute summability theorems was inaugurated by Prof. G. Sunouchi [4]. In his method, we get the following lemma.

Lemma 4. Under the hypothesis of Lemma 1 or Lemma 2

$$
\begin{equation*}
\int_{0}^{\infty}\left|d_{e}\left(\frac{1}{\varepsilon}\right) \int_{0}^{1} N_{1}\binom{t}{: \varepsilon} f(t) d t\right|<\infty \tag{4.0}
\end{equation*}
$$

implies

$$
\begin{equation*}
\int_{0}^{\infty} d_{\varepsilon}\binom{1}{\varepsilon}^{k} \int_{0}^{1} N_{2}\binom{t}{\varepsilon} f(t) d t<\infty \tag{4.1}
\end{equation*}
$$

Proof. Put

$$
\begin{equation*}
S(x)=\int_{0}^{r} t^{k-1} R(t) d t \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
F_{\perp}(y)=\binom{1}{y}^{k} \int_{0}^{1} N_{1}\binom{t}{y} f(i) d t \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\because}(y)=\binom{1}{y}^{k} \int_{0}^{1} N_{2}\binom{t}{y} f(t) d t \tag{4.4.}
\end{equation*}
$$

then by (2.3), $S(0)$ and $S(\infty)$ exist. By (2.7), we get

$$
\begin{align*}
F_{\iota}(\varepsilon) & =\binom{1}{\varepsilon}^{k} \int_{0}^{\infty} R\binom{y}{\varepsilon} \frac{d y}{y} \int_{0}^{1} N_{\mathrm{L}}\binom{t}{y} f(t) d t \tag{4.5}\\
& =\left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{\infty} y^{k-1} R\left(\frac{y}{\varepsilon}\right) \frac{d y}{y^{k}} \int_{0}^{1} N_{1}\left(\frac{t}{y}\right) f(t) d t \\
& =\left(\frac{1}{\varepsilon}\right)^{k} \int_{0}^{\infty} y^{k-1} R\binom{y}{\varepsilon} F_{1}(y) d y
\end{align*}
$$

$$
=\frac{1}{\varepsilon} \int_{0}^{\infty}\binom{y}{\varepsilon}^{n-1} R\left(\frac{y}{\varepsilon}\right) F_{1}(y) d y .
$$

Integrating by parts, the last ter.n is

$$
\begin{equation*}
\left[S\binom{y}{\varepsilon} F_{1}(y)\right]_{0}^{\infty}-\int_{0}^{\infty} S\binom{y}{\varepsilon} \dot{d} F_{1}(y) . \tag{4.6}
\end{equation*}
$$

Since $S(0), S(\infty), F_{1}(0)$ and $F_{2}(\infty)$ exist by (2.3) and (4.0), we have

$$
\begin{equation*}
\int_{0}^{\infty}\left|d_{s} \int_{0}^{\infty} S\left(\frac{y}{\varepsilon}\right) d F_{1}(y)\right|=\int_{0}^{\infty}\left|d F_{2}(\varepsilon)\right| . \tag{4.7}
\end{equation*}
$$

Then, by (4.2) and Cameron-Martin's unsymmetric Fubini theorem [2],

$$
\begin{align*}
& \left.\int_{0}^{\infty} d_{e} \int_{0}^{\infty} S\left(\frac{y}{\varepsilon}\right) d F_{1}(y)\left|\leqq \int_{0}^{\infty}\right| d F_{1}(y)\left|\int_{0}^{\infty}\right| d_{\mathrm{t}} S\left(\frac{y}{\varepsilon}\right) \right\rvert\, \tag{4.8}\\
& \leqq \int_{0}^{\infty}\left|d F_{1}(y)\right| \int_{0}^{\infty}\left|\frac{y}{\varepsilon^{2}}\left(\frac{y}{\varepsilon}\right)^{k-1} R\binom{y}{\varepsilon}\right| d \varepsilon \\
& \leqq \int_{0}^{\infty}\left|d F_{1}(y)\right| \int_{0}^{\infty}\left|u^{i-1} R(u)\right| d u<\infty .
\end{align*}
$$

This proves the Lemma.
If we denote by $|P(m)|$ the fact that

$$
\begin{equation*}
\frac{1}{\varepsilon} \int_{0}^{\infty} \frac{\left(\frac{t}{\varepsilon}\right)^{k-1}}{\left[\left(\frac{t}{\varepsilon}\right)^{2(1+m)}+1\right]^{\frac{k+1}{2}}} f_{x}(t) d t, \quad m \geqq 0 \tag{4.9}
\end{equation*}
$$

is of bounded variation in $(0, \infty)$, and by $|E(n, \alpha)|$ the fact that

$$
\begin{equation*}
\varepsilon \int_{0}^{1}\left(\frac{\varepsilon}{t}\right)^{\alpha} e^{-\left(\frac{\epsilon}{t}\right)^{1+n}} f_{x}(t) \frac{d t}{t^{2}}, \quad n>-1, \alpha \geqq k-1, \tag{4.10}
\end{equation*}
$$

is of bounded variation in $(0, \infty)$. Then we have
Theorem 2. $|E(n, \alpha)|$ for $n>m$ and $\alpha \geqq k-1$ implies $|P(m)|$, while $|P(m)|$ implies $|E(n, \alpha)|$ for $m>n, \alpha \geqq k-1$.

Proof. To prove the localization property of absolute summability, we need to show that

$$
\begin{equation*}
\int_{0}^{\infty}\left|d_{\varepsilon} \frac{1}{\varepsilon} \int_{1}^{\infty} \frac{\binom{t}{\varepsilon}^{k-1}}{\left[\left(\frac{t}{\varepsilon}\right)^{2(1+m)}+1\right]^{\frac{1}{2}(k+1)}} f_{x}(t) d t\right|<\infty, \quad m \geqq 0 \tag{4.11}
\end{equation*}
$$

Since

$$
\begin{align*}
& \frac{d}{d \delta}\left\{\left(\frac{1}{\varepsilon}\right) \int_{1}^{\infty} \frac{\left(\frac{t}{\varepsilon}\right)^{k-1}}{\left[\binom{t}{\varepsilon}^{2(1+m)}+1\right]^{\frac{1}{2}(k+1)}} f_{s x}(t) d t\right\} \tag{4.12}\\
& \leqq A \sum_{j=1}^{\infty}\left[\left(\frac{j}{\varepsilon}\right)^{2(1+m)}+1\right]^{\frac{1}{2}(k+1)}\left[\binom{1}{\varepsilon}^{k+1}+\binom{1}{\varepsilon}^{k+1}\left(\frac{j}{\left(\frac{j}{\varepsilon}\right)^{2(1+m)}}\right)^{\left.\frac{(1}{1}+m\right)}+1\right] \\
& \cdot \int_{j}^{j+1}\left|t^{k-1} f_{x}(t)\right| d t \\
& = \begin{cases}O\left(\varepsilon^{m(k+1)}\right) & \text { as } \varepsilon \rightarrow 0, \\
O\left(\varepsilon^{-(k+1)}\right) & \text { as } \varepsilon \rightarrow \infty,\end{cases}
\end{align*}
$$

where A is a constant, we have (4.11).
The existence of the solution $R(y)$ of (2.5) is the same as that of Theorem

1. Using Lemma 4 instead of Lemmas 1 and 2 , we can show Theorem 2.

References

[1] S. Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936). 175-207.
[2] R.H.Cameron and W. T. Martin, An unsymmetric Fubini theorem, Bull. Amer. Vath. Soc. 47 (1941), 121-125.
[3] N. Levinson, On the Poisson summability of Fourier series, Duke Math. Jaurn. 2(1936), 138146.
[4] G. Sunouchi, Notes on Fourier Analysis (xxv); Quasi-Tauberian Theorem, Tôhoku Math. Journ. (2) 1(1950), 167-185.
[5] E.C. Titchmarsh, Theory of Fourier integrals, Oxford.
[6] G.N. Watson, Theory of Bessel functions, Cambridge.
[7] N. Wiener, Tauberian theorems, Annals of Math. 33(1932), 1-100.

Mathematical Institute, Tôhoku University.

