
On the Accuracy, Efficiency, and Reusability
of Automated Test Oracles for Android Devices

Ying-Dar Lin, Fellow, IEEE, Jose F. Rojas, Edward T.-H. Chu,Member, IEEE, and

Yuan-Cheng Lai,Member, IEEE

Abstract—Automated GUI testing consists of simulating user events and validating the changes in the GUI in order to determine if an

Android application meets specifications. Traditional record-replay testing tools mainly focus on facilitating the test case writing process

but not the replay and verification process. The accuracy of testing tools degrades significantly when the device under test (DUT) is

under heavy load. In order to improve the accuracy, our previous work, SPAG, uses event batching and smart wait function to eliminate

the uncertainty of the replay process and adopts GUI layout information to verify the testing results. SPAGmaintains an accuracy of up

to 99.5 percent and outperforms existing methods. In this work, we propose smart phone automated GUI testing tool with camera

(SPAG-C), an extension of SPAG, to test an Android hardware device. Our goal is to further reduce the time required to record test

cases and increase reusability of the test oracle without compromising test accuracy. In the record stage, SPAG captures screenshots

from device’s frame buffer and writes verification commands into the test case. Unlike SPAG, SPAG-C captures the screenshots from

an external camera instead of frame buffer. In the replay stage, SPAG-C automatically performs image comparison while SPAG simply

performs a string comparison to verify the test results. In order to make SPAG-C reusable for different devices and to allow better

synchronization at the time of capturing images, we develop a new architecture that uses an external camera and Web services to

decouple the test oracle. Our experiments show that recording a test case using SPAG-C’s automatic verification is as fast as SPAG’s

but more accurate. Moreover, SPAG-C is 50 to 75 percent faster than SPAG in achieving the same test accuracy. With reusability,

SPAG-C reduces the testing time from days to hours for heterogeneous devices.

Index Terms—Reusable software, test execution, testing tools, user interfaces

Ç

1 INTRODUCTION

AUTOMATED graphical user interface (GUI) testing tools
aim to test graphical user interfaces while reducing

as much as possible the manual work done by testers.
There are two fundamental tasks in automated GUI test-
ing. First, simulating user events, and second, verifying
that the application behaves as expected. More specifi-
cally, an automated testing tool executes a given set of
tests on an application under test (AUT) and verifies its
behavior using a test oracle [3]. The test cases have all the
information required to simulate user events on the AUT,
while test oracles have the mechanisms to capture the cur-
rent state of the GUI during the testing process and to
compare it with the corresponding expected state, which
is usually given before the execution of the test case. In
order to make GUI testing tools publicly or commercially
available, three major issues must be addressed: reusabil-
ity, efficiency, and accuracy.

For reusability, most of the time GUI testers would
want to run a test case several times under different con-
ditions and devices to see how the AUT responds; thus,
the degree of reusability of test cases and testing tools is
crucial. In addition, reducing testing time is an important
goal of automated GUI testing tools. This may be accom-
plished by automatically running test cases and automati-
cally verifying GUI states. Finally, an automated GUI
testing tool must be able to accurately tell whether the
AUT is behaving as expected or not. It means that a low
percentage of false positives and false negatives is desir-
able. According to our previous work SPAG [6], the accu-
racy of testing tools drops significantly when the device
under test (DUT) is heavily loaded, such as running
many background processes, transferring data via the
Internet and having many concurrently running applica-
tions. An application experiencing delay may fail to pro-
cess an event correctly if the response to the previous
event has not been completed. For example, an event may
be dropped if the application receives the event ahead of
time and is not ready to process it. The dropped event
would cause the testing tool to report a false negative.

Improving the accuracy of matching GUI images, how-
ever, often conflicts with reusability of test oracles because
testing the same application in devices with different screen
sizes makes it impossible to use the same images as oracles
in both devices even when testing the same functionality.
Thus, in order to use the same test cases repeatedly, we
must check for similarity in the output, but not exact
matches. However, checking for similarity means that it is
hard to detect small errors. Therefore, there is a tradeoff

� Y.-D. Lin and J.F. Rojas are with the Department of Computer Science,
National Chiao TungUniversity, 1001 University Road, Hsinchu, Taiwan.
E-mail: ydlin@cs.nctu.edu.tw, josefcorojas@gmail.com.

� E.T.-H. Chu is with the Department of Computer Science and Informa-
tion Engineering, National Yunlin University of Science and Technology,
Yunlin, Taiwan. E-mail: edwardchu@yuntech.edu.tw.

� Y.-C. Lai is with the Department of Information Management, National
Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung
Road, Taipei, Taiwan. E-mail: laiyc@cs.ntust.edu.tw.

Manuscript received 19 Aug. 2013; revised 25 May 2014; accepted 11 June
2014. Date of publication 18 June 2014; date of current version 17 Oct. 2014.
Recommended for acceptance by L. Baresi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2014.2331982

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 10, OCTOBER 2014 957

0098-5589� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



between the accuracy of matching GUI images and the reus-
ability of test oracles.

Several methods have been proposed to address the
issues of accuracy, efficiency, and reusability. Different
automation approaches address these issues in different
ways. For example, “model-based” testing [4], [5] aims to
automate as much work as possible by automatically gener-
ating test cases and verifying the GUI state. However, the
great amount of possible combinations regarding which
actions can be performed on a GUI means that this process
may take days, weeks, even months to fully test an applica-
tion depending on how complex its GUI is. Using
“accessibility technologies” to get programming access to
GUI objects of the AUT [7] is another approach that has
been suggested recently. Although this method also works
for black box testing, it is limited by many factors, such as
the system’s API, security restrictions, and the information
made available by developers of the application through
accessibility technologies. Finally, another commonly-used
automation technique is “record-replay” [6], [8]. This tech-
nique allows testers to “record” test cases without writing
codes, but by performing GUI actions directly on the appli-
cation, while a tool automatically creates the test case. After-
wards, testers can “replay” these test cases any number of
times. Nevertheless, the record-replay technique still
requires testers to record the test cases and provide the
expected states to verify the GUI.

One related record-replay work is our previous work
smart phone automated GUI testing tool (SPAG) [6].
SPAG combines Sikuli [9] (an automation tool for com-
puters that makes extensive use of computer vision tech-
niques) and Android Screencast [10] (a remote control
tool for Android devices) to perform automated GUI test-
ing on Android devices. Since both tools, Sikuli and
Android Screencast, are open-source, SPAG improves
them by adding some functionality that helps further
automate the testing process on Android devices. First,
SPAG monitors the CPU usage of target application at
runtime. Next, SPAG dynamically changes the timing of
the next operation so that all event sequences and verifi-
cation can be performed on time. Compared to existing
methods, SPAG maintains an accuracy of up to 99.5 per-
cent and outperforms existing methods.

This work (SPAG-C) is an extension of SPAG. It aims to
improve SPAG by enhancing testing efficiency and increas-
ing reusability without compromising accuracy. In order to
achieve our goals, we develop a different architecture. Usu-
ally, testing tools are platform-dependent even though the
verification process is the same regardless of the device
under test, which means the test oracle might not be reus-
able. Traditionally, there have been two ways to verify the
state of an application’s GUI: image comparison and object
identification. This work uses image comparison because it
enables us to quickly verify an application’s GUI without
having the source code (black box testing) and it is system
independent, which allows us to design an approach that
can be used in a wider range of devices. But, instead of cap-
turing the required screenshots from within the device as is
normally done, we use an external camera. Using an exter-
nal camera makes the verification component platform-
independent and offloads some processing from the DUT.

Furthermore, we use Web service technologies [26] to
expose the verification component to the record-replay com-
ponent. It means that the test oracle is not only platform-
independent but also independent from the record-replay
component because now it is accessed via Web services,
which means it can be accessed by different testing tools
thanks to the interoperability provided by Web service
standards [21]. Finally, we propose a method to automati-
cally derive the expected states of an application’s GUI dur-
ing the record process, which reduces the time required to
record test cases.

The rest of this paper is structured as follows. Section 2
presents background and related work. Section 3 describes
definitions and the problem statement. Section 4 presents
SPAG-C design. Section 5 explains some details about
SPAG-C implementation. Section 6 is our performance anal-
ysis, and Section 7 gives the conclusion.

2 BACKGROUND AND RELATED WORK

In this section, we first provide background information
on some image comparison methods used by SPAG-C.
We then present a survey of related works on automated
GUI testing.

2.1 Image Comparison

Histogram. A color histogram is a representation of the
color distribution of an image (i.e., the number of pixels of
an image with a given color). Color histogram comparison
extracts and compares the color histogram of two images.
If both histograms are similar, then the images are consid-
ered to be similar. Although this is an efficient technique
to compare images, it is sensitive to changes in lighting
conditions and unaware of the contents of an image. In
other words, two completely different images will be con-
sidered as having similar contents if they have similar his-
tograms [11].

SURF (Speeded up robust features). Is a “scale-and rotation-
invariant interest point detector and descriptor” [12]. In
computer vision, an interest point detector is used to detect
parts of an image that can be used to uniquely describe it.
An interest point, also called feature or key point, has many
properties; perhaps the most important one is its repeatabil-
ity, which means that it could be reliably computed under
different conditions (e.g., changes in size, rotation, etc.).
After an interest point of an image has been identified, the
interest point descriptor uses the neighborhood information
of the interest point to characterize it. By adopting the char-
acteristics of interest points, SURF-based image comparison
method first extracts the interest points of the two images
being compared. It then matches descriptors of both images.
Finally, image similarity is measured according to the
amount of matches.

Template matching. Is a method used to find a small
image (template) in a larger image (source). This is done
by taking the template and sliding it on the original
image pixel by pixel; at every point a metric is calculated
to determine how good the match is. After all metrics are
calculated, the best match can be selected. Depending on
the method used, the best match may be the highest or
the lowest calculated value [13].

958 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 10, OCTOBER 2014



2.2 Automated GUI Testing Techniques

Model-based testing. Model-based testing represents the sys-
tem under test (SUT) as a model. A model is a detailed
abstract description of how the SUT is supposed to work.
The behavior of the SUT can be represented in many
ways but it is usually represented as a state machine, and
graph algorithms are used to automatically derive the test
cases [14].

Time consumption is the major problem of model-based
testing because a great amount of possible test cases can be
automatically generated. However, many of them might be
irrelevant. Furthermore, in order to create a model, it is
required to have detailed documentation of the SUT, and to
keep and update that documentation and the model; other-
wise, invalid tests will be generated. By using the record-
replay technique, SPAG-C takes advantage of the knowl-
edge testers have about how the application is supposed to
work and the context in which it is used. Therefore, testers
can always create relevant test cases and SPAG-C verifies
only what is necessary.

Accessibility technologies. Although the real purpose of
accessibility technologies is to facilitate the use of technol-
ogy for disabled people, many researchers are making use
of it to access GUI information, thereby verifying the GUI
state of an application. For example, Grechanik et al. [7]
made use of Windows accessibility technologies to create
hooks that listen to events generated by the GAP (GUI-
based application). Whenever an event of interest is trig-
gered these hooks can react to the event and perform
some operations like gathering the properties of the ele-
ments currently being displayed and verifying GUI state
of an application. Although this is a valid approach for
black box testing, it is still limited by not only the sys-
tem’s API but also the way developers make use of it.
Android automatically makes applications more accessi-
ble but there are some steps that developers can take to
provide extra information about the application. SPAG-C,
on the other hand, does not depend on accessibility serv-
ices to verify an application’s GUI.

Record-replay. Is the most popular approach for GUI test
automation [20] because it allows creating test cases for an
application without the need of writing codes. The testing
process basically consists of two phases: the record phase
and the replay phase. During the record phase, testers inter-
act with the AUT in exactly the same way end users would.
While a tester interacts with the AUT, a tool automatically
records all input events and writes them into a test case.
Later, testers can modify the recorded test cases if required,
and can replay them at any time. In order to improve over
the traditional record-replay approach, we propose a
method to automatically capture the required images and
add the verification commands during the record process.
This way, testers only have to record the test cases.

There is a large body of literature that addressed the
problem of testing the correctness of mobile application
software. Hu and Neamtiu [29] designed a testing process
where random and deterministic events are executed in the
AUT and the results are logged in files that are analyzed
later in search of errors. Anand et al. [30] designed an algo-
rithm and a system for generating input events to exercise
smartphone applications and find software bugs. Based on

concolic testing technique, their approach generates sequen-
ces of events automatically and systematically. Choi et al.
[31] developed an automated technique, called SwiftHand,
for generating sequences of test inputs for Android apps.
The SwiftHand avoids restarts and aggressively merges
states in order to quickly prune the state space. Their experi-
ments show that for complex apps, their method could out-
perform both random and existing methods. Mirzaei et al.
[32] adopted several symbolic execution tools, such as sym-
bolic pathfinder, to generate test cases for Android apps.
They first developed a model of Android libraries in Java
pathfinder to enable execution of Android applications.
They then leveraged program analysis techniques to corre-
late events with their handlers. Mahmood et al. [33] pre-
sented a framework for automated security testing of
Android applications on the cloud. They developed a fully
automated test case generator and a feedback loop to ensure
code coverage. However, all the above works require the
source files or application package files of the applications.
In addition, all of them did not consider the problem of the
synchronization of events. If the testing process introduces
overhead to the device and the application takes longer to
respond, it is not clear whether all the input events can be
executed at the right time or not. Unlike these works [29],
[30], [31], [32], [33], we address a different and unique prob-
lem. We assume that the application logic itself is correct.
Given an application that’s working correctly, we aim to
find out if a given device (possibly a prototype) is capable
of displaying such application as expected. We focus on the
accuracy, efficiency, and reusability of automated test
oracles for Android devices. In addition, we verify an
application’s GUI without having the source code (black
box testing).

Machiry et al. [34] designed an input generation system,
named Dynodriod, for Android Apps. For this aim, they
used a novel “observe-select- execute” principle to effi-
ciently generate a sequence of inputs to an app. On the con-
trary, our work addresses a completely different problem.
We focus on the accuracy, efficiency, and reusability of
automated test oracles for Android devices.

2.3 Android-Based Testing Tools

Monkeyrunner [15]. Is a testing tool provided by Google. It
provides an API that developers can use to control Android
devices without the need of any source code. To use Mon-
keyrunner, developers write Python programs to simulate
user interaction. If they want to corroborate the state of the
GUI, they can also write commands to capture screenshots
from within the devices using Android’s frame buffer
which is the part of video memory containing the current
video frame. There are three main issues with Monkeyrun-
ner apart from the fact that in order to use it testers need
programming skills: first, the na€ıve form in which it simu-
lates events on the AUT [6]; second, its verification
approach; third, capturing screenshots from Android’s
frame buffer is time-sensitive, which means that testers
need to adequately synchronize the simulation of events
with the time of the capture, otherwise invalid images will
be taken for verification. On the contrary, SPAG-C takes
advantage of the method used by SPAG to accurately simu-
late events on the DUT, and uses a non-intrusive method to

LIN ET AL.: ON THE ACCURACY, EFFICIENCY, AND REUSABILITY OF AUTOMATED TEST ORACLES FOR ANDROID DEVICES 959



capture images which is automatically synchronized with
the simulated events at all times.

Robotium framework [16]. Is a framework used to perform
black box testing on Android devices. It uses Android
Instrumentation [18] to interact with an application’s GUI
and gather information. In order to check the state of an
application, screenshots can be taken or object identification
can be performed using Robotium’s API and JUnit’s asser-
tions. Robotium is widely used but just like Monkeyrunner,
it requires testers to manually program test cases. SPAG-C
automatically creates test cases by listening to user events
and recording them in the test case which reduces the test
writing time considerably.

Testdroid [8]. Is an Android testing platform that uses the
Robotium framework to define test cases. Testdroid records
user interactions and automatically generates Java code
with calls to Robotium API. These test cases can be later
replayed at any time in the same way that Robotium tests
are executed. With Testdroid, testers can execute their tests
either locally, on their own devices, or remotely, using
Testdroid’s cloud services. Testdroid’s cloud services pro-
vide log files and statistics about test execution; addition-
ally, it takes screenshots during the testing process so
developers can verify the GUI. Testdroid services, however,
are quite expensive, and GUI verification has to be done
manually by the testers since Testdroid does not perform
any comparison against expected states. On the contrary,
SPAG-C completely automates the verification process so
that testers only need to record the tests.

GUITAR. Android graphical user interface testing frame-
work (GUITAR) [17] was an effort of Xie and Memon to
migrate their previous work [4] on model-based testing to
the Android platform. GUITAR consists of two modules:
ripper and replayer. The ripper is in charge of automatically
generating event-flow graphs for their later conversion into
test cases. The ripper does this by automatically interacting
with an application and gathering all relevant information
about its GUI. Since the GUI ripper cannot be guaranteed to
have access to all different windows and widgets of an
application, a capture/replay tool was created for testers to
complement the ripper. The replayer is in charge of the exe-
cution of the generated test cases. A main problem with
GUITAR is that it may not be entirely practical on produc-
tion-ready devices because it uses Hierarchy Viewer [27], a
tool that can only connect to devices running a developer
version of the Android system. In addition, GUITAR is plat-
form-dependent even though the verification process is the
same regardless of the device under test, which means the
test oracle might not be reusable. On the other hand, SPAG-
C can be used on a great variety of real devices. We use
Web service technologies to expose the verification compo-
nent to the record-replay component. Our test oracle is not
only platform-independent but also independent from the
record-replay component. Amalfitano et al. [35] discussed a
similar problem as GUITAR did. However, no results were
shown about the precision of the system when verifying the
GUI. In addition, it may take a considerable amount of time
to gather the information required to begin testing, and to
perform the verification because the crawler needs to go
throughout all possible event sequences and all windows.
Further, they did not address the problem of event

synchronization. If the testing process introduces overhead
to the devise and it takes longer for the application to
respond, it is not clear whether all the input events can be
executed at the right time or not. Finally, their method can-
not be used to perform black-box testing, because they
instrumented the source code of the application under test
to detect runtime crashes.

2.4 SPAG

This work, SPAG-C, is an extension of a previous work
called smart phone automated GUI testing tool [6]. SPAG
combines and extends two open source tools: Sikuli [9] and
Android Screencast [10]. SPAG merges these two tools
together to enable using Sikuli’s API for testing Android
devices. SPAG intercepts user interactions with Android
Screencast, saves these interactions in a Sikuli test file and
replays them later as required by the tester.

SPAG provides three contributions: (1) Batch event,
which accurately reproduces the recorded event sequences;
(2) Smart wait, which automatically establishes a delay
between events to ensure that the DUT has enough time to
process previous events; and (3) an automatic verification
method, which makes use of Android accessibility services
to record transition between activities after an event is
executed.

Since SPAG is integrated with Sikuli, it can also take
advantage of Sikuli’s API to perform image verification in a
semi-automatic way, which means that the verification is
done by Sikuli but the tester still needs to provide the
images and to write the commands into the test case. SPAG
also provides an automatic verification that uses Android
Accessibility Services to gather the name of the activities,
and performs a string comparison to verify that the same
activity transition that occurred after the input of a specific
event during record also happens during replay. This, how-
ever, does not ensure that applications are being displayed
as expected. SPAG-C also provides two verification
approaches: semi-automatic and automatic. In both
approaches SPAG-C performs image verification with
images captured from a camera, the only difference is that
the semi-automatic approach requires testers to capture the
images, while automatic approach does not.

SPAG depends on Android Screencast to interact with
the DUT; therefore, it inherits its limitations such as limited
support for devices, slow response time that affects the
image verification process, and the inability to reproduce
multi-touch events. Since SPAG-C is based on SPAG, it also
inherits some of SPAG’s limitations; but we improve the
verification process by making it more reusable, automated,
better synchronized, and platform-independent.

3 DEFINITIONS AND PROBLEM STATEMENT

3.1 Definitions

Android applications are formed by one or more of the fol-
lowing components: Activities, Services, Content providers
and Broadcast receivers [19]. However, since only the
“Activity” component is GUI-related, we shall not cover the
other three.

An activity is the basic container of an application’s GUI.
It represents a single screen where GUI elements are drawn.

960 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 10, OCTOBER 2014



GUI elements are the basic components of an application’s
GUI, including button, checkbox, textbox, etc. GUI elements
have properties like color, size, and coordinates. In addition
to properties, GUI elements also have behaviors. They
respond to different user events. A user event or GUI event
is an event triggered by the user’s interaction with an
application’s GUI. Examples of user events are click, long
click, key input, etc. An event sequence, therefore, is one or
more user events executed in succession. A test case repre-
sents a scenario used by testers to evaluate if an application
behaves as expected. In our case, a test case is a script file that
contains instructions to simulate user events on an applica-
tion and verification commands to verify the GUI states.

We define T ¼ ftj j j ¼ 1 . . .Mg as a set of M test cases
associated with an application A, where tj is the jth test
case. E ¼ fejp j p ¼ 1; 2; . . . ; Ljg represents a sequence of

Lj user events, where ejp is the p-th user event of the jth

test case.
User interaction usually changes an application’s

appearance by making a transition between different
activities or by modifying the appearance of the current
activity. We define a GUI state of an application as the set
of all GUI elements being displayed on the screen at a
specific time. In this work, a GUI state is represented by a
screenshot of the whole screen of the device. Since an
application has many GUI states, S ¼ fsjpg is a set of
screenshots that represent the expected GUI states of an
application, where sjp is a screenshot taken after execu-

tion of the user event ejp during the record phase. Simi-

larly, S0 ¼ fs0jpg is a set of screenshots that represent the

current GUI states of an application, where s0jp is a screen-

shot taken after execution of the user event ejp during the

replay phase. However, the expected final and initial
states of the application are represented as sji , sjf respec-

tively, and the current final and initial states of the appli-
cation are represented as s0ji , s

0
jf
, respectively.

In order to verify if an application is behaving correctly,
assertions have to be performed during the replay phase to
compare the current states (captured during the replay
phase) against their corresponding expected states (cap-
tured during the record phase). A test oracle, represented as
O is the mechanism in charge of capturing both states and
performing such assertions. Finally, we define cjp as a

screenshot taken after execution of the user event ejp during

the record phase, cjp may or may not become sjp . It works as

a temporary variable.

3.2 Problem Statement

We now formally describe the problem using the variables
previously defined. Given a set of test cases T associated
with an application A, a set of DUTs D, and a set of
expected GUI states S, we aim to design a test oracle O to
verify the test results. In other words, given an application
that’s working correctly, we aim to find out if a given device
(possibly a prototype) is capable of displaying such applica-
tion as expected. The test oracle O will capture the current
GUI states S0 of A on a DUT di while replaying a sequence
of user events ejp in E for the test case tj, and will compare

every s0jp in S0 with its corresponding expected state sjp in S

to determine whether tj passed or failed. It is worth noting
that even though sji and sjf are valid expected states, and

s0ji and s0jf are valid current states, they are not captured

after the input of any user event; rather, they are captured
before the very first event, in the case of sjiand s0ji , and after

the very last event, in the case of sjf and s0jf .D is a set of het-

erogeneous devices which means that the DUTs may have
different screen sizes, different screen configurations, and
even different versions of Android OS. Fig. 1 exhibits part
of a SPAG-C test case. This particular example has three
events and four expected states (with legend to the right).
During replay, each time the test reaches a checkpoint, lines
1, 12, 16, and 20, the test oracle O will capture the current
states and verify they match the expected states that were
derived during record phase.

4 SPAG-C DESIGN

4.1 Architecture Overview

As illustrated in Fig. 2, we have two sets of components:
hardware components and software components.

4.1.1 Hardware Components

The DUT is the Android device that runs the application for
which the test cases are written. It is worth noting that even
though the test cases are written for a specific application,
the DUT is what is being tested. The camera is used to cap-
ture the required GUI states during both record and replay
phases. To avoid any interference with the process of cap-
turing the required images, test cases are recorded by con-
trolling the DUT remotely from a computer.

4.1.2 Software Components

SPAG-C records and replays test cases remotely. We divide
the test oracle into three major components: oracle client,
oracle synchronizer and oracle verifier. As shown in Fig. 2,
the oracle client is coupled with the record-replay compo-
nent, in this case SPAG, and it is in charge of automatically
adding checkpoints to SPAG’s test cases during the record
phase and sending requests to the oracle synchronizer to
verify a GUI state during the replay phase. The oracle syn-
chronizer uses Web service technology to expose the oracle
verifier to the oracle client. Oracle synchronizer also handles
requests from the oracle client, passes them to the oracle
verifier, and sends the response back to the oracle client.
The oracle verifier validates the testing results by capturing
images from a camera, as shown in Fig. 2, and comparing
the GUI states using the image comparison techniques pre-
viously discussed. Fig. 2 also demonstrates the original
architecture of SPAG which consists of two modules: one
runs on the DUT and the other on the host computer. The
agent, which is installed on the DUT, is in charge of captur-
ing the required information to perform the verification pro-
cess, while Sikuli IDE (integrated with Android Screencast)
runs on the host computer, and is in charge of recording
and replaying user events.

Before moving forward to explain how SPAG-C’s oracle
works it is important to explain the differences between the
way SPAG and SPAG-C verify the GUI states.

Each of these two tools provides both semi-automatic
and automatic verification methods. Both SPAG’s and

LIN ET AL.: ON THE ACCURACY, EFFICIENCY, AND REUSABILITY OF AUTOMATED TEST ORACLES FOR ANDROID DEVICES 961



SPAG-C’s semi-automatic verifications require testers to
provide screenshots and write checkpoints into the test
case. The difference is that SPAG captures these screenshots
from the frame buffer, while SPAG-C does it from the cam-
era. The automatic method differs a lot in these tools. While
SPAG simply performs a string comparison to verify that
the same activity transition that occurred after the input of a
specific event during recording also happens during replay-
ing, SPAG-C automatically performs image comparison
based on the impact the user events have on the GUI during
recording. For example, if during the record phase the tester
performs an event that causes the application to go from
activity “com.android.contacts” to activity “com.android.-
contacts.twelvekeydialer” then SPAG will corroborate that
the same transition happens after replaying that event. This,
however, does not ensure it is displayed correctly. SPAG-C,
on the other hand, automatically takes the required

screenshots based on the difference threshold set by the tes-
ter and performs image comparison, which provides a bet-
ter evaluation of the GUI.

4.2 Oracle Client

As Fig. 2 shows, the oracle client performs two main func-
tions: handling the communication with the oracle synchro-
nizer and integrating the test oracle with the record-replay
component. In order to automatically derive the expected
states during record phase, we propose an automatic verifi-
cation method. Traditionally, record-replay tools help test-
ers to automatically write most of the code of the test cases.
However, every time testers need to add a verification com-
mand, also known as checkpoint, to check the state of the
GUI, they have to manually take the screenshots and write
the verification command into the test case, which requires
a considerable amount of time. Our method on the other
hand, automates this process by analyzing the impact the
user events have on the GUI, i.e., how much the GUI
changes after the user events are executed, and by automati-
cally adding a verification command if the change goes
beyond a given threshold.

Fig. 3 shows how the oracle client captures images and
adds verification commands to the test case by using our
automatic verification method during the record phase.
When the tester starts recording, the oracle client first asks
the oracle synchronizer to capture the initial state sji of the
application and add a checkpoint to verify it on replay, then
the oracle client listens to every user event. Recall that a
GUI state is represented by a screenshot, and the verifica-
tion process consists in an image comparison between the
expected and current states. After event ejp is executed, the

oracle client asks the oracle synchronizer to capture the new
image cjp , and measure the difference between cjp and cjp�1

.

Fig. 2. SPAG-C architecture consists of hardware components: DUT,
host computer, and camera; softare components: SPAG, oracle client,
oracle synchronizer, and oracle verifier.

Fig. 1. Example of a SPAG-C test case consisting of three user events, four checkpoints, and four expected GUI states.

962 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 10, OCTOBER 2014



If the difference is more than the threshold provided by the
tester, the oracle synchronizer will return true, which means
that a checkpoint must be added after ejp and cjpbecomes

sjp , the expected state. If the oracle synchronizer returns

false, no checkpoint is added and cjp�1
is discarded.

The reason we use cjp in the record phase in Fig. 3 is
because we are trying to derive sjp by measuring the differ-

ence between the images captured before and after the exe-
cution of an event. The purpose is to give testers the ability
to use the difference threshold to automatically determine
how often the GUI should be verified.

Similar to recording the initial state, when the tester fin-
ishes recording the test case, the oracle client asks the oracle
synchronizer to capture the final state sjf and add a check-
point to verify it on replay. This way both the initial state
and the final state are always verified. A demo of the record-
ing process using SPAG-C is available on the Internet [28].

Fig. 4 describes the behavior of the oracle client during
the replay phase. Similar to the record phase, before any
event is replayed, the oracle client first asks the oracle syn-
chronizer to capture the current initial state s0ji and compare
it against its corresponding expected state sji . If the states
match, then the replay process continues. Otherwise, the
testing process is stopped and relevant error information is
provided to the tester. During the replay process, the oracle
client asks the oracle synchronizer to verify the current state
s0jp every time it meets a checkpoint. If the verification

passes, then the replay process continues. Otherwise, the
replay process is stopped and relevant error information is
provided to the tester. After the last event has been
replayed, the current final state s0jf is also captured and

compared against its corresponding expected state sjf .

4.3 Oracle Synchronizer

As its name suggests, the oracle synchronizer is the compo-
nent in charge of synchronizing the oracle client with the
oracle verifier. The oracle synchronizer is a web service that
listens to HTTP requests from the oracle client, de-serializes
the messages, and asks the oracle verifier to perform the
requested operation. After the oracle verifier finishes per-
forming the requested operation, it sends the response back
to the oracle synchronizer. The oracle synchronizer then
serializes the response and sends it back to the oracle client.

Since web services are designed to support interoperable
machine-to-machine interaction over a network [22], the
oracle synchronizer allows our test oracle to be used by dif-
ferent tools, not just SPAG-C.

For every request, the oracle synchronizer may receive
zero or more parameters from the oracle client, but it always
sends back a response, even if it is only to confirm that the
operation has been executed successfully. The oracle syn-
chronizer performs the same process during record and
replay phases. The only difference is the parameters it
receives from the oracle client. During the record stage, it
receives cjp , cjp�1

and the threshold on difference. During the
replay stage, it receives sjp , s

0
jp
and the threshold on similarity.

4.4 Oracle Verifier

The oracle verifier is where the verification process takes
place. It is in charge of capturing the required screenshots
using an external camera, performing image comparison,
and providing error information when a current state does
not match its expected state.

Fig. 5a shows the steps of the automatic verification pro-
cess performed by the oracle verifier during the record
phase. After the oracle client calls the oracle synchronizer
asking it to measure the difference between cjp and cjp�1

, the
oracle synchronizer passes those images to the oracle veri-
fier. The oracle verifier then performs a SURF [12] compari-
son between both images. Since SURF does not measure
image difference, we need to first measure their similarity
in order to measure the difference between both images.
Image similarity is calculated as

similarity ¼
100� a

b
; (1)

where a presents matched features and b presents average
features. The matched features are the result of performing
a nearest-neighbor match between the features of both
images, and some filtering to remove false matches. How-
ever, SURF only provides the matched features; we still
need to develop a metric to measure similarity. We opted to
calculate the percentage of the average features represented
by the amount of matched features. The average features
are simply the sum of the features detected in both images
divided by two. Averaging the features of both images

Fig. 3. The procedure used by the oracle client during record phase in
order to automatically capture the expected GUI states and add a check-
point to the test case.

Fig. 4. The procedure used by the oracle client during replay phase in
order to compare each current state against its respective expected
state.

LIN ET AL.: ON THE ACCURACY, EFFICIENCY, AND REUSABILITY OF AUTOMATED TEST ORACLES FOR ANDROID DEVICES 963



provides some flexibility in case two “identical” images
have different amount of features detected, which may hap-
pen due to the non-deterministic characteristics of the exter-
nal camera, or in case the DUT’s position has changed.
Instead of using the average, we could use the lessor or
more of the two numbers of features detected, but our
experiments show that using average is more robust. For
example, if cjp has 1,872 features and cjp�1

has 1,132 features,

the average number of features is 1,502. If after the match
there are 165 features in common between both images, we
say they are 10.2 percent similar. We let the image differ-
ence be the complement of the image similarity:

difference ¼ 100� similarity: (2)

Following the example above, the difference percentage
would be 89.8 percent. Finally, if the difference percentage
is greater than the threshold provided by the tester, the ora-
cle verifier will return true, meaning that a checkpoint
should be added by oracle client.

During the replay phase, shown in Fig. 5b, the oracle
verifier only compares images for similarity. In order to

ensure the accuracy of matching GUI images, the oracle
verifier performs three different kinds of image compari-
son: SURF, Histogram matching, and Template matching.
For SURF, the process is the same as described before but
we only care about similarity and not difference. As for
Histogram and Template matchings, we adopt open
source computer vision’s (OpenCVs) implementations. In
fact, we also use OpenCV to extract, match, and filter
SURF features. As Fig. 5b shows, the oracle verifier
returns true only if each of SURF, Histogram matching,
and Template matching returns true.

4.5 Synchronization

It is crucial for SPAG-C to capture images at the right
time. Otherwise, too many errors would be introduced. Syn-
chronization during record phase and synchronization dur-
ing replay phase are not the same. During the record stage,
interactions from the tester cannot be predicted; but during
the replay phase, we do know when an event will be
replayed.

During the record stage, intuition suggests capturing cjp
right after the tester inputs ejp . However, doing so would be

incorrect, because we would be assuming that the DUT
takes virtually zero time to process the requested operation,
whereas in reality it does. In addition, the time required
depends on some factors like CPU utilization and network
connection. For example, a tester wants to install an applica-
tion using Android Market, so he opens Android Market by
clicking its icon. Since Android Market requires establishing
an Internet connection, the device will display a white
screen with a message informing that the application is
loading. If we capture the image right after clicking the
icon, all we would get is this white screen, which is not the
desired state. Our solution to that problem is capturing cjp
after the tester inputs ejpþ1

remotely but before sending it to

the DUT for it to take effect. The assumption here is that if
the tester is able to input ejpþ1

it means that ejp has already

been processed and the GUI has already been updated
accordingly.

Capturing GUI states during the replay phase is sim-
pler, thanks to SPAG’s Smart Wait function that meas-
ures, during the record phase, the elapsed time between
ejp and ejpþ1

along with the CPU utilization to predict,

during the replay phase, how long to wait before replay-
ing ejpþ1

. Therefore, during the replay stage, we simply

capture the GUI states after Smart Wait’s timer expires
and before ejpþ1

is replayed.

5 SPAG-C IMPLEMENTATION

5.1 Oracle Client

As stated before the oracle client is coupled with the record-
replay component. In our case that component is SPAG.
Since SPAG is implemented in Java, the oracle client is also
implemented in Java.

Most of the code of the oracle client is automatically
created by the tool “wsdl2java” which is part of the
Apache CXF framework [22]. “wsdl2java” simply takes
the WSDL file exposed by a web service (in this case the
oracle synchronizer), and automatically generates Java

Fig. 5. The procedure used by the oracle verifier during (a) record and
(b) replay phases in order to compare the current states against their
respective expected states.

964 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 10, OCTOBER 2014



code from which to call the service. With that code in
place, we added event listeners to SPAG to automatically
call the oracle synchronizer after any mouse events in
order to perform the automatic verification process
described in the previous chapter. During the replay
phase, when the test case execution reaches a checkpoint,
the client will make a call to the oracle synchronizer ask-
ing it to perform the requested action.

5.2 Oracle Verifier

The oracle verifier makes use of open source computer
vision and .NET framework functionality to compare, crop,
and rotate images.

In particular, we use EmguCV, a cross-platform .NET
wrapper for the OpenCV image processing library [24] that
allows us to call OpenCV functions from any of the .NET
compatible languages (in this case C#). OpenCV is a library
of programming functions for real time computer vision
[25]. In this work we only use OpenCV’s functions to extract
and compare SURF features, to calculate and compare
image Histograms, to perform template matching, and to
detect Canny Edges.

In the previous chapter, we described most of the SURF
comparison process; however, there are some implemen-
tation details that are worth mentioning. There are many
ways to match SURF features. In this work we use Open-
CV’s BruteForceMatcher to perform KnnMatch (k-nearest
neighbor match). KnnMatch returns the K nearest neigh-
bors, K ¼ 2 in our case, based on euclidean Distance (L2
Distance). After the match is performed, we filter the
matched features by using OpenCV’s function VoteForU-
niqueness, which discards non-unique matches, with a
uniqueness threshold of 0.9; and VoteForSizeAndOrienta-
tion, which discards those features whose size and orien-
tation does not match the majority’s size and orientation,
using a scale increment of 1.5 and 20 rotation bins.

In order to perform color histogram comparison, we
need to first extract the color histogram of each image. How-
ever, we first reduce the colors of the images to get a reliable
similarity measure and improve computation efficiency [25]
on each one of the three channels of the image: red, green,
and blue. After reducing the colors, we calculate the color
histogram by calling OpenCV’s DenseHistogram.Calculate
method on each of the channels and compare the histo-
grams by calling the cvCompareHist method.

As described in Section 2, template matching finds a
given small image in a larger image. However, since our
automatic verification automatically decides what images
will be used as the expected states the tester cannot pro-
vide the templates. Therefore, we automatically split the
expected state into smaller images, and match each of
those small images against the current state. This means
that several template matches are performed; if at least
one of the matches has a value smaller than the provided
similarity threshold then the overall match is considered
a failure.

5.3 Oracle Synchronizer

We use Microsoft WCF and C# to implement the oracle syn-
chronizer. Microsoft WCF is a framework for building

service-oriented applications [23] that facilitates building
interoperable Web services using different standards.

The oracle synchronizer exposes three methods: Add-
Checkpoint, VerifyState, and CaptureScreen. Each of the
methods receives a different set of parameters. The Add-
Checkpoint method is only called during the record phase,
it receives the difference threshold as well as the previously
captured screenshots cjp and cjp�1

, and performs the auto-
matic verification process. The VerifyState method is only
called during the replay phase, it receives the expected state
sjp , captured during the record phase and the similarity

threshold, and performs the verification process. Finally,
the CaptureScreen method is called during both phases, it
does not receive any parameters, but simply captures a
screenshot and returns its path.

Additionally, the oracle synchronizer is in charge of log-
ging all relevant information each time there is a call to the
service. For example, during the verification process, the
oracle synchronizer will log the images that have been com-
pared, the similarity thresholds we have, the length of time
the image comparison process took, and the success or fail-
ture of the verification process.

5.4 Image Maintenance

SPAG-C captures a lot of images but not all of them are
required in order to replay a test case. In order to auto-
mate image maintenance, we name images randomly by
using. NET’s Path.GetRandomFileName method, and we
prefix image names with the word “record”, in case of
sjp , and “replay”, in case of s0jp .

Of all the images captured during the record phase, only
the expected states are kept, and the rest are all discarded
automatically. Expected states are required in order to
replay a test case; therefore, these images are not deleted.

6 EXPERIMENT RESULTS

6.1 Testbed and Test Scenarios

We compared SPAG-C with our previous work SPAG [6] in
both testing efficiency and testing accuracy. Comparing
against SPAG implies a comparison with Sikuli [2] since
SPAG depends on Sikuli for GUI verification purposes. It
also implies a comparison with Monkeyrunner [15] because
a detailed comparison has already shown that SPAG ourper-
formsMonkeyrunner [6]. We did not compare SPAG-C with
related work [8], [16], [17]. This is because some tools are not
publicly available, and some present a very different testing
approach. For example, Testdroid [8] is not available because
it is a commercial cloud service and not a tool we can use.
GUITAR´s [17] purpose was to automatically generate test
cases for a given UI. In order to perform verification, they
adopt object identification, which may not be useful for
device testing. Robotium [16] also uses object identification
to perform verification which may not be useful for device
testing. That is, all these tools are designed to test applica-
tions not devices. Let´s consider the case where an applica-
tion is correct but there is an issue with the device´s screen
driver and that issue caused the application to be displayed
incorrectly. Since the application is working properly per-
forming object identification will not detect the problem.

LIN ET AL.: ON THE ACCURACY, EFFICIENCY, AND REUSABILITY OF AUTOMATED TEST ORACLES FOR ANDROID DEVICES 965



As mentioned before, SPAG-C uses three hardware
components: the DUT, a host computer, and an external
camera. In order to make a fairer comparison with SPAG,
we run our experiments on two different DUTs: Acer Liq-
uid and LG-P920. Acer Liquid has a 3.5 in TFT capacitive
touchscreen with 256 K colors and a resolution of
480� 800 pixels. Acer Liquid runs Android 2.2 with Acer
UI 3.0. On the other hand, LG-P920 has a 4.3 in 3D LCD
capacitive touchscreen with 16 M colors and a resolution
of 480� 800 pixels; it runs Android 2.3 with LG 3D UI.
Note that any device supported by Android screencast
can be tested using SPAG-C. The external camera used is
a 1,080 p Microsoft Lifecam Studio with autofocus func-
tionality. We use a normal desktop computer as the host
computer with a 3.2 GHz Intel Core i5 processor, 4 GB of
RAM, and 32-bit Windows 7.

We perform experiments in both record and replay
phases. Test cases are created for five different applications:
Contacts, Calculator, Google Maps, Android Market, and
Alarm Clock. During the record phase we are interested in
measuring how much time we save using our automatic
verification approach and how the difference threshold
affects the number of checkpoints added to the testcase.
During the replay phase we are interested in measuring
how accurate the verification process is and how it is
affected by external factors.

During the record phase, we record every test case
10 times for each of the following difference thresholds: 20,
40, 60 and 80 percent. During the replay phase, we replay
each test case 200 times: 100 times to measure false nega-
tives (i.e., expecting tests to pass) and 100 times to measure
false positives (i.e., expecting tests to fail). A false negative
is when a test is run and the SUT is working as expected,
but the testing tool reports a failure. A false positive, on the
other hand, is when there is a failure in the testing process
but the testing tool does not detect it. When measuring false
positives we change the state of the application so that it
will eventually display an unexpected GUI state; moreover,
we introduce both minor and significant changes to see how
small an error could be to pass unnoticed. Errors are intro-
duced in three different ways. First, in order to simulate
misplacement of GUI elements we edit the current states of
the application (i.e., edit the images that represent the cur-
rent states) so that they do not match the expected state. An
alternative to this process (that would produce similar
results) would be to use mutation testing to modify the

layout of the application. However, since we are working
with black box applications, mutation testing is not an
option. Second, we add data to or delete data from the
application. For example, if the test case is about finding the
contact information of a person we delete that entry so that
when replaying the test case such entry cannot be found,
thereby making the expected and the current states of the
application different. Third, we add extra (erroneous)
events to the test case after the recording process; this also
causes the application to display different GUI states from
those that are expected.

Fig. 6 shows how the DUT and the camera were placed
during experimentation. The DUT presented in the image is
Acer Liquid but the same positioning was used for LG-
P920. The distance between the device and the camera is
about 12 cm. During experimentation the auto-rotate screen
functionality of both devices was disabled and the bright-
ness fixed to the lowest possible. We set both the devices
and the camera in landscape mode.

6.2 Testing Efficiency

Fig. 7 shows the number of checkpoints added to a test case
during automatic verification during the record phase on
both DUTs. As described before, automatic verification
always captures the initial and final states of the application
when the record process starts and finishes, respectively.
Therefore, we can say that using a difference threshold of

Fig. 6. Positioning of the devices during the testing process.

Fig. 7. Checkpoints added by automatic verification in (a) acer liquid and
(b) LG-P920.

966 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 10, OCTOBER 2014



20 percent will add a checkpoint after every user event,
since the number of checkpoints added equals the number
of events in the test case plus two (initial and final states).
Furthermore, using a difference threshold lower than 20
percent would rarely make a difference because even if an
event incurs no change in the GUI state of the application,
SURF comparison usually (though not always) considers cjp
and cjp�1

at least 20 percent different (80 percent similar) for

three reasons. First, cjp and cjp�1
may have a different

amount of features detected due to the non-deterministic
characteristics of the external camera images. Second, not
all of the detected features will be matched. Third, the filter-
ing process of the matched features performs well. This
means that a SURF similarity match of 80 percent is actually
close to a perfect match.

As expected, the number of checkpoints added to the test
case decreases as the difference threshold increases. Fig. 7
suggests that automatic verification has a different impact
on different types of applications. We deliberately chose
these applications because of their GUI characteristics. For
example, most user events executed on the Calculator will
only cause small changes to the GUI, while in Google Maps
user events usually have a great impact on the GUI. The
Contacts application behaves somewhat in the middle
where some events will introduce small changes and others

will introduce significant changes. Android Market and
Alarm are what we call applications with “dynamic con-
tent”, content that changes not only with user events but
also with time, which introduces an interesting problem
when using image comparison to determine the GUI state
of an application because the current and expected states
will not always be exactly the same. Fig. 7b exhibits no dif-
ference in the number of checkpoints added for Google
maps for difference thresholds between 20 and 40 percent.
The reason is that user events greatly impact the GUI, which
means that cjp and cjp�1

generally are more than 40 percent
different. This behavior, however, is not seen in Fig. 7a. This
is because, despite our efforts, it is hard to repeat exactly the
same events every round; besides Google maps behaves dif-
ferently on both devices. From Fig. 7, we can also conclude
that 80 percent should be the highest difference threshold
used, either because only initial and final states are being
captured, like in the case of Calculator, or because cjp and

cjp�1
are so different that it is worth checking the new state.

Fig. 8 exhibits the average time required to record a test
case with: SPAG semi (taking the screenshots manually),
SPAG auto (using SPAG’s automatic verification), SPAG-C
semi (taking the screenshots manually using the external
camera) and SPAG-C auto (using SPAG-C’s automatic veri-
fication). Clearly, recording a test case using both SPAG and
SPAG-C takes considerable more time when capturing
screenshots manually. SPAG takes slightly less time because
with Sikuli’s API the tester only needs to select the area of
the screen he wants to capture, while SPAG-C requires the
tester to use the camera to take a picture and save it. When
using SPAG’s and SPAG-C’s automatic verification, the
recording time is the same for both SPAG and SPAG-C.
However, as mentioned before, SPAG’s automatic verifica-
tion doesn’t corroborate that an application is being dis-
played properly, while SPAG-C does.

6.3 Testing Accuracy

In order to evaluate the accuracy of SPAG-C, we tested
every difference threshold from 10 to 100 in increments of 5
to find out the different results. Table 1 displays the accu-
racy achieved with the specified thresholds, which are opti-
mal as these are the ones that produce the least amount of
false positives/negatives. Table 1 suggests that different

Fig. 8. Time required for recording a test case using semi-automatic and
automatic approaches of both SPAG and SPAG-C.

TABLE 1
Accuracy Results

App DUT h. t. s. t. t. t. f. p. f. n.

Contacts Acer Liquid 90% 50% 97% 2% none
LG-P920 90% 50% 97% none none

Calculator Acer Liquid 90% 50% 97% none 1%
LG-P920 90% 50% 97% 2% 1%

Google Maps Acer Liquid 90% 55% 97% none 2%
LG-P920 90% 40% 97% none 2%

Alarm Acer Liquid 90% 40% 80% none 2%
LG-P920 90% 40% 80% none none

Android Market Acer Liquid 90% 40% 80% none 2%
LG-P920 90% 40% 80% none 2%

Table 1 shows the percentage of false positives (F. P.) and false negatives (F. N.) when using the optimal thresholds for Histogram (H. T.),
SURF (S. T.) and Template match (T. T.).

LIN ET AL.: ON THE ACCURACY, EFFICIENCY, AND REUSABILITY OF AUTOMATED TEST ORACLES FOR ANDROID DEVICES 967



types of applications require different SURF and Template
matching thresholds but not so for Histogram threshold.
Reducing the colors of the image before performing Histo-
gram comparison makes it more stable. Table 1 also sug-
gests that applications with “dynamic content” require
lower similarity thresholds. This is because that sjp and s0jp
may not be exactly the same. Therefore, more flexibility
must be allowed to reduce false negatives. However, setting
lower thresholds makes it more difficult to detect small
errors.

According to our results, the similarity threshold
should be set as high as possible to avoid false positives
but low enough to avoid false negatives. The higher the
thresholds the more false negatives we get, and the lower
the thresholds the more false positives we get. An easy
way to determine the thresholds is to run some test cases
a few times without performing any kind of assertion,
and check the log files for the similarity calculated
between the current and expected states during different
stages. Based on that value, an optimal similarity thresh-
old can be chosen. This process should take a few
minutes depending on the test case.

Fig. 9 shows the sensitivity of each image comparison
technique to the similarity threshold and its effect in the
number of false positives and false negatives. The yellow
circles represent the optimal thresholds (the threshold
that allows the lowest percentage of false positives and
false negatives) as presented in Table 1. The values to the
left of the yellow circle represent the amount of false posi-
tives while the values to the right represent the amount of
false negatives. Clearly, there is an inverse relationship
between both values. As one increases, the other
decreases. The figure also suggests that some image com-
parison techniques are more sensitive than others. Also, it
can be observed that the three techniques working
together compensate, to some extent, the flaws of each
other. It is also clear that most errors are detected by
SURF and Template match, and that Histogram could be
removed without causing too much change in the accu-
racy of the tool. In order to get Histogram to contribute
more significantly to the accuracy of the verification pro-
cess, higher thresholds to those suggested in Table 1
could be used, or the color reduction process before the
Histogram comparison could be modified to allow for
more sensitivity.

6.4 Oracle Reusability

Android is an open platform; as such, it is hard for a
testing tool to provide support for all the devices avail-
able. Our test oracle is non-intrusive. It does not depend
on the DUT to perform the verification process. This
means that it can be used to test a great variety of het-
erogeneous smartphones.

Earlier in this paper we mention that the reason why
we decouple the test oracle from the record-replay tool is
that we can reuse the test oracle. Furthermore, we pro-
pose using Web services as an interface between both. We
now show how our test oracle could be reused by other
tools via Web services, and how much time can be saved
by doing so. It is also worth mentioning that only record-
replay tools can take advantage of our automatic

verification approach, since it is triggered by user events
during the record phase. Script-based testing tools can
still use the oracle to compare expected and current
states, but testers would have to capture the expected
states manually before executing the test script.

Please note that when we say SPAG-C is reusable it
means that the tool can be coupled with different testing
frameworks, like Sikuli, SPAG and Robotium. Once SPAG-
C is coupled with a testing framework it can be used to test
devices supported by that framework. Therefore, SPAG-C
is reused not by the applications being tested, but by the
testing frameworks making use of it. For example, if one
wants to use SPAG-C to test devices that are not supported
by SPAG but are supported by Robotium, he or she could
do that just by writing a new client for Robotium.

Fig. 9. Time required for recording a test case using semi-automatic and
automatic approaches of both SPAG and SPAG-C.

968 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 10, OCTOBER 2014



Table 2 exhibits the list of tasks (marked with �) required
to either reuse our test oracle or to implement it from
scratch, and the estimated time to do so. The estimated time
listed in Table 2 is based on not only our experience in
implementing the entire system but also our experience in
working with students who have a background in program-
ming and computer vision.

Reusing our test oracle is relatively simple thanks to Web
service technologies. Since the Web service exposes a WSDL
file, all that is required to create a client is to execute Apache
CXF command wsdl2java (svchost.exe if creating a .NET
service client). The wsdl2java reads the WSDL file and gen-
erates most of the client code. Once the client code is in
place, developers need to add event listeners to the record-
replay tool, as described in Section 4, to call the test oracle.

For example, if one wants to use SPAG-C to test devices
that are not supported by SPAG but are supported by
Robotium, he or she could do that just by writing a new cli-
ent for Robotium. According to our experience, it took us
five hours to implement a client for Robotium. On the con-
trary, if SPAG-C was not reusable and one would like to use
SPAG-C with Robotium, he or she would need to imple-
ment the entire system again, which would take much lon-
ger, around four days, assuming the programmer has
knowledge of OpenCV and Web Service technologies, and
he or she would have to do this every time he or she needs
to couple the SPAG-C to another tool. The bottle neck dur-
ing the implementation process is the implementation of
image processing techniques since it requires several adjust-
ments of the different algorithms to get a robust yet flexible
system so that it is tolerant to some changes in the external
environment.

6.5 Discussion and Limitation

Since a camera is affected by its surroundings, our approach
must be used in a relatively controlled environment or oth-
erwise it would yield inaccurate results. The issues that are
more likely to affect our system are: abrupt changes in light-
ing conditions in the room, reflections on the screen of the
DUT, and objects getting in between the camera and the
DUT. In order to avoid reflections we suggest placing
the device facing towards a uniformly dim black back-
ground. Controlling lighting in the room and avoiding
objects from getting in the way of the camera are trivial.

In this work, we define a GUI state of an application as
the set of all GUI elements being displayed on the screen at
a specific time. However, for some applications, only a
small portion of the screen is changed when the applications
respond to an input event. For these cases, the tester can
select the region of interest (ROI) in the screen of the device.
Then, SPAG-C will verify the ROI during testing.

Using image comparison allows us to quickly verify an
application’s GUI in a platform independent way, support
multiple devices without having to make changes to the
tool and in most cases is accurate enough. However there
are situations where using image comparison would not
yield good results. Thus, SPAG-C is not able to test any
kind of applications. For example, when testing applications
with non-deterministic GUIs like video players and some
types of games or applications who’s GUI consists of a con-
siderable amount of small text. Also, image comparison
does not verify invisible GUI elements, which, though invis-
ible, often allow the positioning of other GUI elements.

7 CONCLUSION

This work, SPAG-C, is the continuation of a previous work
called SPAG [6]. Both SPAG and SPAG-C use the record-
replay technique to perform GUI testing on Android devi-
ces. Traditionally, record-replay tools facilitate the test case
writing process but not the verification process. The accu-
racy of testing tools drops significantly when the DUT is
under heavy loads. SPAG outperforms existing methods by
using event batch and smart wait functions to eliminate the
uncertainty of the replay process, and by adopting GUI lay-
out information to verify the testing results. SPAG can
maintain an accuracy of up to 99.5 percent. SPAG-C aims to
further reduce the time required to record test cases by
automating the verification process and increase reusability
of the test oracle without compromising accuracy.

Our experiments show that recording a test case using
SPAG-C’s automatic verification is as fast as SPAG’s but
more accurate since we also make sure the application is
being properly displayed. On the other hand, achieving the
same accuracy with SPAG requires testers to use the semi-
automatic approach, in which case, our method would be
between 50 and 75 percent faster. Moreover, we explained
how our method can be used to verify an application’s GUI
only when the changes introduced by an event are nontriv-
ial, simply by adjusting the difference threshold. We also
demonstrate that our test oracle can be reused via Web serv-
ices, and that doing so only requires a few hours instead of
several days, which is what it would take to implement a
new one each time an unsupported device needs to be
tested. Finally, we show that despite using an external cam-
era, our solution remains accurate, yielding less than 2 per-
cent false positives/negatives.

ACKNOWLEDGMENTS

This work was supported in part by National Science Coun-
cil (NSC) and Institute of Information Industry (III) in
Taiwan.

REFERENCES

[1] Microsoft MSDN. (2013, Mar.). Guidelines for touch interaction
[Online]. Available: http://msdn.microsoft.com/en-us/library/
cc872774.aspx

[2] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Automated test
oracles for GUIs,” ACM SIGSOFT Softw. Eng. Notes, vol. 25,
pp. 30–39, 2000.

[3] L. Baresi and M. Young, “Test oracles,” University of oregon,
Dept. of Computer and Information Science, Tech. Rep. CISTR-01-
02,” Eugene, OR, U.S.A., [Online]. Available: http://www.cs.
uoregon.edu/michal/pubs/oracles.html, Aug. 2001.

TABLE 2
Estimated Time to Reuse or Reimplement the Test Oracle

Task Time No reuse Reuse

Setup Dev. Env. �5 hours �

Oracle Client �5 hours � �

Oracle Synchronizer �1 day �

Oracle Verifier �2 days �

Total time �4 days �5 hours

LIN ET AL.: ON THE ACCURACY, EFFICIENCY, AND REUSABILITY OF AUTOMATED TEST ORACLES FOR ANDROID DEVICES 969



[4] Q. Xie and A. M. Memon, “Model-based testing of community-
driven open-source GUI applications,” in Proc. IEEE 22nd Int.
Conf. Softw. Maintenance, Sep. 2006, pp. 145–154.

[5] T. Takala, M. Katara, and J. Harty, “Experiences of system-
level model-based GUI testing of an android application,” in
Proc. IEEE 4th Int. Conf. Softw. Testing, Verification Validation,
2011, pp. 377–386.

[6] Y. D. Lin, T.-H. Chu Edward, S. C. Yu, and Y. C. Lai, “Improving
the accuracy of automated GUI testing for embedded systems,”
IEEE Softw., vol. 31, no. 1, pp. 39–45, Jan. 2014.

[7] M. Grechanik, Q. Xie, and C. Fu, “Creating GUI testing tools using
accessibility technologies,” in Proc. IEEE Int. Conf. Softw. Testing,
Verification, Validation Workshops, 2009, pp. 243–250.

[8] J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala, “Testdroid: Auto-
mated remote UI testing on android,” in Proc. 11th Int. Conf. Mobile
Ubiquitous Multimedia, Ulm, Germany, 2012, pp. 28:1–28:4.

[9] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI testing using com-
puter vision,” in Proc. SIGCHI Conf. Human Factors Comput. Syst.,
Atlanta, GA, USA, 2010, pp. 1535–1544.

[10] Android screencast, an open-source remote control tool for
Android devices. (2013, Mar.) [Online]. Available: http://code.
google.com/p/androidscreencast/

[11] G. Pass and R. Zabih, “Comparing images using joint histo-
grams,”Multimedia Systems, vol. 7, no. 3, pp. 234–240, May 1999.

[12] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “SURF: Speeded
up robust features,” Comput. Vis. Image Understanding, vol. 110,
pp. 346–359, 2008.

[13] Opencv, template matching. (2013, Mar.) [Online]. Available:
http://docs.opencv.org/doc/tutorials/imgproc/histograms/
template_matching/template_matching.html

[14] T. Takala, M. Katara, and J. Harty, “Experiences of system-level
model-based GUI testing of an android application,” in Proc. IEEE
4th Int. Conf. Softw. Testing, Verification Validation, 2011, pp. 377–
386.

[15] Android MonkeyRunner. (2013, Mar.) [Online]. Available: http://
developer.android.com/tools/help/monkeyrunner_concepts.
html

[16] Robotium framework homepage. (2013, Mar.) [Online]. Available:
http://code.google.com/p/robo tium/

[17] Android GUITAR, a model-based system for automated GUI test-
ing. (2013, Mar.) [Online]. Available: http://sourceforge.net/
apps/mediawiki/guitar/index.php?title¼GUITAR_Home_Page

[18] Android developer guide, instrumentation. (2013, Jun.) [Online].
Available: http://developer.android.com/reference/android/
app/Instrumentation.html

[19] Android developer guide, application fundamentals. (2013,
Mar.) [Online]. Available: http://developer.android.com/
guide/components/fundamentals.html

[20] A. M. Memon, “GUI testing: Pitfalls and process,” IEEE Comput.,
vol. 35, no. 8, pp. 87–88, Aug. 2002.

[21] W3C working group note 11 February 2004, web services glossary
[Online]. Availabe: http://www.w3.org/TR/ws-gloss/, Apr. 2013.

[22] Apache CXF: An open-source services framework. (2013, Apr.)
[Online]. Available: http://cxf.apache. org/

[23] Windows communication foundation. (2013, Apr.) [Online].
Available: http://msdn.microsoft.com/en-us/library/ms731082.
aspx

[24] EmguCV. (2013, Apr.) [Online]. Available: http://www.emgu.
com/wiki/index.php/Main_Page

[25] R. Laganiere, OpenCV 2 Computer Vision Application Programming
Cookbook. Birmingham, U.K.: Packt Publishing, May 2011.

[26] W3C working group, web services architecture. (2013, Jun.)
[Online]. Available:http://www.w3.org/TR/ws-arch/#id2260892

[27] Android, hierarchy viewer. (2013, Jun.) [Online]. Available: http://
developer.android.com/tools/help/hierarchy-viewer.html

[28] SPAG-C live demo. (2013, Jun.) [Online]. Available: http://youtu.
be/V841LpD4ULo

[29] C. Hu and I. Neamtiu, “Automating GUI testing for android
applications,” in Proc. 6th Int. Workshop Autom. Softw. Test, 2011,
pp. 77–83.

[30] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated con-
colic testing of smartphone apps,” in Proc. ACM SIGSOFT 20th
Int. Symp. Found. Softw. Eng., 2012, pp. 59:1–59:11.

[31] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of android
apps with minimal restart and approximate learning,” in Proc.
ACM SIGPLAN Int. Conf. Object Oriented Program. Syst. Lang.
Appl., New York, NY, USA, 2013, pp. 623—640.

[32] N. Mirzaei, S. Malek, C. S. Pasareanu, N. Esfahani, and R.
Mahmood, “Testing android apps through symbolic execution,”
ACM SIGSOFT Softw. Eng. Notes, vol. 37, pp. 1–5, 2012.

[33] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and A.
Stavrou, “A whitebox approach for automated security testing of
android applications on the cloud,” in Proc. 7th Int. Workshop
Autom. Softw. Test, 2012, pp. 22–28.

[34] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input gen-
eration system for android apps,” in Proc. 9th Joint Meeting Found.
Softw. Eng., Saint Petersburg, Russia, 2013, pp. 224–234.

[35] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A GUI crawl-
ing-based technique for android mobile application testing,” in
Proc. IEEE 4th Int. Conf. Softw. Testing, Verification Validation Work-
shop, 2011, pp. 252–261.

Ying-Dar Lin received the PhD degree in com-
puter science from UCLA in 1993. He is currently
a professor of computer science at National
Chiao Tung University (NCTU) in Taiwan. Since
2002, he has been the founding director of Net-
work Benchmarking Lab (NBL, www.nbl.org.tw),
which reviews network products with real traffic.
He also cofounded L7 Networks Inc. in 2002,
later acquired by D-Link Corp. His research inter-
ests include network security, wireless communi-
cations, and embedded systems. He is a fellow

of the IEEE and serves on the editorial boards of several IEEE journals
and magazines. He published a textbook Computer Networks: An Open
Source Approach (McGraw-Hill, 2011).

Jose F. Rojas received the MS degree in com-
puter science from National Chiao Tung Univer-
sity, Hsinchu, Taiwan. He is currently a software
engineer. His research interests include embed-
ded systems and web technologies.

Edward T.-H. Chu received the PhD degree in
computer science from the Department of Com-
puter Science at National Tsing Hua University,
Hsinchu, Taiwan, in 2010. He has more than four
years work experience in the industry, where he
worked on embedded software and owns a Chi-
nese patent. He was a visiting scholar at Purdue
University in 2009. He joined the Department of
Electronic and Computer Science Information
Engineering at National Yunlin University of Sci-
ence and Technology, Taiwan, as an assistant

professor in 2010. He received the best paper award in IEEE IS3C
2012, Taiwan. His research interests include embedded systems soft-
ware and applications design. He is a member of the IEEE.

Yuan-Cheng Lai received the PhD degree from
National Chiao Tung University, Hsinchu, Tai-
wan, in 1997. In August 1998, he joined the fac-
ulty of the Department of Computer Science and
Information Science, National Cheng Kung Uni-
versity, Tainan, Taiwan. In August 2001, he
joined the faculty of the Department of Informa-
tion Management, National Taiwan University of
Science and Technology, Taipei, Taiwan, where
he has been a professor since February 2008.
His research interests include performance anal-

ysis, protocol design, wireless networks, and web-based applications.
He is a member of the IEEE.

970 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 10, OCTOBER 2014


