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ABSTRACT

Our surroundings change all the time. Applications that

require 3D models of a changing terrain, such as urban plan-

ning, are becoming ever more demanding with respect to the

cost to create them and the accuracy of the result. A novel,

cheap and fast solution for this problem is given by a UAV to

take aerial images of the terrain in question, in combination

with structure from motion algorithms to create a 3D model

from those aerial images. However the question remains

whether these on-the-fly 3D maps can match the accuracy of

classical surveyor based models, which require more time to

create. In this paper we investigate this question, and find

that under certain conditions the accuracy of the UAV based

model matches the accuracy of surveyor generated measure-

ments.

Index Terms— 3D reconstruction, UAV, accuracy, evalu-

ation

1. INTRODUCTION

Aerial images taken by an unmanned aerial vehicle (UAV)

can be used for many purposes. The most obvious ones are,

just like aerial images from other platforms, the generation of

large orthophotos and the surveillance of ground targets. In

addition, structure from motion algorithms [1] have enabled

the creation of dense digital terrain models [2]. This gives

us a complete three dimensional (3D) model of the overflown

terrain. As real world applications using 3D models become

more demanding, a rough approximation is not good enough

anymore. For example, planning urban environments and

infrastructures requires knowledge of the terrain up to sub-

meter accuracy, a task which is currently performed by sur-

veyors. We can also obtain this information by taking images

with a UAV, which offers the benefit of being both cheaper

and faster than surveyors. However in order to position these

images, the position of the UAV must be known exactly at

the moment each picture was taken. Given that due to weight
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constraints the GPS carried onboard the UAV has limited ac-

curacy, and that there can be a time delay between estimat-

ing the position with GPS and actually taking the picture, the

question is how accurate we can know this position. More

specifically, is the obtained accuracy high enough to comple-

ment (or even replace) surveyors as the method of choice for

applications requiring high precision 3D models.

Previously, work has been performed comparing accuracy

and completeness of dense 3D reconstructions [3]. However,

this work is limited to the final step of the workflow shown in

figure 1, and also does not consider the possibility of adding

prior knowledge to improve the reconstruction. In this pa-

per we evaluate the 3D reconstruction by comparing a model

generated from 3D coordinates measured by a surveyor, to

the aforementioned structure from motion from UAV images,

increased by the UAV’s internal GPS. We also investigate the

effect of adding manually measured ground control points.

Several other methods to obtain a 3D model exist, among oth-

ers time-of-flight cameras, structured light, or laser measure-

ments. However these are either low-resolution, or impossible

to mount on a UAV, and for that reason we did not consider

them in our comparison.

The rest of this paper is arranged as follows. First we go

over the methods used to go from a set of images plus GPS

to a georeferenced 3D model. Next we describe the setup we

used to evaluate the accuracy of a real world application. We

then discuss some results, and end with a conclusion.

2. METHODOLOGY

The workflow to reconstruct a 3D model from a set of im-

ages is shown in figure 1. First distinctive feature points are

extracted from all images, along with a feature descriptor vec-

tor which collects statistics of a window around the feature.

A wide range of features exist, among which SIFT [4] and

SURF [5] are well known. We then try to match feature points

corresponding to the same physical object in as much images

as possible. This is done by computing the Euclidean distance

between the feature descriptors. Two points are said to match

when their descriptors are close together in n-dimensional Eu-
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Fig. 1. Schematic representation of the steps required to go

from a set of images to a dense 3D model.

clidean space, where n is the size of the descriptor vector. The

definition of closeness is taken according to the method de-

scribed in [4], where the distance d1 between a point and its

closest neigbour is compared to d2, the distance between that

point and its second closest neighbour. A match is retained

when d1

d2

< 0.6.

The number of computations required to match feature

points between all images is quadratic in both the amount of

images and the amount of points, and can thus take a lot of

time for large scenes. In [1] the speed is improved by using

approximate nearest neighbour searching [6]. When dealing

with images from a UAV, we can also use the GPS to roughly

position the images in space, thus limiting the set of possible

matches. Practically, two points will not be matched when the

GPS position of the images in which they were found are too

far apart.

Once we know a large set of corresponding points, we

can start the 3D reconstruction. In projective coordinates, a

3D point X(x, y, z, w) is projected onto a 2D image pixel

x(x, y, w) under the following formula:

λx = MX, (1)

where λ is a scale factor, and M is the camera matrix, an

arbitrary homogeneous 3 x 4 matrix with rank 3, depending

on 11 parameters [7]. This matrix contains information about

the camera position and orientation (equivalent to the position

and orientation of the UAV at the time of taking the picture),

as well as some parameters describing the camera’s optical

properties, such as its focal length, its principal point, and its

aspect ratio. Together these parameters uniquely determine

the scene visible at a certain time. Note however that formula

(1) does not take the optical aberrations or lens distortions

of the camera into account. In order to keep the explanation

brief, it is assumed that any lens distortion has been removed

in advance, using e.g. the technique described in [8], based

on the work of [9].

The 3D reconstruction then comes down to finding val-

ues for all camera matrices Mi for i = 1..m pictures, and

all points Xj for j = 1..n. We will further write the projec-

tion of point Xj onto image Mi as xi,j . The constraints are

then given by the requirement that the distance between the

(a) View in Google Maps.

(b) Top-down view of the reconstructed 3D model.

Fig. 2. Orthophotos of the area used for evaluating the accu-

racy of the 3D reconstruction.

position of a feature point x̂i,j determined from the feature

extraction, and its calculated position xi,j = MiXj , should

be as small as possible. With d(x,y) denoting the Euclidean

distance between 2D points x and y, we can rewrite this as:

min
Mi,Xj

m∑

i=1

n∑

j=1

d (x̂i,j −MiXj)
2

(2)

Solving this nonlinear equation is not a simple task given

the large number of variables involved. Even a simple scene

quickly has thousands of 3D points. For this reason bundle

adjustment is used [10], which solves (2) by exploiting the

sparsity in the equations, which stems from the fact that all

Xj do not influence eachother. The same goes for all Mi.

The formula is then optimized with the Levenberg-Marquardt

algorithm [11]. For this algorithm to converge it is very im-

portant that we start from an approximate solution for both

the camera positions and the coordinates of the points. We

combine the standard RANSAC based approach of approxi-

mately positioning the images with respect to eachother, with

the absolute (albeit inaccurate) position information obtained

from the GPS of the UAV.

In a final step we use the solution of (2) as the input to a

dense reconstruction, based on multi-view stereopsis [2, 7]. It

is on this dense reconstruction that we will run our evaluation.

Note that the accuracy of the result is more than simply the

performance of the last step in the process, which has been

thoroughly evaluated in [3].

3. TEST SETUP

For the evaluation of the accuracy of the reconstructed 3D

model we limit ourselves to a specific site, namely an area

containing a long, flat-topped and man-made hill, measuring

about 1500 x 300 m. A satellite picture of the area as seen in

Google Maps is shown in figure 2. Furthermore, 15 yellow

cross shaped markers were added on the site and measured

very precisely using differential GPS and the Flemish FLE-

POS post-processing system [12], giving their position up to

10 cm. Even though there is still an error on their measured



position, we use these markers as a ground truth in the com-

parisons.

With the markers in place, a UAV from the company

Gatewing flew over this terrain, taking a total of 439 images

in 5 flight lines with a 90% overlap in a flight line and a

60% overlap between flight lines, allowing for good image

matching and good stereovision. The UAV flew at an average

altitude of 150 m and took 10 megapixel pictures, resulting

in an average pixel size of about 5 cm. This ensured that

the markers were well visible in the pictures, and that every

marker was visible in at least 5 images. Next, the methods

described in section 2 were applied. The exact center of the

markers visible in the images were determined manually,

and then also taken along in the bundle adjustment, giving

us a computed 3D coordinate for each marker. Comparing

this computed result with the measured position gives us a

quantitative indication of the accuracy of the computations.

4. RESULTS

In figure 3(a) the differences in meter between measured and

computed marker positions are shown, split into ∆x, ∆y and

∆z. Marker number 1 was not used because it was not visible

in enough images. We see that there is a quite large deviation

of up to 4 meters from the ground truth. This is explained

by the error on the GPS measurements in the UAV, as well

as the time delay between a GPS snapshot and capturing an

image. Unfortunately we see no way to solve this without the

use of extra information. The position of the UAV is, under

these conditions, our only link to a georeferenced model, and

any error on this position will inevitably propagate to the 3D

model.

When we use some ground truth information in the

form of the computed marker position, the results improve

markedly. This is shown in figures 3(b) and 3(c). Adding one

such marker or ground control point (GCP) pulls the entire

model more to the correct location near that marker. Obvi-

ously the marker itself will have a perfect position. Parts of

the model that lay far away however still use the initial, GPS

based position of the images, and retain an error of several

meters.

Adding more GCPs further improves the result. It turns

out that adding 4 of the 15 points is sufficient to negate the

effect of the biased GPS. The errors on the marker positions

are now in the range of 10 to 20 cm, which is close to the

accuracy achieved by the diffential GPS measurement.

Finally, in figure 4 we show part of the densely recon-

structed 3D model after meshing with Delaunay triangula-

tion. Some noise is visible, especially on the road where it

is harder to find corresponding pixels due to a lack of details.

This noise also causes the fluctuations that are visible in fig-

ure 3(c). Future work on this topic may improve the results

further, through smart noise correction or better pixel match-

ing.
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(c) GCPs 4, 7, 12 and 14 added

Fig. 3. The difference in meter between measured and com-

puted marker positions, showing the effect of adding ground

control points (GCPs) into the bundle adjustment.

5. CONCLUSION

In this paper we have evaluated the state of the art 3D recon-

struction methods applied to UAV images positioned using



Fig. 4. Close-up of the densely generated 3D model, showing

the left side of the hill from figure 2. This visible subsection

contains about 1 million vertices.

GPS information and surveyed ground control points. It was

found that the 3D model has an average accuracy of 10 to 20

cm in all directions, for a pixel size of 5 cm. We must note

however that this result is obtained with the inclusion of a few

ground control points, spread evenly over the terrain. This im-

plies that ground based surveying is still required, but only at

a fraction of the time required without a UAV, as only a frac-

tion of the points must be surveyed. When no ground control

points are used, the accuracy is governed by the accuracy of

the GPS of the UAV, and is about 5m.

The accuracy of 10 to 20 cm is sufficient for many practi-

cal applications, however there is still room for improvement.

For example, adding more ground control points will further

increase the precision, up to maximally the precision of the

differential GPS measurement. This of course has to be bal-

anced by the amount of manual labor required, both to place

and measure the markers, and to add them to the workflow.

Additionally, even more advanced pixel matching methods

can also further improve the results, at the cost of compu-

tation time.
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