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Abstract

We study the construction of confidence intervals for efficiency levels of individual firms
in stochastic frontier models with panel data. The focus is on bootstrapping and related
methods. We start with a survey of various versions of the bootstrap. We also propose a
simple parametric alternative in which one acts as if the identity of the best firm is known.
Monte Carlo simulations indicate that the parametric method works better than the per-
centile bootstrap, but not as well as bootstrap methods that make bias corrections. All of
these methods are valid only for large time-series sample size (T ), and correspondingly none
of the methods yields very accurate confidence intervals except when T is large enough that
the identity of the best firm is clear. We also present empirical results for two well-known
data sets.
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1 Introduction

This paper is concerned with the construction of confidence intervals for efficiency levels of

individual firms in stochastic frontier models with panel data. A number of different techniques

have been proposed in the literature to address this problem. Given a distributional assumption

for technical inefficiency, maximum likelihood estimation was proposed by Pitt and Lee (1981).

Battese and Coelli (1988) showed how to construct point estimates of technical efficiency for

each firm, and Horrace and Schmidt (1996) showed how to construct confidence intervals for

these efficiency levels. Without a distributional assumption for technical efficiency, Schmidt and

Sickles (1984) proposed fixed effects estimation, and the point estimation problem for efficiency

levels was discussed by Schmidt and Sickles (1984) and Park and Simar (1994). Simar (1992)

and Hall, Härdle, and Simar (1993) suggested using bootstrapping to conduct inference on

the efficiency levels. Horrace and Schmidt (1996, 2000) constructed confidence intervals using

the theory of multiple comparisons with the best, and Kim and Schmidt (1999) suggested a

univariate version of comparisons with the best. Bayesian methods have been suggested by

Koop, Osiewalski, and Steel (1997) and Osiewalski and Steel (1998).

In this paper we will focus on bootstrapping and some related procedures. We provide a

survey of various versions of the bootstrap for construction of confidence intervals for efficiency

levels. We also propose a simple alternative to the bootstrap that uses standard parametric

methods, acting as if the identity of the best firm is known with certainty. We present Monte

Carlo simulation evidence on the accuracy of the bootstrap and our simple alternative. Finally,

we present some empirical results to indicate how these methods work in practice.

2 Fixed-Effects Estimation of the Model

Consider the basic panel data stochastic frontier model of Pitt and Lee (1981) and Schmidt and

Sickles (1984),

yit = α + x′itβ + vit − ui, i = 1, · · · , N, t = 1, · · · , T, (1)

where i indexes firms or productive units and t indexes time periods. yit is the scalar dependent

variable representing the logarithm of output for the ith firm in period t, α is a scalar intercept,

xit is a K×1 column vector of inputs (e.g., in logarithms for the Cobb-Douglas specification), β
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is a K×1 vector of coefficients, and vit is an i.i.d. error term with zero mean and finite variance.

The time-invariant ui satisfy ui ≥ 0, and ui > 0 is an indication of technical inefficiency. The ui

are treated as “fixed,” and no assumptions are made about them. For a logarithmic specification

such as Cobb-Douglas, the technical efficiency of the ith firm is defined as ri = exp(−ui), so

technical inefficiency is 1− ri.

Now define αi = α − ui. With this definition, (1) becomes the standard panel data model

with time-invariant individual effects:

yit = αi + x′itβ + vit. (2)

Obviously we have ui = α − αi and αi ≤ α since ui ≥ 0. The previous discussion regards zero

as the minimal possible value of ui and α as the maximal possible value of αi over any possible

sample; that is, essentially, as N →∞. It is also useful to consider the following representation in

a given sample size of N . We write the intercepts αi in ranked order, as α(1) ≤ α(2) ≤ · · · ≤ α(N)

so that (N) is the index of the firm with largest value of αi among N firms. It is convenient

to write the values of ui in the opposite ranked order, as u(N) ≤ · · · ≤ u(2) ≤ u(1), so that

α(i) = α − u(i). Then obviously α(N) = α − u(N), and firm (N) has the largest value of αi or

equivalently the smallest value of ui among N firms. We will call this firm the best firm in the

sample. In some methods we measure inefficiency relative to the best firm in the sample, and

this corresponds to considering the relative efficiency measures:

u∗i = ui − u(N) = α(N) − αi, r∗i = exp(−u∗i ). (3)

Fixed effects estimation refers to the estimation of the panel data regression model (2),

treating the αi as fixed parameters. We assume strict exogeneity of the regressors xit, in the

sense that (xi1, xi2, · · · , xiT )′ are independent of (vi1, vi2, · · · , viT )′. We also assume that the vit

are i.i.d. with zero mean and constant variance σ2
v . We do not need to assume a distribution

for the vit.

Some of these assumptions could be weakened. For example, we could allow for autocor-

relation by assuming that the vectors vi = (vi1, vi2, · · · , viT )′ are i.i.d. The implication would

be that in the bootstrap we would resample blocks corresponding to vi rather than individual

observations corresponding to vit.

The fixed effects estimates β̂, also called the within estimates, may be calculated by regress-
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ing (yit− ȳi) on (xit− x̄i), or equivalently by regressing yit on xit and a set of N dummy variables

for firms. We then obtain α̂i = ȳi − x̄′iβ̂, or equivalently the α̂i are the estimated coefficients of

the dummy variables. The fixed effects estimate β̂ is consistent as NT → ∞. For a given firm

i, the estimated intercept α̂i is a consistent estimate of αi as T →∞.

Schmidt and Sickles (1984) suggested the following estimates of technical inefficiency, based

on the fixed effects estimates:

α̂ = max
j

α̂j , û∗i = α̂− α̂i. (4)

Since these estimates clearly measure inefficiency relative to the firm estimated to be the best

in the sample, they are naturally viewed as estimates of α(N) and u∗i , that is, of relative rather

than absolute inefficiency.1

We define some further notation. We write the estimates α̂i in ranked order, as follows:

α̂1 ≤ α̂2 ≤ · · · ≤ α̂[N ]. (5)

So [N ] is the index of the firm with the largest α̂i, whereas (N) was the index of the firm with

the largest αi. These may not be the same. Note that α̂ as defined in (4) above is the same as

α̂[N ], but it may not be the same as α̂(N), the estimated α for the unknown best firm. Note that

α̂(N) is well-defined, but it is not a feasible estimate because (N) is unknown.

As T → ∞ with N fixed, α̂ is a consistent estimate of α(N) and û∗i is a consistent estimate

of u∗i . However, it is important to note that in finite samples (for small T ) α̂ is likely to be

biased upward, since α̂ ≥ α̂(N) and E(α̂(N)) = α(N).2 That is, the “max” operator in (4) induces

upward bias, since the largest α̂i is more likely to contain positive estimation error than negative

error. This bias is larger when N is larger3 and when the α̂i are estimated less precisely. The

upward bias in α̂ induces an upward bias in the û∗i and a downward bias in r̂∗i = exp(−û∗i ); we

underestimate efficiency because we overestimate the level of the frontier.

The methods of this paper may be used also on a number of extended versions of this model.

For example, we can have an unbalanced panel, in which the value of T varies of i. Similarly, we
1Note that, following the notation used in the frontiers literature, the “*” refers to relative as opposed to

absolute efficiency. The same “*” is often used in the bootstrap literature to represent bootstrap draws. We will
use “(b)” to represent bootstrap draws.

2E(α̂i) = αi for each individual (fixed) value of i, including i = (N). The same statement is not true for
i = [N ] because [N ] is not fixed; it is a random outcome.

3The bias is larger when N is larger because, so long as the ui are i.i.d. draws from some (unknown) distribution,
we will be closer to having a tie for maxj αj when N is bigger.
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could consider the fixed effects version of the time varying efficiency model of Cornwell, Schmidt,

and Sickles (1990). In both cases the fixed effects estimates are still well defined.

3 Construction of Confidence Intervals by Bootstrapping

We can use bootstrapping to construct confidence intervals for functions of the fixed effects

estimates. The inefficiency measures û∗i and the efficiency measures r̂∗i = exp(−û∗i ) are functions

of the fixed effects estimates and so bootstrapping can be used for inference on these measures.

We begin with a brief discussion of bootstrapping in the general setting in which we have a

parameter θ, and there is an estimate θ̂ based on a sample z1, · · · , zn of i.i.d. random variables.

The estimator θ̂ is assumed to be regular enough so that n1/2(θ̂ − θ) is asymptotically normal.

The following procedure will be repeated many times, say for b = 1, · · · , B where B is large. For

iteration b, construct pseudo data z
(b)
1 , · · · , z

(b)
n by sampling randomly with replacement from

the original data z1, · · · , zn. From the pseudo data, construct the estimate θ̂(b). The basic result

of the bootstrap is that, under general circumstances, the asymptotic (large n) distribution of

n1/2(θ̂(b)− θ̂) conditional on the sample is the same as the asymptotic distribution of n1/2(θ̂−θ).

Thus for large n the distribution of θ̂ around the unknown θ is the same as the bootstrap

distribution of θ̂(b) around θ̂, which is revealed by a large number (B) of draws.

We now consider the application of the bootstrap to the specific case of the fixed effects

estimates. Our discussion follows Simar (1992). Let the fixed effects estimates be β̂ and α̂i,

from which we calculate û∗i and r̂∗i (i = 1, · · · , N). Let the residuals be v̂it = yit − α̂i − x′itβ̂

(i = 1, · · · , N , t = 1, · · · , T ). The bootstrap samples will be drawn by resampling these residuals,

because the vit are the quantities analogous to the z’s in the previous paragraph, in the sense

that they are assumed to be i.i.d., and the v̂it are the observable versions of the vit. (The sample

size n above corresponds to NT ). So, for bootstrap iteration b (= 1, · · · , B) we calculate the

bootstrap sample v̂
(b)
it and the pseudo data y

(b)
it = α̂i + x′itβ̂ + v̂

(b)
it . From these data we get the

bootstrap estimates β̂(b), α̂
(b)
i , û

∗(b)
i , and r̂

∗(b)
i , and the bootstrap distribution of these estimates

is used to make inferences about the parameters.

Hall, Härdle, and Simar (1995) prove that the bootstrap is valid for this problem as T →∞
with N fixed. More discussion of this point will be given in Section 5.
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We now turn to specific bootstrapping procedures, which differ in the way they draw infer-

ences based on the bootstrap estimates. In each case, suppose that we are trying to construct a

confidence interval for u∗i = maxj αj −αi. That is, for a given significance level c, we seek lower

and upper bounds Li, Ui such that P(Li ≤ u∗i ≤ Ui) = 1− c.

The simplest version of the bootstrap is the percentile bootstrap. Here we simply take Li and

Ui to be the upper and lower c/2 fractiles of the bootstrap distribution of the û
∗(b)
i . More formally,

let F̂ be the cumulative distribution function (cdf) for û
∗(b)
i so that F̂ (s) = P(û∗(b)i ≤ s) = the

fraction of the B bootstrap replications in which û
∗(b)
i ≤ s. Then, we take Li = F̂−1(c/2) and

Ui = F̂−1(1− c/2).

The percentile bootstrap intervals should be accurate for large T but may be inaccurate

for small to moderate T . This is a general statement, but in the present context there is a

specific reason to be worried, which is the finite sample upward bias in maxj α̂j as an estimate

of maxj αj . This will be reflected in improper centering of the intervals and therefore inaccurate

coverage probabilities. Simulation evidence on the severity of this problem is given by Hall,

Härdle, and Simar (1993) and in Section 6 of this paper.

Several more sophisticated versions of the bootstrap have been suggested to construct con-

fidence intervals with higher coverage probabilities. Hall, Härdle, and Simar (1993, 1995) sug-

gested the iterated bootstrap, also called the double bootstrap, which consists of two stages.

The first stage is the usual percentile bootstrap which constructs, for any given c, a confidence

interval that is intended to hold with probability of 1 − c. We will call these “nominal” 1 − c

confidence intervals. The second stage of the bootstrap is used to estimate the true coverage

probability of the nominal 1 − c confidence intervals, as a function of c. That is, if we define

the function π(c) = true coverage probability level of the nominal 1− c level confidence interval

from the percentile bootstrap, then we attempt to evaluate the function π(c). When we have

done so, we find c∗, say, such that π(c∗) = 1− c, and then we use as our confidence interval the

nominal 1− c∗ confidence interval from the first stage percentile bootstrap, which we “expect”

to have a true coverage probability of 1− c.

The mechanics of the iterated bootstrap are uncomplicated but time-consuming. For each of

the original (first stage) bootstrap iterations B, the second stage involves a set of B2 draws from

the bootstrap residuals, construction of pseudo data, and construction of percentile confidence
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intervals, which then either do or do not cover the original estimate θ̂. The coverage probability

function π(c) is estimated by the rate at which a nominal c-level interval based on the iterated

bootstrap estimates covers the original estimate θ̂. Generally we take B2 = B, so that the total

number of draws has increased from B to B2 by going to the iterated bootstrap. Theoretically,

the error in the percentile bootstrap is of order n−1/2 while the error in the iterated bootstrap

is of order n−1. There is no clear connection between this statement and the question of how

well finite sample bias is handled.

An objection to the iterated bootstrap is that it does not explicitly handle bias. For example,

if the nominal 90% confidence intervals only cover 75% of the bootstrap estimates in the first

stage, it insists on a higher nominal confidence level, like 98%, so as to get 90% coverage. That

is, it makes the intervals wider when bias might more reasonably be handled by recentering the

intervals.

A technique that does recenter the intervals is the bias-adjusted bootstrap of Efron (1982,

1985). As above, let θ be the parameter of interest, θ̂ the sample estimate and θ̂(b) the bootstrap

estimate (for b = 1, · · · , B), and F̂ the bootstrap cdf. For n large enough that the bootstrap is

accurate, we should expect F̂ (θ̂) = 0.5, and failure of this to occur is a suggestion of bias. Now

define z0 = Φ−1(F̂ (θ̂)) where Φ is a standard normal cdf, and where F̂ (θ̂) = 0.5 would imply

z0 = 0. Let zc/2 be the usual normal critical value; e.g., for c = 0.1, zc/2 = z0.05 = 1.645. Then,

the bias-adjusted bootstrap confidence interval is [Li, Ui] with:

Li = F̂−1(Φ(2z0 − zc/2)), Ui = F̂−1(Φ(2z0 + zc/2)). (6)

A related technique is the bias-adjusted and accelerated bootstrap (BCa) of Efron and Tib-

shirani (1993). This is intended to allow for the possibility that the variance of θ̂ depends on

θ, so that a bias-adjustment also requires a change in variance. This correction depends on

some quantities defined in terms of the so-called jackknife values of θ̂. For i = 1, · · · , n, let

θ̂(i) be the value of the estimate based on all observations other than observation i; and let

θ̂(•) = n−1
∑n

i=1 θ̂(i) be the average of these values. Then the “acceleration” factor a is defined

by:

a =

∑n
i=1

(
θ̂(•) − θ̂(i)

)3

6
(∑n

i=1

(
θ̂(•) − θ̂(i)

)2
)1.5 . (7)
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With z0 and zc/2 defined as above, define

b1 = z0 +

(
z0 + zc/2

)
(
1− a

(
z0 + zc/2

)) , b2 = z0 +

(
z0 − zc/2

)
(
1− a

(
z0 − zc/2

)) . (8)

Then the confidence interval is [Li, Ui] with Li = F̂−1 (Φ(b1)) and Ui = F̂−1 (Φ(b2)). More

discussion can be found in Efron and Tibshirani (1993, chapter 14).

It is important to note that there are cases in which the acceleration factor fails to be defined.

This happens when all the jackknifed estimates are the same, which yields zero both for the

numerator and for the denominator of the acceleration factor. For example, one firm could be

so dominantly efficient in the industry that jackknifing the best firm (in our case, dropping one

time dimensional observation) would not change the efficiency rank for the best firm. When the

acceleration factor is not defined, we set it equal to zero (that is, we just use the bias-adjusted

bootstrap).

Simar and Wilson (1998) discuss a bootstrap method with a different kind of bias correction,

which we will call the bias corrected percentile method. As above, let θ̂ be the estimate based on

the data, and let θ̂(b) be a bootstrap estimate, b = 1, · · · , B. Define b̂ias = ¯̂
θboot − θ̂ where ¯̂

θboot

is the average of the B bootstrap estimates. Now define the bias-corrected bootstrap values:

θ̃(b) = θ̂(b) − 2b̂ias. Then simply apply the percentile method using the bias-corrected values

θ̃(b).

We can similarly define the bias-corrected point estimate. Define θ̃ = θ̂ − b̂ias = 2θ̂ − ¯̂
θboot.

Then the mean of the θ̃(b) equals θ̃. The motivation is that on average the difference between

θ̂ and θ is approximately the same as the difference between ¯̂
θboot and θ̂. So removing the bias

once would center the bootstrap values on θ̂, and we need to remove bias twice (i.e. subtract

two times b̂ias) to get them cover θ.

It is also possible to apply the BCa method to the bias-corrected bootstrap values θ̃(b). This

is discussed by Simar and Wilson (1998, p.52) as an attempt to center the median of the θ̃(b) on

θ̃. We will call this the bias-corrected bootstrap with BCa.

Simar and Wilson (2000) and Davison and Hinkley (1997) discuss a slightly different type of

bias-corrected bootstrap, which we will call the basic bootstrap method. Let −a be the 1 − c/2

percentile of (θ̂(b) − θ̂), and −b be the c/2 percentile. Then the upper bound for the confidence

interval for θ is (θ̂ + b) and the lower bound is (θ̂ + a). So the lower bound is: 2θ̂ − (the 1 −
c/2 percentile of θ̂(b)) and the upper bound is: 2θ̂ − (the c/2 percentile of θ̂(b)).
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The relationship of the basic bootstrap method to the bias-corrected percentile method is

interesting. The lower and upper bounds for the basic bootstrap method can be expressed in

terms of the bias-corrected point estimate θ̃, as follows:

Lower bound = θ̃ − [(the 1− c/2 percentile of θ̂(b))− ¯̂
θ(boot)], (9a)

Upper bound = θ̃ + [¯̂θ(boot) − (the c/2 percentile of θ̂(b))]. (9b)

An alternative that should be very similar if the distributions are symmetric is:

Lower bound = θ̃ − [ ¯̂θ(boot) − (the c/2 percentile of θ̂(b))], (10a)

Upper bound = θ̃ + [(the 1− c/2 percentile of θ̂(b))− ¯̂
θ(boot)]. (10b)

However, it is easy to show that these are exactly the same as the upper and lower bounds for

the bias-corrected percentile method.

A final note is that the iterated bootstrap procedure can be applied to all of the methods

discussed here, not just to the percentile bootstrap.

4 Direct Versus Indirect Intervals

The discussion of the previous section was presented in terms of confidence intervals for u∗i . Now

suppose instead that we are interested in confidence intervals for r∗i = exp(−u∗i ). Here there

are two possibilities. The first possibility is to use bootstrap methods where the parameter of

interest (“θ” in the generic notation of the previous discussion) is r∗i . We will call this the direct

method. A second possibility is to construct a confidence interval for u∗i and then translate it

into a confidence interval for r∗i . We will call this the indirect method. It is possible because r∗i

is a monotonic transformation of u∗i . More specifically, if the confidence interval for u∗i is [L,U ],

the corresponding indirect method confidence interval for r∗i is [exp(−U), exp(−L)].

For some bootstrap methods, the direct and indirect methods yield the same results. This

is true for the percentile bootstrap, and it is also true for the bias-adjusted bootstrap (without

acceleration). For the bias-corrected percentile method (with or without BCa) and for the basic

bootstrap method, the direct and indirect methods yield different results. This occurs because

these methods use a bias correction that depends on averaging, and averaging is affected by the

nonlinear transformation from u∗i to r∗i .
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For the BCa method, the results from the direct and indirect methods are very nearly equal.

Indeed, Efron and Tibshirani (1993) say in two places (p.187 and p.325) that the BCa bootstrap

is “transformation respecting,” in the sense that the coverage rates of the intervals are invariant

to a monotonic transformation of the parameter. It is necessary to read a footnote (footnote

5 on p.187) to discover that the invariance of the BCa bootstrap with respect to monotonic

transformations is only approximate. A correct statement is that, for a monotonic increasing

transformation of the parameter, the BCa bootstrap would be invariant if the same value of

the acceleration factor a were used in both cases. However, when a is evaluated using equation

(7) above, its value will be different if the parameter is transformed, and so invariance will not

occur. In our case, the transformation from u∗i to r∗i is monotone decreasing, and invariance

would occur if the acceleration factor for r∗i were the negative of the acceleration factor for u∗i .

This will not be the case when equation (7) is used, and so the direct and indirect methods will

yield results that are slightly different.

Our intuition suggests that the indirect method would work better in finite samples, because

the estimate of u∗i is more nearly a linear function of the data than the estimate of r∗i is. We

will present simulation evidence later that supports this intuition.

5 A Simple Alternative to the Bootstrap

In this section we propose a simple parametric alternative to the bootstrap. We begin with the

following simple observation. We wish to construct a confidence interval for u∗i = α(N) − αi, or

r∗i = exp(−u∗i ). If we knew which firm was best - that is, if we knew the index (N) - we could

construct a parametric confidence interval for u∗i of the form: (α̂(N) − α̂i) ± (critical value) ∗
(standard error), where “critical value” would be the appropriate c/2 level critical value of the

standard normal distribution, and “standard error” would be the square root of the quantity:

estimated variance of α̂(N) + estimated variance of α̂i − 2*estimated covariance of (α̂(N), α̂i).

This interval would be valid asymptotically as T →∞ with N fixed. In fact, if the vit are i.i.d.

normal and we use the critical value from the student t distribution, this interval would be valid

in finite samples as well.

Such a confidence interval is infeasible because the identity of the best firm is unknown.
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However, we can construct the confidence interval:

(α̂[N ] − α̂i)± (critical value) ∗ (standard error), (11)

where as before maxj α̂j = α̂[N ]. That is, we use a confidence interval that would be appropriate

if (N) were known, and we simply pretend that [N ] = (N). That is, we pretend that we do

know the identity of the best firm. This is our “feasible parametric” confidence interval.

Two details should be noted. First, in calculating the standard error of α̂[N ]−α̂i, we evaluate

var(α̂[N ]) and cov(α̂[N ], α̂i) using the standard formulas that ignore the fact that the index [N ]

is data-determined. That is, again we pretend that [N ] = (N) is known. Second, although

α(N) − αi ≥ 0, the lower bound of the parametric confidence interval can be negative. If it is,

we set it to zero. This corresponds to setting the upper bound of the relative efficiency measure

r̂∗i to one.

The feasible parametric confidence intervals are valid asymptotically, as T →∞ with N fixed.

This is the same sense in which the bootstrap confidence intervals are valid asymptotically. To

understand why this is true, we refer to the proof of the validity of the bootstrap for this

problem given by Hall, Härdle, and Simar (1995). They prove the equivalence of the following

three statements: (i) maxj α̂j is asymptotically normal. (ii) The bootstrap is valid as T → ∞
with N fixed. (iii) There are no ties for maxj αj : that is, there is a unique index (N) such that

α(N) = maxj αj . The point of the “no ties” requirement is to insure that P ([N ] = (N)) → 1

as T → ∞ (with N fixed). That is, as T → ∞ we do know which is the best firm. For finite

T , the intervals (11) are invalid because [N ] is not necessarily equal to (N), and therefore the

intervals are improperly centered, and the standard errors they use are wrong. But both of these

problems disappear in the limit (as T →∞ with N fixed).

There are two important implications of this discussion. First, neither the bootstrap nor

the feasible parametric intervals will be reliable unless T is large. Second, this is especially true

if there are near ties for maxj αj , in other words, when there is substantial uncertainty about

which firm is best.

It may be useful to consider the fundamental sense in which the feasible parametric intervals

differ from bootstrap intervals. As we have noted above, the “max” operator causes α̂[N ] to be

biased upward as an estimate of α(N). This causes an upward bias in û∗i and a downward bias

in r̂∗i . We will call this “first-level bias.” It disappears as T → ∞. The percentile bootstrap
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also suffers from a “second-level bias”, in the sense that E(maxj α̂
(b)
j ) > α̂[N ].4 Obviously this

occurs because the same “max” operator that is applied in the original sample is also applied

in the bootstrap samples. As a result, we do not expect the percentile bootstrap to work well

for this problem. The bias-corrected versions of the bootstrap use the size of the second-level

bias (which is observable) to correct the first-level bias. The ability to do this is a significant

advantage of these bootstrap methods.

6 Simulations

In this section we conduct Monte Carlo simulations to investigate the finite-sample reliability of

confidence intervals based on bootstrapping and on the alternative procedure described in the

last section. We are interested in the coverage rates of the confidence intervals and the way that

they are related to bias in estimation of efficiency levels.

There are some other possible methods that could have been considered, but which we did not

include in order to finish the simulations in finite time. These include multiple comparisons with

the best (MCB) intervals as in Horrace and Schmidt (1996, 2000), marginal comparisons with

the best intervals as in Kim and Schmidt (1999), and intervals based on the MLE as in Horrace

and Schmidt (1996). Some results for these methods can be found in Kim (1999). Basically the

intervals based on MLE are quite reliable if the distribution of inefficiency is correct, and the

MCB intervals are exceedingly conservative.

The model is the basic panel data stochastic frontier model given in (1) above. However, we

consider the model with no regressors so that we can concentrate our interest on the estimation

of efficiencies without having to be concerned about the nature of the regressors. In an actual

empirical setting, the regression parameters β are likely to be estimated so much more efficiently

than the other parameters that treating them as known is not likely to make much difference.

Our data generating process is:

yit = α + vit − ui = αi + vit, i = 1, · · · , N, t = 1, · · · , T, (12)

in which the vit are i.i.d. N(0, σ2
v) and the ui are i.i.d. half-normal: that is, let ui = |ui|

where ui ∼ N(0, σ2
u). Since our point estimates and confidence intervals are based on the fixed

4This expectation is with respect to the distribution induced by the bootstrap resampling.
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effects estimates of α1, · · · , αN , the distributional assumptions on vit and ui do not enter into

the estimation procedure. They just define the data generation mechanism.

The parameter space is (α, σ2
v , σ

2
u, N, T ), but this can be reduced. Without loss of generality,

we can fix α to any number, since a change in the constant term only shifts the estimated

constant term by the same amount, without any effect on the bias and variance of any of the

estimates. For simplicity, we fix the constant term equal to one.

We need two parameters to characterize the variance structure of model. It is natural to

think in terms of σ2
v and σ2

u. Alternatively, recognizing that σ2
u is the variance of the untruncated

normal from which u is derived, not the variance of u, we can think instead in terms of σ2
v and

var(u), where var(u) = σ2
u(π − 2)/π. However, we obtain more readily interpretable results

if we think instead in terms of the size of total variance and the relative allocation of total

variance between v and u. The total variance is defined as σ2
ε = σ2

v + var(u). Olson, Schmidt,

and Waldman (1980) used λ = σu/σv to represent the relative variance structure, so that their

parametrization was in terms of σ2
ε and λ. Coelli (1995) used σ2

ε and either γ = σ2
u/(σ2

v +σ2
u) or

γ∗ = var(u)/(σ2
v +var(u)). The choice between these two parameters is a matter of convenience.

We decided to use γ∗ due to its ease of interpretation, so that we use the parameters σ2
ε and

γ∗. The reason this is a convenient parametrization (compared to the “obvious” choice of σ2
v

and σ2
u) is that, following Olson, Schmidt, and Waldman (1980), one can show that comparisons

among the various estimators are not affected by σ2
ε . The effect of multiplying σ2

ε by a factor of

k holding γ∗ constant, is as follows.

1. constant term: bias change by a factor of
√

k and variance changes by a factor of k,

2. σ2
v and σ2

u: bias changes by a factor of k and variance changes by a factor of k2,

3. γ∗ (or γ or λ): bias and variance are unaffected.

We set σ2
ε at 0.25 arbitrarily, so that the only parameters left to consider are (γ∗, N, T ). We

consider three values for γ∗, to include a case in which the variance of v dominates, a case in

which the variance of u dominates, and an intermediate case. We take γ∗ = 0.1, 0.5, and 0.9 to

represent the above three cases. With σ2
ε = 0.25, σ2

v , var(u), and σ2
u are determined as follows

for each value of γ∗.

1. γ∗ = 0.1: σ2
v = 0.225, var(u) = 0.025, σ2

u = 0.069,
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2. γ∗ = 0.5: σ2
v = 0.125, var(u) = 0.125, σ2

u = 0.344,

3. γ∗ = 0.9: σ2
v = 0.025, var(u) = 0.225, σ2

u = 0.619.

Four values of N and T are considered. In order to investigate the effect of changing N , we fix

T = 10 and consider N =10, 20, 50, and 100. Similarly, T is assigned the values of 10, 20, 50,

and 100 while fixing N = 10. This is done for each different value of γ∗.

For each parameter configuration (T, γ∗, N), we perform R = 1000 replications of the ex-

periment. We will investigate the coverage rates of nominal 90% confidence intervals. With

R = 1000, the standard error for the estimated coverage rate is
√

(0.9)(0.1)/1000 = 0.00945, so

two standard errors equals about 0.019. Therefore coverage rates below 0.881 or above 1.109

are significantly different from 0.90 (at the 5% level of significance). This occurs frequently in

our experiments.

For each replication, we calculate the estimate of α, α̂ = α̂[N ]; the infeasible estimate of

α, α̂(N); the efficiency measures û∗i = α̂ − α̂i and r̂∗i = exp(−û∗i ), for each i = 1, · · · , N . We

then calculate the following confidence intervals, for both û∗i and r̂∗i : the feasible and infeasible

parametric intervals of Section 5; and the intervals corresponding to the percentile bootstrap,

the BCa bootstrap, the bias-corrected bootstrap, the bias-corrected bootstrap with BCa, and

the basic bootstrap method. For all bootstrap methods, we calculated confidence intervals for

r∗i using both the direct and the indirect methods, as discussed in Section 4.

The bootstrap results were based on B = 1000 bootstrap replications.

An important limitation of the study is that we did not consider the iterated bootstrap. All

of the bootstrap confidence intervals could potentially have had their coverage rates improved

by iteration. However, the computational burden of the iterated bootstrap would be very con-

siderable in a Monte Carlo setting. If we used B2 = 1000 iterations in the second bootstrap

stage, the experiment would have taken approximately 1000 times as long, and the execution

time would literally have been measured in years.

We are primarily interested in the biases of the point estimates and the coverage rates of the

confidence intervals. These biases and coverage rates are reported as averages over both the N

firms (where relevant) and the R replications.

We begin the discussion of our results with Table 1. Table 1 displays the bias of the fixed
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effects estimates. The entries are easily understood in terms of the identity:

E(α̂− α) = E(α̂− α(N)) + E(α(N) − α) (13a)

or, equivalently

E(û∗i − ui) = E(û∗i − u∗i ) + E(u∗i − ui). (13b)

Column (1) gives the bias of α̂(= α̂[N ]) as an estimate of α, or equivalently the bias of û∗i

as an estimate of ui. It can be positive or negative, because it is the sum of a positive term

and a negative term. Column (2) gives the bias of α̂ as an estimate of α(N), or equivalently

the bias of û∗i as an estimate of u∗i . This is the “first-level bias” of Section 5. It is always

positive. That is, α̂ is biased upward as an estimate of α(N), because of the “max” operation

that defines α̂ = maxj α̂j . This bias increases with N , but decreases when T and/or γ∗ increases.

It disappears as T →∞ or γ∗ → 1. Column (3) gives the mean of (α(N)−α), or equivalently of

(u∗i − ui). Its value is the negative of u(N) = minj uj , and correspondingly it is always negative.

Its value does not depend on T , and it decreases (in absolute value) when N increases or γ∗

decreases.

Intuitively, column (2) shows that û∗i overestimates relative inefficiency (u∗i ). Column (3)

says that relative inefficiency is smaller than absolute inefficiency. Therefore, column (1) shows

that û∗i may overestimate or underestimate absolute inefficiency (ui).

We now turn our attention to question of the accuracy of the various types of confidence

intervals we have discussed. We present results for 90% confidence intervals for r∗i = exp(−u∗i ).

We are primarily interested in the coverage rates of the intervals, and the proportions of ob-

servations that fall below the lower bound and above the upper bound, but we also show the

average width of the confidence intervals.

We begin with confidence intervals for r∗i constructed using the indirect method. The cover-

age rates for these are exactly the same as the coverage rate for the confidence intervals for u∗i

from which they are derived. The reason we present intervals for r∗i (rather than u∗i ) is that it is

bounded between zero and one, and so the average width of the intervals is easier to interpret.

Table 2 gives the results for the infeasible parametric intervals of Section 5. The coverage

rates of these intervals are very close to 0.90, as they should be. These intervals are infeasible in

practice, since they depend on knowledge of the identity of the best firm, but they illustrate two
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points. First, for obvious reasons, the intervals are narrower when T is large and when γ∗ is large

(that is, when the variance of inefficiency is large relative to the variance of noise). The number

of firms, N is not really relevant if we know which one is best. Second, and more importantly,

there is no difficulty in constructing accurate confidence intervals for technical efficiency if we

know which firm is best. All of the problems that we will see with the accuracy of feasible

intervals are due to not knowing with certainty which firm is best.

Table 2 also gives the results for the feasible parametric method of Section 5 and for the

percentile bootstrap. Consider first the percentile bootstrap. Its coverage rate is virtually

always less than the nominal level of 90%, and sometimes it is very much less. The fundamental

problem is that the intervals are not centered on the true values, due to the bias problem

discussed above. (The upward bias of α̂ as an estiamte of α(N) corresponds to an upward bias

in û∗i and a downward bias in r̂∗i . Thus too many r∗i lie above the upper bound of the confidence

intervals.) However, comparing the percentile bootstrap intervals to the infeasible parametric

intervals, it is also the case that the percentile bootstrap intervals are too narrow.

Theoretically, the intervals should be accurate in the limit (as T → ∞ with N fixed), and

so the validity of the percentile bootstrap depends on large T . The bias problem is small when

we have large T and γ∗ and small N , and the coverage probability reaches almost 0.9 for these

cases, but it falls in the opposite cases where the bias is big. The width of the intervals decreases

as T or γ∗ increases. However, the intervals get narrower with larger N , while the bias increases

as N increases. This explains why the coverage probabilities of the percentile intervals fall very

rapidly as N increases.

Now consider the feasible parametric intervals. These are clearly more accurate than the

percentile bootstrap intervals. This is especially true in the worst cases. For example, for T = 10,

γ∗ = 0.1 and N = 100, compare coverage rates of 0.199 for the percentile bootstrap and 0.664

for the parametric intervals. The parametric intervals are wider and they are better centered,

both of which imply higher coverage rates. To understand the point about better centering,

recall the discussion of bias in Section 5. The parametric intervals have one level of bias (α̂ is

a biased estimate of α(N)) whereas the percentile bootstrap has two (α̂ is a biased estimate of

α(N), and maxj α̂
(b)
j is a biased “estimator” of α̂).

Table 3 gives our results for the varieties of the bootstrap that make some sort of explicit bias
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adjustment for bias. Specifically, this includes the BCa bootstrap, the bias-corrected bootstrap,

the bias-corrected bootstrap with BCa, and the basic bootstrap method. As a general statement,

these methods are fairly similar. None of them is clearly superior to the others.

A more interesting comparison is with the feasible parametric intervals. For definiteness

we will compare the bias-corrected bootstrap and the feasible parametric intervals. The bias-

corrected bootstrap is considerably better in the most difficult cases (where bias is largest), that

is, when T is small, γ∗ is small and N is large. The feasible parametric intervals have slightly

better coverage rates in the easiest cases. This is true primarily because they are wider. Overall,

the bias-corrected bootstrap seems a better bet than the feasible parametric method because it

is so much better in the difficult cases and only slightly worse in the easy ones.

Table 4 gives some calculations of the various biases involved in this problem, which show

why bias correction is useful. The entries are mean values of various quantities, with the average

taken over replications and observations. Column (1) gives the mean value of α(N). Column (2)

gives the mean value of α̂[N ], and column (3) gives the mean value of maxj α̂
(b)
j . Thus, column

(4), which equals (2) − (1), gives “first-level bias” while column (5), which equals (3) − (2),

gives “second-level bias.” Column (6), which equals (4) − (5), we will call “remaining bias.”

It is the bias of the bias-corrected point estimate. The bias correction assumes that first-level

bias and second-level bias are (approximately) the same, in which case remaining bias would be

approximately zero.

Consider, for example, the first row of Table 4, corresponding to T = 10, γ∗ = 0.1, N = 10.

First-level bias equals 0.129, which means that the feasible parametric intervals (for u∗i ) would

be mis-centered by 0.129. Second-level bias equals 0.074, so the percentile bootstrap intervals

would be mis-centered by 0.129 + 0.074 = 0.203. Remaining bias equals 0.129− 0.074 = 0.055,

so that the bias-corrected bootstrap intervals would be mis-centered by 0.055.

For most other parameter values all of the biases are smaller than those just cited. However,

the general conclusion remains that bias-correction removes some, but not all, of the bias.

We now turn to a comparison of direct versus indirect intervals for r∗i , as discussed in Section

4. Table 5 gives the results for the direct intervals for the methods that make bias adjustments,

and can be compared to Table 3, which gives the same results for the indirect intervals. We

do not consider direct intervals based on our parametric methods. We also do not display the
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results for the percentile bootstrap, since the coverage rates of the direct and indirect intervals

would be exactly the same. Similarly, for the BCa intervals, the coverage rates in Tables 3 and

5 are only very slightly different.

For the other three methods (bias-corrected bootstrap, bias-corrected bootstrap with BCa,

and the basic bootstrap method), the coverage rates of the indirect intervals are generally higher.

This is especially true in the most difficult cases. The basic reason why the indirect intervals

cover better is that they are wider. As noted above, the superiority of the indirect intervals is

intuitively reasonable, since we are basing the intervals on a more nearly linear function of the

data.

Our last set of simulations is designed to consider cases in which the identity of the best firm

is clear. Here we set one ui at the 0.05 quantile of the half normal distribution, while the other

(N −1) are set at equally spaced points between the 0.75 and 0.95 quantiles, inclusive. These ui

are then held fixed across replications of the experiment. The only randomness therefore comes

from the stochastic error v. Since the identity of the best firm should be clear, the bias caused

by the max operator should be minimal.

Table 6 gives the bias of the fixed effects estimates, and is of the same format as Table 1.

Column (2) gives E(α̂ − α(N)), which is the bias component caused by the max operator. It is

indeed much smaller than in Table 1.5

Correspondingly, we expect the various bootstrap and parametric intervals to be more accu-

rate in the current cases than in the previous ones. Comparing Tables 2 and 7, this is certainly

the case for the feasible parametric method and the percentile bootstrap. These methods now

work quite well in almost all cases. However, the feasible parametric intervals now sometimes

have coverage rates that are too high, presumably because the intervals are too wide. Comparing

Tables 3 and 8, for the bootstrap methods that make explicit bias adjustments, it is not clearly

the case that they do better now that the identity of the best firm is clear. In fact, comparing

Tables 7 and 8, the feasible parametric method and the percentile bootstrap now work as well or

better than the BCa bootstrap, the bias-corrected bootstrap, the bias-corrected bootstrap with

BCa, or the basic bootstrap method. It is counterproductive to try to control for bias when

there is little or no bias.
5There are a few small negative entries. This cannot be so, in principle, and these negative entries are due to

the randomness of the experiment.
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The overall conclusion we draw from our simulations are straightforward. If it is clear from

the data which firm is best, all of the methods of constructing confidence intervals work fairly

well. There is no need to consider more complicated procedures than the percentile bootstrap.

The parametric intervals are also reliable, but they may be wider than necessary. Conversely, if

the time series sample size T is not large enough for the identity of the best firm to be clear, none

of the methods of constructing confidence intervals are very reliable. The percentile bootstrap

is particularly bad. A bias-corrected method should be used in such cases.

As a practical matter, one would like to have an unambiguous method of deciding whether

the identity of the best firm is clear. This paper does not supply such a method. A fairly

demanding definition would be that, in a multiple comparison with the best, the set of possibly

best firms contains only a single firm. A somewhat looser definition would be that, in the

bootstrap, a particular firm is “best” in almost all bootstrap iterations. It would not be hard to

think up other similar rules. The question of whether they would lead to an appropriate choice

of methodology for the construction of confidence intervals is left for a subsequent paper.

7 Empirical Results

We now apply the procedures described above to two well-known data sets. These data sets were

chosen to have rather different characteristics. The first data set consists of N = 171 Indonesian

rice farms observed for T = 6 growing seasons. For this data set, the variance of stochastic

noise (v) is large relative to the variability in u (var(u)): that is, γ̂∗ = 0.222 with σ̂2
ε = 0.138.

Inference on inefficiencies will be very imprecise because T is small, γ̂∗ is small and N is large.

The second data set consists of N = 10 Texas utilities observed for T = 18 years. For this data

set, σ2
v is small relative to var(u): γ̂∗ = 0.700 with σ̂2

ε = 0.010. In this case we can estimate

inefficiencies much more precisely because T and γ∗ are larger, and N is smaller. We will see

that the precision of the estimates will differ across these data sets, and that choice of technique

matters more where precision is low. A more detailed analysis of these data, including Bayesian

results and results for multiple and marginal comparisons with the best, can be found in Kim

and Schmidt (1999).
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7.1 Indonesian Rice Farms

These data are due to Erwidodo (1990) and have been analyzed subsequently by Lee (1991),

Lee and Schmidt (1993), Horrace and Schmidt (1996, 2000) and others. There are N = 171

rice farms and T = 6 six-month growing seasons. Output is rice in kilograms and inputs are

land in hectares, labor in hours, seed in kilograms and two types of fertilizer (urea in kilograms

and phosphate in kilograms). The functional form is Cobb-Douglas with some dummy variables

added for region, seasonality for dry or wet season, the use of pesticide and seed types for high

yield or traditional or mixed. For a complete discussion of the data, see Erwidodo (1990).

The estimated regression parameters are given in Horrace and Schmidt (1996) and we will

not repeat them here. Instead we will give point estimates of efficiencies (r∗i ) and 90% confidence

intervals for these efficiencies. There are 171 firms and so we report results for the three firms

(164, 118, and 163) that are most efficient; for the firms at the 75th percentile (31), 50th percentile

(15) and 25th percentile (16) of the efficiency distribution; and for the two worst firms (117, 45).

All of these rankings are according to the fixed effects estimates.

We begin with Table 9. It gives the fixed effects point estimates and the lower and upper

bounds of the 90% feasible parametric confidence intervals. For the purpose of comparison we

also give the point estimates and the lower and upper bound of the 90% confidence intervals for

the MLE based on the assumption that inefficiency has a half-normal distribution. See Horrace

and Schmidt (1996) for the details of the calculations for the MLE.

The estimated efficiency levels based on the fixed effects estimates are rather low. They are

certainly much smaller than the MLE estimates. This is presumably due to bias in the fixed

effects estimates, as discussed previously. This data set has characteristics that should make the

bias problem severe: N is large; the αi are estimated imprecisely because σ2
v is large and T is

small; and there are near ties for maxj αj because σ2
u is small.

Table 10 gives 90% confidence intervals based on the percentile bootstrap, the iterated boot-

strap, and four methods that attempt to correct for bias (the BCa bootstrap, the bias-corrected

bootstrap, the bias-corrected bootstrap with BCa, and the basic bootstrap method). All of

these results are based on the indirect method. The bootstrap results are based on 1000 repli-

cations, and in the case of the iterated bootstrap each second-level bootstrap is also based on

1000 replications.
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There is some similarity between the intervals from different methods, but there are also

some interesting comparisons to make. The percentile bootstrap intervals are clearly closest to

zero (i.e. they would indicate the lowest levels of efficiency). This is presumably a reflection

of bias. Note, for example, that the midpoints of these intervals are less than the fixed effects

estimate (which is itself biased toward zero). For the reasons given above, we do not regard these

intervals as trustworthy for this data set. The iterated bootstrap intervals are centered similarly

to the percentile bootstrap but are wider. They are about as wide as the feasible parametric

intervals. The four methods that correct for bias give results that are relatively similar to each

other. Compared to the feasible parametric method, the percentile bootstrap or the iterated

percentile bootstrap, they clearly indicate higher efficiency levels. Presumably this is because

they are less biased than those methods (which do not make a bias correction). However, given

the results of our simulations, we still expect the bias corrected methods to be biased, for this

data set. This is consistent with the fact that they show considerably lower efficiency levels than

the intervals based on the MLE.

Table 11 gives the confidence intervals for the direct method. (We do not repeat the results

for those methods for which the direct and indirect methods give the same results.) The direct

and indirect methods give similar results, though the direct method yields intervals that indicate

slightly lower efficiency levels.

The characteristics of this data set (large N , small T , small variance of inefficiency relative

to noise) are such that there may not be a satisfactory alternative to making a distributional

assumption on inefficiency and doing MLE. If one is not prepared to make a distributional

assumption, a bias corrected version of the bootstrap would be recommended.

7.2 Texas Utilities

In this section, we consider the Texas utility data of Kumbhakar (1996), which was also analyzed

by Horrace and Schmidt (1996, 2000). As in the previous section, we will estimate a Cobb-

Douglas production function, whereas Kumbhakar (1996) estimated a cost function. The data

contain information on output and inputs of 10 privately owned Texas electric utilities for 18

years from 1966 to 1983. Output is electric power generated, and input measures on labor,

capital and fuel are derived from dividing expenditures on each input by its price. For more
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details on the data see Kumbhakar (1996).

Table 12 gives the fixed effects point estimates, the 90% parametric intervals, and the MLE

point estimates and 90% confidence intervals. The format is the same as that of Table 9, except

that now we can report the results for all of the firms. Tables 13 and 14 give the confidence

intervals for the same set of procedures as before, and they are of the same format as Tables 10

and 11, except that results are given for all firms.

Compared to the previous data set, we estimate the intercepts αi much more precisely,

because T is larger and σ2
v is smaller. For this reason, and also because N is smaller, we expect

there not to be a severe finite sample bias problem in the fixed effects estimates, and we expect

that the choice of technique will not matter as much.

The MLE estimated efficiencies are larger than those based on fixed effects (except for the

“best” firm), but the difference is not nearly as large as for the previous data set. Similarly, the

MLE confidence intervals are narrower than the feasible parametric intervals, but not by nearly

as much as in Table 9. A distributional assumption is much less valuable in the present case. In

fact, the accuracy of the MLE intervals is now suspect, because we have only 10 firms, and the

asymptotic justification for the MLE requires large N .

Comparing the results in Tables 12, 13, and 14, we can see that the parametric intervals and

all of the bootstrapping intervals are quite similar. The bias problem is apparently negligible

for this data set, and correspondingly our faith in the accuracy of these intervals is relatively

strong.

We can compare the features of this data set with the setup of our simulation. One of the

parametric configurations in our simulation had T = 20, γ∗ = 0.5, and N = 10, which matches

these data reasonably well. In that case the coverage rates of the various confidence intervals

were in the range of 0.87 to 0.89, which are obviously close to 0.90, indicating that the confidence

intervals are quite reliable.

8 Conclusions

In this paper we have provided a survey of the use of bootstrapping to construct confidence

intervals for efficiency measures. We discussed several versions of the bootstrap, including
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the percentile bootstrap, the iterated bootstrap, the bias-adjusted and accelerated bootstrap,

the bias-corrected bootstrap, and the basic bootstrap method. In stochastic frontier models,

these methods can be applied to the fixed effects estimates, yielding inferences that are correct

asymptotically as T →∞ with N fixed.

We have proposed a simple parametric method of constructing confidence intervals. It uses

standard methods and simply acts as if the identity of the best firm is known. This procedure is

valid under the same conditions that the bootstrap methods are valid, namely, as T →∞ with

N fixed, and provided that there is a unique best firm.

The main problem that we encounter is the upward bias in the fixed effects estimate of the

frontier, which translates into a downward bias for the estimated efficiencies. The bias is large

when T is small, N is large, and/or statistical noise is large relative to the variation in the

frontier. These are exactly the same circumstances in which the identity of the best firm is

uncertain, and so it is fair to say that bias is a problem when the identity of the best firm is in

question.

Our simulation results show that the percentile bootstrap is seriously inaccurate when the

bias problem exists. The percentile bootstrap intervals are mis-centered because the bias in the

original estimates is compounded by similar “bias” in the bootstrap estimates. Our parametric

intervals avoid the second source of bias and are more reliable than the percentile bootstrap

intervals. However, when bias is a problem, they are still not very reliable. The BCa bootstrap,

bias-corrected bootstrap and basic bootstrap method all use the extent of the second-level bias

in the percentile bootstrap (which is observable) to correct the bias in the fixed-effects estimates.

When bias is a problem, these methods are a considerable improvement over the methods that

do not correct for bias. However, a negative conclusion of the simulations is that their bias

correction is only partially successful. It should be remembered that all of these methods are

valid only for large T , and when T is not large enough that the identity of the best firm is clear,

none of them will really be reliable. In such cases it may be worthwhile to consider assuming a

distribution for technical inefficiency and using MLE.

We performed an empirical analysis of two data sets, one of which had characteristics very

unfavorable to the bootstrap (large N , small T , and large variance of noise). In this case

there was evidence of bias, and the bootstrap intervals were both unreliable and too wide to be
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informative. Our other data set had more favorable characteristics, and the empirical analysis

yielded results that were quite precise and seemingly sensible. Hence, as in the simulations, a

major lesson is that the reliability of bootstrap inference on efficiencies can be judged based on

observable features of the data.
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Table 1: Biases of Fixed Effects Estimates

(1) (2) (3)
T γ∗ N E(α̂− α) E(α̂− α(N)) E(α(N) − α)
10 0.1 10 0.102 0.131 -0.029
10 0.1 20 0.159 0.174 -0.015
10 0.1 50 0.230 0.236 -0.006
10 0.1 100 0.272 0.276 -0.004
10 0.5 10 -0.010 0.054 -0.064
10 0.5 20 0.047 0.082 -0.035
10 0.5 50 0.114 0.128 -0.014
10 0.5 100 0.151 0.158 -0.007
10 0.9 10 -0.075 0.010 -0.085
10 0.9 20 -0.029 0.017 -0.046
10 0.9 50 0.016 0.035 -0.019
10 0.9 100 0.039 0.049 -0.010

10 0.1 10 0.102 0.131 -0.029
20 0.1 10 0.046 0.076 -0.030
50 0.1 10 0.008 0.039 -0.031
100 0.1 10 -0.008 0.021 -0.029
10 0.5 10 -0.010 0.054 -0.064
20 0.5 10 -0.037 0.028 -0.065
50 0.5 10 -0.056 0.014 -0.070
100 0.5 10 -0.059 0.007 -0.066
10 0.9 10 -0.075 0.010 -0.085
20 0.9 10 -0.084 0.004 -0.088
50 0.9 10 -0.091 0.003 -0.094
100 0.9 10 -0.088 0.001 -0.089

28



T
ab

le
2:

90
%

C
on

fid
en

ce
In

te
rv

al
s

fo
r

R
el

at
iv

e
E

ffi
ci

en
cy

(r
∗ i
),

In
di

re
ct

M
et

ho
d

In
fe

as
ib

le
P
ar

am
et

ri
c

Fe
as

ib
le

P
ar

am
et

ri
c

P
er

ce
nt

ile
B

oo
ts

tr
ap

T
γ
∗

N
w

id
th

P
(<

lb
)

P
(>

u
b)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b)

co
ve

r
10

0.
1

10
0.

54
7

0.
04

8
0.

04
4

0.
90

8
0.

46
7

0.
07

0
0.

10
7

0.
82

3
0.

35
6

0.
00

2
0.

28
3

0.
71

5
10

0.
1

20
0.

57
4

0.
04

8
0.

04
7

0.
90

5
0.

47
1

0.
04

1
0.

15
4

0.
80

5
0.

34
7

0.
00

0
0.

44
9

0.
55

1
10

0.
1

50
0.

58
8

0.
05

0
0.

05
0

0.
90

0
0.

45
7

0.
01

8
0.

24
9

0.
73

3
0.

32
4

0.
00

0
0.

67
2

0.
32

8
10

0.
1

10
0

0.
59

3
0.

04
8

0.
04

7
0.

90
5

0.
44

5
0.

01
0

0.
32

6
0.

66
4

0.
30

5
0.

00
0

0.
80

1
0.

19
9

10
0.

5
10

0.
32

4
0.

04
8

0.
04

4
0.

90
8

0.
30

3
0.

05
5

0.
06

7
0.

87
8

0.
25

1
0.

01
4

0.
14

9
0.

83
8

10
0.

5
20

0.
34

0
0.

04
8

0.
04

7
0.

90
5

0.
30

9
0.

03
5

0.
09

3
0.

87
2

0.
24

6
0.

00
3

0.
24

5
0.

75
2

10
0.

5
50

0.
34

8
0.

05
0

0.
05

0
0.

90
0

0.
30

3
0.

01
7

0.
15

5
0.

82
8

0.
23

1
0.

00
1

0.
44

4
0.

55
5

10
0.

5
10

0
0.

35
1

0.
04

8
0.

04
7

0.
90

5
0.

29
7

0.
00

9
0.

21
1

0.
78

0
0.

21
9

0.
00

0
0.

60
2

0.
39

8
10

0.
9

10
0.

12
7

0.
04

8
0.

04
4

0.
90

8
0.

12
5

0.
04

8
0.

05
1

0.
90

1
0.

11
2

0.
03

4
0.

08
3

0.
88

3
10

0.
9

20
0.

13
3

0.
04

8
0.

04
7

0.
90

5
0.

13
0

0.
03

6
0.

06
2

0.
90

1
0.

11
3

0.
01

9
0.

12
5

0.
85

6
10

0.
9

50
0.

13
6

0.
05

0
0.

05
0

0.
90

0
0.

13
1

0.
01

9
0.

09
7

0.
88

4
0.

10
9

0.
00

5
0.

23
5

0.
76

0
10

0.
9

10
0

0.
13

7
0.

04
8

0.
04

7
0.

90
5

0.
13

0
0.

01
0

0.
13

0
0.

86
0

0.
10

5
0.

00
1

0.
36

1
0.

63
7

10
0.

1
10

0.
54

7
0.

04
8

0.
04

4
0.

90
8

0.
46

7
0.

07
0

0.
10

7
0.

82
3

0.
35

6
0.

00
2

0.
28

3
0.

71
5

20
0.

1
10

0.
37

9
0.

04
4

0.
04

2
0.

91
3

0.
34

5
0.

06
6

0.
08

6
0.

84
8

0.
28

2
0.

00
2

0.
21

3
0.

78
5

50
0.

1
10

0.
23

5
0.

04
2

0.
04

8
0.

91
0

0.
22

5
0.

05
7

0.
08

0
0.

86
3

0.
19

6
0.

00
6

0.
16

6
0.

82
9

10
0

0.
1

10
0.

16
5

0.
04

1
0.

04
1

0.
91

8
0.

16
1

0.
05

0
0.

06
6

0.
88

4
0.

14
5

0.
00

8
0.

12
8

0.
86

4
10

0.
5

10
0.

32
4

0.
04

8
0.

04
4

0.
90

8
0.

30
3

0.
05

5
0.

06
7

0.
87

8
0.

25
1

0.
01

4
0.

14
9

0.
83

8
20

0.
5

10
0.

22
8

0.
04

4
0.

04
2

0.
91

3
0.

21
9

0.
05

1
0.

06
1

0.
88

8
0.

19
3

0.
01

4
0.

10
9

0.
87

7
50

0.
5

10
0.

14
2

0.
04

2
0.

04
8

0.
91

0
0.

14
0

0.
04

7
0.

05
9

0.
89

4
0.

13
0

0.
02

1
0.

08
7

0.
89

2
10

0
0.

5
10

0.
10

0
0.

04
1

0.
04

1
0.

91
8

0.
09

9
0.

04
3

0.
05

1
0.

90
6

0.
09

4
0.

02
3

0.
07

3
0.

90
4

10
0.

9
10

0.
12

7
0.

04
8

0.
04

4
0.

90
8

0.
12

5
0.

04
8

0.
05

1
0.

90
1

0.
11

2
0.

03
4

0.
08

3
0.

88
3

20
0.

9
10

0.
09

0
0.

04
4

0.
04

2
0.

91
3

0.
08

9
0.

04
9

0.
04

8
0.

90
3

0.
08

3
0.

03
4

0.
06

7
0.

89
9

50
0.

9
10

0.
05

7
0.

04
2

0.
04

8
0.

91
0

0.
05

6
0.

04
3

0.
05

1
0.

90
6

0.
05

5
0.

03
4

0.
06

2
0.

90
3

10
0

0.
9

10
0.

04
0

0.
04

1
0.

04
1

0.
91

8
0.

04
0

0.
04

1
0.

04
4

0.
91

5
0.

03
9

0.
03

4
0.

05
3

0.
91

3

29



T
ab

le
3:

90
%

C
on

fid
en

ce
In

te
rv

al
s

fo
r

R
el

at
iv

e
E

ffi
ci

en
cy

(r
∗ i
),

In
di

re
ct

M
et

ho
d

B
ia

s
B

ia
s

C
or

re
ct

ed
B

as
ic

B
C

a
B

oo
ts

tr
ap

C
or

re
ct

ed
B

oo
ts

tr
ap

B
oo

ts
tr

ap
w

it
h

B
C

a
B

oo
ts

tr
ap

M
et

ho
d

T
γ
∗

N
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
10

0.
1

10
0.

33
7

0.
01

5
0.

11
8

0.
86

7
0.

41
4

0.
02

8
0.

11
2

0.
86

0
0.

43
2

0.
01

3
0.

11
7

0.
87

0
0.

43
0

0.
11

7
0.

10
4

0.
77

8
10

0.
1

20
0.

33
3

0.
01

4
0.

15
6

0.
83

0
0.

41
8

0.
02

0
0.

14
2

0.
83

8
0.

42
4

0.
01

2
0.

14
8

0.
84

0
0.

42
7

0.
07

3
0.

13
3

0.
79

4
10

0.
1

50
0.

32
7

0.
00

9
0.

23
4

0.
75

7
0.

40
6

0.
01

1
0.

20
5

0.
78

4
0.

40
6

0.
00

8
0.

21
2

0.
78

0
0.

41
1

0.
03

5
0.

19
3

0.
77

2
10

0.
1

10
0

0.
31

4
0.

00
7

0.
30

6
0.

68
7

0.
39

5
0.

00
7

0.
24

7
0.

74
6

0.
39

4
0.

00
6

0.
25

4
0.

74
0

0.
39

9
0.

02
0

0.
23

3
0.

74
6

10
0.

5
10

0.
25

5
0.

03
9

0.
08

6
0.

87
4

0.
27

1
0.

06
1

0.
07

8
0.

86
1

0.
28

6
0.

03
7

0.
08

6
0.

87
7

0.
27

7
0.

11
0

0.
07

3
0.

81
7

10
0.

5
20

0.
24

7
0.

03
7

0.
10

6
0.

85
7

0.
27

3
0.

04
5

0.
09

8
0.

85
7

0.
27

9
0.

03
5

0.
10

3
0.

86
2

0.
27

8
0.

08
6

0.
09

2
0.

82
2

10
0.

5
50

0.
23

7
0.

02
5

0.
15

8
0.

81
7

0.
26

5
0.

02
7

0.
14

5
0.

82
8

0.
26

6
0.

02
3

0.
15

2
0.

82
5

0.
26

8
0.

04
8

0.
13

5
0.

81
6

10
0.

5
10

0
0.

22
8

0.
01

8
0.

20
0

0.
78

2
0.

25
8

0.
01

8
0.

17
8

0.
80

4
0.

25
8

0.
01

6
0.

18
5

0.
79

9
0.

26
0

0.
03

1
0.

16
7

0.
80

2
10

0.
9

10
0.

11
6

0.
05

5
0.

08
6

0.
85

9
0.

11
4

0.
09

0
0.

06
0

0.
84

9
0.

12
0

0.
05

5
0.

08
5

0.
86

1
0.

11
4

0.
09

3
0.

05
9

0.
84

8
10

0.
9

20
0.

11
4

0.
05

8
0.

08
2

0.
86

0
0.

11
6

0.
07

2
0.

07
3

0.
85

5
0.

12
0

0.
05

5
0.

08
1

0.
86

4
0.

11
7

0.
09

0
0.

07
0

0.
84

0
10

0.
9

50
0.

10
9

0.
05

0
0.

11
0

0.
84

0
0.

11
3

0.
05

2
0.

10
2

0.
84

6
0.

11
5

0.
04

7
0.

10
7

0.
84

6
0.

11
4

0.
06

9
0.

09
6

0.
83

5
10

0.
9

10
0

0.
10

6
0.

03
5

0.
13

6
0.

82
9

0.
11

1
0.

03
5

0.
12

7
0.

83
9

0.
11

1
0.

03
2

0.
13

2
0.

83
6

0.
11

1
0.

04
7

0.
11

8
0.

83
5

10
0.

1
10

0.
33

7
0.

01
5

0.
11

8
0.

86
7

0.
41

4
0.

02
8

0.
11

2
0.

86
0

0.
43

2
0.

01
3

0.
11

7
0.

87
0

0.
43

0
0.

11
7

0.
10

4
0.

77
8

20
0.

1
10

0.
26

8
0.

02
7

0.
08

7
0.

88
6

0.
31

3
0.

04
0

0.
08

3
0.

87
7

0.
32

7
0.

02
4

0.
08

7
0.

89
0

0.
32

1
0.

12
6

0.
07

7
0.

79
7

50
0.

1
10

0.
19

0
0.

03
4

0.
08

5
0.

88
2

0.
20

7
0.

05
0

0.
07

6
0.

87
4

0.
21

8
0.

03
2

0.
08

1
0.

88
7

0.
21

0
0.

11
4

0.
07

1
0.

81
5

10
0

0.
1

10
0.

14
4

0.
03

4
0.

07
2

0.
89

4
0.

15
0

0.
05

3
0.

06
2

0.
88

5
0.

15
8

0.
03

2
0.

07
1

0.
89

7
0.

15
1

0.
10

1
0.

05
9

0.
84

0
10

0.
5

10
0.

25
5

0.
03

9
0.

08
6

0.
87

4
0.

27
1

0.
06

1
0.

07
8

0.
86

1
0.

28
6

0.
03

7
0.

08
6

0.
87

7
0.

27
7

0.
11

0
0.

07
3

0.
81

7
20

0.
5

10
0.

19
7

0.
04

5
0.

07
6

0.
87

9
0.

20
2

0.
07

0
0.

06
3

0.
86

7
0.

21
5

0.
04

5
0.

07
5

0.
88

0
0.

20
5

0.
11

1
0.

06
0

0.
82

9
50

0.
5

10
0.

13
4

0.
04

9
0.

07
8

0.
87

2
0.

13
3

0.
07

6
0.

05
9

0.
86

4
0.

14
1

0.
04

7
0.

07
9

0.
87

4
0.

13
4

0.
09

2
0.

05
7

0.
85

2
10

0
0.

5
10

0.
09

6
0.

04
6

0.
07

7
0.

87
7

0.
09

5
0.

08
0

0.
05

1
0.

86
9

0.
10

0
0.

04
5

0.
07

6
0.

87
9

0.
09

5
0.

08
0

0.
05

0
0.

87
0

10
0.

9
10

0.
11

6
0.

05
5

0.
08

6
0.

85
9

0.
11

4
0.

09
0

0.
06

0
0.

84
9

0.
12

0
0.

05
5

0.
08

5
0.

86
1

0.
11

4
0.

09
3

0.
05

9
0.

84
8

20
0.

9
10

0.
08

6
0.

05
8

0.
07

6
0.

86
5

0.
08

4
0.

09
1

0.
05

1
0.

85
8

0.
08

9
0.

05
7

0.
07

6
0.

86
7

0.
08

5
0.

08
9

0.
05

1
0.

86
0

50
0.

9
10

0.
05

6
0.

04
8

0.
07

7
0.

87
5

0.
05

5
0.

07
7

0.
05

3
0.

87
0

0.
05

7
0.

04
7

0.
07

7
0.

87
6

0.
05

5
0.

06
6

0.
05

1
0.

88
2

10
0

0.
9

10
0.

04
0

0.
04

5
0.

06
6

0.
88

9
0.

03
9

0.
07

0
0.

04
6

0.
88

4
0.

04
0

0.
04

3
0.

06
7

0.
89

0
0.

03
9

0.
06

0
0.

04
5

0.
89

5

30



Table 4: Biases in Estimates

(1) (2) (3) (4) (5) (6)
α(N) = α̂[N ] =

T γ∗ N maxj αj maxj α̂j maxj α̂
(b)
j (2)-(1) (3)-(2) (4)-(5)

10 0.1 10 0.971 1.100 1.174 0.129 0.074 0.055
50 0.1 10 0.969 1.007 1.035 0.039 0.028 0.011
10 0.1 50 0.994 1.230 1.341 0.236 0.111 0.125
10 0.5 10 0.936 0.989 1.026 0.053 0.037 0.016
50 0.5 10 0.930 0.944 0.955 0.014 0.011 0.003
10 0.5 50 0.986 1.114 1.181 0.128 0.067 0.061
10 0.9 10 0.915 0.924 0.932 0.009 0.008 0.001
50 0.9 10 0.906 0.909 0.911 0.003 0.002 0.001
10 0.9 50 0.981 1.016 1.038 0.035 0.021 0.014

31



T
ab

le
5:

90
%

C
on

fid
en

ce
In

te
rv

al
s

fo
r

R
el

at
iv

e
E

ffi
ci

en
cy

(r
∗ i
),

D
ir

ec
t

M
et

ho
d

B
ia

s
B

ia
s

C
or

re
ct

ed
B

as
ic

B
C

a
B

oo
ts

tr
ap

C
or

re
ct

ed
B

oo
ts

tr
ap

B
oo

ts
tr

ap
w

it
h

B
C

a
B

oo
ts

tr
ap

M
et

ho
d

T
γ
∗

N
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
10

0.
1

10
0.

33
4

0.
01

5
0.

12
6

0.
85

9
0.

35
6

0.
03

8
0.

17
2

0.
79

0
0.

37
3

0.
02

5
0.

14
3

0.
83

3
0.

35
6

0.
11

1
0.

22
0

0.
66

9
10

0.
1

20
0.

32
8

0.
01

4
0.

17
3

0.
81

3
0.

34
7

0.
03

0
0.

22
7

0.
74

3
0.

35
5

0.
02

6
0.

19
5

0.
77

9
0.

34
7

0.
07

0
0.

28
0

0.
65

0
10

0.
1

50
0.

31
9

0.
00

9
0.

26
4

0.
72

7
0.

32
4

0.
01

8
0.

33
3

0.
64

9
0.

33
0

0.
01

8
0.

29
6

0.
68

6
0.

32
4

0.
03

4
0.

39
3

0.
57

3
10

0.
1

10
0

0.
30

6
0.

00
7

0.
33

9
0.

65
4

0.
30

5
0.

01
4

0.
40

7
0.

57
9

0.
31

0
0.

01
5

0.
36

9
0.

61
6

0.
30

5
0.

01
9

0.
46

6
0.

51
4

10
0.

5
10

0.
25

3
0.

03
8

0.
09

0
0.

87
2

0.
25

1
0.

06
5

0.
10

6
0.

83
0

0.
26

7
0.

04
8

0.
09

4
0.

85
8

0.
25

1
0.

09
8

0.
13

8
0.

76
4

10
0.

5
20

0.
24

3
0.

03
7

0.
11

3
0.

85
0

0.
24

6
0.

05
2

0.
13

8
0.

81
0

0.
25

3
0.

04
9

0.
12

0
0.

83
1

0.
24

6
0.

07
7

0.
17

3
0.

75
1

10
0.

5
50

0.
23

1
0.

02
5

0.
17

4
0.

80
0

0.
23

1
0.

03
5

0.
20

9
0.

75
6

0.
23

4
0.

03
6

0.
18

9
0.

77
5

0.
23

1
0.

04
3

0.
24

7
0.

70
9

10
0.

5
10

0
0.

22
0

0.
01

7
0.

22
5

0.
75

8
0.

21
9

0.
02

4
0.

26
3

0.
71

3
0.

22
1

0.
02

7
0.

24
0

0.
73

3
0.

21
9

0.
02

8
0.

30
3

0.
66

9
10

0.
9

10
0.

11
5

0.
05

4
0.

08
8

0.
85

8
0.

11
2

0.
08

7
0.

06
9

0.
84

4
0.

11
9

0.
05

7
0.

07
7

0.
86

5
0.

11
2

0.
08

2
0.

08
7

0.
83

1
10

0.
9

20
0.

11
3

0.
05

8
0.

08
5

0.
85

7
0.

11
3

0.
07

3
0.

08
4

0.
84

4
0.

11
7

0.
06

1
0.

08
4

0.
85

6
0.

11
3

0.
07

9
0.

09
6

0.
82

5
10

0.
9

50
0.

10
8

0.
05

0
0.

11
6

0.
83

4
0.

10
9

0.
05

5
0.

12
1

0.
82

4
0.

11
0

0.
05

4
0.

11
7

0.
82

9
0.

10
9

0.
06

3
0.

13
2

0.
80

5
10

0.
9

10
0

0.
10

3
0.

03
5

0.
14

7
0.

81
8

0.
10

5
0.

03
8

0.
15

1
0.

81
1

0.
10

5
0.

03
8

0.
14

7
0.

81
5

0.
10

5
0.

04
3

0.
16

1
0.

79
5

10
0.

1
10

0.
33

4
0.

01
5

0.
12

6
0.

85
9

0.
35

6
0.

03
8

0.
17

2
0.

79
0

0.
37

3
0.

02
5

0.
14

3
0.

83
3

0.
35

6
0.

11
1

0.
22

0
0.

66
9

20
0.

1
10

0.
26

5
0.

02
6

0.
09

3
0.

88
1

0.
28

2
0.

04
7

0.
11

6
0.

83
7

0.
29

6
0.

03
5

0.
10

0
0.

86
5

0.
28

2
0.

11
9

0.
14

7
0.

73
4

50
0.

1
10

0.
18

9
0.

03
4

0.
08

8
0.

87
9

0.
19

6
0.

05
4

0.
09

4
0.

85
2

0.
20

6
0.

03
9

0.
08

9
0.

87
3

0.
19

6
0.

10
8

0.
11

1
0.

78
1

10
0

0.
1

10
0.

14
4

0.
03

3
0.

07
5

0.
89

2
0.

14
5

0.
05

5
0.

07
4

0.
87

1
0.

15
3

0.
03

5
0.

07
4

0.
89

1
0.

14
5

0.
09

6
0.

08
7

0.
81

7
10

0.
5

10
0.

25
3

0.
03

8
0.

09
0

0.
87

2
0.

25
1

0.
06

5
0.

10
6

0.
83

0
0.

26
7

0.
04

8
0.

09
4

0.
85

8
0.

25
1

0.
09

8
0.

13
8

0.
76

4
20

0.
5

10
0.

19
6

0.
04

5
0.

07
8

0.
87

7
0.

19
3

0.
07

2
0.

07
9

0.
84

9
0.

20
6

0.
05

2
0.

07
8

0.
87

0
0.

19
3

0.
09

7
0.

10
1

0.
80

2
50

0.
5

10
0.

13
4

0.
04

9
0.

08
1

0.
87

0
0.

13
0

0.
07

6
0.

06
9

0.
85

6
0.

13
8

0.
05

1
0.

07
7

0.
87

2
0.

13
0

0.
08

3
0.

08
5

0.
83

2
10

0
0.

5
10

0.
09

6
0.

04
6

0.
07

9
0.

87
5

0.
09

4
0.

07
8

0.
05

8
0.

86
4

0.
09

9
0.

04
7

0.
06

9
0.

88
4

0.
09

4
0.

07
1

0.
07

1
0.

85
8

10
0.

9
10

0.
11

5
0.

05
4

0.
08

8
0.

85
8

0.
11

2
0.

08
7

0.
06

9
0.

84
4

0.
11

9
0.

05
7

0.
07

7
0.

86
5

0.
11

2
0.

08
2

0.
08

7
0.

83
1

20
0.

9
10

0.
08

6
0.

05
8

0.
07

9
0.

86
2

0.
08

3
0.

08
9

0.
05

7
0.

85
4

0.
08

8
0.

05
9

0.
06

9
0.

87
3

0.
08

3
0.

07
9

0.
07

0
0.

85
1

50
0.

9
10

0.
05

6
0.

04
8

0.
07

9
0.

87
3

0.
05

5
0.

07
5

0.
05

6
0.

86
9

0.
05

7
0.

04
8

0.
06

9
0.

88
4

0.
05

5
0.

06
0

0.
06

7
0.

87
3

10
0

0.
9

10
0.

03
9

0.
04

4
0.

06
9

0.
88

7
0.

03
9

0.
06

8
0.

04
8

0.
88

4
0.

04
0

0.
04

3
0.

05
8

0.
89

9
0.

03
9

0.
05

5
0.

05
7

0.
88

8

32



Table 6: Biases of Fixed Effects Estimates (Case that ui are fixed over replications)

(1) (2) (3)
T γ∗ N E(α̂− α) E(α̂− α(N)) E(α(N) − α)
10 0.1 10 0.008 0.025 -0.017
10 0.1 20 0.021 0.037 -0.016
10 0.1 50 0.042 0.059 -0.017
10 0.1 100 0.065 0.082 -0.017
10 0.5 10 -0.036 0.001 -0.037
10 0.5 20 -0.035 0.002 -0.037
10 0.5 50 -0.037 0.000 -0.037
10 0.5 100 -0.036 0.001 -0.037
10 0.9 10 -0.049 0.000 -0.049
10 0.9 20 -0.049 0.001 -0.050
10 0.9 50 -0.049 0.000 -0.049
10 0.9 100 -0.049 0.000 -0.049

10 0.1 10 0.008 0.025 -0.017
20 0.1 10 -0.009 0.008 -0.017
50 0.1 10 -0.018 -0.002 -0.016
100 0.1 10 -0.017 -0.001 -0.016
10 0.5 10 -0.036 0.001 -0.037
20 0.5 10 -0.034 0.003 -0.037
50 0.5 10 -0.038 -0.001 -0.037
100 0.5 10 -0.037 -0.001 -0.036
10 0.9 10 -0.049 0.000 -0.049
20 0.9 10 -0.048 0.001 -0.049
50 0.9 10 -0.050 -0.001 -0.049
100 0.9 10 -0.050 0.000 -0.050

33



T
ab

le
7:

90
%

C
on

fid
en

ce
In

te
rv

al
s

fo
r

R
el

at
iv

e
E

ffi
ci

en
cy

(r
∗ i
),

In
di

re
ct

M
et

ho
d

(C
as

e
th

at
u
∗ i

ar
e

fix
ed

ac
ro

ss
re

pl
ic

at
io

ns
)

In
fe

as
ib

le
P
ar

am
et

ri
c

Fe
as

ib
le

P
ar

am
et

ri
c

P
er

ce
nt

ile
B

oo
ts

tr
ap

T
γ
∗

N
w

id
th

P
(<

lb
)

P
(>

u
b)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b)

co
ve

r
10

0.
1

10
0.

45
6

0.
04

5
0.

04
5

0.
90

9
0.

44
1

0.
03

1
0.

04
7

0.
92

2
0.

35
6

0.
01

9
0.

09
3

0.
88

8
10

0.
1

20
0.

47
9

0.
04

3
0.

04
4

0.
91

4
0.

45
9

0.
02

2
0.

04
8

0.
93

1
0.

35
4

0.
00

9
0.

12
9

0.
86

1
10

0.
1

50
0.

49
4

0.
04

8
0.

05
1

0.
90

1
0.

46
2

0.
01

3
0.

05
9

0.
92

8
0.

33
5

0.
00

4
0.

21
8

0.
77

8
10

0.
1

10
0

0.
49

9
0.

05
3

0.
05

1
0.

89
6

0.
45

6
0.

00
7

0.
06

6
0.

92
7

0.
31

9
0.

00
1

0.
30

8
0.

69
1

10
0.

5
10

0.
21

2
0.

04
5

0.
04

5
0.

90
9

0.
21

2
0.

04
5

0.
04

5
0.

90
9

0.
19

9
0.

05
7

0.
05

6
0.

88
7

10
0.

5
20

0.
22

3
0.

04
3

0.
04

4
0.

91
4

0.
22

3
0.

04
3

0.
04

4
0.

91
4

0.
21

0
0.

05
3

0.
05

4
0.

89
3

10
0.

5
50

0.
23

0
0.

04
8

0.
05

1
0.

90
1

0.
23

0
0.

04
8

0.
05

1
0.

90
1

0.
21

7
0.

05
8

0.
06

0
0.

88
3

10
0.

5
10

0
0.

23
3

0.
05

3
0.

05
1

0.
89

6
0.

23
3

0.
05

3
0.

05
1

0.
89

6
0.

21
8

0.
06

1
0.

06
0

0.
87

8
10

0.
9

10
0.

07
1

0.
04

5
0.

04
5

0.
90

9
0.

07
1

0.
04

5
0.

04
5

0.
90

9
0.

06
6

0.
05

7
0.

05
6

0.
88

7
10

0.
9

20
0.

07
4

0.
04

3
0.

04
4

0.
91

4
0.

07
4

0.
04

3
0.

04
4

0.
91

4
0.

07
0

0.
05

3
0.

05
4

0.
89

3
10

0.
9

50
0.

07
7

0.
04

8
0.

05
1

0.
90

1
0.

07
7

0.
04

8
0.

05
1

0.
90

1
0.

07
3

0.
05

8
0.

06
0

0.
88

3
10

0.
9

10
0

0.
07

7
0.

05
3

0.
05

1
0.

89
6

0.
07

7
0.

05
3

0.
05

1
0.

89
6

0.
07

4
0.

06
2

0.
06

0
0.

87
8

10
0.

1
10

0.
45

6
0.

04
5

0.
04

5
0.

90
9

0.
44

1
0.

03
1

0.
04

7
0.

92
2

0.
35

6
0.

01
9

0.
09

3
0.

88
8

20
0.

1
10

0.
31

3
0.

03
8

0.
04

4
0.

91
8

0.
31

1
0.

03
1

0.
04

4
0.

92
4

0.
28

1
0.

02
8

0.
05

7
0.

91
5

50
0.

1
10

0.
19

6
0.

05
5

0.
04

9
0.

89
6

0.
19

6
0.

05
4

0.
04

9
0.

89
6

0.
19

1
0.

05
3

0.
05

1
0.

89
6

10
0

0.
1

10
0.

13
8

0.
04

5
0.

04
1

0.
91

4
0.

13
8

0.
04

5
0.

04
1

0.
91

4
0.

13
7

0.
04

7
0.

04
1

0.
91

2
10

0.
5

10
0.

21
2

0.
04

5
0.

04
5

0.
90

9
0.

21
2

0.
04

5
0.

04
5

0.
90

9
0.

19
9

0.
05

7
0.

05
6

0.
88

7
20

0.
5

10
0.

14
7

0.
03

8
0.

04
4

0.
91

8
0.

14
7

0.
03

8
0.

04
4

0.
91

8
0.

14
3

0.
04

3
0.

04
8

0.
90

9
50

0.
5

10
0.

09
3

0.
05

5
0.

04
9

0.
89

6
0.

09
3

0.
05

5
0.

04
9

0.
89

6
0.

09
2

0.
05

6
0.

05
1

0.
89

4
10

0
0.

5
10

0.
06

5
0.

04
5

0.
04

1
0.

91
4

0.
06

5
0.

04
5

0.
04

1
0.

91
4

0.
06

5
0.

04
7

0.
04

1
0.

91
2

10
0.

9
10

0.
07

1
0.

04
5

0.
04

5
0.

90
9

0.
07

1
0.

04
5

0.
04

5
0.

90
9

0.
06

6
0.

05
7

0.
05

6
0.

88
7

20
0.

9
10

0.
05

0
0.

03
8

0.
04

4
0.

91
8

0.
05

0
0.

03
8

0.
04

4
0.

91
8

0.
04

8
0.

04
3

0.
04

8
0.

90
9

50
0.

9
10

0.
03

1
0.

05
5

0.
04

9
0.

89
6

0.
03

1
0.

05
5

0.
04

9
0.

89
6

0.
03

1
0.

05
6

0.
05

1
0.

89
4

10
0

0.
9

10
0.

02
2

0.
04

5
0.

04
1

0.
91

4
0.

02
2

0.
04

5
0.

04
1

0.
91

4
0.

02
2

0.
04

7
0.

04
1

0.
91

2

34



T
ab

le
8:

90
%

C
on

fid
en

ce
In

te
rv

al
s

fo
r

R
el

at
iv

e
E

ffi
ci

en
cy

(r
∗ i
),

In
di

re
ct

M
et

ho
d

(C
as

e
th

at
u
∗ i

ar
e

fix
ed

ac
ro

ss
re

pl
ic

at
io

ns
)

B
ia

s
B

ia
s

C
or

re
ct

ed
B

as
ic

B
C

a
B

oo
ts

tr
ap

C
or

re
ct

ed
bo

ot
st

ra
p

B
oo

ts
tr

ap
w

it
h

B
C

a
B

oo
ts

tr
ap

M
et

ho
d

T
γ
∗

N
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
w

id
th

P
(<

lb
)

P
(>

u
b
)

co
ve

r
10

0.
1

10
0.

35
5

0.
09

9
0.

06
8

0.
83

3
0.

39
6

0.
12

3
0.

05
8

0.
81

9
0.

41
4

0.
09

3
0.

06
7

0.
84

0
0.

40
8

0.
14

6
0.

05
5

0.
79

9
10

0.
1

20
0.

35
0

0.
11

3
0.

06
2

0.
82

5
0.

40
9

0.
12

1
0.

05
7

0.
82

2
0.

41
6

0.
10

5
0.

06
1

0.
83

4
0.

41
8

0.
13

7
0.

05
3

0.
81

0
10

0.
1

50
0.

33
9

0.
12

7
0.

06
9

0.
80

5
0.

41
0

0.
12

6
0.

06
2

0.
81

2
0.

41
0

0.
11

8
0.

06
6

0.
81

7
0.

41
5

0.
13

4
0.

05
7

0.
80

9
10

0.
1

10
0

0.
33

0
0.

11
6

0.
07

5
0.

80
9

0.
40

3
0.

11
2

0.
06

4
0.

82
3

0.
40

2
0.

10
8

0.
06

8
0.

82
4

0.
40

8
0.

11
9

0.
05

8
0.

82
2

10
0.

5
10

0.
20

0
0.

06
0

0.
08

6
0.

85
4

0.
19

9
0.

08
9

0.
05

5
0.

85
6

0.
20

0
0.

06
0

0.
08

6
0.

85
5

0.
19

9
0.

05
8

0.
05

6
0.

88
6

10
0.

5
20

0.
21

1
0.

05
6

0.
07

3
0.

87
1

0.
21

0
0.

07
4

0.
05

4
0.

87
2

0.
21

1
0.

05
6

0.
07

3
0.

87
1

0.
21

1
0.

05
6

0.
05

4
0.

89
1

10
0.

5
50

0.
21

7
0.

06
1

0.
07

1
0.

86
8

0.
21

7
0.

07
2

0.
06

0
0.

86
8

0.
21

7
0.

06
1

0.
07

1
0.

86
8

0.
21

7
0.

06
2

0.
05

9
0.

87
8

10
0.

5
10

0
0.

21
9

0.
06

8
0.

06
6

0.
86

6
0.

21
9

0.
07

4
0.

06
1

0.
86

6
0.

21
9

0.
06

8
0.

06
6

0.
86

6
0.

21
9

0.
07

1
0.

06
1

0.
86

9
10

0.
9

10
0.

06
6

0.
06

0
0.

05
6

0.
88

4
0.

06
6

0.
05

8
0.

05
5

0.
88

7
0.

06
6

0.
05

9
0.

05
5

0.
88

5
0.

06
6

0.
05

7
0.

05
6

0.
88

7
10

0.
9

20
0.

07
0

0.
05

4
0.

05
3

0.
89

2
0.

07
0

0.
05

3
0.

05
3

0.
89

4
0.

07
0

0.
05

5
0.

05
3

0.
89

2
0.

07
0

0.
05

3
0.

05
4

0.
89

3
10

0.
9

50
0.

07
3

0.
05

9
0.

06
0

0.
88

1
0.

07
3

0.
05

8
0.

06
0

0.
88

3
0.

07
3

0.
05

9
0.

05
9

0.
88

1
0.

07
3

0.
05

8
0.

05
9

0.
88

3
10

0.
9

10
0

0.
07

3
0.

06
3

0.
06

1
0.

87
6

0.
07

4
0.

06
2

0.
06

0
0.

87
8

0.
07

3
0.

06
3

0.
06

0
0.

87
6

0.
07

4
0.

06
2

0.
06

1
0.

87
7

10
0.

1
10

0.
35

5
0.

09
9

0.
06

8
0.

83
3

0.
39

6
0.

12
3

0.
05

8
0.

81
9

0.
41

4
0.

09
3

0.
06

7
0.

84
0

0.
40

8
0.

14
6

0.
05

5
0.

79
9

20
0.

1
10

0.
29

1
0.

08
0

0.
07

6
0.

84
5

0.
29

2
0.

11
3

0.
04

9
0.

83
8

0.
30

7
0.

07
5

0.
07

6
0.

84
9

0.
29

6
0.

10
3

0.
04

8
0.

84
9

50
0.

1
10

0.
19

6
0.

06
6

0.
11

0
0.

82
4

0.
19

2
0.

12
8

0.
05

1
0.

82
1

0.
19

7
0.

06
6

0.
11

1
0.

82
4

0.
19

2
0.

07
0

0.
05

1
0.

87
9

10
0

0.
1

10
0.

13
8

0.
04

8
0.

06
8

0.
88

4
0.

13
7

0.
07

4
0.

04
0

0.
88

6
0.

13
8

0.
04

8
0.

06
8

0.
88

3
0.

13
8

0.
04

6
0.

04
1

0.
91

3
10

0.
5

10
0.

20
0

0.
06

0
0.

08
6

0.
85

4
0.

19
9

0.
08

9
0.

05
5

0.
85

6
0.

20
0

0.
06

0
0.

08
6

0.
85

5
0.

19
9

0.
05

8
0.

05
6

0.
88

6
20

0.
5

10
0.

14
3

0.
04

4
0.

04
9

0.
90

7
0.

14
3

0.
04

5
0.

04
7

0.
90

7
0.

14
3

0.
04

4
0.

04
9

0.
90

7
0.

14
3

0.
04

4
0.

04
8

0.
90

8
50

0.
5

10
0.

09
2

0.
05

8
0.

05
2

0.
89

0
0.

09
2

0.
05

7
0.

05
1

0.
89

2
0.

09
2

0.
05

8
0.

05
2

0.
89

0
0.

09
2

0.
05

6
0.

05
1

0.
89

4
10

0
0.

5
10

0.
06

5
0.

04
8

0.
04

0
0.

91
2

0.
06

5
0.

04
6

0.
04

0
0.

91
4

0.
06

5
0.

04
8

0.
04

1
0.

91
1

0.
06

5
0.

04
5

0.
04

1
0.

91
3

10
0.

9
10

0.
06

6
0.

06
0

0.
05

6
0.

88
4

0.
06

6
0.

05
8

0.
05

5
0.

88
7

0.
06

6
0.

05
9

0.
05

5
0.

88
5

0.
06

6
0.

05
7

0.
05

6
0.

88
7

20
0.

9
10

0.
04

8
0.

04
4

0.
04

7
0.

90
8

0.
04

8
0.

04
4

0.
04

7
0.

90
9

0.
04

8
0.

04
4

0.
04

8
0.

90
8

0.
04

8
0.

04
4

0.
04

8
0.

90
8

50
0.

9
10

0.
03

1
0.

05
8

0.
05

2
0.

89
0

0.
03

1
0.

05
7

0.
05

1
0.

89
2

0.
03

1
0.

05
8

0.
05

2
0.

89
0

0.
03

1
0.

05
6

0.
05

1
0.

89
4

10
0

0.
9

10
0.

02
2

0.
04

8
0.

04
0

0.
91

2
0.

02
2

0.
04

6
0.

04
0

0.
91

4
0.

02
2

0.
04

8
0.

04
1

0.
91

1
0.

02
2

0.
04

5
0.

04
1

0.
91

3

35



Table 9: Estimated Efficiencies and 90% Confidence Intervals: Indonesian Rice Farms

Fixed Effects Estimates &
Feasible Parametric Intervals MLE

Firm Point Point
No. Estimate LB UB Estimate LB UB
164 1.000 1.000 1.000 0.964 0.903 0.998
118 0.933 0.682 1.000 0.964 0.902 0.998
163 0.932 0.682 1.000 0.959 0.890 0.997
...

...
...

...
...

...
...

31 0.620 0.447 0.859 0.924 0.823 0.994
...

...
...

...
...

...
...

15 0.554 0.403 0.762 0.923 0.792 0.990
...

...
...

...
...

...
...

16 0.501 0.362 0.694 0.845 0.725 0.969
...

...
...

...
...

...
...

117 0.380 0.275 0.524 0.773 0.658 0.907
45 0.366 0.266 0.504 0.774 0.659 0.908
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Table 11: 90% Confidence Intervals by Direct Method: Indonesian Rice Farms

Bias Bias Basic
Corrected Corrected Bootstrap

Firm FE Bootstrap with BCa Method
No. Est. LB UB LB UB LB UB
164 1.000 0.892 1.000 0.825 1.000 1.000 1.000
118 0.933 0.809 1.000 0.796 1.000 0.867 1.000
163 0.932 0.812 1.000 0.801 1.000 0.864 1.000
...

...
...

...
...

...
...

...
31 0.620 0.524 0.828 0.531 0.840 0.490 0.794
...

...
...

...
...

...
...

...
15 0.554 0.475 0.713 0.476 0.717 0.471 0.709
...

...
...

...
...

...
...

...
16 0.501 0.428 0.652 0.427 0.651 0.419 0.644
...

...
...

...
...

...
...

...
117 0.380 0.321 0.494 0.327 0.503 0.314 0.486
45 0.366 0.316 0.473 0.318 0.478 0.308 0.465

Table 12: Estimated Efficiencies and 90% Confidence Intervals: Texas Utilities

Fixed Effects Estimates &
Feasible Parametric Intervals MLE

Firm Point Point
No. Estimate LB UB Estimate LB UB
5 1.000 1.000 1.000 0.987 0.971 0.999
3 0.916 0.823 1.000 0.978 0.959 0.996
10 0.861 0.786 0.943 0.908 0.889 0.927
1 0.835 0.784 0.889 0.864 0.846 0.882
8 0.820 0.773 0.869 0.846 0.828 0.864
9 0.806 0.766 0.848 0.826 0.809 0.843
2 0.801 0.749 0.855 0.831 0.814 0.848
7 0.786 0.732 0.844 0.817 0.800 0.834
6 0.785 0.730 0.845 0.820 0.803 0.837
4 0.762 0.719 0.808 0.786 0.770 0.801
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Table 14: 90% Confidence Intervals by Direct Method: Texas Utilities

Bias Bias Basic
Corrected Corrected Bootstrap

Firm FE Bootstrap with BCa Method
No. Est. LB UB LB UB LB UB
5 1.000 0.992 1.000 0.911 1.000 1.000 1.000
3 0.916 0.825 0.998 0.823 0.998 0.833 1.000
10 0.861 0.791 0.922 0.790 0.921 0.798 0.928
1 0.835 0.788 0.877 0.783 0.874 0.792 0.881
8 0.820 0.777 0.859 0.777 0.859 0.780 0.863
9 0.806 0.770 0.842 0.772 0.843 0.772 0.843
2 0.801 0.754 0.843 0.753 0.843 0.759 0.848
7 0.786 0.737 0.831 0.736 0.831 0.741 0.836
6 0.785 0.733 0.832 0.731 0.831 0.739 0.839
4 0.762 0.721 0.799 0.718 0.797 0.726 0.804
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