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Second order Mgller—Plesset perturbation theory at the complete basis set limit and diffusion
quantum Monte Carlo are used to examine several low energy isomers of the water hexamer. Both
approaches predict the so-called prism to be the lowest energy isomer, followed by cage, book, and
cyclic isomers. The energies of the four isomers are very similar, all being within
10—15 meV/H,0. These reference data are then used to evaluate the performance of several
density-functional theory exchange-correlation (xc) functionals. A subset of the xc functionals tested
for smaller water clusters [1. Santra ef al., J. Chem. Phys. 127, 184104 (2007)] has been considered.
While certain functionals do a reasonable job at predicting the absolute dissociation energies of the
various isomers (coming within 10-20 meV/H,0), none predict the correct energetic ordering of
the four isomers nor does any predict the correct low total energy isomer. All xc functionals tested
either predict the book or cyclic isomers to have the largest dissociation energies. A many-body
decomposition of the total interaction energies within the hexamers leads to the conclusion that the
failure lies in the poor description of van der Waals (dispersion) forces in the xc functionals
considered. It is shown that the addition of an empirical pairwise (attractive) C4R™® correction to
certain functionals allows for an improved energetic ordering of the hexamers. The relevance of
these results to density-functional simulations of liquid water is also briefly discussed. © 2008

American Institute of Physics. [DOL: 10.1063/1.3012573]

I. INTRODUCTION

How good is density-functional theory (DFT) for hydro-
gen (H) bonds? What is the best exchange-correlation (xc)
functional for treating H bonds? Questions like these are far
from uncommon for developers and practitioners of Kohn—
Sham DFT, particularly those interested in simulating collec-
tions of atoms held together with H bonds. Clearly imprecise
and vague questions, it is nonetheless important to answer
them once, of course, terms such as “good” and “best” have
been defined and consideration made to the properties of
interest (energetic, structural, dynamical, electronic). Indeed
considerable effort has been expended in an attempt to an-
swer questions like these,l_8 and with new xc functionals
regularly appearing, there appears to be no end in sight for
such studies.

One particularly important class of H bonded systems,
arguably the most important, are the H bonds that hold water
molecules together, either as gas phase molecular clusters or
condensed phase solid (ice) and liquid water. Kohn—Sham
DFT has been widely used to examine water under various
conditions and environments.'> 72 Along with this wide-
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spread application there have also been various benchmark
studies specifically aimed at accessing the performance of
various xc functionals in treating gas phase water
clusters,l’s’7 adsorbed clusters,lg’26 and liquid water.””'® In
particular, the question of the performance of DFT xc func-
tionals in describing the structure and dynamics of liquid
water has become a particularly hot and contentious issue
due to apparent discrepancies between experiment and
DFT.’'8 Reconciling these differences, which are mainly
concerned with the radial distribution functions (RDFs) and
diffusion coefficient of liquid water, remains an immensely
important open question and is one that is actively being
addressed by many. However, simultaneously addressing all
the possible factors which could account for the difference
between the experimental and theoretical RDFs and diffusion
coefficients (e.g., quantum nuclear effects, xc functional,
density, and basis set) is far from straightforward and not
particularly practicable. Instead the course we and others
have chosen to follow to shed light on the performance of
DFT xc functionals for treating water is to investigate well-
defined gas phase water clusters for which precise compari-
son can be made to high level quantum chemistry calcula-
tions. This approach allows the precise performance
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Book Cyclic

FIG. 1. (Color online) Structures of the four isomers of the water hexamer
considered here (obtained with MP2 and an aug-cc-pVTZ basis). The
dashed lines indicate H bonds, with the conventional number of H bonds
each cluster is assumed to have (prism=9; cage=8; book=7; and cyclic
=6) (Ref. 92). Some of the structural parameters discussed in the text are
included alongside the cyclic structure.

limitations for a range of xc functionals to be obtained, in-
formation that is likely to be of relevance to liquid water.

Previously we tested the performance of 16 xc function-
als for the equilibrium structures of the water dimer to pen-
tamer, making reference to complete basis set (CBS) ex-
trapolated second order Mgller—Plesset perturbation theory
(MP2) data.! That study revealed that of the functionals
tested the hybrid X3LYP (Ref. 27) and PBEO (Ref. 28) func-
tionals were the most accurate, both coming within 10
meV/H bond of MP2 for each cluster. Among the nonhybrid
functionals mPWLYP (Refs. 29 and 30) and PBE1IW (Ref. 5)
offered the best performance.1 Here, we extend this work to
the water hexamer. The water hexamer is interesting and
warrants particular attention, not least because it provides a
critical test for DFT xc functionals since there are four dis-
tinct isomers which lie within 10-20 meV/H,O of each
other. The isomers are known most commonly as the
“prism,” “cage,” “book,” and “cyclic” isomers (Fig. 1).
Which one is the lowest energy on the Born—-Oppenheimer
potential energy surface with or without corrections for zero
point vibrations or the experimental ground state structure at
finite temperatures has been a matter of debate for some
time.**'~*" For this paper we focus exclusively on the ques-
tion of the lowest total energy isomer without zero point
corrections, for which a consensus from wave function based
methods appears to have emerged recently in favor of the
prism isomer as being the lowest energy structure 5363240
How many of the widely used xc functionals such as PBE,
BLYP, and B3LYP perform for the relative energies of these
isomers remains unclear, although there are indications that
these and other DFT xc functionals are likely to encounter
problems for the hexamer.”*'~* Other often cited reasons for
being interested particularly in water hexamers are that they
represent a transition from cyclic structures favored by
smaller water clusters to three-dimensional structures fa-
vored by larger water clusters and that water hexamers are
believed to be important constituents of liquid water and
known to be building blocks of various phases of ice.

In the following, we report a study in which the ability
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of several popular xc functionals to describe the energies and
structures of the four water hexamers mentioned above is
addressed. Comparisons are made with reference data gener-
ated by ourselves with MP2 at the CBS limit and diffusion
Monte Carlo (DMC). The total energy ordering (i.e., neglect-
ing zero point energies and finite temperature effects) pre-
dicted by MP2 and DMC is the same and in the order
prism < cage <book <cyclic. However, all popular and
widely used xc functionals tested fail to predict the correct
ordering of the isomers; instead, they opt for either the book
or cyclic isomers as the lowest energy ones. This discrepancy
is largely attributed to the inability of DFT to correctly cap-
ture the van der Waals (vdW) interaction between widely
separated molecules in the clusters. By including an empiri-
cal C4R™® correction we are able to explain the origin of the
failure of the tested xc functionals and recover the correct
energetic ordering between the different conformers.

Il. METHODS AND REFERENCE DATA

This paper involves the application of a variety of theo-
retical approaches, which we now briefly describe. Specifi-
cally, we discuss how the MP2 and DMC reference data are
acquired and then the set up for the DFT calculations.

A. MP2

MP2 has been used to compute structures and binding
energies for each of the four isomers. All MP2 calculations
have been performed with the GAUSSIAN 03 (Ref. 45) and
NWCHEM (Ref. 46) codes and all geometries were optimized
with an aug-cc-pVTZ basis set within the “frozen core” ap-
proximation, i.e., correlations of the oxygen ls orbital were
not considered.*’ Although the aug-cc-pVTZ basis set is
moderately large (92 basis functions/H,0), this finite basis
set will introduce errors in the predicted MP2 structures.
However, a test with the H,O dimer reveals that the aug-cc-
pVTZ and aug-cc-pVQZ MP2 structures differ by only
0.004 A in the O—-O bond length and 0.16° in the H bond
angle (¢, Fig. 1). Likewise, Nielsen et al.*® showed that the
MP2 0-0 distances in the cyclic trimer differ by 0.006 A
between the aug-cc-pVTZ and aug-cc-pVQZ basis sets with
all other bonds differing by <0.003 A. For our present pur-
poses these basis set incompleteness errors on the structures
are acceptable and it seems reasonable to assume that the
MP2 aug-cc-pVTZ structures reported here come with error
bars compared to the MP2/CBS limit of =0.01 A for bond
lengths and =0.5° for bond angles.

Total energies and dissociation energies are known to be
more sensitive to basis set incompleteness effects than the
geometries. To obtain reliable MP2 total energies and disso-
ciation energies we employ the aug-cc-pVTZ, aug-cc-pVQZ
(172 basis functions/H,0), and aug-cc-pV5Z (287 basis
functions/H,0) basis sets in conjunction with the well-
established methods for extrapolating to the CBS limit. Usu-
ally the extrapolation schemes rely on extrapolating sepa-
rately the Hartree-Fock (HF) and correlation contributions to
the MP2 total energy. For extrapolation of the HF part we
use Feller’s* exponential fit:
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EY' =Eghg+Ae™BX, (1)

where X is the cardinal number corresponding to the basis set
(X=3, 4, and 5 for the aug-cc-pVTZ, aug-cc-pVQZ, and aug-
cc-pV5Z basis sets, respectively). E?F is the corresponding
HF energy, Eggs is the extrapolated HF energy at the CBS
limit, and A and B are fitting parameters. For the correlation
part of the MP2 total energy we follow an inverse power of
highest angular momentum equation:so*52

EQ" = E&ps+ CX 3 + DX, 2)

where EY™ is the correlation energy corresponding to X,
Eps is the extrapolated CBS correlation energy, and C and
D are fitting parameters.53

B. Quantum Monte Carlo

In order to assess the importance of correlation effects
beyond the MP2 level, we evaluated the binding energies of
the water clusters using quantum Monte Carlo (QMC). QMC
is a stochastic approach to solve the many-electron
Schrodinger equation.54 The central quantity which deter-
mines the accuracy of a QMC calculation is the trial wave
function, i.e., a correlated ansatz for the many-electron wave
function. In variational Monte Carlo the expectation value of
the many-electron Hamiltonian is computed as a statistical
average over a large number of electronic configurations
which are sampled from the square of the trial wave function
using the Metropolis algorithm. An optimized trial wave
function may be obtained within variational Monte Carlo
based on variational principles for the variance of the local
energy or the energy.55 This trial wave function is then used
in DMC which yields the best energy within the fixed-node
approximation (i.e., projecting out the lowest energy state
with the same nodes as the trial wave function).

DMC calculations yield highly accurate results for a
wide variety of chemical systems (molecules and solids) and
properties (binding energies, reaction energetics) as shown,
for example, in Refs. 54 and 56-58. Recent studies of H
bonded (and stacked aromatic) molecular dimers™®® dem-
onstrate that DMC describes the interaction energies of such
noncovalently bonded systems in very close agreement with
the best available CCSD(T)/CBS estimates, in particular,
where corrections beyond MP2/CBS are signiﬁcant.64

In the present work, the trial wave functions are chosen
of the Slater—Jastrow form with ‘P=DTD Le] , 1.e., as the prod-
uct of Slater determinants D, of one-particle orbitals for the
spin-up and spin-down electrons and a Jastrow correlation
factor ¢/ depending on the electron-electron and electron-
nucleus distances.® The one-electron orbitals are represented
in an atomic Gaussian basis and generated from DFT-B3LYP
calculations using the GAMESS code.®® The parameters of the
Jastrow correlation factor are optimized using the variance
minimization method.®” The atomic cores are represented us-
ing the nonlocal pseudopotentials of Ref. 68 and included in
DMC within the usual localization approximation (i.e., non-
local potentials are transformed into local operators by pro-
jection onto the trial wave function). The QMC calculations
are performed using the CHAMP package.égj0 All QMC re-
sults reported below are from DMC. The results for the dif-
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ferent isomers are given in Table I and calculated for MP2/
aug-cc-VTZ geometries (see Sec. IT A) using a time step of
T= SI—OEZI and a target population of 800 walkers.

The main approximations in our DMC calculations are
the fixed-node and pseudopotential localization approxima-
tions, and the quality of both is determined by the choice of
the trial wave function. To estimate their effect on the H
bond energies we have carefully analyzed the results of
DMC calculations for the water dimer (in terms of the choice
of pseudopotentials, basis set, terms in the Jastrow factor,
and the time step in DMC) using the same form of the trial
wave function as for the water hexamers. For the dissociation
energy of the water dimer we obtain D,=218*3 meV, in
agreement with the recent result of Gurturbay and Needs,”
218*+3 meV, obtained by a DMC calculation that employed
a different set of pseudopotentials but appears otherwise es-
sentially analogous to ours. These pseudopotential DMC re-
sults are consistent with the CCSD(T)/CBS result of Ref. 71
(217.7 meV) and the all-electron DMC result of Gurturbay
and Needs®’ (224 =4 meV, for a Slater—Jastrow wave func-
tion using DFT-B3LYP orbitals). Gurturbay and Needs” fur-
thermore showed that going beyond the localization approxi-
mation for nonlocal pseudopotentials produces equivalent
results for the water dimer dissociation energy to within 5
meV. As the nodes of the trial wave function are given by its
determinantal part, i.e., by D, we also use orbitals from HF
instead of DFT-B3LYP calculations to build the Slater deter-
minants and thus provide a test of the sensitivity of the DMC
results to changes in the nodes. While HF orbitals noticeably
increase the total energies of the monomer and dimer com-
pared to DFT-B3LYP orbitals, we find that these changes
cancel in the DMC dissociation energy. Our DMC-HF result
is 214+ 6 meV, compared to 218 =8 meV for all-electron
DMC-HFE.”” On the other hand, Gurturbay and Needs™”
showed that the inclusion of so-called backflow correlations
to alter the nodes in a Slater—Jastrow wave function produces
a slightly stronger H bond, changes being <20 meV in their
pseudopotential DMC and somewhat smaller in their all-
electron DMC calculation. From the above comparison of
our DMC results for the water dimer with the best available
theoretical reference data, DMC and CCSD(T), errors in the
H bond strength due to the fixed-node and pseudopotential
(localization) approximations appear small. We therefore ex-
pect that our DMC calculations provide an accurate account
of the interactions between water molecules also in the hex-
amers, i.e., within =10 meV/H,0. To further corroborate
this estimate requires additional investigation, in particular,
of the accuracy of the available, different pseudopotentials as
well as of refinement of the trial wave functions. This is
beyond the scope of the present study, but we note that pre-
vious DMC-HF studies using different pseudopotentials (and
slightly different geometries) than employed here found
somewhat larger dissociation energies of the water dimer
[245+9 meV (Ref. 73) and 232 =4 meV (Ref. 60)] than in
the present work and in Ref. 59. The pseudopotentials used
in these and the present study are both based on atomic HF
calculations, yet their functional form is different. The accu-
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TABLE I. Dissociation energies of the four water hexamers obtained from various electronic structure ap-
proaches: MP2/CBS; DMC; CCSD(T) with a triple-{ basis set (Ref. 40); 12 different DFT xc functionals
computed, unless indicated otherwise, with an aug-cc-pV5Z basis set; and HF at the CBS limit. The most stable
isomer from each method is indicated in bold and the relative energies of the other isomers are given in
parenthesis. MEs and MAEs in dissociation energies, averaged over the four hexamers in comparison with MP2
and DMC, are also given. All structures were optimized consistently with MP2, HF, and each DFT functional
with an aug-cc-pVTZ basis set except for the DMC calculations which used the MP2 structures. DFT xc
functionals are arranged here with increasing value of MAE from MP2. All values are in meV/H,O
(1 kcal/mol=43.3641 meV).

MP2 DMC

Method Prism Cage Book Cyclic MAE ME MAE ME
MP2 332.3 331.9(0.4) 330.2(2.1)  324.1(8.2)

DMC* 331.9 329.5(2.4) 327.8(4.1)  320.8(11.1)

CCSD(T)"  347.6 345.5(2.1) 338.9(8.7)  332.5(15.1)

PBEO 322.9(8.0) 325.3(5.7) 330.9 330.8(0.1) 59 -2.1 6.6 0.0
mPWLYP 323.2(10.4)  325.9(7.7) 333.6 333.3(0.3) 6.9 -0.6 7.7 1.5
X3LYP 317.2(8.8) 319.2(6.8) 325.8(0.2)  326.0 8.5 -7.6 7.1 -5.5
PBEIW 315.2(6.9) 314.8(7.3) 322.1 321.5(0.6) 11.3 -11.3 9.5 -9.1
PBE 336.1(9.5) 339.4(6.2) 345.6 344.1(1.5) 11.7 11.7 13.8 13.8
B98 305.3(7.3) 306.8(5.8) 312.6 312.5(0.1) 20.4 -20.4 182 -182
TPSS 303.9(12.8)  302.8(13.9) 313.6(3.1) 316.7 20.4 -20.4 183 -183
PWI1 351.4(10.2)  354.7(6.9) 361.6 360.3(1.3) 27.3 27.3 29.5 29.5
BP86 294.9(13.6) 297.4(11.1) 308.5 306.6(1.9) 27.8 -27.8 2577 =257
B3LYP 294.4(12.3)  297.1(9.6) 305.1(1.6)  306.7 28.8 -28.8 26.7  -26.7
XLYP 287.9(10.0) 286.9(11.0) 296.3(1.6) 297.9 37.4 -37.4 353 -353
BLYP 273.6(16.2) 277.4(12.4) 287.5(2.3) 289.8 47.6 -47.6 454 454
BLYP® 273.6(16.2)  277.3(12.5) 287.4(2.4) 289.8 47.6 —47.6 455 455
BLYP! 272.1(17.6)  276.0(13.7)  286.7(3.0) 289.7 48.5 —48.5 464 4604
HF 222.9(12.2) 224.4(10.7) 230.6(4.5) 235.1 101.4  -101.4 993 -99.3

“The statistical errors on the dissociation energies of prism, cage, book, and cyclic are =1.0, 0.9, *=1.0, and
*1.0 meV/H,O0, respectively. For the relative energies of the cage, book, and cyclic with respect to the prism
(calculated as differences of total energies of the isomers rather than their dissociation energies) the statistical
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errors are =1.0, 1.1, and =1.1 meV/H,O, respectively.

"Reference 40.
‘Full geometry optimization with the FHI-AIMS code.

“Full geometry optimization with the CPMD code using a plane-wave basis set and a 250 Ry cutoff. Also see Ref.

87 for results with a lower (70 Ry) cutoff.

racy of the pseudopotentials used here has been explicitly
demonstrated for molecular properties of diatomic molecules
at the CCSD(T) level.*®

C. Kohn—-Sham DFT

Of course, in a study such as this, there is an essentially
endless list of functionals that we could consider evaluating.
We have performed DFT calculations with 12 different xc
functionals, chosen because they are either popular or have
previously been shown to perform well for the strengths of H
bonds between water molecules. Specifically, we have exam-
ined the following generalized gradient approximation
(GGA)  functionals: PW91,”*  PBE,> PBEIW,
mPWLYP®* BP86,%”7 BLYP %’ and XLYP (Ref. 27).
The meta-GGA TPSS (Ref. 78) has also been considered as
well as the following hybrid functionals: PBE0,”® X3LYP,”’
B3LYP, %! and B98.*? The local-density approximation
(LDA) has not been considered since it is known to overes-
timate the dissociation energy of water clusters by >50%.%

Most DFT calculations have been performed with the
GAUSSIAN 03 (Ref. 45) and NWCHEM (Ref. 46) codes. Such
calculations are all electron and employ Gaussian-type or-
bital basis sets. Geometries were optimized with an aug-cc-

pVTZ basis set and energies with an aug-cc-pV5Z basis set.
We have shown before that such large basis sets are for DFT
sufficiently large to reflect the true performance of each xc
functional at a level of accuracy that is reasonably expected
to approach the basis set limit to within about 0.5 meV/H
bond or better.'

While standard quantum chemistry software packages,
such as the ones mentioned above, can be conveniently used
for the simulation of small water clusters, one of our longer
term goals is the accurate simulation of condensed phases of
water such as ice or liquid water. Therefore, we have also
performed selected DFT calculations with codes suitable for
condensed phase simulations, such as the plane-wave
pseudopotential code CPMD (Ref. 83) and the all-electron nu-
meric atom-centered orbital (NAO) code FHI-AIMS, which
originates from our laboratory.84 A by-product of such effort
is the interesting comparison of three different methodolo-
gies for DFT calculations (Gaussians, plane waves, and
NAOs) of the energetics of H bonded systems. For the
pseudopotential plane-wave DFT calculations in CPMD we
have used hard pseudopotentials of Goedecker et al. 3%
along with an energy cutoff of at least 200 Ry for the plane-
wave kinetic energy.87 For each hexamer an appropriate cell
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size was chosen to leave at least 10 A of vacuum on each
side of the cluster. This cell size was found to be converged
by performing selected simulations with a larger vacuum of
15 A and with or without the Hockney Poisson solver™ for
electrostatic decoupling between neighboring cells. In the
case of the all-electron NAO calculations with the FHI-AIMS
code we have employed hydrogenic basis functions and care-
fully benchmarked all calculation parameters (basis set, grid
size, cutoff potential) to achieve extreme convergence
equivalent to or better than an aug-cc-pV5Z Gaussian basis
set. As we will discuss below, a comparison between these
three methods on the energetics of small water clusters
(dimer-pentamer) reveals that the differences in the binding
energy are on the order of 0.1 meV between GAUSSIAN and
FHI-AIMS and of 1 meV between GAUSSIAN and CPMD, a
value which is negligible for all our conclusions. Further, we
have implemented a C4R~® empirical correction for vdW in-
teractions both in CPMD and FHI-AIMS, so that we could per-
form full geometry optimizations with and without this cor-
rection.

D. Dissociation energy

For MP2, DFT, and DMC we have calculated dissocia-
tion energies per H,O (D’) which are given by

Dy = (E"™° = nE"0)/ny o, (3)

where E"H20 is the total energy of each cluster with n H,O
molecules, EM20 is the total energy of a H,O monomer, and
0 is the number of water molecules in the cluster.

lll. RESULTS

Now we present and discuss our MP2 and DMC refer-
ence data. Following this we evaluate the accuracy of the 12
xc functionals considered and then present a many-body de-
composition of the total dissociation energies as well as a
detailed discussion of the value of accounting for vdW dis-
persion forces in these clusters.

A. Reference dissociation energies

Following the procedure outlined above, we obtain MP2
dissociation energies at the CBS limit for the prism, cage,
book, and cyclic hexamers of 332.3, 331.9, 330.2, and
324.1 meV/H,0, respectively (see Table 1).* Thus with
MP2 the prism is the most stable structure and the energetic
ordering of the isomers is prism < cage <book <cyclic. We
note that this is consistent with the previous MP2/CBS study
of the water hexamer reported by Xantheas et al.**® The
DMC calculations also find the prism to be the most stable
isomer and predict the same energetic ordering as MP2.
Clearly, the cyclic is the least stable isomer while the prism
and the cage isomers appear energetically very close as they
only differ by about two standard errors. Moreover, the ab-
solute dissociation energies obtained with DMC and MP2 are
within 4 meV/H,O of each other for all four clusters (Table
I). The sequence prism < cage <book < cyclic is also consis-
tent with recent CCSD(T) calculations,®* although the ab-
solute binding energies from CCSD(T) when reported40 are
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some 10—15 meV/H,O larger than our MP2/CBS dissocia-
tion energies. Most of this difference can, however, be attrib-
uted to the smaller (aug-cc-pVTZ) basis set used in the
CCSD(T) study.” Therefore, it is clear that all the explicitly
correlated wave function based methods [MP2, DMC,
CCSD(T)] predict the same low energy structure—prism—
and the same energetic ordering— prism < cage <book
<cyclic. With this consensus from different methods it now
seems that the question of which isomer is the lowest energy
on the Born—Oppenheimer potential energy surface (in the
absence of contributions from zero point vibrations) is re-
solved in favor of the prism, and that suggestions to the
contrary are not correct.” There remain, of course, minor
differences in the relative energetic ordering of some struc-
tures on the order of 5 meV/H,0 [notably CCSD(T) pre-
dicts particularly unstable book and cyclic structures com-
pared to MP2, with DMC being in between]. Resolving such
small remaining differences is beyond the scope of the cur-
rent paper, which instead now focuses on how the various
DFT functionals do in describing the energies and structures
of these clusters.

B. DFT dissociation energies

We turn now to the results obtained with the various
DFT xc functionals and first consider (i) if the DFT xc func-
tionals tested are able to predict the correct energetic order-
ing of the four hexamer isomers and (ii) what are the abso-
lute errors in the total dissociation energies for each of the
isomers. The answer to the first question is simple. All popu-
lar and widely used functionals tested fail to predict the cor-
rect minimum energy isomer. Instead of identifying the
prism as the minimum energy conformer, all xc functionals
tested either opt for the cyclic or book conformers (Table I).
This includes the X3LYP and PBEO functionals, which, in
our previous study,1 were identified as the most accurate xc
functionals of those tested on the global minimum structures
of small water clusters. It is somewhat discouraging that
most of the xc functionals tested, despite being immensely
popular for liquid water simulations, fail to predict the cor-
rect low energy structure for a system as seemingly simple as
six water molecules. However, the failure is not entirely un-
expected given that according to the wave function methods
all four structures are so close in energy (within
10-15 meV/H,0).

With regard to the second issue of how well the func-
tionals perform at predicting the absolute binding energies of
the clusters, the best functionals are PBEO, mPWLYP, and
X3LYP, producing mean absolute errors (MAEs) averaged
over the four clusters of 6, 7, and 9 meV/H,0. PBE and
PWOI1 produce errors of 12 and 28 meV/H,O, respectively.
B98 and TPSS both have a MAE of 20 meV/H,O. B3LYP
and BLYP underbind by ~29 and ~48 meV/H,O, respec-
tively. All of these conclusions are largely consistent with
our previous study on smaller water clusters." We note that
the MAEs discussed are those obtained with respect to the
MP2/CBS reference data. If instead we use the DMC results
as the reference, the conclusions all remain essentially the
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FIG. 2. Difference in the dissociation energy (AD”) in (a) meV/H,0O and (b)
meV/H bond between the various DFT xc functionals and MP2. In (b) the
generally accepted number of H bonds in the prism, cage, book, and cyclic
isomers of nine, eight, seven, and six, respectively, have been used (Ref.
92). Positive values correspond to an overestimation of the dissociation
energy by a given DFT xc functional. We note that the reference MP2
dissociation energies are at the CBS limit, whereas for the DFT xc function-
als an aug-cc-pV5Z basis set has been employed. Lines are drawn to guide
the eye only.

same. This can be seen from Table I, and is, of course, due to
the fact that the DMC and MP2 reference data are so similar
(always within 4 meV/H,0).

Looking more closely at how the functionals perform for
specific clusters, we have plotted in Figs. 2(a) and 2(b) the
difference between each functional and MP2/CBS (AD}) for
all four isomers. Since each cluster nominally has a different
number of H bonds®® and we are interested also in the de-
scription of H bonds, in Fig. 2(b) we also plot the error per H
bond for each of the clusters. Figure 2 proves to be very
illuminating and from it we extract the following key con-
clusions: (i) Upon moving from the prism to the cyclic iso-
mer (as plotted in Fig. 2), all xc functionals display a trend
toward increased binding; (ii) most functionals underbind the
prism, with PBE and PW91 being the only exceptions; (iii)
as we saw before for the dimer to pentamer,' here also BLYP

J. Chem. Phys. 129, 194111 (2008)

performs consistently when we consider the error per H
bond, coming around ~35 meV/H bond off MP2. Likewise
XLYP yields very similar errors for all four isomers when
considered on a per H bond basis. We will draw upon these
conclusions later.

Another interesting finding is that the calculations on
different water hexamers agree within 0.1 meV/H,0O be-
tween the all-electron GAUSSIAN 03 and FHI-AIMS codes and
within 1.5 meV/H,O between GAUSSIAN 03 and the pseudo-
potential plane-wave CPMD code (Table I). The latter value is
most probably due to the difference in treatment of core elec-
trons; however, this difference is still very small for all prac-
tical purposes. This level of agreement is also achieved for
the smaller clusters—dimer to pentamer—in their equilib-
rium geometries.93 This again reinforces that the basis sets
employed here are sufficiently large to reflect the true perfor-
mance of a given xc functional, absent of basis set incom-
pleteness errors.

C. Geometry

Let us now consider the quality of the geometrical pre-
dictions made by the various xc functionals. The five key
structural parameters of the H,O clusters (some of them are
shown in Fig. 1) that we evaluate are (i) the distance between
adjacent oxygen atoms involved in a H bond, Rg_q; (ii) the
length of a H bond, given by the distance between the donor
H and the acceptor O, Rq.. =Ry, (Fig. 1); (iii) the H bond
angle, 2 (0---H-0)=¢ (Fig. 1); (iv) the internal O-H bond
lengths of each water, Ry_p; and (v) the internal H-O-H
angle of each water, / (H-O-H)=4 (Fig. 1).

In Table II, the MAE and mean error (ME) of each xc
functional compared to MP2 and averaged over all four clus-
ters are reported. This provides a broad overview of how
each functional performs, revealing that for structural predic-
tions X3LYP is the most accurate functional. X3LYP outper-

TABLE II. MAE of the various DFT functionals from MP2 for five different structural parameters, averaged
over the four water hexamers examined here. The numbers in bold all have MAE =0.010 A for bond lengths
and =0.50° for bond angles. MEs are given in parenthesis. MP2 and DFT (and HF) structures were optimized
consistently with MP2 and with each DFT functional (and HF) with an aug-cc-pVTZ basis set. The DFT
+vdW structures were optimized with a numerical atom-centered basis set (FHI-AIMS code). The order of the

DFT xc functionals is the same as in Table 1.

ARq o (A) ARy, (A) ARq 4 (A) A¢ (deg) A6 (deg)
PBEO 0.023(-0.017)  0.028(=0.018)  0.002(0.000) 0.96(-0.01) 0.69(+0.69)
mPWLYP 0.021(+0.021)  0.019(+0.008)  0.013(+0.013)  0.95(=0.25) 0.49(+0.49)
X3LYP 0.009(+0.008)  0.012(+0.009)  0.000(0.000) 0.48(-0.29) 0.98(+0.98)
PBEIW 0.062(+0.045)  0.096(+0.051)  0.011(+0.011)  3.98(=0.64) 0.33(+0.31)
PBE 0.032(=0.019)  0.055(=0.036)  0.014(+0.014)  1.87(+0.12) 0.24(+0.18)
PBE+vdW 0.026(-0.022)  0.044(=0.039)  0.012(+0.012)  1.11(+0.26) 0.21(+0.03)
B98 0.025(+0.025)  0.028(+0.028)  0.001(-0.001)  1.07(=0.20) 0.66(+0.66)
TPSS 0.094(+0.040)  0.155(+0.058)  0.011(+0.011)  6.03(=0.87) 0.58(+0.53)
PW91 0.039(-0.034)  0.060(=0.051)  0.014(+0.014)  1.59(+0.15) 0.36(+0.33)
BP86 0.032(-0.026)  0.055(-0.046)  0.016(+0.016)  1.65(+0.27) 0.28(+0.16)
B3LYP 0.019(+0.019)  0.020(+0.020)  0.000(+0.000)  0.61(~0.28) 0.89(+0.89)
XLYP 0.092(+0.082)  0.113(+0.091)  0.011(+0.011)  3.73(=0.99) 0.52(+0.52)
BLYP 0.039(+0.039)  0.029(+0.028)  0.012(+0.012)  1.29(=0.20) 0.39(+0.39)
BLYP+vdW 0.030(-0.026)  0.052(=0.044)  0.013(+0.013)  1.94(+0.59)  0.63(+0.63)
HF 0.165(+0.165)  0.200(+0.200)  0.026(-0.026)  1.66(~1.39) 1.62(+1.62)
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FIG. 3. (Color online) Structures of the prism isomer optimized with MP2
and the PBEIW and TPSS xc functionals. Dashed lines indicate H bonds.
For PBEIW one H bond is broken and for TPSS two H bonds are broken,
each broken H bond being associated with a double donor (dd) water mol-
ecule. The other H bonds which get stronger as a result of the bond breaking
are also indicated. A very bent H bond angle of 136° is also shown in the
upper triangle of the PBEIW structure.

forms all other functionals for almost all structural param-
eters considered with an average error of only 0.02 A for the
bond lengths and 0.5° for the bond angles. Considering the
predicted O-O distances, on average, X3LYP, mPWLYP,
PBE1W, TPSS, B98, B3LYP, BLYP, and XLYP predict
slightly longer (0.008—0.082 A) distances, whereas PBEO,
PBE, BP86, and PW91 produce slightly shorter O-O dis-
tances (0.017—0.034 A). This conclusion also holds for the
related quantity Ry,. For the O-H bond length, Ry y, on
average all functionals perform reasonably well, coming
within 0.02 A. In particular, the results for X3LYP, PBEO,
B98, and B3LYP are nearly identical to MP2. For the internal
H-O-H angle 6, the MAE from all the functionals is within
~1.0°. Finally, for the H bond angle ¢, X3LYP, B3LYP,
PBEO, and mPWLYP perform the best, all coming within
1.0°. For this quantity, however, several functionals exhibit
quite large discrepancies. Specifically, XLYP, PBEIW, and
TPSS yield average MAEs of 3.7°, 3.9°, and 6.0°, respec-
tively. As we go from cyclic to book to cage to prism, the H
bond angles in the clusters become increasingly nonlinear
(179° for cyclic, ~160°—170° for book, ~152°—166° for
cage, and ~135°—-168° for prism) and it appears that certain
xc functionals struggle to reliably describe such nonlinear H
bonds. Indeed closer inspection reveals that the largest errors
in ¢ are encountered for the prism isomer. In this isomer
there are two water molecules that are each involved in do-
nating two H bonds (the molecules labeled dd for double
donor in Fig. 3), and according to MP2 the H bonds these
molecules donate are very bent (i.e., values of ¢~ 135°).
Several of the xc functionals fail to describe these very non-
linear essentially putative H bonds, and for one or both of the
waters in the prism sacrifice a single very nonlinear H bond
to enable the other to become more linear and hence stronger
(Fig. 3). TPSS fails for both double donor water molecules
and PBEIW and XLYP fail to describe one of them. The
limitations of functionals such as those considered here in
describing nonlinear putative H bonds in water clusters have
also recently been pointed out by Shields and Kirschner.”*
There it was argued that vdW dispersion forces are critical to
the binding of such weak H bond structures. We tend to
agree with this conclusion and will show more evidence in
support of it below.

Accuracy of exchange-correlation functionals for H bonds

J. Chem. Phys. 129, 194111 (2008)

D. Many-body decomposition of the dissociation
energies

To identify precisely where the problem with the DFT xc
functionals lies in correctly describing the energetic ordering
of the various isomers, we have performed a many-body de-
composition of the total dissociation energies of the hexam-
ers. This has involved decomposing the total interaction en-
ergy within the clusters into one-body up to six-body
contributions. Such many-body expansions have before
proved useful in understanding the binding in H bonded clus-
ters (including water clusters). A full description of the pro-
cedure involved can be found in Refs. 95-98. Very briefly,
the total one-body energy is the energy cost incurred upon
deforming all six monomers from the equilibrium isolated
monomer structure to the structures they assume in a given
hexamer. The total two-body interaction energy is the sum of
all possible dimer interactions within the hexamer, i.e., the
total energy (gain) to form all possible water dimers within a
given hexamer from each of its (deformed) monomers. The
total three-body interaction corresponds to the energy (gain)
to form all possible trimer combinations (excluding dimer
interactions inside the trimers) and so on for the four-, five-,
and six-body interactions. We have performed such a many-
body decomposition for the prism and cyclic conformers
since the prism conformer is favored by the wave function
approaches and the cyclic conformer is favored by many of
the DFT xc functionals. The decomposition, the results of
which are reported in Table III, has been performed with
MP2 (with an aug-cc-pV5Z basis set) and with the X3LYP,
PBEO, and BLYP xc functionals. To enable an exact com-
parison between MP2 and the various XC functionals, absent
of any contributions arising from the slightly different struc-
tures obtained with the different approaches, we have used
the MP2 geometries for all decompositions.

Let us first consider the MP2 reference data. For each
cluster a small positive one-body energy of ~17 meV/H,O
is observed. The two-body interaction is attractive (negative)
and at —244 and —-283 meV/H,O for the cyclic and prism
isomers, respectively, comprises by far the largest contribu-
tion to the many-body expansion. The three-body interaction
is also large and overall attractive: —84 and —64 meV/H,O
for the cyclic and prism structures, respectively. Indeed be-
cause of their magnitude the two- and three-body interac-
tions almost decide what the total dissociation energies are.
The four-, five-, and six-body terms are all considerably
smaller. These results are consistent with those reported by
Xantheas”® with a smaller basis set.

Turning our attention now to how the DFT xc function-
als perform, we first consider the two more accurate xc func-
tionals for which the many-body decomposition has been
performed (PBEO and X3LYP). For the one-, four-, five-, and
six-body contributions, we find reasonably good agreement
with MP2. As we have said, these terms are small and the
difference between MP2 and the two xc functionals is typi-
cally <8 meV/H,0. For the (larger) thee-body terms we
observe variable performance with overbinding (8-9 meV)
for the cyclic isomer and underbinding (3-5 meV) for the
prism. It is for the two-body terms that we observe the
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TABLE III. Many-body contributions to the total dissociation energies of the cyclic and prism isomers as
obtained from MP2, X3LYP, PBEO, BLYP, and BLYP+vdW. For the MP2 many-body decomposition an
aug-cc-pV5Z basis set is employed and so the total MP2 dissociation energies differ slightly from the MP2/CBS
values given in Table I. Likewise, to avoid complications from the slightly different optimized structures
obtained from MP2 and the DFT xc functionals, the DFT many-body decompositions are performed on the
optimized MP2 structures (with an aug-cc-pV5Z basis set for the DFT energies). Values in the parenthesis are
the difference between each functional and the MP2 results. Negative values indicate a gain in energy, i.e., a net
attraction when all the n-body interactions of a given class are summed up, and positive values a net repulsion.

All values are in meV/H,O0.

MP2 X3LYP PBEO BLYP BLYP+vdW
Cyclic
One body +16.6 +12.9(-3.7) +16.5(-0.1) +2.4(-14.2) +2.0(-14.6)
Two body —244.2 —231.2(+13.0) —240.8(+3.4) —175.8(+68.4) —227.8(+16.4)
Three body -83.6 -92.1(-8.5) -92.8(-9.2) -97.7(-14.1) -97.7(-14.1)
Four body -16.0 -13.9(+2.1) -8.1(+7.9) —14.8(+1.2) —14.8(+1.2)
Five body +0.5 -1.7(-2.2) —6.4(-6.9) -1.9(-2.4) -1.9(-2.4)
Six body -0.9 +0.0(+0.9) +1.2(+2.1) +0.0(+0.9) +0.0(+0.9)
Total -327.6 —326.0(+1.6) -330.4(-2.8) —287.8(+39.8) —-340.2(-12.6)
Prism

One body +16.7 +14.4(-2.3) +17.3(+0.6) +3.4(-13.3) +3.2(-13.5)
Two body -283.4 —263.6(+19.8) —274.4(+9.0) —191.8(+91.6) -278.0(+5.4)
Three body -63.8 -61.3(+2.5) —59.3(+4.5) -79.3(-15.5) -79.3(-15.5)
Four body -5.2 -7.6(-2.4) -5.2 (0.0) -2.8(+2.4) -2.8(+2.4)
Five body -2.6 +1.4(+4.0) -3.7(-1.1) +0.1(+2.7) +0.1(+2.7)
Six body +2.2 -0.1(=2.3) +2.5(+0.3) +0.1(=2.1) +0.1(=2.1)
Total -336.1 -316.8(+19.3) —322.8(+13.3) —270.3(+65.8) -356.7(-20.6)

largest deviations from MP2 with a consistent underbinding
for each functional and cluster. Both PBEO and X3LYP un-
derestimate the two-body contribution in the prism isomer by
9 and 20 meV/H,O, respectively, and for the cyclic isomer
PBEO and X3LYP underestimate the two-body contribution
by 4 and 13 meV/H,O, respectively. It is interesting that
these errors are noticeably larger than the 1-2 meV/H,O
errors obtained with these functionals for the equilibrium
water dimer.' Thus we observe from the many-body analysis
that these xc functionals yield larger errors when describing
the nonequilibrium dimer configurations present in the vari-
ous water hexamers, compared to the equilibrium water
dimer. Upon inspection of the errors associated with the in-
dividual dimer configurations within the hexamers we find
that there is a systematic underbinding for dimers at interme-
diate separations (O-O distances of ~3.0-5.0 A) typical of
vdW bonded complexes and also for certain orientations of
water molecules held together with very nonlinear H bonds.
There are not enough distinct dimer configurations within the
hexamers to allow us to understand the precise dependence
of the two-body error on orientation and H bond angle. How-
ever, the distance dependence of the underbinding is more
clear and is something that we now address with a distance
dependent vdW correction. Before moving on we note that
the BLYP errors from the many-body analysis are consis-
tently larger compared to PBEO and X3LYP, consistent with
the generally inferior performance of this functional. How-
ever, the main conclusion from the many-body analysis that
the two-body terms are underbound (and are more poorly
described than the equilibrium dimer) still holds.

E. DFT+vdW dissociation energy

Nowadays it is well known that most popular xc func-
tionals generally show unsatisfactory performance for vdW
forces, which inherently arise due to nonlocal
correlations.**>'® In order to test if the lack of vdW forces
is indeed responsible for the underestimation in the two-body
interactions, we use a simple C4R™® correction for the DFT
total energies. The C4R™® correction method was early pro-
posed for correcting HF calculations'®! and specifically ap-
plied to DFT by Wu and Yang,102 Grimme,'™ and Juretka et
al.' Certainly the C4R™® pairwise scheme is a simple one
for incorporating dispersion interactions into DFT calcula-
tions in contrast to other approaches (e.g., DFT xc function-
als explicitly accounting for nonlocal correlation,'® interac-
tion of the instantaneous dipole moment of the exchange
hole,'% using maximally localized Wannier functions'”’ or
modified pseudopotentialslog). However, accurate results
have been obtained with the C4R™® correction and it has a
well-established physical basis. With this approach the pair-
wise vdW interaction (Edisp) is calculated by

Egisp== 2 faamp(Rij- R CoiiR7; . 4)

j>i

where Cg;; are the dispersion coefficients for an atom pair ij
(here taken from the work of Wu and Yang'®?), R;; is the
interatomic distance, Rg- is the sum of equilibrium vdW dis-
tances for the pair (derived from atomic vdW radii109), and
JSdamp 18 @ damping function. The damping function is needed
to avoid the divergence of the R~ term at short distances and
reduces the effect of the correction on covalent bonds. We
use a Fermi-type function fgumps
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TABLE IV. Absolute values of vdW interaction energies and vdW corrected total dissociation energies for the
four water hexamers for three different xc functionals. The DFT structures employed are fully relaxed geom-
etries calculated with the FHI-AIMS code [the CPMD code gives very similar numbers (Ref. 120)]. For comparison
the MP2/CBS results are also displayed. The energies of the most stable isomers are indicated in bold and the
relative energies of the other structures with respect to the prism are given in parenthesis. MAEs in total
dissociation energies are calculated from the MP2/CBS values averaging over the four hexamers. All numbers

are in meV/H,0.

vdW interaction energy

Method Prism Cage Book Cyclic

BLYP+vdW 93.8 90.5 75.8 60.7

PBE+vdW 40.9 40.5 31.6 229
PBE+vdW(TS)* 31.9 322 23.7 15.8

PBEO+vdW 35.2 354 27.4 19.4

Total dissociation energy

Method Prism Cage Book Cyclic MAE
MP2 3323 331.9 (0.4) 330.2 (2.1) 324.1 (8.2)
BLYP+vdW 359.9 359.7 (0.2) 356.3 (3.6) 344.8 (15.1) 25.5
PBE+vdW 377.8 380.1 (—2.3) 377.8 (0.0) 367.3 (10.5) 46.1
PBE+vdW(TS)* 369.6 372.6 (—3.0) 370.6 (—1.0) 360.7 (8.9) 38.8
PBEO+vdW 360.6 361.9 (—1.3) 359.2 (1.4) 3514 (9.2) 28.6

“Nonempirical vdW method of Tkatchenko and Scheffler (Ref. 113).

IR

where d determines the steepness of the damping function
(the higher the value of d, the closer it is to a step function)
and sy reflects the range of interaction covered by the chosen
DFT xc functional.'® The value of d was set to 20 and Sk 18
0.80 for BLYP, 1.00 for PBE, and 1.03 for PBEQ. These
values of d and s; were obtained by fitting to the intermo-
lecular binding energies of the S22 database'®* at the CBS
limit for all DFT xc functionals.''*'"!

The results for the PBE, PBEO, and BLYP functionals
after applying the correction to the four hexamers are shown
in Table IV. Also the total vdW interaction within each hex-
amer is reported. One can see that the vdW correction is
largest for the prism and cage structures and noticeably less
for book and cyclic structures, favoring the prism or cage
over the cyclic or the book structure. The new energetic or-
derings of the hexamers are thus in contrast to all pure DFT
functionals, which predict the book or cyclic structures to
have the lowest energy (Table I), and in better agreement
with the wave function based methods. The energy differ-
ence between the most stable and the least stable hexamers is
also in reasonably good agreement with MP2 and DMC re-
sults (around 10-15 meV). Of the three functionals to which
the correction has been applied, the BLYP+vdW method
gives the best agreement with MP2. The MAE in the total
dissociation energies for all four hexamers is reduced from
15% to 8%. Moreover, the correct energetic ordering of the
four isomers is recovered, i.e., BLYP+vdW predicts the se-
quence prism < cage <book <cyclic. The results for BLYP
+vdW are encouraging; however, it is important to note that
there remains an 8% error (a significant overbinding). In ad-
dition, the “success” of BLYP+vdW is achieved at the ex-
pense of a smaller sp parameter which shifts the vdW

Rii
fdamp(Rif’Rg) = (1 + eXp(— d( 0
SRRij

minima to quite short distances (see below). Also, the three-
body contribution of BLYP, unaffected by the pairwise vdW
correction, shows substantial error. Recently it was pointed
out that many DFT functionals grossly overestimate many-
body interactions in vdW systerns.112 However, in the present
case the combination of electrostatic and vdW contributions
does not allow one to clearly discern which part is respon-
sible for the overbinding. Thus, further investigation is re-
quired to rule out fortuitous error cancellation for BLYP
+vdW. Nonetheless these findings for at least three different
functionals support the suggestion that the origin of the in-
correct prediction of the energetic ordering of the water hex-
amers lies in the absence of vdW dispersion forces in the
functionals considered.

At the final stages of the present work, we completed the
development of a novel scheme to determine the vdW Cyg
coefficients in Eq. (4) and the vdW radii R, in Eq. (5) in a
nonempirical fashion. The scheme, which will be presented
in a forthcoming publication,113 involves three key elements:
(i) Hirshfeld partitioning of the electron density to calculate
the relative polarizability of an atom inside a molecule; (ii)
the use of very accurate reference free-atom static dipole
polarizabilities and Cg coefficients, calculated with con-
verged wave function based methods; and (iii) accurate com-
bination rules to derive heteronuclear Cq coefficients from
static dipole polarizabilities and Cq coefficients of homo-
nuclear atoms. The scheme, which turns out to be very ac-
curate (5.6% mean absolute relative error on a database of
148 experimental C, coefficients), is implemented in the FHI-
AIMS code.™ It allows geometry optimizations in which the
Ce coefficients and vdW radii of individual atoms can
change throughout the simulation according to the DFT
charge density. We find that this is particularly important for
water clusters where H atoms participating in a H bond can
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yield different values of Cy and R from those not involved
in a H bond (and from the values used in empirical schemes).
Preliminary results for the water hexamers are shown in
Table IV for the PBE functional. As with the empirical cor-
rection scheme, the prism and cage structures are favored
over book and cyclic structures and it is encouraging that the
overestimation in binding energies with PBE+vdW is re-
duced by 7-8 meV/H,O for all isomers. This reduction is
due to the larger effective vdW radius of the atoms partici-
pating in the H bonds.

IV. DISCUSSION AND CONCLUSIONS

Having presented a lot of data obtained with various
approaches, let us now recap the main results and discuss
them in a somewhat broader context. To begin, there are the
reference data themselves, which have been acquired with
MP2 and DMC. From these we conclude that the prism is the
lowest total energy isomer for six water molecules in the
absence of contributions from zero point vibrations. This
conclusion agrees with the general consensus that has
emerged, being consistent with the very recent triple-{
CCSD(T) results.®*" There remain, of course, minor differ-
ences in the relative energetic ordering of some structures on
the order of 5 meV/H,O [notably CCSD(T) predicts par-
ticularly unstable book and cyclic structures compared to
MP2, with DMC being in between]. Resolving such small
remaining differences will provide interesting work for the
future. In this regard CCSD(T) calculations at the CBS limit
would be welcome. We stress that the ordering arrived at
here, prism < cage <book <cyclic, is the ordering obtained
in the absence of corrections for zero point contributions. It
is known that zero point energies will alter the relative en-
ergy spacings with indications that the cage becomes the
most stable isomer.>* ™

It is interesting to see that DMC and MP2 dissociation
energies of the different isomers are so similar to each other,
within 4 meV/H,0. This may indicate that correlation ef-
fects beyond MP2 have little effect on the H bond energetics
in these water clusters or it may indicate a favorable cancel-
lation of errors in the MP2 and/or DMC calculations. None-
theless, it demonstrates that DMC can achieve high accuracy
in describing the energetics of H bonds between water mol-
ecules, already at the simplest DMC level, i.e., pseudopoten-
tial fixed-node DMC with a single-determinant Slater—
Jastrow trial wave function, as has been found for a number
of other H bonded systems (including DNA base pairs).**'
For the water hexamers studied here, the fixed-node and
pseudopotential approximations in DMC incur no significant
errors on the calculated H bond energies. We stress, however,
that in general such errors depend on the system considered
and still need to be carefully assessed by comparing to stan-
dard quantum chemistry approaches such as CCSD(T)/CBS
and monitoring the quality of the trial wave function and,
when used, also the pseudopotentials.

The main part of this paper was concerned with using
the reference data from the wave function based methods to
evaluate the performance of several DFT xc functionals. A
subset of the xc functionals previously tested for small water
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clusters' was considered. It was found that while certain
functionals did a reasonable job at predicting the absolute
dissociation energies of the various isomers (coming within
10-20 meV/H,0), none of the functionals tested predict the
correct energetic ordering of the four isomers nor does any
predict the correct lowest energy isomer. All xc functionals
either predict the book or cyclic isomers to have the largest
dissociation energies. There have been indications before
that certain DFT xc functionals may not predict the correct
lowest energy structure for the water hexamer. BLYP, for
example, was long ago shown to favor the cyclic isomer.*
Likewise X3LYP, B3LYP, and PBE1IW have been shown to
favor the cyclic structure.®’ Here, we have shown that sev-
eral other popular xc functionals fail to predict the correct
lowest energy structure too, yielding results for relative en-
ergies that are unreliable and misleading. Furthermore, by
attributing the failure to an improper treatment of vdW
forces it seems likely that many other semilocal and hybrid
xc functionals which do not account for vdW in some way
will also fail in this regard. We have shown that by augment-
ing the BLYP functional with an empirical pairwise C;R™®
correction the correct energetic ordering of the four hexam-
ers is recovered. Equivalent empirical corrections to other
functionals (PBE, PBEO) also improves the ordering some-
what, favoring the prism and cage isomers over the book and
cyclic ones. Of course there are other means of incorporating
vdW dispersion forces implicitly into DFT xc functionals
such as the approaches pioneered in Refs. 105-108. It will be
interesting to see if these functionals can predict the correct
lowest energy structure for the water hexamer and, at the
same time, yield accurate total dissociation energies. Indeed
on the general point of benchmarking and assessing the per-
formance of existing and new xc functionals for the treat-
ment of H bonded systems, it seems that the water hexamer
would be an appropriate test case to add to existing H bond
test sets since it presents a stern challenge for any xc func-
tional. We reiterate that we are not suggesting that all xc
functionals which do not account for vdW forces in one way
or another are likely to fail to predict the correct energy
ordering for the water hexamer. Indeed Dahlke et al.® very
recently reported that a few empirical hybrid meta-GGA
functionals achieve the correct energetic ordering for the
hexamers,6 and, in agreement with Ref. 6 our calculations
with the M05-2X (Ref. 114) functional with an aug-cc-pVQZ
basis set also find the prism to be the lowest energy
structure.'”® This looks like an exciting development but
what the precise reason for the success of the functionals
tested is remains unclear to us at present.

Having identified a lack of vdW dispersion forces as
being at the heart of the incorrect energy ordering of the
various water hexamers, we now consider why the CqR™®
correction scheme applied here works to alter the relative
energies of the four isomers. Since the empirical BLYP
+vdW scheme recovers the correct energetic ordering for the
four hexamers we focus on analyzing the details of this cor-
rection. First we consider the functional form of the specific
empirical dispersion corrections applied in these systems.
These are displayed in Fig. 4(a) for the three individual types
of atom-atom interaction: O—O, O-H, and H-H. Dispersion
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FIG. 4. (Color online) (a) Variation in the dispersion contribution with dis-
tance from different atom pairs with parameters for BLYP. (b) Intermolecu-
lar dispersion interaction for the four isomers as a function of the average
interatomic distances of different atom pairs (on BLYP+vdW optimized
structures). Here black, red, green, and blue refer to prism, cage, book, and
cyclic isomers, respectively.

forces are generally considered to be long range and indeed
the tails of all three vdW curves extend to beyond 4 A.
However, the minima of the vdW curves with the specific
parameters employed here are located at considerably shorter
distances: ~2.80, ~2.20, and ~2.55 A for the 0-0O, H-H,
and O-H curves, respectively. It is the location of these vdW
minima relative to the structures of the various isomers that
leads to the revised energetic ordering of the four isomers. In
simplest terms the mean intermolecular distances of the four
clusters decreases upon going from cyclic to book to cage to
prism and so the magnitude of the dispersion correction de-
creases in the order of prism to cage to book to cyclic, which
ultimately leads to the correct stability sequence of prism to
cage to book to cyclic. Considering this in more detail we
show in Fig. 4(b) the contributions to the total intermolecular
dispersion interaction in each cluster for each type of atomic
pair interaction (O-O, H-H, and O-H), plotted as a function
of distance."'® It can be seen from the histogram that the
average intermolecular O-O, O-H, and H-H distances
steadily increase along the sequence of prism-cage-book-
cyclic and that likewise the dispersion contribution de-
creases. Further, we note that by simply summing up the
contributions from each type of interaction in the hexamers
we find that the majority of the vdW correction comes from
H-H interactions (~44%-48%), followed by the O-H
(~22%-32%) and then the O-O (~25%-30%) interac-
tions. The H-H interaction dominates simply because there
are more of them. For brevity we do not show the results of
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similar analysis performed for the PBE and PBEO vdW cor-
rections. However, the general conclusion that the vdW dis-
persion contribution favors the more compact prism and cage
isomers over the less compact book and cyclic isomers be-
cause the former are closer to the minima of the vdW curves
than the latter also holds for the PBE and PBEO vdW correc-
tions.

Finally, this paper has focused on water clusters. Clus-
ters often exhibit quite different properties from the corre-
sponding bulk substance. However, it does not seem unrea-
sonable to make some speculations about the relevance of
the results presented here to DFT simulations of liquid water.
As indicated in Sec. I, the simulation of liquid water with
DFT is by no means free from controversy.g_lz’ls_18 Of the
many functionals tested for liquid water, BLYP appears to
provide comparatively good agreement with experiment in
terms of, e.g., the O-O RDF and diffusion coefficient.'®
However, precise quantitative agreement with experiment for
BLYP or, indeed, any xc functional remains beyond reach. It
seems likely that if an xc functional fails to predict the cor-
rect energetic ordering of the low energy isomers of the wa-
ter hexamer, then similar errors will exist in describing the
many more competing configurations of water clusters
present transiently or otherwise in the liquid. Given that the
hybrid xc functionals PBEO and X3LYP also fail for the hex-
amer despite otherwise predicting equilibrium H bond
strengths and structures for smaller water clusters in excel-
lent agreement with MP2, it seems likely that these function-
als may not offer the promise anticipated for liquid water.'
Indeed a very recent PBEQ simulation for liquid water, which
ran for a reasonably respectable 10 ps, found that the PBE
and PBEO RDFs were essentially indistinguishable.117 Based
on the foregoing results and discussion with unreliable re-
sults obtained for the hexamer the lack of a significant im-
provement in describing the liquid is not entirely unexpected.
We suggest instead that density-functional methodologies
which account for vdW dispersion forces are likely to offer
more promise in the quest to improve the description of lig-
uid water. Again very recent MD simulations of liquid water
are consistent with this suggestion. Lin et al.'® reported
BLYP simulations for liquid water corrected with a similar
C¢R % correction scheme to the one employed here (but with
a different damping function) as well as a separate account
for vdW through the use of modified pseudopotentials. These
simulations indicate that (at the experimental density and
temperatures tested) accounting for vdW forces lowers the
peak maximum in the O—O RDF and in so doing brings the
experimental and theoretical RDFs into better agreement.
However, others have suggested that dispersion interactions
are not very important for liquid water under ambient
conditions'” and so it appears that considerably more work
is needed to address this issue. In current work we are focus-
ing on establishing precisely how vdW dispersion forces im-
pact on the properties of liquid water in addition to under-
standing how reliable gradients (forces) of structures
displaced from minimum energy positions are with and with-
out vdW corrections.
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