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Friedrich-Alexander-Universität Erlangen-Nürnberg,

Staudtstr. 7/B2, D-91058, Germany

Abstract

The accuracy of the noninteracting electron approximation is examined for a model of vibrationally

coupled electron transport in single molecule junction. In the absence of electronic-vibrational

coupling, steady state transport in this model is described exactly by Landauer theory. Including

coupling, both electronic-vibrational and vibrationally induced electron-electron correlation effects

may contribute to the real time quantum dynamics. Using the multilayer multiconfiguration time-

dependent Hartree (ML-MCTDH) theory to describe nuclear dynamics exactly while maintaining

the noninteracting electron approximation for the electronic dynamics, the correlation effects are

analyzed in different physical regimes. It is shown that although the noninteracting electron ap-

proximation may be reasonable for describing short time dynamics, it does not give the correct

long time limit for certain initial conditions.
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I. INTRODUCTION

There is considerable interest in modeling charge transport in single-molecule

junctions.1–10 From a practical perspective, this may provide insight for the development

of molecular electronic devices. A variety of experimental techniques, such electromigration,

mechanically controllable break junctions, and scanning tunneling microscopy have been

employed to study molecular junctions.1,11–26 In contrast to macroscopic conductors, molec-

ular junctions typically have nonlinear current-voltage characteristics, which often show fine

structures that reveal molecular details such as positions of molecular orbitals and vibrational

signatures. From a more fundamental point of view, the experiments have also revealed many

interesting transport phenomena such as Coulomb blockade,13 Kondo effect,27 negative dif-

ferential resistance,25,28,29 switching and hysteresis,30–32 and quantum interference.33–35 These

findings have stimulated the development of physical theories and simulation techniques that

can be used to rationalize experimental results and make predictions for improved designs

of molecular junctions.

A useful approach for a qualitative modeling of the conductance in molecular junctions is

Landauer theory.10,36 For noninteracting systems, such as, e.g., tight-binding based models

of molecular junctions, it provides an exact description of steady state transport. How-

ever, it does not include correlation effects due to electron-electron or electronic-vibrational

coupling. To describe electron transport with electronic-vibrational interaction, more elabo-

rate approximate theories have been used, such as the scattering theory,37–44 nonequilibrium

Green’s function (NEGF) approaches,45–53 and master equation methods.46,54–65 Further-

more, numerically exact simulation methods have been developed such as path integral,66–68

real-time quantum Monte Carlo,69,70 and numerical renormalization group approaches,71

the multilayer multiconfiguration time-dependent Hartree theory in second quantization

representation (ML-MCTDH-SQR),72–75 as well as combinations of the latter method with

reduced density matrix theory.76 In contrast to mesoscopic systems, molecular junctions of-

ten exhibit strong electronic-vibrational coupling and, therefore, the vibrations have to be

included in the theoretical treatment. This coupling may give rise to substantial current-
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induced vibrational excitation and thus may cause heating and possible breakage of the

molecular junction. The all-importance of vibrational effects in molecular junctions have

also been confirmed by a variety of experiments.11,14,17,24,25,77–91

Despite the importance of including the vibrations in electron transport through molec-

ular junctions, a theoretical description that is both accurate and efficient still remains

a challenging task. Numerically exact simulation methods are limited to certain physical

regimes and a small size of the molecular system. Approximate theories can handle larger

systems but nevertheless involve significant approximations. For example, NEGF methods

and master equation approaches are usually based on (self-consistent) perturbation theory

and/or employ factorization schemes. Scattering theory approaches to vibrationally cou-

pled electron transport, on the other hand, neglect vibrational nonequilibrium effects and

are limited to the treatment of a small number of vibrational degrees of freedom. It is

thus desirable to combine the above two strategies in practical applications. One may use

numerically exact methods to gauge the accuracy of approximate theories in the relevant

physical regimes and may even find (systematic or empirical) corrections, and then apply

approximate theories to treat larger systems.

In this paper, we use this strategy to examine the accuracy of a common approximation

— the noninteracting electron approximation for treating vibrationally coupled quantum

transport. Approaches based on this approximation are sometimes used in combination with

electronic structure theories to model nonequilibrium transport through a single molecular

junction. For example, one may propagate the density matrix in a single electron basis with

electronic-vibrational couplings, where the vibrations may be treated by the classical Ehren-

fest approach or included as a self-energy correction.92 Time-dependent density functional

theory (TDDFT) in combination with a classical treatment of the nuclear motion also be-

longs to this class of approximations.93 In the absence of vibrational coupling this approach is

exact for a tight-binding electronic Hamiltonian. When the vibrational coupling is included,

both electronic-vibrational and vibrationally induced correlation effects may participate in

the real time quantum dynamics. To assess the errors introduced in this approximation,

we use the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory to
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describe the dynamics of the vibrational degrees of freedom exactly while maintaining a

noninteracting electron approximation for the electronic dynamics. The correlation effects

are analyzed in different physical regimes by comparing with the the fully correlated simula-

tion employing the ML-MCTDH-SQR theory. It is hoped that this study will provide some

insight into the commonly adopted noninteracting electron approximation.

The remainder of the paper is organized as follows. Section II outlines the physical model

and the observables of interest, and briefly discusses the simulation methods. Section III

presents numerical results for vibrationally coupled electron transport in different parameter

regimes as well as comparisons with numerically exact simulations. Section IV concludes.

II. MODEL AND SIMULATION METHODS

A Model

In this work we use a simple model for a molecular junction or a quantum dot to study

correlation effects for vibrationally coupled electron transport. The electronic part of the

Hamiltonian is based on a tight-binding model, where one electronic state of the molecular

bridge is coupled to two electronic continua describing the left and the right electrodes. A

distribution of harmonic oscillators is used to model the vibrational modes of the molecular

bridge. The total Hamiltonian is given by

Ĥ = Ĥel + Ĥnuc + Ĥel−nuc, (II.1a)

where Ĥel, Ĥnuc, and Ĥel−nuc describe the electronic, vibrational, and coupling terms, re-

spectively

Ĥel = Edd
+d+

∑
kL

EkLc
+
kL
ckL +

∑
kR

EkRc
+
kR
ckR (II.1b)

+
∑
kL

VdkL(d
+ckL + c+kLd) +

∑
kR

VdkR(d
+ckR + c+kRd),

(II.1c)

Ĥnuc =
1

2

∑
j

(P 2
j + ω2

jQ
2
j ), (II.1d)
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Ĥel−nuc = d+d
∑
j

cjQj . (II.1e)

In the expression above d+/d, c+kL/ckL, c
+
kR
/ckR are the fermionic creation/annihilation op-

erators for the electronic states on the molecular bridge, the left and the right leads, re-

spectively. The corresponding electronic energies EkL, EkR and the molecule-lead coupling

strengths VdkL, VdkR, are defined through the energy-dependent level width functions

ΓL(E) = 2π
∑
kl

|VdkL|
2δ(E − EkL), ΓR(E) = 2π

∑
kr

|VdkR|
2δ(E −EkR). (II.2)

Employing a tight-binding model, the function Γ(E) is given as

Γ(E) =

⎧⎨
⎩

α2
e

β2
e

√
4β2

e −E2 |E| ≤ 2|βe|

0 |E| > 2|βe|
, (II.3a)

ΓL(E) = Γ(E − μL), ΓR(E) = Γ(E − μR), (II.3b)

where βe and αe are nearest-neighbor couplings between two lead sites and between the lead

and the bridge state, respectively. I.e., the width functions for the left and the right leads

are obtained by shifting Γ(E) relative to the chemical potentials of the corresponding leads.

We consider a case with two identical leads, in which the chemical potentials are given by

μL/R = Ef ± V/2, (II.4)

where V is the bias voltage and Ef the Fermi energy of the leads.

Moreover, Pj and Qj in Eq. (II.1) denote the momentum and coordinate of the jth

vibrational mode with frequency ωj. The frequencies ωj and electronic-vibrational coupling

constants cj of the vibrational modes of the molecular junctions are modeled by a spectral

density function94,95

J(ω) =
π

2

∑
j

c2j
ωj

δ(ω − ωj). (II.5)

In this paper, the spectral density is chosen in Ohmic form with an exponential cutoff

JO(ω) =
πλ

ωc
ωe−ω/ωc , (II.6)

where λ is the reorganization energy. Both the electronic and the vibrational continua can

be discretized using an appropriate scheme.96 In this paper, we employ 200-400 states for
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each electronic lead, and a bath with 900 modes. In addition, we also consider the case of

a single vibrational mode.

The observable of interest in transport through molecular junctions is the current for a

given bias voltage, given by (in this paper we use atomic units where h̄ = e = 1)

IL(t) = −
dNL(t)

dt
= −

1

tr[ρ̂]
tr
{
ρ̂eiĤti[Ĥ, N̂L]e

−iĤt
}
, (II.7a)

IR(t) =
dNR(t)

dt
=

1

tr[ρ̂]
tr
{
ρ̂eiĤti[Ĥ, N̂R]e

−iĤt
}
. (II.7b)

Here N̂ζ =
∑

kζ
c+kζckζ is the occupation number operator for the electrons in each lead

(ζ = L,R) and ρ̂ is the initial density matrix representing a grand-canonical ensemble for

each lead and a certain occupation (occupied or unoccupied) for the bridge state

ρ̂ = ρ̂0d exp
[
−β(Ĥ0 − μLN̂L − μRN̂R)

]
, (II.8a)

Ĥ0 =
∑
kl

Eklc
+
kl
ckl +

∑
kr

Ekrc
+
kr
ckr + Ĥ0

nuc. (II.8b)

That is, ρ̂0d is the initial reduced density matrix for the bridge state, which is chosen as a

pure state representing an occupied or an empty bridge state, and Ĥ0
nuc defines the initial

bath equilibrium distribution, e.g., Ĥnuc given above in equilibrium with an empty bridge

state or a shifted bath in equilibrium with an occupied bridge state. The dependence of

the steady-state current on the initial density matrix is a has been discussed before.76,97 In

the context of the current work, it only affects the accuracy of the noninteracting electron

approximation. To minimize the transient effects, the average current

I(t) =
1

2
[IR(t) + IL(t)], (II.9)

will be used in the results presented below.

B Multilayer Multiconfiguration Time-Dependent Hartree Theory

The physical observables are calculated by solving the time-dependent Schrödinger equa-

tion employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH)
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theory.96,98 Within the ML-MCTDH method the wave function |Ψ(t)〉 is expressed in a

flexible, hierarchical form

|Ψ(t)〉 =
∑
j1

∑
j2

...
∑
jp

Aj1j2...jp(t)

p∏
κ=1

|ϕ
(κ)
jκ (t)〉, (II.10a)

|ϕ
(κ)
jκ (t)〉 =

∑
i1

∑
i2

...
∑
iQ(κ)

Bκ,jκ
i1i2...iQ(κ)

(t)

Q(κ)∏
q=1

|v
(κ,q)
iq (t)〉, (II.10b)

|v
(κ,q)
iq

(t)〉 =
∑
α1

∑
α2

...
∑

αM(κ,q)

Cκ,q,iq
α1α2...αM(κ,q)

(t)

M(κ,q)∏
γ=1

|ξ(κ,q,γ)αγ
(t)〉, (II.10c)

...

where Aj1j2...jp(t), B
κ,jκ
i1i2...iQ(κ)

(t), C
κ,q,iq
α1α2...αM(κ,q)

(t), ..., are expansion coefficients of the first

(top) layer, second layer, third layer, and so on; and |ϕ
(κ)
jκ (t)〉, |v

(κ,q)
iq (t)〉, |ξ

(κ,q,γ)
αγ (t)〉, ..., are

single particle functions (SPFs) of the respective layers. The multilayer expansion is termi-

nated at a particular level by requiring the SPFs of the deepest layer to be time-independent,

i.e., they are expanded in static, primitive basis functions or contracted configurations within

a few degrees of freedom.98 SPFs of the second to last layer are then constructed using the

expansion coefficients and the (static) SPFs of the last layer. SPFs of all other layers are

then built bottom-up according to Eq. (II.10).

As in the underlying MCTDH method,99,100 the ML-MCTDH equations of motion96,98

are obtained by applying the Dirac-Frenkel variational principle. The implementation of

the ML-MCTDH method follows a systematic streamlined procedure as described in detail

previously.96,98 On one hand, different parts of the Hamiltonian are built “bottom-up”. On

the other hand, reduced density matrices needed in each layer are built “top-down”. The

matrices of mean-field operators is a combination of the two procedures.

The introduction of the recursive, dynamically optimized layering scheme in the ML-

MCTDH wave function provides a great deal of flexibility in the trial wave function, which

results in a tremendous gain in the ability to study large many-body quantum systems.

This is demonstrated by many applications on simulating quantum dynamics of ultrafast

electron transfer reactions in condensed phases.101–116 The ML-MCTDH work of Manthe

has introduced an even more adaptive formulation based on a layered correlation discrete
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variable representation (CDVR).117,118 This important development potentially extends the

applicability of ML-MCTDH theory to rather general systems described by a general form

of the potential energy surface.

The original ML-MCTDH method was not directly applicable to systems of identical

particles. This is because a Hartree product in the first quantized picture is only suitable

to describe a configuration for a system of distinguishable particles. To handle systems of

identical particles explicitly, additional constraints need to be imposed since the exchange

symmetry is not accounted for in the Schrödinger equation or the Dirac-Frenkel variational

principle. To retain the multilayer form of the wave function, ML-MCTDH in the second

quantized form, the ML-MCTDH-SQR theory,72 was proposed, where the variation is carried

out entirely in the abstract Fock space represented by the occupation number states. The

ML-MCTDH-SQR theory has seen several promising applications.73–76,97

C Noninteracting Electron Approximation

ML-MCTDH-SQR simulations taking full account of electron-electron and electronic-

vibrational correlations can be computationally demanding. Thus, it is of interest to seek

less demanding approximate solutions. One approximation is to adopt a noninteracting

electron picture, that is, neglecting electron-electron correlation effects. To formulate a

noninteracting electron theory of vibrationally coupled electron transport, we consider the

single-electron Hamiltonian underlying the many-electron Hamiltonian given in Eq. (II.1),

ĥ = Ed|d〉〈d|+
∑
kL

EkL|kL〉〈kL|+
∑
kR

EkR |kR〉〈kR| (II.11)

+
∑
kL

VdkL(|d〉〈kL|+ |kL〉〈d|) +
∑
kR

VdkR(|d〉〈kR|+ |kR〉〈d|),

+
1

2

∑
j

(P 2
j + ω2

jQ
2
j) + |d〉〈d|

∑
j

cjQj , (II.12)

where |kL/R〉, |d〉 denote the electronic single particle states in the left/right leads and at

the molecule bridge, respectively. The solution of the time-dependent Schrödinger equation

for the single-electron Hamiltonian (II.12) represents still a many-body problem, due to
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electronic-vibrational coupling. To solve it, we use also the ML-MCTDH method, similar

as in our previous work on electron transfer at dye-semiconductor interfaces.119,120

To calculate transport properties using the noninteracting electron approximation, the

time-dependent Schrödinger equation is solved for a set of initial states. The approximation

to the single electron density matrix is then obtained by summing over these wave functions

weighted according to their initial occupations

ρ̂se(t) =
∑
j

p(j)|ψj(t)〉〈ψj(t)|, (II.13)

where p(j) denotes the initial occupation determined by the distribution in Eq. (II.8). The

initial wave function is given by

|ψj(0)〉 = |kj〉|v0〉 (II.14)

if lead state |kj〉 is initially occupied or

|ψj(0)〉 = |d〉|v0〉 (II.15)

if the electronic bridge state is initially occupied. Furthermore, |v0〉 denotes the initial

vibrational state, which in all results presented below is the ground vibrational state of

the occupied or unoccupied molecular bridge. Based on the single electron density matrix

(II.13), the current within the noninteracting electron approximation is given by

IL(t) = −
dNL(t)

dt
= −

d

dt

∑
kL

tr {|kL〉〈kL| ρ̂se(t)} , (II.16)

and similar for IR(t).

It is noted that the noninteracting electron approximation introduced above is exact for

vanishing electronic-vibrational coupling, i.e. for the noninteracting transport problem. In

this work, we examine the accuracy of such an approximation in the presence of electronic-

vibrational coupling. It is also noted that the noninteracting electron approximation to

vibrationally coupled electron transport is similar to the inelastic scattering theory approach

to that problem.39,42,121,122 Both approaches treat the transport of independent electrons

coupled to the vibrational degrees of freedom. In contrast to the scattering theory approach,

the ML-MCTDH treatment of the noninteracting electron approximation is not limited to

a few vibrational modes.
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III. RESULTS AND DISCUSSION

We will assess the accuracy of the noninteracting electron transport approximation by

comparing the results from this approach with those obtained from the fully converged,

numerically exact ML-MCTDH-SQR theory. In both simulations the vibrational degrees of

freedom are treated via the converged ML-MCTDH approach. The difference is that in the

ML-MCTDH-SQR calculations the (vibrationally induced) electron-electron correlations are

fully accounted for whereas the noninteracting electron approximation lacks such a treat-

ment. To distinguish the two approaches, we call ML-MCTDH-SQR calculations the “full”

simulation. In all results presented below, the temperature is T = 0 and the tight-binding

parameters for the function Γ(E) are αe = 0.2 eV, βe = 1 eV, corresponding to a moderate

molecule-lead coupling and a bandwidth of 4 eV.

We first consider a model, where the discrete state Ed is located 0.5 eV above the Fermi

energy of the leads Ef . Figure 1a shows the time-dependent current for the case with a single

vibrational mode. Initially, the bridge state is occupied and the vibrational mode is in equi-

librium with the occupied bridge state. Significant electronic coherence is observed in the

transient current for this initial condition, which will be quenched for long times. Compared

with the full ML-MCTDH-SQR simulation, the noninteracting electron approximation re-

produces I(t) only for very short time. Since it does not include vibrational nonequilibrium

effect induced by electron transport, it incorrectly predicts an increase in the amplitude of

initial oscillation whereas the full simulation predicts a damped oscillation.

Figure 1b shows the time-dependent current for the same set of parameters but with

a different initial state: an unoccupied bridge state and an unshifted vibrational mode.

Within the same time scale as in Figure 1a, the noninteracting electron approximation pro-

vides a much better agreement with the full ML-MCTDH-SQR simulation result. Although

it slightly exaggerates the decoherence of the current, it reproduces the first short time

transient oscillation and predicts a steady-state current that agrees approximately with the

average of the full simulation result.

This observation suggests that the accuracy of the noninteracting electron approximation
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depends on the initial condition. If the initial density matrix is closer to the steady state,

then the effect of vibrationally induced electron correlation is smaller, which renders the

noninteracting electron approximation more accurate. In the example above, an initially

unoccupied bridge state with an unshifted vibrational mode is closer to the steady state dis-

tribution. Thus, the noninteracting electron approximation for this initial condition agrees

better with the full ML-MCTDH-SQR simulation. One would expect that if the single vi-

brational mode is replaced by a vibrational bath, the electronic coherence will be quenched

more efficiently such that the agreement between the noninteracting electron approximation

and the full ML-MCTDH-SQR simulation would improve. This is indeed the case, as shown

in Figure 2.

If different initial conditions give the same steady state current within a reasonably short

time, one may argue that although the noninteracting electron approximation does not give

the correct transient dynamics, it may still predict the correct stationary current. This is to

some extent correct, as shown in Figure 3, where the parameters are the same as in Figure 2.

Results for two initial conditions are plotted corresponding to an occupied or an unoccupied

bridge state. In each case the vibrational bath is in equilibrium with the bridge state. It is

seen that the two initial conditions give the same stationary current within the simulation

timescale. The stationary current from the noninteracting electron approximation, as shown

in Figure 2, agrees with that from the full ML-MCTDH-SQR simulation.

As discussed previously,76, for certain parameter regime, in particular small bias voltage,

low bath characteristic frequency of the vibrational bath and strong electronic-vibrational

coupling, the bridge state population and the time-dependent current may exhibit long-

time bistability behavior. Figure 4 is an example of this phenomenon. It is seen that

the noninteracting electron approximation incorrectly predicts that the two different initial

conditions lead to the same stationary current within a very short time. Comparing with

the full ML-MCTDH-SQR simulation it can be concluded that the bistability behavior is

due to vibrationally induced correlation, which cannot be captured by the noninteracting

electron approximation. Interestingly, if one picks the “correct” initial condition based on

physical intuition (in this case an unoccupied bridge state and an unshifted vibrational
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bath), then the stationary current from the noninteracting electron approximation does not

deviate much from the full ML-MCTDH-SQR value. As shown in Figure 5, the error of the

noninteracting electron approximation is only 20% for this set of parameters.

The most severe failure of the noninteracting electron approximation occurs when the

vibrationally induced correlation effect becomes dominant. One such example is the regime

of phonon blockade, as shown in Figure 6. The electronic parameters are the same as

above except that the energy of the discrete state Ed coincides with the Fermi energy of the

leads Ef . The usual qualitative interpretation of the observed suppression of the current

due to phonon blockade is that the polaron shift brings the bridge state out of the bias

window. Figure 6 shows that this is due to vibrationally induced correlation, because the

noninteracting electron approximation predicts an incorrect value of the stationary current.

IV. CONCLUDING REMARKS

In this paper, we have assessed the validity of a the noninteracting electron approxi-

mation to describe transient and steady state transport in models of molecular junctions

with electronic-vibrational interaction. Within the noninteracting electron approximation,

a single electron description is adopted but the interaction with the vibrational degrees of

freedom is still described completely using the ML-MCTDH method. The assessment is

based on a comparison with numerically exact results for the interacting transport problem

obtained with the ML-MCTDH-SQR method.

The results show that the noninteracting electron approximation provides a good repre-

sentation of the short time dynamics, but may fail to describe the longer time dynamics and

the steady state current. This is particularly the case for parameter regimes that involve

significant vibrationally induced correlation effects, such as, e.g., in the phonon blockade

regime. The validity of the noninteracting electron approximation can be improved by using

an initial state that is close to the steady state.
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88 A. K. Hüttel, B. Witkamp, M. Leijnse, M. R. Wegewijs, and H. S. J. van der Zant, Phys.

Rev. Lett. 102, 225501 (2009).

89 S. Ballmann, W. Hieringer, D. Secker, Q. Zheng, J. A. Gladysz, A. Görling, and H. B.

Weber, Chem. Phys. Chem. 11, 2256 (2010).

90 D. Secker, S. Wagner, S. Ballmann, R. Härtle, M. Thoss, and H. B. Weber, Phys. Rev.
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FIG. 1: Comparison of the time-dependent current I(t) between the noninteracting electron

approximation and the full ML-MCTDH-SQR simulation where a single vibrational mode is

coupled to the bridge state. The frequency is ω = 500 cm−1 and the reorganization energy

is λ = 2000 cm−1. The bias voltage is V = 0.1V and the initial condition is: (a) an occupied

bridge state with the mode’s coordinate shifted to be in equilibrium with it; (b) an empty

bridge state with an unshifted mode.
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FIG. 2: Same as Fig. 1b but for a vibrational bath modeled by an Ohmic spectral density.

The characteristic frequency is ωc = 500 cm−1 and the reorganization energy is λ = 2000

cm−1. The initial condition is specified by an empty bridge state with an unshifted vibra-

tional bath.
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FIG. 3: Time-dependent current at different initial conditions: (a) noninteracting electron

approximation, (b) full ML-MCTDH-SQR simulation. The characteristic frequency for the

vibrational bath is ωc = 500 cm−1 and the reorganization energy is λ = 2000 cm−1. The

bias voltage is V = 0.1V.
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FIG. 4: Time-dependent current at different initial conditions: (a) noninteracting electron

approximation, (b) full ML-MCTDH-SQR simulation. The characteristic frequency for the

vibrational bath is ωc = 100 cm−1 and the reorganization energy is λ = 3000 cm−1. The

bias voltage is V = 0.1 V.
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FIG. 5: Comparison of the stationary current between the noninteracting electron approxi-

mation and the full ML-MCTDH-SQR simulation for the initially unoccupied bridge state

and an unshifted vibrational bath. The parameters are the same as in Fig. 4.
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FIG. 6: Time-dependent current at different initial conditions: (a) noninteracting electron

approximation, (b) full ML-MCTDH-SQR simulation. The bridge state has the same energy

as the Fermi level, Ed − Ef = 0. The characteristic frequency for the vibrational bath is

ωc = 500 cm−1 and the reorganization energy is λ = 2000 cm−1. The bias voltage is

V = 0.1 V.
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