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Abstract

In this article, we discuss industrial robot characteristics of accuracy
and repeatability. The factors that affect these characteristics are
identified, and an error tree is developed. Subsequently, the accuracy
and repeatability are investigated utilizing the Denavit-Hartenberg
kinematics parameters, the homogeneous transformation matrix,
and the differential transformation matrix theory, and corresponding
measures are developed. The formulation indicates that the influence
matrices associated with joint variables are constant. A new measure
called degree of influence is established that qualitatively assesses
the relative contribution of each kinematic parameter variation to
the accuracy and repeatability of rigid manipulators. The developed
formulation provides for easy evaluation of the degree of influence
measures for rigid manipulators in either numerical or symbolic form.
A numerical example is included in which the degree of influence of
the kinematics parameters for an articulated manipulator, PUMA
560, are evaluated and analysed.
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1. Introduction

Robotic applications have been expanding since the intro-
duction of robots. These applications still include the
traditional manufacturing, but in recent years applica-
tions in other fields, such as the medical community,
have been increasing. These new applications, such as
medical surgery, require robots that are both accurate
and repeatable. Also, manufacturing applications require-
ments are changing in an effort to address quality control
issues, thus pushing the envelope of robot capabilities.
Therefore, better robots are required. But what makes a
better robot? This is a very ambiguous question that
depends on the application. At the same time, can we
utilize new technology that will allow one to improve the
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performance characteristics of existing robots as it relates
to the positioning accuracy and repeatability?

A technological barrier in the robotics industry has
been the reduction or “elimination” of the error between
the tool frame and the goal frame, as shown in Fig. 1.
The sources of this error were readily identified as being
due to manipulator modelling differences and to hardware
fixturing. The major contribution to the error between the
robot base and the tool frame is attributed to modelling
differences between the controller and the robot. Inaccu-
rate fixturing and manufacturing processes account for the
differences between the base frame and the goal frame.

The definition of the tool and goal frames is depicted
in Fig. 1 [1]. Solutions such as building a better robot,
building more rigid and repeatable fixtures, and improving
manufacturing processes that could help in improving this
problem are often not feasible due to the required or
unavailable resources. Compensation for this error through
an in-process feedback mechanism is a much more attract-
ive alternative. As in any control system, the process
parameters will define the level of required sophistication.
If the requirement is to improve upon the resolution or
absolute accuracy of the robot, then a precise metrology
system is needed to perform these measurements.

The identified parameters relating to robot positional
performance are accuracy, repeatability, and resolution.
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Figure 1. Standard robot frames [1].
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Each of these depends on the various components used in
constructing the robot (links, motors, encoders, etc.), the
construction procedure, and the capabilities of the driving
actuators and the controller. The resolution is defined
through the control system used to power the manipulator,
but is also affected by the construction procedure, manipu-
lator stiffness, (structural flexibility), encoders, and so on.

Resolution is defined as the smallest incremental move
that the robot can physically produce. Repeatability is a
measure of the ability of the robot to move back to the same
position and orientation over and over again. Accuracy is
defined as the ability of the robot to precisely move to a
desired position in 3-D space. These concepts are shown
graphically in Fig. 2.

Poor Accuracy
Good Repeatability

Good Accuracy
Good Repeatability

Good Accuracy
Poor Repeatability

Poor Accuracy
Poor Repeatability

Figure 2. Accuracy versus repeatability.

Absolute accuracy and repeatability. Absolute accur-
acy and repeatability describe the ability of a robot to
move to a desired location without any deviation. Dynamic
accuracy and repeatability describe the ability of a robot
to follow a desired trajectory with little or no variance.
Additionally, in all robotic applications zero overshoot is
a necessity to avoid disastrous collisions with other parts
in the work-cell. Therefore, controller design introduces
another dimension to the problem, as we would like to
maximize the stiffness and bandwidth while minimizing
the response time. Ideally, both the absolute and dynamic
accuracy and repeatability could be minimized to the
attainable resolution.

The largest effect on the robot accuracy is attributed to
the robot links. Manufacturing or machining of these links
inevitably introduces some variation in their dimensions
from one robot to the next, as well as some variation
in the orientation of the joints. The manufacturing vari-
ations are attributed to the defined machining tolerances.
The differences between the physical joint zero position
reported by the robot controller and the actual physical
joint zero position usually has the second biggest effect
on the accuracy of the robot. For a standard PUMA-type
articulated six-dof robot, errors in the zero position of the

waist (1), shoulder (2), and elbow (3) joints will have a
larger effect on the robot positional error than that of the
wrist joints (pitch 4, roll 5, and yaw 6). Although joints
1, 2, and 3 contribute primarily to the position of the tool
centre point frame, the main contribution for joints 4, 5,
and 6 is to the orientation of this frame. The joint zero
position error is often responsible for the robot positional
error on the order of 90% as identified in the analysis to be
presented in this study.

A mathematical model within each robot controller
assumes that the links on one robot are the same length
as the links on another robot of the same model and type.
Additionally, the same model also assumes that the rela-
tive orientations of the joints on one robot are the same
as on another robot of the same type. Unfortunately, this
assumption is not true due to manufacturing and assembly
variations. Therefore, the controller will incorrectly esti-
mate the robot endpoint given a set of joint angles. The
next most significant factor in the robot positional error is
joint compliance. This may be thought of as a factor rep-
resenting the elasticity of each joint caused by the effects
of gravity, payload, and inertia.

Each of the following robot characteristics—accuracy,
repeatability, and resolution—depends upon many factors
that include, but are not limited to, friction, tempera-
ture, loading, and manufacturing tolerances. Of the three
robot characteristics, high accuracy is the most difficult to
accomplish.

Differences between the modelled, as-designed com-
ponents and the actual, as-built components will affect
the accuracy. The controller software can be designed to
account for discrepancies between the mathematical con-
troller model and the actual built part. However, this
approach is not cost-effective for mass-produced robots
because considerable effort must be expended to iden-
tify the characteristics of the various robot components
within the desired accuracy using complex, expensive, and
time-consuming techniques.

The major error contributions can easily be subdivided
into structural, kinematic, and dynamic. A theoretical
error tree illustrating factors that contribute to the posi-
tional accuracy and repeatability of a robot is presented in
Fig. 3.

This work examines the concepts of accuracy and
repeatability. A literature survey on accuracy and repeat-
ability is presented. The accuracy and repeatability
principles are framed within the context of the homo-
geneous and differential transformation. Subsequently, an
error analysis and the degree of influence of the DH-
parameters on the accuracy and repeatability are evaluated
and discussed within the framework of the developed
methodology. A numerical example using published values
for the PUMA 560 robot focused on the aforementioned
concepts is presented and discussed.

2. Literature Survey

There are many available solutions on the market that
could be implemented to improve the ability of a robot to
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Figure 3. Positional accuracy and repeatability error tree.

accurately and repeatedly position itself. These solutions
range from calibration techniques that require robot remas-
tering to software compensation techniques, as well as
many combinations of them, or to other process-based cus-
tom methods. For the majority of industrial processes, the
elimination of all error is not a realistic goal [2–10]. How-
ever, improving the accuracy and repeatability of existing
hardware to meet desired process parameters is always the
primary focus.

An overview of robot calibration techniques and the
identification of three calibration levels are introduced and
discussed in [11]. Level 1 is the joint level calibration, level
2 is the entire robot kinematic model calibration, and
level 3 is the nonkinematic (nongeometric) calibration. In
this work, the limits on improving robot accuracy are
attributed to the limits of robot repeatability and accu-
racy and to the accuracy of the measuring system. The
extensive use of off-line-programming (OLP) systems for
robot programming and path planning and the impor-
tance of calibration are described in [12]. In this work,
a technique for improving the accuracy and identifying
the kinematics parameters of the PUMA 560 robot was
presented and experimental results were evaluated. The
development and use of a tumbling technique for direct-
drive robots and the identification of geometric and encoder
errors are discussed in [13]. The authors observe that after
the calibration the improved accuracy of the three-dof
robot is very close to its repeatability. A method focused on
the use of wire potentiometers attached to the robot tool
is introduced in [14], where the authors use a PUMA 560
manipulator for experimental verification of the proposed
method and identification of the kinematic parameters of
the robot through an automated identification algorithm.
The authors compared two different calibration techniques,
the wire potentiometer and a CMM, and drew conclusions.
A neural network-based technique for online identification
of the relative position and orientation of robotic manipu-
lators is presented in [15]. In this work, a vision system
and a 3D force/torque sensor were used along with modi-
fications in the control system using neural networks. The
experimental results indicate that this method does not
need the mathematical model of the robot and is simpler
than other calibration procedures for identifying the robot

parameters. Robot geometric errors and their identification
using various techniques have been extensively discussed
in the literature. The effect of nongeometric errors such as
compliance and thermal is discussed in [16]. In this work,
an approach for identifying geometric and nongeometric
errors is presented and experimentally verified using a
6-dof robot. The robot accuracy improved by an order
of magnitude after calibration.

In the surveyed literature, the focus is on the develop-
ment of techniques for the identification of the geometric
or nongeometric robot parameters. Once the parameters
are identified, techniques to incorporate them for use in the
robot model to improve accuracy were developed. However,
in this literature the degree of influence of these errors
on the overall robot repeatability and accuracy was not
addressed. This is the premise of this work: the identifica-
tion of the degree of influence of the kinematic geometric
error parameters.

3. Accuracy and Repeatability Analysis

The first step in attempting to improve the accuracy and
repeatability of industrial robots is to examine the cur-
rent state of the robotics technology and other related
technologies, such as metrology systems. It is important
to understand that robot manufacturers whose precision
claims cannot stand up to the world’s most sophisticated
measurement systems have no place in the industry.

3.1 Robotics Technology

Robot manufacturers, as an industry standard, publish the
repeatability specifications of each robot. These specifica-
tions are determined by performing stringent experiments
in accordance with ISO 9283 [17]. As a general rule of
thumb, larger robots have larger errors in repeatability.
The published repeatability values for the RX-series robots
produced by Stäubli Corporation are tabulated in Table 1
[18]. The kinematically smallest robot, RX 60, has less
than half the repeatability error of the largest, RX 130,
indicating that the kinematic parameters of similar model
robots directly influence the robot repeatability.

In most industrial applications the selected robot
repeatability values are smaller than the process require-
ments. In those few instances when this is not true, other
solutions must be found. A common approach has been

Table 1
Repeatability for Stäubli RX-Series

Manipulators

Manipulator
Model

Repeatability Value

mm inch

RX 130 0.035 0.00138

RX 90 0.025 0.00098

RX 60 0.015 0.00059
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to start from the base of the manipulator and deter-
mine if improvements can be made in each homogeneous
transformation between links in order to develop a more
accurate kinematics model. The homogeneous transforma-
tions between the links, however, depend not only on the
resolution of the actuators for each joint, but also on the
kinematic parameters of the actual machined link. There-
fore, the assembly and machining accuracy directly affect
the accuracy of the homogeneous transformations. There
has been a wealth of research and information in the liter-
ature discussing techniques and approaches for calibration
and identification of the kinematic parameters of robotic
manipulators.

3.2 Kinematics Analysis

The kinematic structure of robots is often represented
mathematically using a compact representation of the
position and orientation of each joint relative to the
previous joint. In our work, we employed the modified
Denavit-Hartenberg notation as presented in [1]. The
Denavit-Hartenberg notation represents a set that uniquely
defines the kinematic parameters of the robot. The DH-
parameters, ai−1, αi−1, di, θi, between two successive
joints are shown in Fig. 4 [1].

Figure 4. Graphical representation of DH-parameters [1].

The following notation applies:

ai−1 = link offset, distance from Zi−1 to Zi

measured along Xi−1

αi−1 = twist angle from Zi−1 to Zi measured
about Xi−1

di = distance from Xi−1 to Xi measured along
Zi, joint variable for prismatic joints

θi = rotation angle from Xi−1 to Xi measured
about Zi, joint variable for revolute joints

The DH-parameters are combined into a 4× 4 matrix
called the homogeneous transformation matrix, i−1

iT , that
describes the orientation and position of frame i relative
to frame i − 1. The homogeneous transformation using

modified DH-parameters is given in (1) [1].

i−1
iT =





















cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 −di sinαi−1

sin θi sinαi−1 cos θi cosαi−1 cosαi−1 di cosαi−1

0 0 0 1





















(1)

The effect of the kinematics errors between an
as-designed and as-built manipulator on its overall
positioning will be examined.

The transformation that expresses the tool-centre-
point frame, TCP frame, frame-n, relative to the robot
base frame, frame-0, is obtained by concatenating the
individual joint homogeneous transform matrices, as in (1).

0

nT =
0

1
T 1

2
T · · · n−1

nT =

















r11 r12 r13 tpx

r21 r22 r23 tpy

r31 r32 r33 tpz

0 0 0 1

















=





R3×3 P3×1

01×3 1



 (2)

R3×3 = f(θi, αi−1), i = 1, . . . , 6 is the orientation matrix,
and P3×1 = f(θi, ai, di), i = 1, . . . , 6 is the position vector.

In this work, we address only the position of the TCP
frame. The analysis for the orientation of the TCP frame
is to be discussed in future research. The equations for the
theoretical position vector, tp = {tpx, tpy, tpz}, provide
the basis for the analysis used in this work. Using the
kinematics values in Table 2, the theoretical component
equations for the PUMA 560 are evaluated and presented
in (3). These equations were derived using the symbolic
capabilities of MATLAB.

tp =











































cos θ1[a2 cos θ2 + a3 cos(θ2 + θ3)

−d4 sin(θ2 + θ3)]− d3 sin θ1

sin θ1[a2 cos θ2 + a3 cos(θ2 + θ3)

−d4 sin(θ2 + θ3)] + d3 cos θ1

−a3 sin(θ2 + θ3)− a2 sin θ2 − d4 cos(θ2 + θ3)











































(3)

3.3 Error Analysis

The accuracy and repeatability of a given manipulator can
be derived from (2). The theoretical zero position for a
PUMA 560 manipulator is calculated by substituting the
values in Table 2 for the DH-parameters and values for the
joint values, θi. However, the actual position of the robot
is a function not only of the DH-parameters, but also of
their corresponding individual variations. These variations
are mainly attributed to machining or manufacturing toler-
ances or component limitations (encoder resolution). They
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will be indicated as a “delta” (∆) value for each DH-
parameter. Note that in this analysis we are addressing
only the effect of linear variations.

The error analysis is performed using the notion
of differential transformation [19], where the differential
transformation is introduced and used in a different per-
spective. An example cited is that of a camera observing
the position of the tool frame of the manipulator and cal-
culating the differential changes in position and orientation
in order to accomplish a desired task [19].

In this analysis, the differential transformation theory
is employed to obtain an estimate of the linear differential
change from the theoretical position of the robot tool frame,
the last frame of a manipulator. The linear differential error
in the orientation and position of an arbitrary joint of the
manipulator, ∆Ti, is a function of all the DH-parameters
and their respective linear variations as shown in (4).

∆Ti =
∂Ti

∂θ
∆θi +

∂Ti

∂a
∆ai +

∂Ti

∂α
∆αi +

∂Ti

∂d
∆di (4)

The actual orientation and position are given as the
sum/difference (±) between the theoretical, Ti, and the
differential change, ∆Ti as shown in (5).

Ti,actual = Ti ±∆Ti

= Ti ±

(

∂Ti

∂θ
∆θi +

∂Ti

∂a
∆ai +

∂Ti

∂α
∆αi +

∂Ti

∂d
∆di

)

(5)

The variation due to each DH-parameter could be
expressed as a function of the theoretical transform, Ti,
multiplying an influence matrix, T ∗

j , j = (θ, α, a, d).
This representation yields a formulation that identi-
fies the structure of the variations as functions of the
DH-parameters.

The procedure for analysing one DH-parameter, the
rotational joint angle θ, and identifying the corresponding
influence matrix, T ∗

θ , is presented. Let ∂Ti/∂θ = TiT
∗

θ ,
then, T ∗

θ is evaluated as:

T ∗

θ = T−1

i

∂Ti

∂θ

= T−1

i

















− sin θi − cos θi 0 0

cos θi cosαi−1 − sin θi cosαi−1 0 0

cos θi sinαi−1 − sin θi sinαi−1 0 0

0 0 0 0

















=

















0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

















(6)

The influence matrix, T ∗

i , for each DH-parameter is given
for completeness.

T ∗

θ =

















0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

















T ∗

d =

















0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

















(7)

T ∗

a =

















0 0 0 cos θi

0 0 0 − sin θi

0 0 0 0

0 0 0 0

















T ∗

α =

















0 0 − sin θi −di sin θi

0 0 − cos θi −di cos θi

sin θi cos θi 0 0

0 0 0 0

















(8)

The actual orientation and position of the tool frame,
Tactual, for a six-dof manipulator is evaluated using the
notion of the influence matrix and (5)–(8).

Tactual =
6
∏

i

(Ti ±∆Ti)

=
6
∏

i

{Ti ± (TiT
∗

θi∆θ + TiT
∗

ai
∆a

+ TiT
∗

αi
∆α+ TiT

∗

di
∆d)}

=
6
∏

i

Ti{I4 ± (T
∗

θi∆θ + T ∗

ai
∆a

+ T ∗

αi
∆α+ T ∗

di
∆d)} (9)

An interesting observation is that T ∗

θ , T
∗

d , the influence
matrices for the generalized joint variables for any manip-
ulator, are constants, where as the other two influence
matrices T ∗

a , T
∗

α (generally related to the geometric link
properties) are functions of the generalized joint variables
as shown in (7) and (8). This is an important result,
especially if the differential transformation or variation
information is examined on a frame-by-frame basis starting
from the base and ending at the TCP frame of the manipu-
lator. For example, for an all-revolute manipulator with
equal variations on the joint variables, the actual position
and orientation are evaluated using (5)–(9).

Tactual =
6
∏

i

Ti {I4 ± T ∗

θi∆θ}

=
6
∏

i

Ti

















1 ∓∆θ 0 0

±∆θ 1 0 0

0 0 1 0

0 0 0 1

















(10)
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Using the developed approach, the actual orientation
and position of the TCP frame can be found in sym-
bolic and numerical form. Numerical solutions can only
be evaluated if the variation of each DH-parameter is
known or provided by the robot manufacturer. Even though
robot manufacturers do not release this type of informa-
tion, one can obtain an estimate of the errors and the
level of influence or contribution of each DH-parameter
using reasonable manufacturing variation (tolerances) val-
ues for machined components or resolution for encoders.
A numerical example demonstrating this formulation will
be presented below.

3.4 Accuracy and Repeatability Evaluation

The bounds of the actual position vector, ap={apx, apy,
apz}, of the robot tool frame can be obtained from the
theoretical position vector if one assumes that each DH-
parameter (joint parameter) is associated with a variation
as shown in (10). The actual position vector is the P3×1

vector in Tactual of (10).
The position error, ei, for each axis is given as the

difference between the actual and theoretical positions as
in (11). The total position error, totpos_err, is defined
as the norm of the maximum individual axes position error
as shown in (12), thus providing the maximum estimate
for the total error.

ei = api± tpi, i = {x, y, z} (11)

totpos_err = norm(max(ex),max(ey),max(ez))

= [max(apx± tpx)2 +max(apy ± tpy)2

+max(apz ± tpz)2]1/2 (12)

An estimate of the accuracy is calculated as the posi-
tional error when variations exist in all the DH-parameters.
Repeatability, on the other hand, is calculated by assuming
that variations exist only for the joint variables.

This postulate is due to the fact that once a
manipulator is assembled, the only dynamic (changing)
components are the actuators, the joint variables. All the
other kinematics parameters are dimensionally static and
do not change during operation. Once a link is manufac-
tured, its length will not change during operation, assuming
no environmental changes such as temperature or deflec-
tions due to loading are present. If the dimensionally static
notion is extrapolated from the link to the manipulator,
variations that existed during manufacturing and assem-
bly will not affect the repeatability as these variations will
always be present in the assembled manipulator.

It is important to note that structural and joint
flexibility are present in manipulators, although these
effects are beyond the scope of the current analysis. This
article addresses accuracy and repeatability from a pure
kinematics perspective due to linear variations on the
DH-parameters only.

The repeatability and accuracy position errors are
defined as functions of the DH-parameters and their vari-
ations. The analysis that follows assumes a manipulator

with all revolute joints. Using the differential change defi-
nitions in (9), the repeatability and accuracy are evaluated
as shown in (13) and (14), respectively:

repeatability; pos_err = f(αi, ai, di, θi,∆θi)

=
6
∏

i

(Ti ±∆Ti)

=
6
∏

i

Ti(I4 ± T ∗

θi∆θ) (13)

accuracy; pos_err

= f(αi,∆αi, ai,∆ai, di,∆di, θi,∆θi) =
6
∏

i

(Ti ±∆Ti)

=
6
∏

i

Ti{I4 ± (T
∗

θi∆θ + T ∗

ai
∆a+ T ∗

αi
∆α+ T ∗

di
∆d)}

=
6
∏

i

[Ti{I4 ± (T
∗

ai
∆a+ T ∗

αi
∆α+ T ∗

di
∆d)}

± repeatability; pos_err] (14)

The accuracy is a function of the static (αi, ai, di) and
dynamic/joint variable (θi) DH-parameters. The static
variations (∆αi,∆ai,∆di) are attributed to machining
and assembly tolerances, where the dynamic variation is
attributed to the joint variable resolution (∆θi) for all rev-
olute joints. The kinematics model of the robot residing
in the robot controller and used for the inverse kinematics
analysis uses the nominal values for the static parameters
in estimating the joint dynamic value for a particular posi-
tion. However, the variations in the static parameters are
not accounted for in the inverse kinematics as they are not
known. Even if the values of the variations are known, they
are just variations, manufacturing or assembly tolerances,
which could be positive, negative, or any number within
a range from the nominal value. For example, assuming a
machining tolerance of 0.0127mm (0.005 inch) and using
the values for the PUMA 560, a2 = 431.8± 0.127mm. This
means that any value in the range between (431.8− 0.127)
431.67mm and (431.8+0.127) 431.927mm is an acceptable
value for a2. Therefore, it is impossible for the controller
to account and compensate for these variations.

On the other hand, repeatability is easier to address
and analyse. The repeatability of a robot indicates the
robot’s ability to return to the same taught position. The
basis of this statement is the fact that robots return to
taught positions. Therefore, any variations in the static
parameters (∆αi,∆ai,∆di) do not affect the repeatability.
The robot is already constructed no matter what the
variations are, and nominal values are assigned to the
static variables (αi, ai, di). When a position is taught to
the robot, the controller will only need to remember the
current state of the dynamic variables, joint variables, and
is not concerned with the values of the static variables.
The only information that the robot uses to return to the
taught position is the joint variable values. This leads to
the conclusion that the only variation that will directly

6



affect the repeatability is the variation attributed to the
joint variables (∆θi).

3.5 Degree of Influence

In this work a new measure, called the degree of influence,
is defined as the relative contribution of a DH-parameter
variation to the base accuracy of a rigid manipulator. The
degree of influence is a qualitative and not a quantitative
measure. This definition allows for easy identification of
the DH-parameter that contributes the most to the overall
accuracy measure. For example, the accuracy due to the
static parameters is evaluated due to all DH-parameter
variations being nonzero. Then, only one DH-parameter
is set to a nonzero variation and the accuracy measure
is re-evaluated. The relative contribution of this nonzero
DH-parameter to the total accuracy on a percentage
basis is called the degree of influence. The same concept
is also extended to include combinations of the static
DH-parameters with nonzero variation values, thus provid-
ing the degree of influence for these combinations.

Identifying and understanding the degree of influence
concept is very important. A robot manufacturer could
possibly achieve significant improvements on the accuracy
of a robot by improving the tolerance (variation) of only
one of the DH-parameters. This qualitative measure will
be discussed in the numerical example, where the degree-
of-influence analysis is performed for two cases. For the
first case a tolerance of 0.005 inch and for the second case a
tolerance of 0.0025 inch (a considerable improvement over
the first case) was assumed on the length parameters. The
rotational positional tolerance remained the same for both
cases.

4. Numerical Example

In this section a numerical example will be presented
to corroborate the theory and concepts presented in this
work. In this example accuracy, repeatability, and degree
of influence measures for the PUMA 560 manipulator will
be evaluated and examined.

The PUMA 560 robot was chosen primarily because so
much has been published about it for various robotics con-
cepts such as kinematics, dynamics, and control [1, 19]. The
DH-parameters of the PUMA 560 to be used in the numer-
ical example to demonstrate the uncertainty in accura-
tely and repeatedly positioning the tool frame are shown
in Table 2 [1, 19].

The repeatability and accuracy for the PUMA 560
are evaluated using zero for the joint variables, a
rotational/angular variation of ±0.005◦, a length/linear
variation of ±0.005 inch, and the DH-parameter values in
Table 2. The rotational variation corresponds mainly to
the encoder resolution and was chosen based on hardware
in the laboratory, and the linear variation corresponds
to machining or manufacturing tolerance and was chosen
based on standard industry practice. All the calculations

Table 2
DH-Parameters for PUMA 560

i αi−1 ai−1 di θi

1 0 0 0 θ1

2 −90◦ 0 0 θ2

3 0 a2 d3 θ3

4 −90◦ a3 d4 θ4

5 90◦ 0 0 θ5

6 −90◦ 0 0 θ6

a2=431.8mm, a3=20.32mm, d3=
124.46mm, and d4=431.8mm. This
is an all-revolute robot; therefore
the vector θi, i = 1, . . . , 6, represents
the joint variables.

presented in this work were performed using the soft-
ware package MATLAB. If the need arises, the numerical
developed m-files could easily be modified to generate
symbolic expressions through the symbolic toolbox of
MATLAB.

The repeatability and accuracy values are evaluated
to be:

Repeatability = ± 0.1034mm = ± 0.0041 inch

Accuracy = Base± Repeatability

= (0.8324± 0.1034)mm

= (0.03680± 0.0041) inch

The degree of influence of each DH-parameter variation
and their combinations for the PUMA 560 are presented
in Table 3. Note that the repeatability of this manipulator
will always be the same as it does not depend on the static
variables, and is thus not included in this table.

In Table 3, the first column indicates the DH-
parameter or combination that is set to a nonzero variation
value in the analysis. The second and third columns
represent the evaluated accuracy (mm) for the respective
nonzero variation and the degree of influence as a per-
centage of the accuracy value obtained when all static
variations are given a nonzero value. The same explanation
applies to the third and fourth columns.

All the revolute joints (joint variables) are set to zero,
and the variation of the angular variables (∆θ,∆α) is
set to 0.005◦. The analysis is performed for two different
linear variation (tolerance) values in order to assess the
effect of the linear variation change in both qualitative and
quantitative terms. The first variation (results in columns
2 and 3) is defined to be 0.127mm (0.005 inch), and the
second variation (results in columns 4 and 5) is defined to
be half of the first, 0.063mm (0.0025 inch). The numerical
results for accuracy and degree of influence are presented
in Table 3.

The results presented in Table 3 provide not only the
accuracy expected by a robot with the given tolerance
specifications, but the degree of influence of each and
combinations of the static DH-parameters on the accuracy
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Table 3
Degree of Influence of DH-Parameters for PUMA 560

Nonzero
DH-Parameter

Rotational/Angular Variation, ∆θ, ∆α=0.005◦

Linear Variation: Linear Variation:
∆d, ∆a=0.127mm (0.005 inch) ∆d,∆a=0.063mm (0.0025 inch)

Accuracy (mm) Degree of Influence Accuracy (mm) Degree of Influence

∆d 0.402 0.430 0.201 0.392

∆a 0.762 0.816 0.381 0.744

∆α 0.154 0.165 0.1542 0.301

∆d, ∆a 0.861 0.922 0.4307 0.841

∆d, ∆α 0.540 0.578 0.343 0.669

∆a, ∆α 0.777 0.832 0.411 0.802

∆d,∆a,∆α 0.934 1.000 0.512 1.000

of the manipulator being examined. The calculated entries
in Table 3 depend on the values of the DH-parameters and
their variations.

The repeatability of the robot remained the same for
both cases as it depends only on the resolution of the joint
variables. However, the calculated accuracy of the robot
showed significant improvement in the second case. The
accuracy improved by 0.422 inch, from 0.934 to 0.512 inch,
corresponding to a 45% improvement. This drastic change
is achieved just by defining stringer manufacturing and
assembly tolerances.

Usually, qualitative measures like the degree of influ-
ence are better visualized in a graphical representation.
The graphical representation for the degree of influence in
Table 3 for the two linear variations is presented in Fig. 5.

Figure 5. Qualitative representation of degree of influence
versus nonzero DH-parameters.

The degree of influence of the DH-parameters and
their combinations, though, remain similar between the
two cases, as shown numerically in Table 3 and graphically
in Fig. 5. The results presented in Table 3 indicate that
for the PUMA 560 the parameter that has the least effect
on the accuracy is the link twist, ∆α (angular variation
0.005◦), with a degree of influence of 0.165. The single
DH-parameter with the highest degree of influence on the
accuracy is the link offset, ∆a (linear variation 0.127mm),
with a degree of influence of almost of 80%.

These calculations are performed without accounting
for any other effects, such as deflections due to exter-
nal loading (payload) or the mass of outer links of the
manipulator. This assumes that the structural and joint
flexibility are zero and rigid links. Using the presented
concept for accuracy and repeatability, it has been shown
that in this instance 88% of the positional error is due
to errors in the initialized position of the robot. This is
derived from the notion that by eliminating any error
associated with the static variables, the servo system can
position the robot to within a volume of 10% of the total
volume seen when these errors are present. Although the
analysis and numerical example presented were performed
for an all-revolute articulated manipulator, they could be
extrapolated and easily applied to other robot topologies.

5. Conclusion

In this article an error tree with sources that contribute to
the accuracy and repeatability of manipulators is identi-
fied. Measures of accuracy and repeatability were derived
and calculated indicating that high repeatability is more
desirable than high accuracy in daily applications with
industrial robots. In addition, using the notion of dif-
ferential transformation, an error analysis technique was
developed and related to accuracy and repeatability meas-
ures. This technique identified the linear variations as
functions of the DH-parameters and the joint variables.

A formulation for evaluating the accuracy and repeat-
ability of a serial link manipulator was developed employing
the newly defined notion of the influence matrix. The
influence matrices for joint variables are constants where
for geometric variables they are not.

A new quantitative measure called the degree of influ-
ence was established as the relative contribution of a
kinematic parameter variation to the accuracy when all
variations are nonzero. This analysis indicated the level of
accuracy improvement that could be achieved if variations
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on the DH-parameters are improved. In addition, the
degree of influence of the DH-parameters or their combi-
nations on the accuracy of the robot was evaluated using
the developed theory.
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