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On the Achievable Delay Margin Using
LTI Control for Unstable Plants

Richard H. Middleton, Fellow, IEEE, and Daniel E. Miller, Senior Member, IEEE

Abstract—Handling delays in control systems is difficult and is of
long-standing interest. It is well known that, given a finite-dimen-
sional linear time-invariant (FDLTI) plant and controller forming
a strictly proper stable feedback connection, closed-loop stability
will be maintained under a small delay in the feedback loop, al-
though most closed loop systems become unstable for large delays.
One previously unsolved fundamental problem in this context is
whether, for a given FDLTI plant, an arbitrarily large delay margin
can be achieved using LTI control. Here, we adopt a frequency do-
main approach and demonstrate that, for a strictly proper real ra-
tional plant, there is a uniform upper bound on the delay that can
be tolerated when using an LTI controller, if and only if the plant
has at least one closed right half plane pole not at the origin. We also
give several explicit upper bounds on the achievable delay margin,
and, in some special cases, demonstrate that these bounds are tight.

Index Terms—Delay margin, frequency domain, linear systems,
time delay.

I. INTRODUCTION

T
IME delays are common in many control processes. These

delays arise from a variety of sources, including signal

transmission delay, computational delay (e.g., in a system which

uses image processing), and physical transport delay. The pres-

ence of time delays in a control system may cause degraded per-

formance, poor robustness or instability in a feedback control

system. There is, therefore, a large literature on topics relating

to control of such processes, e.g., see [1], [8], [10], [11], and

[14] for collections of recent results.

In many situations, the delay is uncertain, although the max-

imum delay that can occur may be known. In this context, some

authors have discussed stability analysis for time delay systems,

e.g., see [21]. Others have examined synthesis problems (e.g.,

[15]) including robust synthesis (e.g., see [22]). Another area

of research, as distinct from robust synthesis, focuses on funda-

mental limitations in control. In this context, it is natural to pose

questions such as that in the recent book on open problems in

control [5]: “For a fixed FDLTI plant, is there an upper bound

on the uncertain delay which can be tolerated using an LTI con-

troller?” This paper focuses on this latter type of question.
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For the case of a stable plant, clearly the zero controller pro-

vides tolerance of all delays. When considering open loop un-

stable plants with static state feedback only, the results of [15,

Theorem 2] show that indeed, it is not possible to achieve an

arbitrarily large delay margin. Also, for the case of an unstable

FDLTI plant, recent results (see [16]–[18]) have established that

when using linear time varying (LTV) feedback control, an ar-

bitrarily large delay margin is possible. This can be compared

with work on the gain margin problem: when using LTI con-

trollers, it is shown in [23] and [13] that there is an upper bound

on the gain margin for an unstable nonminimum phase plant,

but that this bound can be dispensed with by moving to linear

periodic controllers, e.g., see [9], [12], [20], and [26]. Here, we

wish to obtain comparable results on the use of LTI controllers

for the delay margin problem. Indeed, for the LTI control case, it

has been conjectured that there is an upper bound on the achiev-

able delay margin for unstable plants (see, for example, [6], in

which a lower bound on the upper bound is given). Until now,

to the best of our knowledge, there have been no firm results to

this effect. Here we adopt the frequency domain approach and

demonstrate that there is indeed an upper bound on the achiev-

able delay margin when using a LTI controller if and only if the

plant has a nonzero closed right half plane pole. Furthermore,

we provide an explicit upper bound in terms of the plant poles

and zeros, and demonstrate that this bound is tight in several spe-

cial cases, including that of having a single unstable pole with

no nonminimum phase zeros.

We use standard notation throughout the paper. We let de-

note the set of real numbers, denote the set of complex num-

bers, denotes the set of complex numbers with negative real

parts, and denote the set of complex numbers with a posi-

tive real part. We use the Holder 2-norm to measure the size of

With , we let denote the corresponding induced

norm, namely the largest singular value of .

denotes the set of complex-valued functions

which are analytic and bounded in , and denotes

the subset of real rational elements. It is a fact that is a

Banach space: the norm of is given by

Using the Maximum Modulus Theorem, it can be shown that
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Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on December 2, 2009 at 04:30 from IEEE Xplore.  Restrictions apply. 



MIDDLETON AND MILLER: ON THE ACHIEVABLE DELAY MARGIN 1195

Fig. 1. Standard feedback control structure.

In this paper, we will be dealing with single-input single-output

systems, so we will be almost exclusively interested in ;

henceforth, when the dimensions of the space are 1 1 we

simply write .

The quotient field of is defined by

We say that are coprime if there exist

so that

With satisfying , we say that is a stable

coprime factorization of if:

i) , ;

ii) and are coprime.

II. THE PROBLEM

In this paper, we work in the transfer function domain. Our

nominal plant is single-input, single-output, real-rational and

strictly proper, and denoted by . We are considering the

problem of robust stabilization of a plant with an unknown time

delay in the feedback loop; for convenience, we combine this

delay with the nominal plant to yield our modified plant

model. Hence, with , the set of admissible plants is given

by

While the nominal plant is finite dimensional, the delayed ver-

sion is infinite dimensional, so we allow for infinite-dimensional

LTI controllers. Since we are working in the frequency domain,

we adopt the methodology of Vidyasagar [24, Chapter 8] to de-

scribe this class: the set of admissible controllers is the quo-

tient field of , which we have labelled . We con-

sider the standard feedback structure—see Fig. 1; we say that

stabilizes if the transfer function

from lies in , i.e.,

and that stabilizes if stabilizes for every

.

If stabilizes then the delay margin is

The maximum delay margin achievable by a stabilizing con-

troller is given by

(1)

So, there are two natural questions: How do we compute or ob-

tain bounds on and , respectively?

It is well known (see for example [19, §4.1] or [11, §2.1]) that

the problem of computing is clearly the easier of

the two problems.

Remark 1: Note that computing the exact delay margin

provided by a given real rational controller

that stabilizes the nominal plant is relatively straight-for-

ward. First, we let denote the critical frequencies

where

and then let denote the corresponding phase mar-

gins, i.e., . Stability will

be maintained when a delay of is placed in the loop as

long as the number of encirclements of 1 remains the same;

this will clearly be the case for all iff

so

This observation will play a critical role in some of the forth-

coming examples.

Computing is much harder. It is well known (see,

for example, [19, §4.2] or [11, §3.3]) that a lower bound on

can be computed by solving an robust control

problem as follows:

Proposition 2: Suppose that stabilizes and

define . Then

(2)

and

(3)

Proof: The proof uses a standard robust control argument

based on “uncertainty embedding,” e.g., see [19, §4.2].

It has been shown recently [16]–[18] that for every real ra-

tional strictly proper plant , we can obtain a linear periodic

controller to make the delay margin as large as desired. Here

the focus is on LTI compensators: the main contributions of this

paper is to show that is finite iff has a nonzero

pole in the closed right half plane. We prove this by considering

a number of special cases, which are quantitative in nature, that

lead to the main result.

To proceed we need to characterize the set of all LTI stabi-

lizing compensators. With , let denote
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a stable coprime factorization of , and let

represent the solution to the Bezout identity

It is well known (see Theorem 8.3.12 of [24]) that the set of all

admissible controllers in which stabilize is given by

the following Youla parametrization:

The subset of all real rational stabilizing controllers can be ob-

tained by restricting to .

Lemma 3: (Lemma 3.1 of [25]) With , if

and are stable coprime factorizations of and ,

respectively, then stabilizes iff

Remark 4: With and a stable co-

prime factorization of the real rational, strictly proper, plant ,

it follows from [3] (Theorem 2.1) that is a

stable coprime factorization of the plant . Hence, if

is a stable coprime factorization of the controller

, then by Lemma 3, stabilizes iff

Now we turn to a technical result. Since a delay is irrational,

which is difficult to analyse in closed-loop, instead we consider

a class of complex-valued all-pass functions, chosen because

they also have unity gain on the imaginary axis; from this, we

can infer the behaviour of the closed loop system with a delay.

While the following result can be presented and proven in much

greater generality, it is at the expense of clarity, so we have

chosen the simplest version suitable for our needs.

Proposition 5: With real rational and strictly proper and

, suppose that stabilize . Consider the all-

pass function , parametrized by the real variable ,

satisfying three conditions.

1) The transfer function has one of the following three

forms.

i) .

ii)

and has a pole

at .

iii)

and has a zero

at .

2) is a complex-valued continuous function of satisfying

and either i) is identically zero or ii)

for .

3) There exists an for which and have

an unstable pole-zero cancellation in [excluding the

obvious one at if 1 ii) holds and the obvious one at if

1 iii) holds].

With the modified plant defined by , the

following is true.

a) There exists an so that stabilizes for all

.

b) If is real rational, then there exists a critical value

and so that

(4)

c) If is irrational, then there exists a critical value

, and a sequence converging to

satisfying

(5)

Proof: Since the proof is not central to the paper we rele-

gate it to Appendix VIII-A.

Remark 6: Suppose that , and

converging to are chosen so that (4) or (5) hold, as ap-

propriate. It follows immediately that does not stabilize

. Since has negative phase for all

(and positive phase for all ) and , there exists a

so that

which means that

so

The difficulty lies in choosing the term (in the definition of

) in such a way as to make as small as possible.

In the following sections, we shall use this proposition to es-

tablish various upper bounds on the achievable delay margin.

First, we look at the real pole case, followed by the complex

pole case. Thereafter, we consider the special case of imaginary

axis poles. We finish with an analysis of the effect of having

nonminimum phase zeros as well as unstable plant poles.

III. PLANTS WITH A REAL UNSTABLE POLE

Theorem 7: If has a real unstable pole at , then

.

Proof: Suppose that stabilizes . Define the

all-pass transfer function

and observe that has the form required in Proposition 5.

Since there is a pole zero cancellation between and

at when , it follows that there exists

, , and converging to so that

which means that does not stabilize . Note

that clearly , for otherwise, would not stabilize

.
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We would now like to find, if possible, a for which

the delay element evaluated at exactly equals

, for then

which would mean that does not stabilize . To

proceed, observe that both and have magnitude

one on the imaginary axis, so we need to match their phase

which clearly has a positive solution, which we label , namely

Hence, does not stabilize , so

Since this is true for every stabilizing controller in , then

from (1), we obtain

Remark 8: If the plant has only one pole in the closed

right half plane, and no zeros in the closed right-half plane, then

the bound is tight. To see this, partition the plant as

with stable, minimum-phase, and having relative degree

. We would like to apply the controller

for then the loop gain is easy to analyse; since the controller

is improper and, hence, inadmissible, we roll it off at high fre-

quency. To this end, consider the FDLTI controller

(6)

Then for , there are no unstable pole-zero cancella-

tions between and and the loop gain is

It is easy to verify that for this loop transfer function

has a magnitude that is a strictly decreasing function of on the

range , going from to

zero, so there is a unique for which

Indeed, it is easy to verify that . This yields a corre-

sponding phase margin of

Now observe that the Nyquist plot encircles 1 exactly one time

for all sufficiently small , so the closed loop system is

stable. Using Remark 1, it follows that the delay margin pro-

vided by this controller is

for small . Hence, we can get a delay margin as close

to as desired by choosing appropriately. Note that the

controller proposed here may suffer from difficulties such as

poor sensitivity, phase margin and/or gain margin and, therefore,

is not intended as a practical controller. The result does serve,

however, to delineate the achievable delay margin for this case.

IV. PLANTS WITH COMPLEX POLES

We now consider several different cases involving complex

poles. The first case we consider is that of complex poles with

positive real part.

A. Open RHP Complex Poles

Theorem 9: If has unstable poles at with

, then

Proof: Suppose that stabilizes . Define the

complex valued all-pass transfer function

and observe that has the form required in Proposition 5.

Since there is a pole zero cancellation between and

at when , it follows that there exists

, , and converging to so that

which means that does not stabilize . Note

that clearly , for otherwise, would not stabilize

. We now consider three different ranges of . In each

case, we would like to find, if possible, a for which

the delay element evaluated at exactly equals

, for then
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which would mean that does not stabilize . Be-

fore proceeding, notice that for all

, so all we need is to find to match the phase.

Case 1: : For to satisfy ,

we need

which clearly has a positive solution, which we label , namely

Using the properties of and the constraint on , it follows

that

This means that in the case where , cannot stabilize

and, therefore

(7)

To delineate two different cases when is negative, we de-

fine

(8)

Case 2: : For to satisfy

, we need

Since the RHS lives in the interval , it is clear that there

does indeed exist a which satisfies this equation, namely

(9)

From (8) and the assumed range for , the real part inside the

above expression for the Argument is positive, so it follows that

Now introduce the new quantities

From (8), it follows that . Substituting this into the

formula for and simplifying, we end up with

Using the fact that , it follows that

Since , it follows that

So, in this case

(10)

Case 3: : For this range of the critical

value of is once again given by (9), which simplifies to

where we have used both (8) and . So, in this case

(11)

Combining the above three cases, (7), (10), and (11), and

noting that at least one of these three cases must hold, we obtain

Since this holds for every , it follows that

Note that the above argument in Theorem 9 does not cover

the case of purely imaginary plant poles, since when ,

selected above is not asymptotically stable. We now turn to

consider the case of purely imaginary poles.

B. Imaginary Axis Poles

Theorem 10: If has poles at with ,

then .

Proof: First suppose that is real rational and

stabilizes . Since the loop gain is continuous except at its
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poles, and it is zero at , it follows that there exists

for which

Let denote the phase margin associated with this

frequency

With , we have

which means that

Now suppose that is infinite dimensional and

stabilizes ; the proof here is more involved, since may have

discontinuities on the imaginary axis. We adopt any stable co-

prime factorization and choose the Youla parameter

which corresponds to the controller, so

(12)

and a stable coprime factorization of the controller is

. So with , we have1

Since is analytic in and , from

the Bezout identity, it follows that

It follows that there exists a so that

(13)

Now let denote any positive sequence converging

to zero. Then for each

is a continuous function of and tends to zero as ,

so together with (13) there clearly exists an so that

(14)

1Notice that jP (s)C(s)j = 1 with s 2 �C automatically rules out s being
a pole of P or C .

Indeed, since is strictly proper and , it

follows that there exists an so that

The sequence lies in a

compact set2 so there exists a convergent subsequence, say

, with converging

to . If we combine this with (14), we can conclude that

converges as well; indeed, it converges to a number on the unit

circle, say with . As in the finite-dimen-

sional case, choose ; clearly

which means that

or equivalently that

which means that , so does

not stabilize . Hence

Since this is true for every stabilizing controller in , it

follows that

It turns out that for the case where there are no other CRHP

plant poles or zeros, the lower bound given in Theorem 10 is in

fact tight, as established in the following result.

Corollary 11: Suppose that the nominal plant, , can be

factored as

(15)

with , and with stable, minimum phase, and with

relative degree . Then

(16)

Proof: From Theorem 10, we have an upper bound on the

achievable delay margin. It remains to prove, therefore, that this

bound is tight. Motivated by the proof of Theorem 10, we design

a loop transfer function that has two gain cut-off frequencies

, both of which can be made arbitrarily close

to , whilst simultaneously achieving a phase margin for each

2Notice that ! 2 [! ; �!] and j[N (X +D Q)](" + j!)j � kN (X +
D Q)k .
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cut-off frequency that may be made arbitrarily close to 360 .

Details of the proof are given in Appendix VIII-B.

Remark 12: The bounds produced in Theorems 9, 7, and 10

are compatible in the following sense: with a pole of the form

with and , the bound provided for the

complex case in Theorem 9 tends to that of Theorem 7 as

and tends to that of Theorem 10 as .

This leaves one other case of imaginary axis poles, namely,

poles at the origin.

C. Poles at the Origin

If all of the unstable poles are at zero, then we can make the

delay margin as large as desired, as demonstrated in the fol-

lowing Theorem.

Theorem 13: If the only unstable poles of are at zero,

then .

Proof: The proof, given in the Appendix, uses the Youla

parametrization of all stabilizing controllers together with

Proposition 2. In particular, we construct such that

the corresponding complementary sensitivity function

satisfies , and, therefore, we are able to

achieve an arbitrarily large delay margin. Details are given in

Appendix VIII-C.

D. General Case

We are now in a position to combine the previous results to

give a complete answer to whether or not is finite or

not.

Theorem 14: is finite if and only if has a nonzero

unstable pole.

Proof: First, observe that the zero controller yields an infi-

nite delay margin for all stable plants, and Theorem 13 demon-

strate that if the only unstable pole(s) is at zero.

If there is a nonzero unstable pole, then Theorems 7, 9, and 10

demonstrate that the is finite by considering the three

possible cases: the real case, the complex case in the open RHP,

and the imaginary axis case.

V. PLANTS WITH NMP ZEROS

Up to this point, we have considered only unstable plant poles

in our discussions. If the only unstable poles are at the origin

in the complex plane, then the previous results show that the

achievable delay margin is arbitrarily large, regardless of the

plant zeros. In addition, if there are nonzero unstable plant poles,

then the achievable delay margin can be shown to be finite,

without considering plant zeros. However, intuitively we know

that systems with unstable poles near nonminimum phase zeros

are more difficult to control. Here, we demonstrate that addi-

tional constraints arise if we have both a real unstable pole and

a real nonminimum phase zero.

Theorem 15: Suppose that has a real pole at and

a real zero at .

i) If , then .

ii) If , then

.

Proof: The result follows by considering several different

all-pass factorizations, and utilizing Proposition 5. Details are

given in Appendix VIII-D.

Remark 16: From Theorem 15, we see that as we approach

a real unstable pole-zero cancellation, the achievable delay

margin necessarily tends to zero.

Remark 17: If the plant has one real pole at , one real

zero at , and no other poles or zeros in , then the bound

given in Theorem 11 i) is tight. To see this, write

with stable, minimum phase, and having relative degree

. We would like to apply the controller

for then the loop gain is easy to analyse; since the controller

is improper and, hence, inadmissible, we roll it off at high fre-

quency. To this end, consider the FDLTI controller

(17)

which lies in for . Then for , there are

no unstable pole-zero cancellations and the loop gain is

(18)

It is easy to verify that for this loop transfer function

has a magnitude that is a strictly decreasing function of on the

range , going from to zero,

so there is a unique , for which

Indeed, it is easy to verify that . This yields a corre-

sponding phase margin of

Now observe that the Nyquist plot encircles 1 exactly one time

for all sufficiently small , so the closed loop system is

stable. Using Remark 1, it follows that the delay margin pro-

vided by this controller is

for small . Hence, we can get a delay margin as close to

as desired by choosing appropriately.
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TABLE I
COMPARISON OF FREQUENCY DOMAIN PERFORMANCE FOR THE EXAMPLE SYSTEM

VI. EXAMPLE

Consider the example system in [15, Section 5], with a state

space realization of

(19)

The open loop poles are given by

. Reference [15] gives several procedures for using

static full state feedback to perform eigenvalue assignment for

this system. One of the methods proposed uses a static state

feedback with a gain of

(20)

A. Minimum Phase Output Feedback

To employ the results of this paper, we start with a system in

output feedback form, and take (for example) the output defini-

tion as the second state

(21)

Combining (21) with (19) gives a nominal plant transfer func-

tion of

(22)

Using the results of Theorem 7, we conclude that

; Remark 8 says that we can obtain a delay

margin as close to this as desired using a controller of the form

(23)

with small.

B. Nonminimum Phase Output Feedback

Now suppose that the output is the third state

(24)

Combining (24) with (19) gives a nominal plant transfer func-

tion of

(25)

with one unstable pole and one nonminimum phase

zero which satisfy . In this case, using the

results of Theorem 15, we conclude that

; Remark 17 says that we can obtain a delay

margin as close to this as desired using a controller of the form

(26)

with small.

C. Comparison

In this section, we consider the three controllers in closed

loop, namely the following.

1) State FB: Static full state feedback using the gain given in

(20).

2) Min : Dynamic feedback from a minimum phase output

(21), using the controller given in (23) with .

3) Nonmin : Dynamic feedback from a nonminimum phase

output (24), using the controller given in (26) with .

We computed the gain margin, the phase margin, gain crossover

frequency and delay margin achieved; in addition, using the

results of [15] and Theorems 7 and 15 we can also compute

the maximum achievable delay margin which we include for

comparison. This information is displayed in Table I. Note that

the controllers that achieve near optimal delay margin, in this

case, suffer from very poor gain margin and related poor sensi-

tivity properties. The static state feedback gain designed from

the perspective of optimizing delay margin also suffers from

these problems, though not to the same extent as the dynamic

controllers exhibited in this example. Therefore, it appears that

there may be a tradeoff between maximizing the delay margin

and other sensitivity and robustness properties.

VII. SUMMARY AND CONCLUSIONS

Handling time delays in feedback control systems is a difficult

problem of long-standing interest. A previously unsolved tech-

nical problem in this area is that of obtaining general bounds on
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the maximum delay margin achievable for an FDLTI plant when

using an LTI controller. Here, we adopt the frequency domain

approach, and demonstrate that for a strictly proper real rational

plant, there is a uniform upper bound on the delay that can be

tolerated when using an LTI controller if and only if the plant

has an unstable nonzero pole. Furthermore, we provide a quan-

titative bound on the so-called delay margin in terms of plant

poles and zeros, and have proven that it is tight in several spe-

cial cases. It has already been proven ([16]–[18]) that there are

no constraints when we move to linear time-varying controllers.

An open research problem is that of computing the exact

(tight) bound on the maximum delay margin achievable using

an LTI controller, or at least computing it in more special cases

than was carried out herein. For example, if a plant has two

positive real unstable poles at and , the results of Theorem

7 show that . We conjecture that

this bound is not tight in general, but at this stage, we have not

been able to either prove or disprove this conjecture. It is also of

interest to examine the tradeoffs between the delay margin, gain

margin, and other measures of robustness. The example given

illustrates this potential trade-off, as well as the superior delay

margin achievable via dynamic output feedback as compared to

static state feedback.

APPENDIX

A. Proof of Proposition 5

First, we write as the ratio of two polynomials which

have no common zeros in for small .

i) If 1 i) holds, write with

and monic and coprime, and define

ii) If 1 ii) holds, write with

and monic and coprime and set

iii) If 1 iii) holds, write with

and monic and coprime and set

It is routine to verify that

and that and have no common zeros in for

small . Using Hypothesis 2), it is easy to confirm that

and also have no common zeros

in for small ; by Hypothesis 3), there exists an

for which this property is lost, so using the continuity of we

conclude that these exists a smallest such , which we label .

Hence, and have no common

zeros in for , so with the degree of , it

follows that

is a stable coprime factorization of for ; since

the set of all stabilizing controllers is independent of the coprime

factorization, we may as well assume that this procedure was

used to construct and .

Proof of (a): Since stabilizes , it follows that there

exists a so that

A stable coprime factorization of the controller is with

It follows from Lemma 3 that stabilizes at

iff

Since stabilizes , it follows that

; indeed, it is easy to check that

Now define

so

Similarly

which means that

Now observe that

(27)

Our goal is to prove that this is stably invertible for small .

Using the facts that the coefficients of the monic polynomials
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and are continuous functions of and that

, it follows that

and

Hence, there exists an so that for all

(28)

Using the Small Gain Theorem together with (28), it follows

immediately that

(29)

Combining this with (27), we have

so closed loop stability is maintained for this range of .

Proof of Part (b): The proof of the real rational controller

case is straight-forward: it is based on the continuity of the zeros

of the characteristic polynomial as a function of the free param-

eter . Briefly, we know that it has all of its zeros in for

and has a zero in for . By continuity, there

must exist an so the characteristic polynomial has

a zero on the imaginary axis, say at , which means that

The proof of the infinite-dimensional case, which we present

here, requires a more involved proof, and utilizes Runge’s The-

orem.

To proceed we first examine the coprime factors and .

Adopting the definition of and given above, we have

(30)

but and are strictly proper transfer functions, and we can

easily prove that they tend to zero uniformly (over )

as ; in particular, there exists so that

(31)

Using (30), this means that

(32)

Now define the compact rectangles in by

and

Notice that (and, hence, and ) are analytic on , ,

but may be discontinuous on the left edge of , which lies on

the imaginary axis.

Claim: For every , there exists an and

satsfying

and

Proof of Claim: Let . For every , by Runge’s

Theorem (e.g., see [4, p. 198]) there exists an element
3 so that

This gives rise to the corresponding real rational controller ,

which clearly stabilizes . Now write

with and coprime and with monic. The characteristic poly-

nomial of the closed-loop system arising from applied to

is given by

For , we can make this monic by an appropriate scaling

if for all

otherwise.

Notice that the monic property follows from the fact that

is proper, is strictly proper, and and

are monic. Since and has a

common zero at , it follows that

as well. From part i), we know that the zeros of are in for

small . Since the zeros of a monic polynomial are contin-

uous functions of its coefficients, it follows from the continuity

of and the parameters of the monic polynomials and

that there must exist an for which has

a zero in ,4 say at . Hence, it must be that

(33)

Now let denote any positive sequence converging to zero;

, and are defined accordingly, using the above pro-

cedure. Then , and since is

3Runge’s Theorem guarantees the existence of a (possibly improper) rational
approximation with all poles in C ; it is straightforward to roll it off at high
frequency to generate an arbitrarily good approximation which lies in RH .

4We use the standard notation of @S to denote the boundary of S .
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compact, there is a convergent subsequence; for notational sim-

plicity, we may as well assume that enjoys this prop-

erty with a limit of . Since , , and

uniformly on as , by continuity of all

terms on it follows from (33) that

(34)

If is not on the left-hand face of , then we will have

, so from (32)

which violates (34). Last of all, since stabilize for all

, it must be that .

At this point, we have and satisfying

Now the sequence is restricted to the compact set

, so it has a convergent subsequence; for notational

simplicity we may as well assume that enjoys this prop-

erty, with a limit of . Since , clearly there

exists a so that . However

and it follows from continuity that

Since , it follows that

(35)

Hence, ; by Lemma 3, it follows

that we do not have closed loop stability.

We would now like to infer from this that

(36)

Since all terms in square brackets of (35) are bounded in , if

(37)

then (36) follows immediately by taking the

outside the square brackets. So suppose that this is not the case;

then there exists a strictly increasing subsequence of integers

satisfying

and it follows from (35) that

as well. However, it follows from the structure of

and that and

exist and are finite, so

which means that does not stabilize , which is a con-

tradiction. We conclude that (36) and (37) hold. Since

has magnitude one, it fol-

lows immediately that

as desired. Finally, if is real rational, then it follows from

(35) that

From (37), we have , so

as desired.

B. Proof of Corollary 11

Note first that, as in Remarks 8 and 17, being stable and

minimum phase does not pose any additional demands on the

achievable delay margin and can, therefore, be ignored, i.e., we

take . Also, for simplicity and brevity, we construct a

compensator that is rational, though not necessarily proper; as

in Remarks 8 and 17, we can roll the controller off to achieve a

proper one which provides essentially the same delay margin.

We first define some important transfer functions for the pro-

posed family of controllers. For any , define

and the phase lead compensator

(38)

Then for any , we design the (improper) controller, con-

sisting of 3 series lead compensators, and a lightly damped res-

onant zero

(39)

The resulting loop transfer function for the controller of (39)

with the plant (15) is

(40)

where . The proof

now follows as a series of claims relating to the delay margin

associated with the loop transfer function.

1) and are both:

a) strictly increasing for ;

b) strictly decreasing for .
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Note that, in the case of , this claim follows by noting

that

(41)

2) From (41), it also follows that with equality

if and only if .

3) with equality if and only if .

4) Based on parts 1, 2, and 3, there are exactly two (posi-

tive) gain crossover frequencies: and

.

5) For any fixed , the gain cross over frequencies can be

made arbitrarily close to by taking small, that is

.

6) We now turn to consider the phase margin achieved. First,

note that since , then

(42)

7) Since at crossover, the loop gain equals unity, and also

using parts 2 and 5 above, then as , we have

. This fact, together with part 6, gives that

for any fixed , .

8) Note that, as , we have

. We can also show (by a Nyquist diagram type

argument) that for any , for sufficiently

small, we have nominal closed loop stability. In view

of the above arguments, we have nominal closed loop

stability, cut-off frequencies that approach and phase

margins that approach 360 or (rad) and, therefore, the

supremal delay margin is .

C. Proof of Theorem 13

To prove this result, we make use of Proposition 2. Suppose

that has poles at zero but no other unstable poles. Adopt

a coprime factorization of the plant

where and is a Hurwitz polynomial

of degree . We then sove the corresponding Bezout identity

for . The class

of stabilizing controllers in can then be expressed as

which results in a closed loop complementary sensitivity func-

tion of . We now define

(43)

with representing the corresponding complementary sensi-

tivity function. Then

(44)

It follows immediately that for

(45)

We now consider frequencies . Note that since

the plant is strictly proper, is strictly proper and so

is a proper stable rational transfer function. Also,

note that

Therefore, we can show that for

(46)

Using (45) and (46), we see that by choosing sufficiently small,

we can make arbitrarily close to zero, and the result

then follows.

D. Proof of Theorem 15

Before proceeding with the proof of Theorem 15, we recall

some properties of the inverse tan function.

Lemma 18: Suppose that . Then:

i) ;

ii) .

Suppose that stabilizes .

i) In this case, define the all-pass transfer function

Observe that has the form required in Proposition 5; since

there is a pole-zero cancellation between and at

, it follows that there exists , ,

and converging to so that

Note that, clearly , for otherwise would not stabi-

lize .

We would now like to find, if possible, a for which

the delay element evaluated at exactly equals

, for then
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which would mean that does not stabilize . To

proceed, observe that both and have magnitude

one on the imaginary axis, so we need to match their phase

which has a positive solution, which we label

Using Lemma 18 i), we have

This means that cannot stabilize , so

Since this is true for every stabilizing controller in

ii) The second case is a little more complicated. We choose

an all-pass function of the form

with . Observe that has the form required in Propo-

sition 1 with . Now observe that there is an

unstable pole-zero cancellation between and both

when

and also when

Hence, define

It follows from Proposition 1 that there exists an ,

and converging to so that

Note that clearly , for otherwise, would not stabi-

lize .

We would now like to find, if possible, a for which

the delay element evaluated at exactly equals

, for then

which would mean that does not stabilize . To

proceed, observe that both and have magnitude

one on the imaginary axis, so we need to match their phase

which clearly has a positive solution for , which we label ,

namely

It follows that

Clearly, and , and it is easy to

check that achieves its maximum of at and is

strictly increasing on . We now consider the two different

possibilities for the value of .

Case 1: : In this case, we have ,

which is equivalent to , so is strictly increasing on

the interval , which means that

Case 2: : In this case, we have

which is equivalent to . Hence,

, so is strictly increasing on the

interval , which means that

If we combine Case 1 and Case 2, we see that

but we also know that

so
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This means that cannot stabilize , so

Since this is true for every stabilizing controller in , if

we combine this with Theorem 7, we have
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