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Introduction 

On the Acoustical Implications of 
Vortex Shedding from an Exhaust 
Pipe 
Asymptotic approximations for small Strouhal number are derived for the solution 
of the problem of the interaction between an acoustic wace and a subsonic jet flow 
issuing from a semi-infinite pipe. Density and sound speed differences between the 
jet flow and the (slowly moving) ambient medium, and a general edge condition 
are included. The approximations relate to the field inside the jet flow, to the far 
field, to the reflection coefficient, end-impedance and end correction for the 
reflected wave inside the pipe, and to the transmitted and radiated sound power. 
Within the range of parameters considered, the effect of the density and sound 
speed ddferences and ambient flow is found to be appreciable, although the 
character of the solution is not changed. However, the choice of the edge condition 
does have important implications; specifically, the phase of the reflected wave is 
most sensitive to only slight deviations from the Kutta condition. 

Only a few years ago, it was quite generally believed that a 
Kutta condition at a sharp trailing edge (effecting vortex 
shedding) in aero-acoustical problems may have some im- 
portance in that it changes radiation directivities with a few 
decibels or so, but never in such a dramatic way that orders of 
magnitude are involved ([9], p. 449; [23], p. 364). However, 
the experiments of Bechert, Michel and Pfizenmaier [2], 
together with Howe's [l21 explanation, have shown this 
opinion not to be true. In the configuration of a subsonic jet 
issuing from a pipe perturbed from inside by long sound 
waves, they found that only a small fraction of the net sound 
power, transmitted through the pipe, was recaptured in the 
far field. The rest was transformed into hydrodynamic energy 
of vortices shed from the pipe edge. These vortices, making 
only little noise, arise from viscous and nonlinear action, 
which is, in an inviscid linear problem, modeled by an ap- 
propriate edge condition, like the Kutta condition. Reductions 
up to 25 dB were obtained, so in this case the Kutta condition 
really provides an important sink of sound. (The opinion that 
in general the Kutta condition and vortex shedding gives a 
reduction is not correct; at least in the case of an airfoil 
trailing edge there is, under some conditions, more sound 
radiated by the vortices interacting with the edge than was 
used for their production, and the net result is an am- 
plification [21].) Various technological applications ex- 
ploiting this mechanism for noise reduction are in use or 
under development [l], e.g., tube ends consisting of many 
parallel small nozzles, acoustic liners of Helmholtz resonators 
with through-flow, and exhaust mufflers for piston engines, 
so a deeper study of various aspects of this process seems well 
worth doing. 
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We can model in the foregoing problem the medium as 
inviscid, the pipe as semi-infinite, the jet flow with a uniform 
"top hat" velocity profile, and the shear layer by a vortex 
sheet. For this relatively simple model problem an 
acoustically exact solution is known, found by Munt [17]. 
This solution describes far field directivity [17], reflection 
coefficient at the pipe exit [18], and indeed, the above sound 
absorption [l21 is in very good agreement with the ex- 
periments of [2, 19, 241. Munt's solution is, however, con- 
strained by the Kutta condition, and a causality condition that 
the source be switched to a long but finite time ago. This 
causality condition-a heritage from doubly infinite vortex 
sheet problems -involves complicated mathematics, and is 
not always satisfied for any edge condition. It therefore 
seemed to have hindered Munt's solution and the physics 
behind from being well interpreted and understood. Things 
are, however, much more simple. In fact, this condition of 
causality is not relevant and not necessary, as we explained in 
previous work [20, 22). The Kutta condition is, generally 
speaking, just sufficient to insure uniqueness of the solution. 
(To avoid confusion: the causality of the real physical system 
is of course beyond doubt; what we mean here is a basically 
mathematical condition adopted in the simplified model.) 
Briefly summed up, the arguments for this claim are as 
follows. 

In the case of the related two-dimensional problem without 
solid body (a doubly infinite plane vortex sheet separating 
uniform subsonic flow from stagnant flow, subject to 
acoustic irradiation from a harmonic line source), the 
otherwise nonunique solution (since the amplitude of the 
Helmholtz instability is undetermined) can be rendered 
unique by assuming the source to be switched on ahead of 
time [13]. However, as compared to reality, it is very unlikely 
that the early start of the source should be decisive for the 
present state of the process. So many other things are not 
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included in the model (a solid body, viscosity, nonlinearities, 
etc.), and could very well be responsible for the non- 
uniqueness of the solution. Indeed, if we extend the model to 
include a semi-infinite plate with a trailing edge, the edge 
condition is just sufficient for uniqueness [20]. Only in the 
presence of a trailing edge is the acoustic field at any instant 
coupled to the vortex sheet instability through the viscous 
forces working at the edge (- edge condition); to remove the 
acoustically induced singularity, vorticity is shed from the 
edge into the plane of the vortex sheet, triggering the in- 
stability (see also 171, pp. 7, 8). The conclusion is that (in the 
inviscid model) any edge condition can be satisfied by simply 
adding a multiple of the Helmholtz unstable eigenmode. 

All this was not realized at the time when the platehortex 
sheet problem [8, 161 and the pipe/vortex sheet problem [l71 
was solved, and much unnecessary emphasis was placed by 
these authors on the causality condition. 

Several aspects of the issue discussed could be worked out 
in more detail, but these are of a more technical nature and 
outside the scope of the present paper. For further in- 
formation, the interested reader is referred to the literature 
mentioned. 

To exploit Munt's solution further-which is, although 
exact, of a complicated form, and has to be evaluated 
numerically-asymptotic approximations for small Strouhal 
number were carried out by Cargill [5] and Rienstra [20, 221. 
The latter studied the acoustic field inside the jet flow for a 
cold jet without coilow, subject to two edge conditions, viz., 
the Kutta condition and the condition of no vortex shedding. 
The former investigated the ambient far field and the 
(modulus of the) reflection coefficient inside the pipe for a 
cold or hot jet with coflow and the Kutta condition applied; 
unfortunately, however, due to space limitations, his paper 
contained no indication as to which method was employed 
and which additional restrictions on the parameters are 
necessary. Cargill found that his simple far field formula, in 
the case of a cold jet, compares well with both Munt's 
calculations and the experimental results of Pinker and Bryce 
[19], and also that the ratio of transmitted and radiated sound 
power agrees with Bechert, et al.'s [2] experiments, displaying 
again Howe's acoustic energy conversion mechanism. 

The purpose of the present paper is to extend these previous 
contributions to include sound speed, density, and ambient 
flow effects on the field inside the jet flow, and to investigate 
the effect of deviations from the Kutta condition on the whole 
field. 

Although we may expect the Kutta condition to be valid in 
many cases, there is little doubt that sometimes it is not 
satisfied [2, 4, 111. Among other factors, an increasing 
amplitude or frequency will produce an edge condition 
gradually deviating from the Kutta condition, in a way that 
less vorticity (and probably with another phase) is shed than 
with the full Kutta condition. It is not clear a priori how this 
will affect the acoustics and whether it explains some 
discrepancies, like those between hlunt's calculations for a 
hot jet [l71 and the experiments by Pinker and Bryce [19]. 

The results are presented with the most general edge 
condition compatible with the acoustics. Any particular edge 
condition can be selected afterwards; for instance, all the 
previous results mentioned herein before are automatically 
included. The formulas obtained are valid asymptotically for 
small Strouhal number and uniformly for a subsonic jet Mach 
number not close to one. The other parameters are somewhat 
restricted but not severely. The paper concludes with a 
discussion concerning the relation between the present 
analysis and experiments. 

Formulation of the Problem 
Consider a semi-infinite circular pipe with diameter D from 

which a subsonic jet issues into a medium, which may be 
stagnant or may flow in the same direction as, but slower 
than, the jet (Fig. 1). The jet flow is perturbed by plane 
harmonic sound waves of frequency f' coming from inside 
the pipe. Viscosity, thermal conductivity, and all 
nonlinearities will be ignored. The stationary velocity of the 
jet, U,, and of the fluid outside, U,, are uniform (i.e., 
constant in space). Mean pressurep, is the same everywhere, 
and mean density and sound speed inside and outside the jet 
are denoted p,, c,, p,, and c,, respectively. The Mach number 
of the jet is M, = uj/cj, and of the fluid outside M, = 
U, /c,, with 0 S M, < M, < 1. The cylinder is specified by 
r*  = %D, z* S 0 in cylindrical polar coordinates (r*, 6, z*) ,  

Nomenclature 

a = amplitude 
A, = equation (10) 

c,, c, = soundspeed in/outside 
(dim.) 

C = C,/C, 
Cj = 0.2554.. 
d = P?/P, 

D = pipe diameter (dim.) 
D, = equation (18) 
E, = equation (19) 
f * = frequency (dim.) 
F+ = equation (9) 

h = vortex sheet displacement; 
equation (1) 

H$) = Hankel function 
i = imaginary unit 

Im = imaginary part 
j,,, = nth zero of J, (X) /xm 
Jm = Bessel function 

k = wM,; Helmholtz number 
I = end correction 

L = -  % ln(%wP,eY) 
M,, M, = Mach number idoutside 
N+ = equation (11) 

p = pressure perturbation 
p,, = incident pressure wave 
p, = stationary pressure (dim.) 
P = acoustic power 
r = radial duct coordinate 

R = reflection coefficient 
Re = real part 

S = u,/u, 
t = time coordinate 
u = complex variable 

t o ,  u_, = zeros of X 
uo, U ,  = equation (12) 

U,, U, = flow speed idoutside 
(dim.) 

U,  = equation (5) 
U = U + U -  

W, = equation (6) 
W  = W +  W -  
z = axial duct coordinate 
Z = endimpedance 

a,,, = nth zero of Jm (ku(u) ) 
PO = (1 - M ; ) %  
p, = (l - M;) % 

0, = (1 - M ~ c ~ ) "  
y = 0.5772.. 

l? = edge condition parameter 
= equation (17) 

8 = equation (20) 
h = ( r2  + z2Pi2)%/P0 
p = x ( ~ ) / ( ~ - - ~ o ) ( ~ - - u I )  

p, = equation (8) 
v = 0, l ;  index 

= arctan(Por/z) 
to = instability cone angle 
T = 3.1416.. 
p = density perturbation 

p,, p. = stationary density 
idoutside (dim.) 

a, = min[( l+M,)- l ,  
C(l +M,) - l] 

C, = equation (21) 
4 = potential 
X = equation (7) 
II. = potential; equation (2) 
w = nf*D/ U,; Strouhal 

number 

Superscripts 
* = dimensional variables 
- = complex conjugate 
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and the undisturbed vortex sheet, between the jet and the 
ambient flow, is given by r* = %D, z* > 0. The pressure and 
density perturbations are denoted by g* and p*, respectively, 
and for the velocity perturbations, we introduce a potential 
6.. The time variable is t*. The mean quantities inside and 
outside are related by 

Wo=sUj,p4=dpj,eo=c,/C,  M,=sCM,. 

We make dimensionless variables as follows. 

r= r* /%D,  z==z*/ViD, t=t*U,/%D, tp=tp1/1/2DU,, 
p = p * / p ) q  , p = p 0 / q ,  w=l t l yDIUj ,k=~jnD/c j=wM,  
(Note the factor U in Stroukal number W and Helmholtz 
number k.) 

Finally, we will a8sume W to be small. How small will be 
sufficient is not known a priori; there is evidence that of 
several phydcd quantities the formulas calculated for small w 
cover well the experimental data even for W of order 1, while 
on the other hand for some other quantities, there is a lack of 
agreemeent which might be attributed to a not sufficiently 
ma l l  W. 

Aa usual, we write the dependent variables (like C$ and p) in 
complex farm, and it is tacitly understood that real parts 
should be taken. Then the primary pressure wavepin, coming 
from inside the pipe, is given by 

= X ( - i  l +M] - k  z+iwt) 

The dimenaionless position of the vortex sheet is given by 

r=  1 + ah (z)  exp(iwt) (Z >O) (1) 

The dimensionless amplitude a is taken to be small enough for 
linearizatien. Furthermore, we assume the field induced by 
pin to behave the same aspi, with respect to time t and angle 8. 
So here it is independent of 8 and having the factor exp(iwt); 
this factor, as well as the amplitude a, will be suppressed 
throughout. For convenience we write 

l -r M] 
@ (r,z) = i- 

W 
Pin (2) + $(rrz) (2) 

ss that we have for pressure (an index z or r denotes dif- 
ferentiation with respect to that variable) 

DIFFRACTED WAVE /,,,,,// "''',, ,,,,, 
AMBIENT FLOW '%,, 

D '"/, 

/ ',.,. 

U*, P, _ C - - - - -  

---- 
PIPE VORTEX SHEET 

Fig. 1 Sketch of the problem 

h(z)  = ( l  - F )  (HIz" + H Z Z ~ / ~ )  + H ~ z ~ / ~  (z 10) 
were H I ,  H2 and H3 are constants, and r is a complex valued 
parameter, controlling (indirectly) the amount of shed vor- 
ticity, and to be chosen in a way to meet the edge condition 
required in a given situation. r has been defined such that 
r = 1 corresponds to the Kutta condition (the flow leaves the 
edge tangentially), and r = 0  corresponds to no vortex 
shedding. Anticipating the appearance of an instability by 
shed vorticity, it is sufficient for uniqueness to require ad- 
ditionally: 

if h(z)  = HlzE (z 1 0), then also h(z)  - 0 (z - 00). 

Exact Formal Solutions 
The solutions we are looking for are, in essence, a linear 

combination of Savkar's [23] (stable, no vortex shedding) and 
Munt's [l71 (with Kutta condition) solutions. The difference 
is in fact one of Crighton's [6] eigensolutions, slightly 
generalized. To consider the issue of causality as was done by 
Munt is not necessary (neither relevant) as we argued before, 
so we will merely present the final formal solution here. 

Consider in the complex U-plane the principal branch 
square roots 

v+ ( U )  = (1 -( l  +M, )u ) " ,  

v- ( U )  = (1 +( l  -Mj)#)  %,  (5) 
W +  ( U )  = (C-  (1 + M o ) # ) " ,  

W-  ( U )  = ( C +  ( 1 - M O ) # )  ', (6) 
with 

v*(O)=w*(O)C-" = l  

and branch cuts running along the real axis to infinity not via 
the origin. Furthermore these square roots define v = v+ v- 
and W = W +  W - .  The functions ~ ( u )  and ~ ( u )  , most im- 
portant in the analysis, are defined as 

The equations for $ are forms of the convected Helmholtz = W ( # )  (1 - Mju)2 
Jo (kv(u) 

equation. JI  ( kv (u ) )  

Finally, the boundary conditions are as usual (where 1 + , 1 
mean upper, lower limit), 

$r(l,Z) = O  (Z<O), 

~ ( l e , z ) = P ( l - , z )  (z>O), 

$(r,z) radiating outwards at infinity (in particular r- a). 
The edge condition is most conveniently made explicit by a 

characterization of the deflection of the vortex sheet near the 
edge. In general, we have 

= (u-uo)(u-ul)F(u) 
where J, is the nth order Bessel function of the first kind, and 
H) the nrh order Hankel function of the second kind [25]. 
Two of X'S zeros (uo and u l )  are taken apart for convenience. 
They correspond to the Helmholtz instability of the vortex 
sheet (u0, first quadrant) and a related decreasing mode (U,,  
fourth quadrant), and they can be identified via their behavior 
for W - 0, MjC-O,d=0(1); then 

where the bar means complex conjugate. We introduce the 
functions (split functions) p +  and p- such that p = p+  /pcl_, 
and obeying certain regularity properties (see Munt). These 
functions are unique, modulo an entire function without 
zeros, and can be expressed as follows. Define, in the complex 

380 1 Vol. 103, NOVEMBER 1981 Transactions of the ASME 



U-plane, a contour close to the real axis, just below the branch 
cuts at the negative side and just above at the positive side, 
and crosing the real axis somewhere between U +  and - U - ,  

where 

U ,  =min [( l  & M J )  - l ,  C(l &M,)  - l ]  

For a point u not on this contour, p+ ( U )  is given by 

where the integration runs along the above contour, and € ( U )  

= 0 ( € ( U )  = 1 )  for U above (below) the contour. 
The Fourier transform F+ ( U )  o f  h ( z ) ,  i.e., 

F+ ( U )  =Som h(z)exp( ikuz)dz ,  

is found to be 

where 

The formal acoustically exact solution with arbitrary edge 
condition is then formulated as follows. 

( 1  -uM,)Jo(kv(u)r)F+ ( U )  exp( - ikuz) du, 
v(u)J1 ( k v ( u ) )  

( 1  - u s M j ) a 2 ) ( k w ( u ) r ) F +  ( U )  
exp( - ikuz) du 

w ( u ) f i 2 ) ( k w ( u )  ) 

The contour o f  integration is the same as defined for p+,  but 
with an indentation into the first quadrant surrounding the 
pole u = uo (see Fig. 2). 

For r = 0 ,  no vorticity is shed by the incident sound wave, 
no instability is triggered, and indeed F+ has no pole in u = 
U,, so in this case the indentation around uo can be ignored. 

The field inside the pipe (r < 1 and z < 0)  can be written 
more explicitly by closing the contour via a large semicircle in 
the upper half plane, and noting hat F+ is analytic above the 
contour o f  Fig. 2, and that Jo(kvr) and vJI ( k v )  depend on u 
through v2 ( U ) .  Hence the field is given by a sum o f  residues 
in the zeros o f  v ( u )  Jl ( k v ( u )  ) : the usual modal expansion. 
This expansion will be given later in approximated form. 

An asymptotic expression o f  the field for k ( r 2  + z2)" -m 
(the far field) can be obtained with the method o f  stationary 
phase. Following Munt we find then, after defining 

z= Pi  A cost, 

for kA - W and not near 0 or T ,  

COMPLEX U-PLANE 

Fig. 2 Contour of integration 

BRAN,CH CUTS -(X - - W --------- ______----- 

arccos[1/2\/2[1+ la012-((Ia012-1)2+4(Imao)z)'l~l 

where a. = /3aC-'uo + MO, the instability field, due to the 
contribution o f  the pole in u = U,, should be included ( i f  F Z 
0). So there the present expression is formally not valid. There 
is, however, evidence that in the real world this instability is 
not so important, since it breaks up into acoustically less 
important eddies, and that the present expression is a 
reasonable representation o f  the far field also for 0 < 4 S to. 
(This has nothing to do, o f  course, with the acoustical im- 
portance o f  the interaction between the instability and the 
pipe edge.) Furthermore, in the limit w - 0 we will consider, 
the cone becomes small enough to ignore. So further on, the 
instability wave will be neglected in the far field. 

f j CONTOUR OF 
I N T E G R A T I O N  _-,- 5 --,-------_I L ----------- - v 

B R A N C H  CUTS 

Approximations for Small Strouhal Number 
In this section, we will present asymptotic approximations 

for w - 0 to several physical quantities, including an estimate 
o f  the error. The method employed consists o f  a deformation 
o f  the contour o f  integration in such a way that on the new 
contour an approximation o f  the integrand, with a uniform 
relative error, is available, sufficiently simple to integrate 
explicitly. Details o f  the method can be found elsewhere [20, 
221. 

Beside we have several other parameters with, a priori, 
unknown magnitude with respect to w. Too much variation o f  
these parameters may introduce the need to consider many 
special cases to be dealt with separately, and may even in- 
validate any approximation o f  the present kind. The number 
o f  possibilities is too large to explore all extensively, and we 
will therefore restrict the respective domains a bit as follows 
(in many "sound in air" cases, these restrictions are met). 

O<Mj<l ,  providedP,=(l-Mf)" =0(1), 

O ~ s ~ O ( w l n " w - l ) ,  

C=0(1) ,  provided M,C< 1 ,  and 0 ,  = ( 1  - MjC2)" = 0(1), 

O<dS0(1) ,  

lFl S 1  

The "order" symbol related to the limit w - 0. 
Now we can construct approximations to p,, p - ,  u0 and 

ul  with a relative accuracy o f  O(w21nw-l), to find: 

with L = - 1/2ln(%wp,eY), y = 0.5772 ... (Euler's constant), 
and the principal branch o f  the square root; on a contour, 
deformed sufficiently away from u = * C and u = M y 1 ,  

( l - u M j )  w ( u ) J o ( k v ( u ) )  
P ( U )  = 

( u - C ~ ) ( U - C ~ ) J ~  ( ~ v ( u ) )  ' 

Inside the cone 0 < 5 to = 
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and jm,, is the nth zero of Jm ( X )  /P. Furthermore, the 
present method with contour deformation involves an error 
exponentially depending on z. A little more detailed analysis 
reveals that upstream this error can be ignored, but down- 
stream an additional restriction is required, giving 

effectively meaning that in the jet the instability field is not 
very well included. 

Finally, these approximations yield an approximation to 
the integrand of $ in r < 1 from which the physical quantities 
can be calculated by a straightforward summation of residues, 
Also, these approximations are applicable to the far field 
formulas. And so, after some algebra, ignoring all the terms 
smaller than the error, we obtain for r < 1 (in the jet flow): 

l -M1 
4, (r,z a 0) = 2Mj [ fexp [-iw( ) " c ~ ]  

1 +M, 

(with ir=1 if u=O, ir=Qif u=l) ,  

and the constant 

A numerical evaluation of E, and E; is, due to the ex- 
ponential term, possible, provided lz' I is not too close to 
zero. If lz' I = 0 and r = 0, the series of E, converges very 
slowly (like E(= l)R In), and the series of E,' converges not at 
all. 

In the foregoing expressions for pressure and velocity, the 
term with exp(ik( l = M, ) z )  represents the reflected wave, 
the term with exp(=iwz) the instability waves (both from ace 
and ul ), and the terms B, and E, the exponentially decreasing 
field of the other, cutoff, modes. Note that (on z S O(w=I)) 
the instability wave is of purely hydrodynamic nature, and is 
absent in pressure, A first indication of the energy conversion 
mechanism by vortex shedding is seen in equation (15) from 
the rapid increase of this instability amplitude when f varies 
from zero to a finite value. 

From these expressions, we obtain immediately 

rimpsdance at z = 0: 2 = Z*/p,e, = M,p(r,O)/@, (r,O); 

which becomes for f = 1 : 
ik 

Z =  -Eo(r,0)+B(w21no=1) 
4 

(15) Orefleetion coefficient for pressure: 
R = reflected wave ampl./primary wave ampl,; 

M.  ik rend correction: point z m l (modnbjlk) where primary and 
+ ~ ( 1 + ~ ~ - 2 ~ ~ I ' ) e x p ( - ~ - 2 i k t )  l -M, 

l -Mj reflected waves are 180 deg out of phase; 

-El(r,zIPj) +O(w2Mjlnw=1) (16) 2k 1 
+O(uM;llnw-l) 

with (24) 

(l +M,) ( l  -l=')  We see that for f # 1 the field inside the flow is coupled 
JZ+ l C J  (17) with the ambient flow, viz., through the parameter d t ,  In I -  

bj case of the full Kutta condition (F = l),  this coupling 
2Mj(l  -F) disappears. Another conclusion to be noted is the importance 

D, (r ,zl)  = exp(i~(z'))E,'(r,z') of the choice o f f ,  For instance, in view of the fact that L and, 
l -Mj even more, l /k are large, the end correction can be virtually 

2ik(l -MjI') anything for only slightly varying f. When f is not known 
+ E, (rIz1) (18) and cannot be kept constant, measurements of the end 

P j ( l -Mj )  correction will be very difficult for small U. 

2Mj(l - I') Somewhat surprising may be the fact that for M, - Q (and 
E, ( r , z l )=  exp(iE)(z'))C,,'(r,z') d =  C =  1, s=Q) the end correction does not tend to 0.6133, the 

l -Mj value found by Levine and Schwinger [l41 for the case MI = 

2ik [ 
M2 Q, k - Q. This is due to the nonuniform character of the limit 

+- I'+ ( l  -1'1-]~~(r,z') (19) Mj - Q, k - Q, The Levine and Schwinger case corresponds 
pi l -Mj to w - W (no flow), whereas our case has w - 0 (in- 

kMj k compressible flow), 
g ( z t )  = -2' - ~ ( l +  ~~)J; j i ;  - I cJ (20) To study the energy balance, we consider the power flux 

pi 4 P" through the pipe. If we write 
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Bf * = 1/4D2p, qP f  , then we have [l01 

where lp, I and lp= I are the amplitudes of incident and 
reflected pressure wave. Hence 

pp -- pp- - - - - - 

0 EXPERIMENT (PINKER &I BUYCE) 

I . 8 8 8 8 . 8 8 4  MUNT d c l , @  1 

+ O ( ~ k l n w = ~ )  (25) 
Note that Pt = 0 for f = 0, and that for a real f the power 
flux is independent of the ambient medium, 

Finally we present the far field approximations 

Analogous expressions (differing from this only by a kctor) 
are easily found for the potential and velocity. From these we 
obtain the far field intensity [IO], which ieldg, after in- Y tegration, the radiated power flux P'* = %B p , q P F ,  by 

Although there is, in principle, no difficulty in calculating 
the general case, the formulas become cumbersome, and we 
present here only the power flux for the Kutta condition case 
and for the stable ease, 

The expression for Pi agrees with the one obtained previougly 
by eargill [S]. 

For a fixed amplitude of the incident wave, the edge 
condition does affect the radiated power, although it does not 
change the order of magnitude, The important difference 
appears when we compare radiated and transmitted power, 
and we recognize from the small ratio 

Bechert and Howe's sound attenuation mechanism. 

The cold jet far field formula Ip I, with Kutta condition, of 
equation (26) is shown by eargill [d] to be in very good 
agreement with Munt's [l71 numerical evaluation, and hence 
with Pinker and Bryce's [l91 measurements, for w even up to 
2, Also in the hot jet case our formula (with f = 1) is in very 
good agreement with Munt (Fig, 31, even in the cases where it 
should not, viz., where M,C a 1 and w is not small. Only the 
density ratio d seems to be an important parameter; d = 1 
gives best agreement, while d = 2.8 is too high. As noted by 
Munt, a comparison with experiments is, for the hot jet, not 
so successful (Pig. 3). In general, the difference between the 
downstream and the upstream arc is over-predicted, and the 
measurements tend to behave more like a Ipl with P closer to 
zero; however, a satisfactory fit was not readily found. This 

ANGLE 5 FROM JET AXIS  ( d e u )  
Fig. 3 Comprrlron of far flrld lp l (aqurtlon (26), f' m 1) wllb numarlcal 
avrlurtlon (Munt) and axparlmrntr (Plnkar and Bryca) for r hot r tr t lc  Jrl 
(a =O) at I* 2.6 kHz and r (total) jat trmprrrtura of 830aK 
behavior may indicate that, by some as yet unknown tem- 
perature effect, the Kutta condition is not satisfied, and the 
analytical solution would improve on using some f smaller 
than unity, Also for the cold jet it was found experimentally 
by Heavens [l11 that for high excitation levels the diffracted 
field increased more than proportionally in amplitude, also 
indicating a deviation from the Kutta condition. 

For small k, formula (28) of the sound energy loss by vortex 
shedding covers very well the cold jet experimental data of 
Bechert, et al. [2], as shown by Cargill [b]. No data for a hot 
jet are known, 

Also of the field inside the jet flow, few measurements are 
known, Moore [IS] did, in a cold jet, measurements for w 2 
0.56, His measurements of the axial variation of the pressure 
level on the jet centerline are compared with the predictions of 
our formulas (13) and (14) for F = 1 (Kutta condition) in Pig. 
4, Inside the pipe, agreement is reasonable; the position and 
the "depth" of the minima confirm the assumption of the 
Kutta condition being adequate. (An experimental value of P 
can be derived from the difference between maximum and 
estimated minimum; if we assume f real, all those results of 
Moore with w e l ,  viz., w = 6.56,0.78,0.89, and 8.94, yield, 
surprisingly, identical values, namely, F = 0.96). Outside the 
pipe, however, agreement is, if not absent, limited to the exit 
vicinity. The instability wave always dominates beyond z = 
%. 

No published measurements are known to the author on the 
end correction and on the reflection coefficient for a hot jet, 
In case of a cold jet (e.g., [24], our value 181 = 1 for the 
Kutta condition case is indeed well approached for w - Q by 
the experiments; also Munt's [l$] numerical evaluation comes 
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t a  that value. Measurements on the end correction seem to 
suffer often from two mueh seatter to  permit deeisive con= 
elusians. Possibly this is due to a sensitiveness to the edge 
csndjtion. Prom expression (24) we see that the products ( l  = 

r ) , d L  and Im(I')lk give order one (and more) variations in I 
far  small variations of F. Especially a phase lag of the in- 
stability wave (giving a nonzero imaginary part of F) seems 
very effective. 

Be that as it may, further work is clearly required to  
establish the domains of applicability of Kutta condition, and 
other choiees af F. Experiments [2=1l] as well as theoretical 
work [41 indieate a genuine dependence of F on Strouhal 
number, amplitude, Reynolds number, and other parameters; 
systematic experiments in particular are now needed to find F 
(or a n  analogous parameter if the present model is too crude) 
as function of w,M, etc,, and to relate far field and the field 
inside the pipe for varying F. 

Finally, it may be noted that in view of the nonuniform 
behavior of  the complete solution in the limit (k,M,) - (O,O), 
it may be worthwhile to present, in case of a small k and small 
M,, experimental data as a function of Strouhal number 
instead of Helmholtz number, the more usual parameter. 
Canclueions 

A small Strouhal number w asymptotic analysis has been 
made of a model, describing harmonic plane sound waves 
radiating out of an exhaust pipe, with density and tem- 
perature differences inside and outside, and a slowly moving 
ambient medium. Munt's [l71 acoustically exact solution was 
adapted to satisfy an arbitrary pipe edge condition, and this 
general solution was systematically approximated, using 
complex contaur deformation, with a relative accuracy of 
Q(w21nw l). Velocity and pressure field inside the jet flow 
and in the far field, impedance, reflection coefficient and end 
correction at the pipe mouth, and transmitted and radiated 
sound power were derived. 

The role of the edge condition is shown to be always 
significant and for some quantities very important. The effect 
of deviations from the Kutta condition is discussed and 
argued to be a possible source of present experimental 
discrepancies and scatter, particularly in the end correction 
( -  phase of the reflection coefficient). A curious observation 
is the independence of the field inside the pipe flow from the 
ambient medium properties just (only) in case of the Kutta 
condition. Time seems ripe for experimental investigations on 
the relation between the edge condition, as depending on flow 
parameters, and the sound field. 

Finally, the exact solution is shown to behave nonuniformly 
in the limit of Mach number and Helmholtz number both to 
zero. 
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E R R A T A  

Corrections to "On the Acoustical Implications of Vortex Shedding from an Exhaust Pipe," by Dr. S. W. 
Rienstra, ASME JOURNAL OF ENGINEERING FOR INDUSTRY, November 1981, Vol. 103, No. 4, pp. 378-384. 

The following typographical errors should be noted in the above paper: 

Equation (10) should be divided as follows: 

The equation just below equation (12) should read: 

Equation (15) should read: 

l - MJ 
. . . exp [U ( - ) ̂  C,] . . . 

1 + M, 

Equation (28) should read: 
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