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The results obtained were as follow :—

Rate of evaporation of Rate of cooling of hot
Vessel. liquid oxygen in grms./ water in cals./hour over

24 hours. temp, range 70°-50° C.

Vacuum-adjacent surfaces of polished
copper ...................................................

Vacuum-adjacent surfaces of polished
525 634

silver electroplated on copper............... 456 634

Silver plating and polishing the vacuum-adjacent surfaces of a 2-litre copper 
Dewar vessel thus increased its efficiency, when used for the storage of liquid 
oxygen, by nearly 15 per cent.

The Department of Scientific and Industrial Research has borne the cost of 
the liquid oxygen and of the copper Dewar vessels used in this work, and we 
wish to express our thanks for this valuable assistance.

On the Action of a Locomotive Driving Wheel.
By F. W. Ca r t e r , M.A., Sc.D., M.Inst.C.E., M.I.E.E.

(Communicated by Prof. A. E. H. Love, F.R.S.—Received April 15, 1926.)

In the appendix to a paper read before the Institution of Civil Engineers,* 
dealing generally with the subject of the ‘ Electric Locomotive,’ the author 
discussed the running qualities of locomotives from the point of view of dynamics. 
He based the discussion on the forces set up between wheel and rail, and these 
forces he referred to the creepage of the surfaces in contact due to elastic deforma
tion of the material in the neighbourhood of the contact, defining “ creepage ” 
as the ratio of the distance gained by one surface over the other, to the distance 
traversed. He later introduced two quantities, /  and which represented 
respectively the tractive force per unit creepage, longitudinally and transversely, 
to the rail. The quantities f  and / ' ,  which were assumed constant in any 
particular problem, were not determined at the time, and the present paper is 
primarily an attempt to compute the first of them.

* See Minutes of ‘ Proc. Inst. C.E.,’ \o l. 201, part I, p. 248. See also the author’s 
book * Railway Electric Traction ’ (Arnold, 1922), chap. 2, p. 57, seq.
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152 F. W . Carter.

The area of contact between wheel and rail varies with the state of wear of 
the parts. For a new rail the longitudinal dimension of the contact is in general 
greater than the transverse dimension; but, as the rail flattens with use, the 
contact area approximates in shape to a uniform strip transverse to the rail. 
The final state is assumed herein, the wheel and rail being conceived as cylinders 
having their generating lines parallel. The problem proposed is accordingly a 
two-dimensional one. Instead of assuming the problem to be that of a cylinder 
rolling on a plane, however, we implicitly assume it to be that of two cylinders 
of like material and of equal and opposite radii, pressed together and rolling 
on one another, one being subject to a torque and the other to an equal counter
torque. Under this assumption, any state of stress or strain in one member, due 
to tangential tractive forces only, is matched by an equal reversed state in the 
other, and the distribution of pressure between the members is unaffected by 
the traction, since the radial displacements of the surfaces in contact are 
complementary. We may note also that any conclusion deduced for a driving 
wheel is true, with reversal of stresses and strains, for a wheel undergoing 
braking.

The radius of the wheel is large compared with the circumferential extent of 
the contact area ; and, except in the determination of particulars of the contact, 
may be assumed infinite. The problem is then one of an infinite elastic medium 
bounded by a plane, on which is a certain local distribution of pressure and 
tangential traction. The stresses and strains, due to pressure, are known,* 
and need not be discussed further than as the means of transmitting the tractive 
effort.

The solution of the two-dimensional problem of an infinite elastic medium, 
bounded by, and on the positive side of, the plane y =  0, in which the portion 
of the boundary for which x is negative is subjected to a uniform tangential 
traction parallel to the #-axis, and that for which x is positive is free of externally 
applied stress, is given by Prof. Love.f Using the same notation as Prof. Love 
(viz., A for dilatation, w  for component rotation, X, pt for elastic constants), the 
solution is shown to depend on the equation :

=  (X +  2(i) A =  Clog (x +  iy) (1)

in which Ctt (X -f- p.)/(X -|- 2[x) is the tangential traction on the half-boundary 
plane, being directed towards the origin when C is positive and away from it 
when C is negative : S; and y) are functions defined by the above equation.

* See Love’s ‘ Mathematical Theory of Elasticity,’ second edition, chap. VIII, § 138.
t  Loc. cit., chap. IX, § 152 (c).
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Action of a Locomotive Driving Wheel. 153

Take the separating line between stressed and unstressed portions of the 
boundary at (x \  0), and superpose a distribution of tangential stress extending 
to (x +  dx', 0), and an equal reversed stress extending to 0). We thus 
obtain the solution of a problem in which the boundary stress extends over a 
band of width dx' only. Integrating this, in order to obtain the solution of the 
problem in which the tangential stress—a function of x'—extends over any 
desired portion of the boundary, we get as fundamental equation:

=  (x +  2(x> a  +  -  -  f — W -  „ (2)
a (x -riy) J x -\-iy — x

the integral being taken over the boundary.
The strain in the direction of the #-axis is, using Prof. Love’s notation* :

du
&XX 7dx

=jl r — y +  — ]
2(i L d x Y

At the boundary surface, Y v is zero, and :

=  _1 d l
2 fx dx

2^ • (3)

Thus the value of exx at the boundary is the real part, as y approaches zero, 
of (see equation 2) :

J_ f C dx 
Jx +  iy — x ' ( 4 )

The values of C with which we shall have occasion to deal are, in form, 

proportional to 1̂ — r̂ ~ ) , the limits of x' being — a and a ; and :

x ' y  dx' 
ar) x +  iy — x'

—  TU <fx + ~!x +  iy Y  _  “
\  a A  a 1 _ ] ■

(5)

We discuss the pressure and contact surface between wheel and rail,f taking
#

* Loc. cit , chap. IX, § 144.
f  The matter is here discussed in terms of wheel and rail. For the case of a pair of 

equal wheels in contact, R should be replaced by R/2 throughout.
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154 F. W . Carter.

the origin at the centre of the contact area, and employing the notation of 
Prof. Love.* If R is the radius of the wheel and P the total pressure :

A = 2R
X +  2fx P f

27T[X (X +  (l) J .
X +  2(i p  r

2-k[l (X +  p.) b ‘Jo
X +  2p _P

o (a2 +  <10* +  <!»)*<];*
d<\>

(a2 +
if b is large

4 7t [T (X -j- p.) a2b ■

The pressure per unit area of contact near the origin is :

P ' J * - ( l
2rc ab \

a*.
ar J

(6)

Integrating this over the width of the contact, the pressure per unit length 
of contact is :

F  dx' =  f  -  
a b

The equivalent length of the contact is thus 46/3 ; this we call l. Accordingly:

o r :

also:

_1_ =  X +  2(i 
2R TCfx (X +  jjl)  la29

[~ X +  2{ji 2RP“]»
I—7T (JL ( X ~)“ (Jt) l J (7)

(8)

Assume first that the tangential traction is everywhere proportional to 
the pressure an assumption which is only justifiable when the wheel is on the 
point of skidding. Writte its value TJP'/P, so that Ti is the maximum available 
tractive effort. T hen:

c _  X +  2ix 2T i(/ ^
7T (X +  H*) x a2/ *

(9)

Hence, at the boundary (see equations 4 and 5), when x is in the contact 
area (x2 <  a2) :

X -f~ 2[jl Ti x 
7T[x (X +  [i) la a

(10)

* Loc. cit., chap. VIII, §§ 137, 138.
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Action of a Locomotive Driving Wheel. 155

and when x is outside the contact area (x2 >  a2) :

exx
x +  2pt _ Ti r* _  /*2 _  xy  

7T[Jt (X -{- jx) la La \a2 1. ( I D

We next consider the normal operation of the wheel. Assuming it to be 
running in the positive direction of the #-axis, let A'OA in the figure represent 
the contact surface, A being the point of first contact, and A' the point of leaving. 
Let ABA' be the curve of limiting tangential traction TiP'/P. The actual 
curve of tangential traction will follow some line ADCA', starting at A and never 
exceeding the limiting curve. Over the portion ADC of the curve, the surfaces

Direction of running

B

in contact are locked together, and the surface-strain is accordingly constant; 
for any variation of strain in one member requires an opposite variation in the 
other member, and this cannot be where the boundaries in contact have no 
relative movement. Beyond the point C, the pressure between the surfaces is 
insufficient to support the strain, and the surfaces accordingly slip, with limiting 
tangential traction. The value of the surface strain may be written :

=  real part of L K
y 0 (!'.

_  fa <f> (a/) dx' |  ^  
a2/ x  +  iy — x' J <• +  —

in which K is put for the coefficient of nxja in equation 10, and c is the abscissa 
of the point C in the figure. The function rf> (x') is zero at the limits c and a, 
and positive between them : it is such that, between c and a, exx is independent 
of x . The first integral in equation 12 has, however (see equations 5 and 10), 
been shown to be proportional to x for points within the contact area ; the 
second, accordingly, when a > x > c should be a linear function of xy 
cancelling the first and leaving a constant.

Consider :
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156 Action of a Locomotive Driving Wheel.

Changing the variable to y' =  x' — \{a - f  c), the second integral in equation 12 
becomes :g — c r*<“ -  r x _  / y' \81_ _ _ _ _

2g J _ i(« - C)L | ( g  — cy -ix — +  c) -f
This has the same form as the integral in equation 5, and, with a > x > c ,  and 
y — 0, its value is :

+. — c x 
2a ’ ‘ (a —

j  (a + c) — a + C1
a —  c) L 2g  J

Hence, with a > x > c ,  equation 12 gives the constant value :

e~ = K^ c

(13)

(14)

The tractive effort of the wheel is :

T =  T ^ l  -  — l no

=  T, j l  -

Hence c is given by :

2 a — cC^a~ c) I- . / . / \21i
1 — ( y )

7ta 2 a J - i ( a- C)L \ i  ( a -0 )1 -1
la -  « \q
\ 2 a !J *

-  =  1 -  2 
a

1 ~\l
u -

T “|l 
T

(15)

(16)

The quantity /  is now readily determinable for the case considered. On 
entering the contact area, and for a certain distance within that area, the sur
face strain exx is given by equation 14. Consider a pair of points on the driving 
and driven wheel-rims respectively, situated an infinitesimal distance 8x ahead 
of A (see figure), and therefore about to enter into contact with one another. 
The unstrained length of rim represented by Sir is (1 — exx) 8x for the driving 
wheel, and (1 +  exx) 8x for the driven wheel. The ratio of angular rotation of 
driving and driven wheel is therefore as 1 — exx : 1 +  exx or as 1 — 2 ^ :  1. 
The ratio of rolling rotation is unity, and the quantity — 2exx accordingly repre
sents the creepage as defined above. Writing q for T /T i,/is  then given by :

f  =
%exx

-

tcK a +  c

=  Ti 9 
2tuK 1 -  (1 -  

=  tt[x(X +  fx) l a _____q
2 (X +  2(jl) 1 — (1 — gr)*
n[L (X +  fx) q

L2 (X -h 2a.) J 1

(eqn. 14) 

(eqn. 16) 

(eqn. 10) 

(eqn. 7) (17)
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Specific Heat of Ferromagnetic Substances. 157

Thus /  depends on the tractive effort, increasing in the ratio 1 : 2 as T falls, 
from Ti to zero.

For the value T =  Ti, or q =  1, and with forces and lengths expressed in 
ordinary engineering units of the subject, the approximate value o f / f o r  steel 
wheels and rails is as follows :

(1) With forces in kilogrammes and lengths in millimetres :

' = 9 3  [RZP]*.
(2) With forces in lbs. and lengths in inches :

/ =  3500 [RIP]K

The effective value of l, the length of contact transverse to the rail is m atter 
for conjecture, and doubtless variable. A representative value is perhaps 
of the order of 25 mm. or 1 in.

On the Specific H eat o f  Ferromagnetic Substances .
By W. Sucksmith, B.Sc., and H. H. P otter, Ph.D., Lecturers in Physics^

University of Bristol.

(Communicated by Prof. A. P. Chattock, F.R.S.—Received April 28, 1926.)

According to the Weiss theory of ferromagnetism, there is an intimate con
nection between the specific heat of a body and its magnetisation. Weiss* has 
shown that the magnetic energy per cubic centimetre of a ferromagnetic 
substance i s :—

W =  — JH I (1)

where I is the intensity of magnetisation and H is the molecular field. Further, 
it is assumed that

H =  NI (2>

where N is a constant depending on the material itself. Thus
W =  — IN I2

and
dW/dT =  -  ± m /dT  (I2)

where T is the temperature. dWjdT will contribute to the specific heat of tho 
substance which will become equal to

a , 1 dW
s =  s +  ? 5 t -

* Weiss and Beck, ‘ Journ. de Phys.,’ vol. 7, p. 249 (1908).
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