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ON THE ADAPTIVE CONTROL OF JUMP PARAMETER SYSTEMS
VIA NONLINEAR FILTERING*

PETER E. CAINES AND JI-FENG ZHANG$

Abstract. In this paper we first present an error analysis for the process of estimates generated
by the Wonham filter when it is used for the estimation of the (finite set-valued) jump-Markov
parameters of a random parameter linear stochastic system and further give bounds on certain
functions of these estimates. We then consider a certainty equivalence adaptive linear-quadratic
Gaussian feedback control law using the estimates generated by the nonlinear filter and demonstrate
the global existence of solutions to the resulting closed-loop system. A stochastic Lyapunov analysis
establishes that the certainty equivalence law stabilizes the Markov jump parameter linear system
in the mean square average sense. The conditions for this result are that certain products of (i)
the parameter process jump rate and (ii) the solution of the control Riccati equation and its second
derivatives should be less than certain given bounds. An example is given where the controlled linear
system has state dimension 2. Finally, the stabilizing properties of certainty equivalence laws which
depend on (i) the maximum likelihood estimate of the parameter value and (ii) a modified version
of this estimate are established under certain conditions.

Key words, jump parameter, nonlinear filter, adaptive control, stochastic systems, maximum
likelihood
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1. Introduction. The hybrid system considered in this work is taken to have
the following form:

(1.1) dxt [A(Ot)xt + B(0t)ut]dt + dwt,

where xt E :t and ut ’ are the state and input of the system, {wt, .T’t} is a
standard Wiener process in n with respect to a probability space (gt, P, 9v), and
Ot {1, 2,..., N} is the N-state jump-Markov parameter process subject to

(1.2) (I)t (I)0 + H (sds -- mr.Here, (I)t [J{0t--1}, J{0t--2},..., J]-{Ot--N}] T is the indicator process for Or, H is the
transition probability rate matrix, rnt is a zero-mean L2 martingale, measurable with
respect to an increasing a-field 9t. (I)o is So-measurable and E(I)o Po.

For 0 i, A(O) Ai, and B(O) Bi, where the Ai’s and Bi’s are, respectively,
/nn andnm matrices such that IIAi- Aj[ + IIBi- Bjl 0 for j. Here and

hereafter, IIXII [Amax(XX)] 1/2, where Amax(A) denotes the largest eigenvalue of a
matrix A.

The model (1.1), (1.2) is particularly appropriate for the analysis of the control
of time varying systems, since (1.1) has a variable structure. As indicated by the
dependence of all matrix parameters on the indicator process (I)t, it can be used as
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a model for systems subject to random failures and structural changes. Moreover,
(1.2) is a general model for jump-Markov parameter processes (see, e.g., Liptser and
Shiryaev (1977)).

Control problems for such systems in a nonadaptive setting have been the subject
of considerable theoretical research for the past two decades and Sworder and Chou
(1985) and Ezzine and Haddad (1989) have given surveys of previous work on this
topic.

Generally speaking, the previous works can be classified into three groups: one
group (see, e.g., Sworder and Chou (1985); Ezzine and Haddad (1989); Mariton and
Bertrand (1985); Mariton (1986); Ji and Chizeck (1990); Feng, Loparo, Ji, and Chizeck
(1992)) deals with the case where the system state process x and the jump param-
eter process can be observed completely at any time instant. The second group
(see, e.g., Wonham (1965), Rishel (98), Caines and Chen (1985), Chen and Caines
(1989), Helmes and Rishel (990), Caines and Nassiri-Toussi (1991)) is concerned with
the adaptive case where the system state process x can be observed, but the jump
parameter process q) cannot be directly observed and is consequently estimated. This
may, for instance, be carried out by an application of the Wonham filter (see, e.g.,
Caines and Chen (1985), Chen and Caines (1989), Caines and Nassiri-Toussi (1991)).
The third group (see, e.g., Sworder (1991)) discusses the adaptive case where neither
the system state process x nor the jump parameter process q) can be observed.

Among the first group, it is worth mentioning that Ji and Chizeck (1990) and
Feng, Loparo, Ji, and Chizeck (1992) examine the relationship between appropriately
defined controllability and stabilizability properties, and establish necessary and suffi-
cient conditions for (i) system stabilization and (ii) infinite time jump linear quadratic
(JLQ) optimal controls to exist. However, in most situations, direct observation of sys-
tem parameters is impossible and this leads to the use of adaptive control. Caines and
Chen (1985) used the Wonham filter and a dynamic programming approach to obtain
a finite-horizon adaptive optimal control law for a general jump-Markov system. In
a continuation of this work, Caines and Nassiri-Toussi (1991) and Nassiri-Toussi and
Caines (1991) carried out a stochastic Lyapunov analysis of a certainty equivalence
stabilizing control law and gave an analysis of the resulting ergodic behavior of the sys-
tem. It is shown that, under rather strong conditions on the magnitude of the jumps
of the parameters and the rate of the jump parameter process, a certainty equivalence
linear feedback regulator (using the parameter estimates generated by the Wonham
filter) gives rise to stable ergodic behavior of the system (1.1), (1.2). In some special
cases, where the system is deterministic or where indirect observations of the parame-
ter are available, special solutions to this problem have also been given in Sworder and
Chou (1985), while the general adaptive control problem for stochastic jump-Markov
parameter systems is addressed in Rishel (1981), Caines and Chen (1985), Chen and
Caines (1989), Helmes and Rishel (1990), Sworder (1991), Caines and Nassiri-Toussi
(1991), Nassiri-Toussi and Caines (1991), and Dufour and Bertrand (1993). It should
be remarked that Rishel (1981) was the first to use the Wonham filter to find the
equations of the optimal linear quadratic Gaussian (LQG) controller for a system
depending upon a (constant in time) unobserved finite set-valued random variable.
More recently, Helmes and Rishel (1990) have given an explicit solution to this prob-
lem for the case of minimizing the expectation of the quadratic state deviation at a
final time plus the integrated square of the control action. Sworder (1991) presents
an approximation to the quadratic-optimal regulator problem for a situation in which
there is an unconventional measurement architecture; the solution is in a form quite
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similar to that obtained in the complete observation case, but the gain equation is
made more complicated by the presence of noise. Finally, in a recent paper, Dufour
and Bertrand (1993) responded to an announcement (Caines and Zhang (1992)) of
the results of the present paper by giving a form of averaged control law (with respect
to the conditional densities) that adaptively stabilizes the jump parameter system in
question whenever it satisfies a simple set of algebraic sufficient conditions.

The object of this paper is to establish the existence of stabilizing adaptive feed-
back controllers for jump parameter systems under relatively weak conditions.

in 2 of this paper, the Wonham filter for estimating the indicator process
from observations on x and u is presented, and the error behavior of the filter is
analyzed. Theorem 2.1 gives a formula for the mean square estimation error of and
Corollaries 2.1 and 2.2 give bounds for the expectation of certain weighted integrals
of the estimates; these are required in the subsequent stability analysis. Section 3
contains the principal adaptive control result of the paper. By use of a stochastic
Lyapunov technique it is shown that an adaptive LQG certainty equivalence feedback
control law, which employs parameter estimates generated by the nonlinear filter,
stabilizes the system in an average mean square sense. This result is subject to the
condition that (i) the rate of the jump process of the system and (ii) the magnitude
of the solution to the control Riccati equation and its second derivative are such
that two products of these quantities fall below specified bounds (see (3.8)). It is to
be noted that there is no condition on the size of the jumps of the parameters. In
4, a nontrivial example of this theory is given concerning the adaptive control of a
two-dimensional linear system with jump-Markov system matrices {A, 1 <_ _< N}.
Finally, in 5, the stabilizing properties of certainty equivalence laws which depend
on (i) the maximum likelihood estimate of the parameter value and (ii) a modified
version of this estimate are established under certain conditions.

2. The nonlinear filter and preliminary results. Suppose that (i) A and
B are known for i 1,..., N, (ii) EIIx0][ 2 < cx), (iii) the cross quadratic variation of

m and w, i.e., d(m, w}t/dt O, and (iv) ut is an m-dimensional $- __A a{xs, s <_ t}-
measurable control process. Set

(2.1) t [t(1),..., t(N)] _A_ E(t[’), Vt _> 0,

(2.2) Ht [Alxt + But,... ,Agxt + Bgut],

and

(2.3) DiagOt "..
0 t(N)

Then the nonlinear Wonham filter for the values of the parameter indicator process
t is given by (see, e.g., Chen and Caines (1989))

(2.4) d’t IIOtdt + (DiagOt Ot’t )H[d-t,

where {t, } is the Wiener process of innovations defined by the innovation rep-
resentation of xt"

dt dxt HtOtdt.
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THEOREM 2.1. The conditional mean square estimation error of the filter (2.4)
for the system (1.1) satisfies

Elltll 2 EIloll 2 + 2E IIsds- 2E on(sds

where t A= t t, and Tr(X) denotes the trace of matrix X.
Proof. By (e.e), (.) be rewritten as

dxt Httdt + dwt,

which together with (2.5) results in

t Httdt + dwt.

Therefore, by (1.2) and (2.4), we have

d Hdt +[ Diag]H/ + dm
Htdt + [tO Diagt]H[Httdt

+[tO: DiagOt]H[dwt + dmt,

which combined with Ito’s formula (see, e.g., Schwartz (1984)) leads to

+

Since t, as a solution of (2.4), is continuous, ( _) _. om this
we see that

o<st o<st

where & is the number of the jump points of in [0, t].
Substituting (2.8) into (2.7) and taking expectations on both sides, we see that

t E0 + 2as +t
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From (1.2) and Ito’s formula it follows that

[( ’o + 2 (H(ds + 2 dm + 2Jr,

which, together with (I)(I)t- (I)(I)o 1, implies

(2.10) EJt -E 2II(ds.

Notice that

TE(t(PI) E((tt

Then, by (2.9) and (2.10), we can conclude that

/o-E Tr

i.e., (2.6) holds.
COROLLARY 2.1. (2.6) implies that

N

(2.11) E/_ E[(i)]21[Ax +Bu Aix Bull2ds <_ 1 + 4[lIIllt,
Jo i:1

where (I)t and (t(i) are defined in (2.1), and

N N

(2.12) A$ E (i)Ai, B$ E (i)Bi.
i=1 i=1

Pro@ Let

(2.13) Ht,i Aixt + Biut

Then, by (2.1)-(2.3), we have

and Ht,t Atxt A- Btut.

(2.14)

Ht[(t( Diag(I)t] [Ht, $Ot(1), Ht,$t(n)] HtDiagt

[(H, H,)(),..., (H, H,,)e(N)].

Thus, by (2.13) and (2.6) we get
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where we have used the fact that EllOtll 2 1 EllOtll 2 < 1 and ]lotll 2 1 for t > 0
in order to get the last inequality.

This completes the proof of Corollary 2.1.
COROLLARY 2.2. For any constant > O, we have

T NI"

El Ilxtll2 [t(i)]211A$, xs + B,us Aixt Biut[]2dt
0 i=1

EI]x0[[ 2 + ( + 2IHII)E IIxtll2dt + 2E [xHttldt

+ 41 n  T)+ NT.

Proof. om Ito’s formula and (2.4) it follows that

and from (2.5),

d(x{xt) 2xHttdt + 2xd@t + Ndt.

Therefore, by Ito’s formula we have

d[(1 :)x xt]

-2x;x:Hdt + 2(1 t t)x:Httdt + g(1 t t)dt

-4: (Diag- t:) H[xdt + 2(1 :)x:t

Taking expectations of both sides, and noticing 0 <t 1, (1- t)zzt 0,
and 4ab 4-la + b (for all a, b 0, > 0) we get that for any fixed constant

>0

ET ]]X]]2 [(Diag-t) H:Ht (Diagt t:)] dt

E[[x01[ 2 + 2[IHI]E I]xt[[2dt + 2E [xH[dt + NT

Ellxol + (v + 2IInll)E Ilxtll2dt

+2E Ix;HtOt Idt + NT

+4-1ExT [(Diagt t:)H[Ht (Diagt- t:)] dr,
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which, together with (2.14), leads to

<_ EIIxoll 2 / ( / 211nll)E xtll2dt + 2E Ix[Httldt

i.e., (2.15) holds.

3. Quadratic index-based adaptive control. The following lemma is to be
found in Caines and Nassiri-Toussi (1991).

LEMMA 3.1. Let the Markov process Xt satisfy the following regular Ito stochastic

differential equation:

(3.1) dXt bt(Xt)dt + Gt(Xt)dwt.

Furthermore, assume that there exist a Cl(+) x C2(n) nonnegative function (.),
a positive real number o, and a nonnegative function kt, such that

O(x) + A(x) -011xll +, Vx e, vt 0,ot

where is the infinitesimal generator of (3.1).
Then, if

1lotlim suPt_o-E kds < cx3

(3.2)

and E[Vo(Xo)] <

limsupt_,oolEfo 1 fott IIXsII2ds <- limsuPtotE ksds <

Proof. By (3.1) and Ito’s formula, we know that dVt(Xt) satisfies the following
equality:

) oy(x)
C(X)d.dVt(Xt) OVt(X)ot F .AVt(x) dt + Ox

With the assumptions on Vt (Xt), this results in

v(x) <_ Vo(Xo) -o IIXlld + d + 0x

Taking the expectation of both sides of this inequality we get

E[(Xt)] E[Vo(Xo)] -oE IIXll2ds + E sds.

This, combined with the positiveness of , gives the desired result (3.2).
It is well known that if (A,B) is controllable and (A, C) is observable (with

CC Q), then for all S > 0 the following Riccati equation has a unique, positive
definite solution P:

(3.3) PA + A;P PBS-IB;p + O.
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LEMMA 3.2. Suppose that (As, Ba) is controllable and (As, C) is observable (with
CC Q). If As and Ba are continuous or i-times differentiable with respect to a
in an interval [a,, a*], then so is the solution Pa.

Proof. From Martensson (1971) we see that the solution Pa can actually be
expressed in the following form:

P=YX 1, for all aE[a,,a*]

where the columns of the composed matrix ix.y. are eigenvectors or generalized eigen-
vectors of matrix

As -BS-B ]
-Q -A J

Now, the eigenvectors (respectively, generalized eigenvectors) of a matrix are (re-
spectively, may be chosen to be) continuous functions of its elements. Thus, if
and Ba are continuous with respect to a, then Y, X, and hence P are continuous
with respect to

Similarly, if Am and B are/-times differentiable with respect to a, then Pa is
/-times differentiable with respect to

We define the adaptive control law via the certainty equivalence principle and the
following quadratic index:

lim
1 f0t--, - (xiQx8 + uSus)ds.

Hence, we will use the following adaptive control law:

where Ot is a solution of (2.4), and Pst is a solution of (3.3) with As and Ba replaced
by At and B, respectively.

Let II(i) denote the ith row of matrix II and

(3.6)

(3.7)

sup max
i,j= g Ot(i)Ot(j)

c sup {IJA$- BS-BP$[]}

c2 sup max= N

where

7) A---- t O <_ t(i) <_1, i= l,...,N with t(i) l
i--1

In other words, t ranges over the closed unit simplex 7) in N.
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The closed-loop system referred to in the statement of the main result below is
given by the system and parameter process equations (1.1), (1.2), the filter equations
(2.4), (2.5), and the Riccati and feedback equations (3.3), (3.4).

THEOREM 3.1. Suppose that (A$,B$) is controllable for all Ot in the closed
unit simplex T) and that for some appropriate positive matrix S, the unique solution

P$ to (3.3) combined with the matrix II in (1.2) satisfies

N
1 1

(3.8) IlHIl + eCl < 4N’ c2E I]H(i)ll < "i--1

Then, under the adaptive control law (3.4) with (t a solution of (2.4), the closed-loop
system has a unique strong solution {xt, Or, t >_ 0}, and is stabilized in the following
average sense:

lim sup
1 j0

T- E (llxll + llll)dt < .
To prove Theorem 3.1, we introduce some notation following Guo (1993). For

any fixed positive number K, denote by C:+N the space of ’+N-valued continuous
functions on the interval [0, K]. When g {gt}o<t<g is a C+N process, we set
IIg][ [O,K] maxo<<K Ilgt II.

Proof. First of all, we show that the closed-loop system has a solution {x, t, t >
0}. Let

(3.9)

Zt

(3.10)

a(zt)

(3.11)

Then from (1.1), (2.4), and (3.4) the closed-loop system can be rewritten in the
following form:

(3.12) dzt a(zt)dt + b(zt)dwt.

Obviously, it follows from (2.12) that A$ and B$ are differentiable with respect

to each component of Or. This combined with Lemma 3.2 implies that P$ is con-

tinuous and bounded on :D, since :D is a compact set. Thus, by (3.9)-(3.11), we can
conclude that for any fixed A > 0, there exists a constant L(x) such that

[lla(gt) a(ht)ll 2 -4-IIb(gt) b(ht)ll 2] (llgltto,<, Ilhll:o,<} < L()llgt htll
and

[lla(g)ll 2 + IIb(g)ll 2] {llgllO,K<> < L(A)( 1 + IIgl12),
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where 11 {.} is the indicator function of the set {.}.
Therefore, by Lemma 2.2 of Guo (1993) we know that there is an 9rt-time aK > 0

such that (3.12) has a unique strong solution zt(w) on {w, t" t <: aK(W)}, and

(.) sup I1,()11
t<K()

a.s. on { A_ {w" aK(w) < K}.

We now prove aK(W)= K a.s., i.e., P({I)= 0.
Substituting (3.4) into (1.1) results in

dxt [A(Ot) B(Ot)S-1B P]xtdt + dwt,

which together with Ito’s formula leads to

(3.14)

( )x [A(0s)- B(Os)S-1BsP8] + [A(08)- B(Os)S-1BcsP$] xsds

+llx011 + 2 xdws + nt.

Notice that, by Lemma 3.2, O Pll
a.s., and that by Lemma 4 of Christopeit (1986) there is a random constant
a2(w) < oc a.s. such that

XdWs

_
() IIxllds / ,(), Vt>0.

By (3.14) we get

IIxll
_

(llxoll + t / ()) /( + ()) Ilxlld.

Thus, by the Bellman-Grownwall lemma (see e.g., Desoer and Vidyasagar (1975)) we
have

(3.15)

Ilxtll = < Ilx0ll = + nt + a2(w) + (OZl + o2(o2)) ([Ix01l 2 -- r-

(llx011 + t + ())(+()), vt 0.

If P({) > 0, then by (3.15) and the fact that I111 <_ we see that

a.s. on ,
contradicting (3.13) and P({) > 0.

Noting that K can be any positive number, we see that the closed-loop system
(3.12) has a unique strong solution zt(w) on any finite time interval.

We now prove the stability of the closed-loop system.



1768 PETER E. CAINES AND JI-FENG ZHANG

Let$ A$ B$ S-1BZP and A(i) A- BS-IBeP$," Then from

(2.5) and (2.12) it follows that

(3.16) dxt Httdt +t A$,xtdt + t.
Applying the general Ito formula to V(xt) x[P$,xt, and employing (3.3), (2.4),

and (2.5), we have the following inequalities (see, e.g., Caines and Nassiri-Toussi
(1991))"

Av(z) -x:z x:P,,B,S-BaOtPt xt

+xH(i)t xt +
= Ot(i)

+ () ( ())x
i=1 Ot(i)
N

1

i=1

N

-xrx + c2 IIH(i)llllxll 2 +p,
i=1

N

i=1

[5+llxll 2 ,(i)ll(, A,,
i=1

2 [In(i)ll IIxll 2 +P
i=1

N

+4NcN [(i)]211<, , (i))xll =
i=1

NNe
+V IIxll 2 [(i)1 II(, A,, <i)>xll 2,

i=1

where we have used the sum of squares bound 2ab 1/4a2 + 4b2 and a standard sum
of squares bound to obtain the last inequality above and where e and c2 are given by
(3.5) and (3.7), respectively.

By the second inequality of condition (3.8), we see

N

3 1

i=1
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and hence, by Lemma 3.1, we get

limsup
1 .T

< lim sup1 TrP$ dt

+limsup4NC2 f
T N

T --E0 [t(i)]211(]$ ]*(i))xtl]dt

Ne T N

(a.17) + imsu, lx]
i=1

By (3.4), i.e., ut -S-B P$ xt, we have

[A$ A$ (i)]xt A$xt + B$ut Axt But.

Thus, from (3.17) and Corollaries 2.1 and 2.2 it follows that for any fixed > 0,

lim sup
1 ITT E

< lim sup1 P$dt

+ { 16Y]H[[Z-c + Ne(16[[H]- + N)(2Z) -1}
g(, + ]l)

limsuPT 2ZT
E
o

[xtll2dt+

(3.18) + lim sup
T E ]x:Httldt.

It is easy to see that

(a.l) lx:H x:Z,x xll,
where Cl is defined in (3.6).

Substituting (3.19) into (3.18) we get that for all > 0,

lim sup
1

_< limTsup E P$dt
+ {laNlnll-c + N(la[lnll- + N)(2) -1 }

N(V + 2llnll)e + 2Nec fT
limSuPT 2ZT

E Jo Ixtldt"+

Notice that (3.8) implies
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So we can fix a constant r/> 0 at such a value that

(3.21) N( + 211IIII)e + 2Necl < 1.

Recalling that P, is bounded on :D, we get

lim sup
r--*cx

and hence, by (a.21) and (3.20) we have

lim sup
1 fo

r

which together with (3.4) results in

lira sup
1 T

Therefore, Theorem 3.1 is true.

4. An example. In this section, we present an example to demonstrate that the
conditions of Theorem 3.1 are verifiable in certain nontrivial cases.

EXAMPLE 4.1. If system (1.1) is such that n 2, m 1, B B2 BN
[0b] with

b#0 and Ai= [ 00 -ail]
for a distinct, i 1,..., N, then (i) (As,, B$,) is controllable for all Ot in the closed
unit simplex, and (ii) condition (3.8) and the conclusion of Theorem 3.1 are true when
the parameter S in the control Riccati equation (4.2) for P$, is sufficiently small.

Proof. The truth of (i) is evident. Concerning (ii) set

P, (I, I)P, (I, 2)
(4.1) as, Et(i)a and P$, p$,(1,2) P,,(2 2)

i=0

Then the algebraic Riccati equation (3.3) becomes

P$, (1, 2) P$, (2, 2) 0 -as, -as, P$, (1 2) P$, (2 2)

P$, (1, 2) P$, (2, 2) 0 S-lb2 P$, (1, 2) P$, (2, 2) + I 0,

which is equivalent to

0 1- S-1b2p2 (1 2)

0 P,(1, 1)- S-1b2p,, (1,2)P,, (2,2)

o (e,e)- +
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Solving this set of equations we get

(4.3)

(4.4)

(4.5)

Hence, when S is small enough,

+

[a2 152 1/2] 1/2
-Sb-2a^* + ([b[ -1 + Sb-2) ., + S- + 2IbiS-
o(s),

where O(S) denotes a function of S satisfying limsups_0Is)l < oo.
From this it follows that

lim sup
1 f0

T

T---o -E TrP$ dt <

]1/2a2 +#Let # S-lb2 + 2Ibis-1/2 and 75, , Then it is easy to see that

(4.6)
0 (as,) [a, + #]-1/2

where 1,...,N.
Furthermore,

(4.7)

Ot(i)OOt(j) [a, nt-#] -1/2

aiaj, i, j l, N.

aaj

From (4.3)-(4.6) it follows that for i= 1,..., or N,

aa$ [b]-ls1/2

[at + S_162 + 2Ibis_l/2] 1/2

aa$Sb-2

[a., + S-lb2 + 2Ibis-1/2] 1/2 Sb-2a

which implies that for S sufficiently small

(4.8) c2 --- c2(S) <_ c3S,

where C3 is a constant depending on ai and b only.
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Since

Oqh(i)Oqh(j)

(4.3)-(4.5) and (4.7)yield

Ot(i)OOt(j) 0

aiai(2 + Ibis-1/2)
/ /

Prom this we obtain that as S -- 0,

Ot(i)OOt(j)

which implies that as S 0,

(4.9) max
i,j=l,...,N

From (4.3)-(4.5)it follows that

[00 a b ] [0

Then we get

aiaj(1 + 2lbl-ls1/2)

laiaylSb-2 (1 + 0(S/2)),

laiajlb-2 (1 + 0(S/2))

b] [Psi(l, 1) P(1, 2) ]P,, (1, ) P (, )

=[ 0 1 ]2az a + S-lb2 + 2Ibis-1/2

IIA,- s-1B- B P,ll < 2S-1/2lbl (1 + O(Sl/2))
which implies that

C 2S-1/2[b] (1 + O(1/2))
From this and (4.8), (4.9) we see that for some sufficiently small S, condition (3.8),
and hence the results of Theorem 3.1, are true. []

5. Maximum likelihood-based adaptive control. Intuitively, if Ot is a good
estimate of t, in some sense, then AS, andB are good estimates of A(Ot) and B(Ot).
Therefore, in the last two sections, we discuss the stabilization problem of the filtered
system (2.5):

dxt A$,xtdt + Butdt + d-t by (2.1), (2.2), and (2.12),

rather than that of system (1.1).
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Let it be defined by

(5.1) it arg max {Or(i)} t > 0.
i=l,...,N

Again, if Ot is a good estimate of Or, in some sense, then A(it) and B(it) should also
be good estimates of A(Ot) and B(Ot). In this case, it is natural to ask whether we
could find an adaptive stabilization control law for system (1.1) by only discussing
the following system:

dxt A(it)xtdt + B(it)utdt + cl-t.

This section, as an application of Corollary 2.1, will answer this problem. By using
the notion of a maximum likelihood estimate, we present some sufficient conditions for
stabilization control of the system (i.i)-(1.2). These sufficient conditions are different
from those used in 3, but similar to those introduced in Ezzine and Haddad (1989).

For simplicity of notation, for a matrix A, let

#(A) Amax (A + A" )2

THEOREM 5.1. Suppose there is a matrix K(i) (i- 1,... ,N) such that

(5.2) u max # (A(i)- B(i)K(i)) > O.
i=l,...,N

Then, under the adaptive control law ut -K(it)xt, the closed-loop system has
a solution {xt, ut, t

_
0}, and the input and output of the closed-loop system are

bounded in the following average sense:

(5.3) sup E (I]xll 2 + ]]us]12)ds < x.
t>0 t + 1

Proof. Similar to the argument of Theorem 3:1, we see that the closed-loop system
has a solution {xt, Or, t >_ 0}. So, here we only need prove (5.3).

From (2.5) and (2.12) it follows that

(5.4)

dxt Httdt + dt A$,xtdt + B$,utdt + d-t
A(it)xtdt + B(it)utdt

+[Axt + But A(it)xt B(it)ut]dt + d-t,

where it is given in (5.1)
Substituting ut -K(it)xt into (5.4) we get

dxt [A(it)- B(it)K(it)]xtdt

+[A$xt + B$ut A(it)xt B(it)ut]dt + dt,

which together with Ito’s formula and (5.2) implies that for the given by (5.2)

Ilxt[I 2 IIx0[I 2 + x ([A(is)- B(is)K(i)] + [A(i)- B(i)K(i)])xsds
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+t + 2 xcl-8 + 2 x[A$x8 + B$u A(i)x B(i)us]ds

< Ilxoll2-2 IIxll2ds/2 xd /t

(5.6) +2 x2[A,sx + B$u A(i)x B(is)ulds.

Notice that

2 x[Ax + B$u A(i)xs B(i)us]ds

by (.6) we get

IIell I1oll- lllld+ +t

which implies

I111d - II+B-()
(5.7) +-lE[[xoll + -t.

By (2.1) we see that Or(i) 0 for 1,..., N and t k 0; further, since

N

$(i) 1,
i=1

we have t(it) . Thus, by Corollary 2.1 we get

(.8)

N

[()IIIA +B A(i) B(i)lle (since i {1,..., N})
i=1

N2(2 + 6llHllt).

Substituting this into (5.7) leads to the desired result, (5.3).
Dom the definition (5.1) of it and ut -K(it)xt it follows that ut may jump at

any time instant t. In order to get a piecewise continuous control ut, that is, one that
has with probability 1 no accumulation points of switching times on the time axis,
one can modify the definition (5.1) of it as follows"

Vt ITk_l Tk), V 1, 2,(.9) ,_,,
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where

(5.10) t arg max {Or(i)} Vt > 0,
i=l,...,N

(5.11) ’k inf {t > Tk_ t(i,k_l) < (3’N)-1}
with TO 0, 3’ > 1, and k 1, 2,... being positive integers.

Since the trajectories of are continuous and 3’ > 1 it is evident that K(.) and
hence u has the required piecewise continuous property.

THEOREM 5.2. If {it; t > 0} and {Tk; k 1,2,...} are generated from (5.9)-
(5.11) and ut E J:, then limk_ Tk x3 a.s. and it is piecewise constant a.s.
Furthermore, if condition (5.2) of Theorem 5.1 is true and the adaptive control law is
chosen to be ut -K(it)xt, then ut is piecewise continuous and the input and output
of the closed-loop system are bounded in the average sense (5.3).

Proof. First, we show limk-_,o ’k x a.s. Noticing that

max ,{t(i)} > g-1

i=l,...,N

and every component of t is a continuous function of t, by " > 1 we see that- > T_. Thus, limk--,’ exists a.s.

If the sample set S {w" lim_ Tk <} had positive probability, i.e., P(S) >
0, then there would exist a deterministic constant T < such that S {w
limk- Tk < T} with positive probability, i.e., P(SI) > O.

Notice that for any constant t > 0,

{w" O < TIsl <t}={w" O < Tk < t} 3 {W Is =I}E’,
where

1, if ,d

Ia 0, if W 81.

By I1+ kl[ 2 > N-2(1 3’-1)2 > 0, (2.4), and (2.14) we have

E N-2(1- 3’-)2P($)< EIs EI].,+I- 1] 2

k=0 k=0

< 2[[HII2EI, E(Tk+I Tk) 2 -4- 2EIsE (Diags sO)H:d-
k=0 k=0 \JT

_< 2IIIIIIeTEIs (Tk+l -k) + 2EE (Diag O)Hs^^7

k=0 k=0 d -k

T

<_ 211IIIleT2P(S)+ 2E II (Diag ’^")HI
< 21]II[12T2p(s)+ 2(2 + 6]IHIIT < x.

2

d8

This contradiction means that limk_, -k cx a.s. Thus, from Tk > --1 and (5.9)
it follows that it is piecewise constant a.s.

As in Theorem 5.1, with condition (5.2) we can prove that the under-control law
ut -K(it)xt, with it given by (5.9)-(5.11), the closed-loop system has a solution
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{xt, t >_ 0} a.s. and is stabilized in the average sense of (5.3); this is because the only
difference between the proofs is due to (5.8), which now becomes

E IIA.sxs + B8 us A(is)xs B(is)usll2ds <_ (/N)2(2 +

since, in this case, t(it) >_ (’)’N) -1 for all t _> 0.

Noticing that limk_, Tk OC a.s. and that it is piecewise constant a.s., we see
that the control ut -K(it)xt is almost surely defined for all t _> 0 and is a piecewise
continuous function of t.

Remark 5.1. Although it is hard to say whether or not condition (5.2) is true in
general cases, there exist specific situations where it is readily verified; for instance,
(i) the case where A(i) and B(i) are scalar and (A(i),B(i)) is stabilizable for every
i 1,..., N, and (ii) that where B(i) is invertible for 1,..., N, and there exists
K(i) such that (5.2) holds.

In fact, for case (i), g(i) can be chosen as

[B(i)]-I[1 + A(i)], if B(i) O,K(i)= 0, ifB(i)=0,

and the constant u in (5.2) may be taken equal to the following positive quantity:

-max{u/, i 1,..., N},

where

-1, if B(i) O,
ui A(i), ifB(i)=0.

For case (ii), K(i) can be chosen as K(i) [B(i)]-l[I + A(i)], which results in
u--lo

Remark 5.2. We now revisit the example given by Dufour and Bertrand (1993).
In (1.1), they set n 2, m 1,

In this case the conditions of Theorem 3.1 above do not hold, but the conditions of
the theorem of Dufour and Bertrand are valid.

However, for this example, the adaptive control law described in Theorem 5.1
or 5.2 is applicable, and can stabilize the closed-loop system. This is because for
K(1) [0, 4] and g(2) [0, -1] we get u 3-v > 0 by a straightforward2
manipulation. This implies that condition (5.2), and hence the conclusion of Theorems
5.1 and 5.2, are true.
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