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ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING
NUMBER OF PARAMETERS

BY HUI ZOU1 AND HAO HELEN ZHANG2

University of Minnesota and North Carolina State University

We consider the problem of model selection and estimation in situations
where the number of parameters diverges with the sample size. When the di-
mension is high, an ideal method should have the oracle property [J. Amer.
Statist. Assoc. 96 (2001) 1348–1360] and [Ann. Statist. 32 (2004) 928–961]
which ensures the optimal large sample performance. Furthermore, the high-
dimensionality often induces the collinearity problem, which should be prop-
erly handled by the ideal method. Many existing variable selection methods
fail to achieve both goals simultaneously. In this paper, we propose the adap-
tive elastic-net that combines the strengths of the quadratic regularization and
the adaptively weighted lasso shrinkage. Under weak regularity conditions,
we establish the oracle property of the adaptive elastic-net. We show by sim-
ulations that the adaptive elastic-net deals with the collinearity problem better
than the other oracle-like methods, thus enjoying much improved finite sam-
ple performance.

1. Introduction.

1.1. Background. Consider the problem of model selection and estimation in
the classical linear regression model

y = Xβ∗ + ε,(1.1)

where y = (y1, . . . , yn)
T is the response vector and xj = (x1j , . . . , xnj )

T , j =
1, . . . , p, are the linearly independent predictors. Let X = [x1, . . . ,xp] be the pre-
dictor matrix. Without loss of generality, we assume the data are centered, so the
intercept is not included in the regression function. Throughout this paper, we as-
sume the errors are identically and independently distributed with zero mean and
finite variance σ 2. We are interested in the sparse modeling problem where the
true model has a sparse representation (i.e., some components of β∗ are exactly
zero). Let A = {j :β∗

j �= 0, j = 1,2, . . . , p}. In this work, we call the size of A the
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intrinsic dimension of the underlying model. We wish to discover the set A and
estimate the corresponding coefficients.

Variable selection is fundamentally important for knowledge discovery with
high-dimensional data [Fan and Li (2006)] and it could greatly enhance the pre-
diction performance of the fitted model. Traditional model selection procedures
follow best-subset selection and its step-wise variants. However, best-subset selec-
tion is computationally prohibitive when the number of predictors is large. Fur-
thermore, as analyzed by Breiman (1996), subset selection is unstable; thus, the
resulting model has poor prediction accuracy. To overcome the fundamental draw-
backs of subset selection, statisticians have recently proposed various penalization
methods to perform simultaneous model selection and estimation. In particular,
the lasso [Tibshirani (1996)] and the SCAD [Fan and Li (2001)] are two very pop-
ular methods due to their good computational and statistical properties. Efron et
al. (2004) proposed the LARS algorithm for computing the entire lasso solution
path. Knight and Fu (2000) studied the asymptotic properties of the lasso. Fan and
Li (2001) showed that the SCAD enjoys the oracle property, that is, the SCAD
estimator can perform as well as the oracle if the penalization parameter is appro-
priately chosen.

1.2. Two fundamental issues with the �1 penalty. The lasso estimator [Tibshi-
rani (1996)] is obtained by solving the �1 penalized least squares problem

β̂(lasso) = arg min
β

‖y − Xβ‖2
2 + λ‖β‖1,(1.2)

where ‖β‖1 = ∑p
j=1 |βj | is the �1-norm of β . The �1 penalty enables the lasso

to simultaneously regularize the least squares fit and shrink some components of
β̂(lasso) to zero for some appropriately chosen λ. The entire lasso solution paths
can be computed by the LARS algorithm [Efron et al. (2004)]. These nice proper-
ties make the lasso a very popular variable selection method.

Despite its popularity, the lasso does have two serious drawbacks: namely, the
lack of oracle property and instability with high-dimensional data. First of all, the
lasso does not have the oracle property. Fan and Li (2001) first pointed out that
asymptotically the lasso has nonignorable bias for estimating the nonzero coeffi-
cients. They further conjectured that the lasso may not have the oracle property
because of the bias problem. This conjecture was recently proven in Zou (2006).
Zou (2006) further showed that the lasso could be inconsistent for model selection
unless the predictor matrix (or the design matrix) satisfies a rather strong condition.
Zou (2006) proposed the following adaptive lasso estimator

β̂(AdaLasso) = arg min
β

‖y − Xβ‖2
2 + λ

p∑
j=1

ŵj |βj |,(1.3)
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where {ŵj }pj=1 are the adaptive data-driven weights and can be computed by

ŵj = (|β̂ ini
j |)−γ , where γ is a positive constant and β̂

ini
is an initial root-n con-

sistent estimate of β . Zou (2006) showed that, with an appropriately chosen λ,
the adaptive lasso performs as well as the oracle. Candes, Wakin and Boyd (2008)
used the adaptive lasso idea to enhance sparsity in sparse signal recovery via the
reweighted �1 minimization.

Secondly, the �1 penalization methods can have very poor performance when
there are highly correlated variables in the predictor set. The collinearity problem
is often encountered in high-dimensional data analysis. Even when the predictors
are independent, as long as the dimension is high, the maximum sample correlation
can be large, as shown in Fan and Lv (2008). Collinearity can severely degrade the
performance of the lasso. As shown in Zou and Hastie (2005), the lasso solution
paths are unstable when predictors are highly correlated. Zou and Hastie (2005)
proposed the elastic-net as an improved version of the lasso for analyzing high-
dimensional data. The elastic-net estimator is defined as follows:

β̂(enet) =
(

1 + λ2

n

){
arg min

β
‖y − Xβ‖2

2 + λ2‖β‖2
2 + λ1‖β‖1

}
.(1.4)

If the predictors are standardized (each variable has mean zero and L2-norm one),
then we should change (1 + λ2

n
) to (1 + λ2) as in Zou and Hastie (2005). The �1

part of the elastic-net performs automatic variable selection, while the �2 part sta-
bilizes the solution paths and, hence, improves the prediction. In an orthogonal
design where the lasso is shown to be optimal Donoho et al. (1995), the elastic-
net automatically reduces to the lasso. However, when the correlations among the
predictors become high, the elastic-net can significantly improve the prediction
accuracy of the lasso.

1.3. The adaptive elastic-net. The adaptively weighted �1 penalty and the
elastic-net penalty improve the lasso in two different directions. The adaptive lasso
achieves the oracle property of the SCAD and the elastic-net handles the collinear-
ity. However, following the arguments in Zou and Hastie (2005) and Zou (2006),
we can easily see that the adaptive lasso inherits the instability of the lasso for
high-dimensional data, while the elastic-net lacks the oracle property. Thus, it is
natural to consider combining the ideas of the adaptively weighted �1 penalty and
the elastic-net regularization to obtain a better method that can improve the lasso
in both directions. To this end, we propose the adaptive elastic-net that penalizes
the squared error loss using a combination of the �2 penalty and the adaptive �1
penalty. Since the adaptive elastic-net is designed for high-dimensional data analy-
sis, we study its asymptotic properties under the assumption that the dimension
diverges with the sample size.

Pioneering papers on asymptotic theories with diverging number of parameters
include [Huber (1988) and Portnoy (1984)] which studied the M-estimators. Re-
cently, Fan, Peng and Huang (2005) studied a semi-parametric model with a grow-
ing number of nuisance parameters, whereas Lam and Fan (2008) investigated the
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profile likelihood ratio inference for the growing number of parameters. In particu-
lar, our work is influenced by Fan and Peng (2004) who studied the oracle property
of nonconcave penalized likelihood estimators. Fan and Peng (2004) provocatively
argued that it is important to study the validity of the oracle property when the di-
mension diverges. We would like to know whether the adaptive elastic-net enjoys
the oracle property with a diverging number of predictors. This question will be
thoroughly investigated in this paper.

The rest of the paper is organized as follows. In Section 2, we introduce the
adaptive elastic-net. Statistical theory, including the oracle property, of the adaptive
elastic-net is established in Section 3. In Section 4, we use simulation to compare
the finite sample performance of the adaptive elastic-net with the SCAD and other
competitors. Section 5 discusses how to combine SIS of Fan and Lv (2008) and the
adaptive elastic-net to deal with the ultra-high dimension cases. Technical proofs
are presented in Section 6.

2. Method. The adaptive elastic-net can be viewed as a combination of the
elastic-net and the adaptive lasso. Suppose we first compute the elastic-net estima-
tor β̂(enet) as defined in (1.4), and then we construct the adaptive weights by

ŵj = (|β̂j (enet)|)−γ , j = 1,2, . . . , p,(2.1)

where γ is a positive constant. Now we solve the following optimization problem
to get the adaptive elastic-net estimates

β̂(AdaEnet)
(2.2)

=
(

1 + λ2

n

){
arg min

β
‖y − Xβ‖2

2 + λ2‖β‖2
2 + λ∗

1

p∑
j=1

ŵj |βj |
}
.

From now on, we write β̂ = β̂(AdaEnet) for the sake of convenience.
If we force λ2 to be zero in (2.2), then the adaptive elastic-net reduces to the

adaptive lasso. Following the arguments in Zou and Hastie (2005), we can easily
show that in an orthogonal design the adaptive elastic-net reduces to the adaptive
lasso, regardless the value of λ2. This is desirable because, in that setting, the
adaptive lasso achieves the optimal minimax risk bound [Zou (2006)]. The role of
the �2 penalty in (2.2) is to further regularize the adaptive lasso fit whenever the
collinearity may cause serious trouble.

We know the elastic-net naturally adopts a sparse representation. One can use
ŵj = (|β̂j (enet)| + 1/n)−γ to avoid dividing zeros. We can also define ŵj = ∞
when β̂j (enet) = 0. Let Âenet = {j : β̂j (enet) �= 0} and Âc

enet denotes its comple-
ment set. Then, we have β̂Âc

enet
= 0 and

β̂Âenet
=

(
1 + λ2

n

)
(2.3)

×
{

arg min
β

‖y − XÂenet
β‖2

2 + λ2‖β‖2
2 + λ∗

1

∑
j∈Âenet

ŵj |βj |
}
,
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where β in (2.3) is a vector of length |Âenet|, the size of Âenet.
The �1 regularization parameters λ∗

1 and λ1 are directly responsible for the spar-
sity of the estimates. Their values are allowed to be different. On the other hand,
we use the same λ2 for the �2 penalty component in the elastic-net and the adaptive
elastic-net estimators, because the �2 penalty offers the same kind of contribution
in both estimators.

3. Statistical theory. In our theoretical analysis, we assume the following
regularity conditions throughout:

(A1) We use λmin(M) and λmax(M) to denote the minimum and maximum
eigenvalues of a positive definite matrix M, respectively. Then, we assume

b ≤ λmin

(
1

n
XT X

)
≤ λmax

(
1

n
XT X

)
≤ B,

where b and B are two positive constants.

(A2) limn→∞
maxi=1,2,...,n

∑p
j=1 x2

ij

n
= 0;

(A3) E[|ε|2+δ] < ∞ for some δ > 0;
(A4) limn→∞ log(p)

log(n)
= ν for some 0 ≤ ν < 1.

To construct the adaptive weights (ω̂), we take a fixed γ such that γ > 2ν
1−ν

. In

our numerical studies, we let γ = 	 2ν
1−ν


 + 1 to avoid the tuning on γ. Once γ is
chosen, we choose the regularization parameters according to the following con-
ditions:

(A5) lim
n→∞

λ2

n
= 0, lim

n→∞
λ1√
n

= 0

and

lim
n→∞

λ∗
1√
n

= 0, lim
n→∞

λ∗
1√
n
n((1−ν)(1+γ )−1)/2 = ∞.

(A6) lim
n→∞

λ2√
n

√∑
j∈A

β∗2
j = 0,

lim
n→∞ min

(
n

λ1
√

p
,

( √
n√

pλ∗
1

)1/γ )(
min
j∈A

|β∗
j |

)
→ ∞.

Conditions (A1) and (A2) assume the predictor matrix has a reasonably good
behavior. Similar conditions were considered in Portnoy (1984). Note that in
the linear regression setting, condition (A1) is exactly condition (F) in Fan and
Peng (2004). Condition (A3) is used to establish the asymptotic normality of
β̂(AdaEnet).

It is worth pointing out that condition (A4) is weaker than that used in Fan and
Peng (2004), in which p is assumed to satisfy p4/n → 0 or at most p3/n → 0.
It means their results require ν < 1

3 . Our theory removes this limitation. For any



1738 H. ZOU AND H. H. ZHANG

0 ≤ ν < 1, we can choose an appropriate γ to construct the adaptive weights and
the oracle property holds as long as γ > 2ν

1−ν
. Also note that, in the finite dimension

setting, ν = 0; thus, any positive γ can be used, which agrees with the results in
Zou (2006).

Condition (A6) is similar to condition (H) in Fan and Peng (2004). Basically,
condition (A6) allows the nonzero coefficients to vanish but at a rate that can be
distinguished by the penalized least squares. In the finite dimension setting, the
condition is implicitly assumed.

THEOREM 3.1. Given the data (y,X), let ŵ = (ŵ1, . . . , ŵp) be a vector
whose components are all nonnegative and can depend on (y,X). Define

β̂ŵ(λ2, λ1) = arg min
β

{
‖y − Xβ‖2

2 + λ2‖β‖2
2 + λ1

p∑
j=1

ŵj |βj |
}

for nonnegative parameters λ2 and λ1. If ŵj = 1 for all j , we denote β̂ŵ(λ2, λ1)

by β̂(λ2, λ1) for convenience.
If we assume the model (1.1) and condition (A1), then

E
(‖β̂ŵ(λ2, λ1) − β∗‖2

2
) ≤ 4

λ2
2‖β∗‖2

2 + Bpnσ 2 + λ2
1E(

∑p
j=1 ŵ2

j )

(bn + λ2)2 .

In particular, when ŵj = 1 for all j , we have

E
(‖β̂(λ2, λ1) − β∗‖2

2
) ≤ 4

λ2
2‖β∗‖2

2 + Bpnσ 2 + λ2
1p

(bn + λ2)2 .

It is worth mentioning that the derived risk bounds are nonasymptotic. The-
orem 3.1 is very useful for the asymptotic analysis. A direct corollary of Theo-
rem 3.1 is that, under conditions (A1)–(A6), β̂(λ2, λ1) is a root-(n/p)-consistent
estimator. This consistent rate is the same as the result of SCAD [Fan and
Peng (2004)]. The root-(n/p) consistency result suggests that it is appropriate to
use the elastic-net to construct the adaptive weights.

THEOREM 3.2. Let us write β∗ = (β∗
A,0) and define

β̃
∗
A = arg min

β

{
‖y − XAβ‖2

2 + λ2
∑
j∈A

β2
j + λ∗

1

∑
j∈A

ŵj |βj |
}
.(3.1)

Then, with probability tending to 1, ((1 + λ2
n

)β̃
∗
A,0) is the solution to (2.2).

Theorem 3.2 provides an asymptotic characterization of the solution to the
adaptive elastic-net criterion. The definition of β̃

∗
A borrows the concept of “ora-

cle” [Donoho and Johnstone (1994), Fan and Li (2001), Fan and Peng (2004) and
Zou (2006)]. If there was an oracle informing us the true subset model, then we
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would use this oracle information and the adaptive elastic-net criterion would be-
come that in (2.3). Theorem 3.2 tells us that, asymptotically speaking, the adaptive
elastic-net works as if it had such oracle information. Theorem 3.2 also suggests
that the adaptive elastic-net should enjoy the oracle property, which is confirmed
in the next theorem.

THEOREM 3.3. Under conditions (A1)–(A6), the adaptive elastic-net has the
oracle property; that is, the estimator β̂(AdaEnet) must satisfy:

1. Consistency in selection: Pr({j : β̂(AdaEnet)j �= 0} = A) → 1,

2. Asymptotic normality: αT I+λ2�
−1
A

1+λ2/n
�

1/2
A (β̂(AdaEnet)A − β∗

A) →d N(0, σ 2),

where �A = XT
AXA and α is a vector of norm 1.

By Theorem 3.3, the selection consistency and the asymptotic normality of the
adaptive elastic-net are still valid when the number of parameters diverges. Tech-
nically speaking, the selection consistency result is stronger than that Theorem 3.2
implies, although Theorem 3.2 plays an important role in the proof of Theorem 3.3.
As a special case, when we let λ2 = 0, which is a choice satisfying conditions (A5)
and (A6), Theorem 3.3 tells us that the adaptive lasso enjoys the selection consis-
tency and the asymptotical normality

αT �
1/2
A

(
β̂(AdaLasso)A − β∗

A

) d→ N(0, σ 2).

4. Numerical studies. In this section, we present simulations to study the
finite sample performance of the adaptive elastic-net. We considered five meth-
ods in the simulation study: the lasso (Lasso), the elastic-net (Enet), the adaptive
lasso (ALasso), the adaptive elastic-net (AEnet) and the SCAD. In our implemen-
tation, we let λ2 = 0 in the adaptive elastic-net to get the adaptive lasso fit. There
are several commonly used tuning parameter selection methods, such as cross-
validation, generalized cross-validation (GCV), AIC and BIC. Zou, Hastie and
Tibshirani (2007) suggested using BIC to select the lasso tuning parameter. Wang,
Li and Tsai (2007) showed that for the SCAD, BIC is a better tuning parameter se-
lector than GCV and AIC. In this work, we used BIC to select the tuning parameter
for each method.

Fan and Peng (2004) considered simulation models in which pn = [4n1/4] − 5
and |A| = 5. Our theory allows pn = O(nν) for any ν < 1. Thus, we are interested
in models in which pn = O(nν) with ν > 1

3 . In addition, we allow the intrinsic
dimension (A) to diverge with the sample size as well, because such designs make
the model selection and estimation more challenging than in the fixed |A| situa-
tions.

EXAMPLE 1. We generated data from the linear regression model

y = xT β∗ + ε,
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where β∗ is a p-dim vector and ε ∼ N(0, σ 2), σ = 6, and x follows a p-dim
multivariate normal distribution with zero mean and covariance � whose (j, k)

entry is �j,k = ρ|j−k|, 1 ≤ k, j ≤ p. We considered ρ = 0.5 and ρ = 0.75. Let p =
pn = [4n1/2] − 5 for n = 100,200,400. Let 1m/0m denote a m-vector of 1’s/0’s.
The true coefficients are β∗ = (3 · 1q,3 · 1q,3 · 1q,0p−3q)

T and |A| = 3q and q =
[pn/9]. In this example ν = 1

2 ; hence, we used γ = 3 for computing the adaptive
weights in the adaptive elastic-net.

For each estimator β̂ , its estimation accuracy is measured by the mean squared
error (MSE) defined as E[(β̂ − β∗)T �(β̂ − β∗)]. The variable selection perfor-
mance is gauged by (C, IC), where C is the number of zero coefficients that are
correctly estimated by zero and IC is the number of nonzero coefficients that are
incorrectly estimated by zero.

Table 1 documents the simulation results. Several interesting observations can
be made:

1. When the sample size is large (n = 400), the three oracle-like estimators out-
perform the lasso and the elastic-net which do not have the oracle property.
That is expected according to the asymptotic theory.

2. The SCAD and the adaptive elastic-net are the best when the sample size is
large and the correlation is moderate. However, the SCAD can perform much
worse than the adaptive elastic-net when the correlation is high (ρ = 0.75) or
the sample size is small.

3. Both the elastic-net and the adaptive lasso can do significantly better than the
lasso. What is more interesting is that the adaptive elastic-net often outperforms
the elastic-net and the adaptive lasso.

EXAMPLE 2. We considered the same setup as in Example 1, except that we
let p = pn = [4n2/3] − 5 for n = 100,200,800. Since ν = 2

3 , we used γ = 5 for
computing the adaptive weights in the adaptive elastic-net and the adaptive lasso.
The estimation problem in this example is even more difficult than that in Ex-
ample 1. To see why, note that when n = 200 the dimension increases from 51
in Example 1 to 131 in this example, and the intrinsic dimension (|A|) is almost
tripled.

The simulation results are presented in Table 2, from which we can see that the
three observations made in Example 1 are still valid in this example. Furthermore,
we see that, for every combination of (n,p, |A|, ρ), the adaptive elastic-net has
the best performance.

5. Ultra-high dimensional data. In this section, we discuss how the adaptive
elastic-net can be applied to ultra-high dimensional data in which p > n. When p

is much larger than n, Candes and Tao (2007) suggested using the Dantzig selector
which can achieve the ideal estimation risk up to a log(p) factor under the uniform
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TABLE 1
Simulation I: model selection and fitting results based on 100 replications

n pn |A| Model MSE C IC

ρ = 0.5

100 35 9 Truth 26 0
Lasso 7.57 (0.31) 24.08 0.01

ALasso 6.78 (0.42) 25.50 0.42
Enet 5.91 (0.29) 24.06 0

AEnet 5.07 (0.35) 25.47 0.15
SCAD 10.55 (0.68) 22.54 0.35

200 51 15 Truth 36 0
Lasso 6.63 (0.24) 33.32 0

ALasso 3.78 (0.18) 35.46 0.02
Enet 4.86 (0.19) 33.36 0

AEnet 3.46 (0.17) 35.47 0.01
SCAD 4.76 (0.33) 34.63 0.10

400 75 24 Truth 51 0
Lasso 4.99 (0.15) 47.31 0

ALasso 2.76 (0.09) 50.33 0
Enet 3.37 (0.12) 48.00 0

AEnet 2.47 (0.08) 50.45 0
SCAD 2.42 (0.09) 50.88 0

ρ = 0.75

100 35 9 Truth 26 0
Lasso 5.93 (0.26) 24.80 0.14

ALasso 8.49 (0.39) 25.76 1.84
Enet 4.18 (0.24) 24.77 0.05

AEnet 5.24 (0.32) 25.70 0.74
SCAD 11.59 (0.56) 22.46 1.34

200 51 15 Truth 36 0
Lasso 5.10 (0.18) 34.66 0.02

ALasso 5.32 (0.31) 35.70 0.87
Enet 3.79 (0.17) 34.79 0

AEnet 3.32 (0.17) 35.80 0.19
SCAD 5.99 (0.31) 33.10 0.35

400 75 24 Truth 51 0
Lasso 3.83 (0.12) 49.03 0

ALasso 2.85 (0.12) 50.53 0.09
Enet 3.24 (0.11) 49.07 0

AEnet 2.71 (0.09) 50.54 0.03
SCAD 3.64 (0.17) 48.43 0.09

uncertainty condition. Fan and Lv (2008) showed that the uniform uncertainty con-
dition may easily fail and the log(p) factor is too large when p is exponentially
large. Moreover, the computational cost of the Dantzig selector would be very high
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TABLE 2
Example 2: model selection and fitting results based on 100 replications

n pn |A| Model MSE C IC

ρ = 0.5

100 81 27 Truth 54 0
Lasso 31.73 (1.06) 47.06 0.19

ALasso 28.78 (1.22) 53.01 2.12
Enet 27.61 (1.04) 46.35 0.13

AEnet 20.27 (0.94) 53.00 1.15
SCAD 44.88 (2.65) 47.79 2.37

200 131 42 Truth 89 0
Lasso 23.41 (0.67) 80.51 0

ALasso 12.70 (0.48) 87.99 0.14
Enet 18.94 (0.61) 80.27 0

AEnet 10.68 (0.37) 87.97 0
SCAD 14.14 (0.64) 87.42 0.25

800 339 111 Truth 228 0
Lasso 13.72 (0.23) 212.10 0

ALasso 6.44 (0.12) 226.61 0
Enet 11.02 (0.18) 213.91 0

AEnet 6.00 (0.10) 226.75 0
SCAD 7.79 (0.30) 228.00 0.33

ρ = 0.75

100 81 27 Truth 54 0
Lasso 22.04 (0.73) 50.74 0.71

ALasso 33.98 (1.08) 53.73 7.19
Enet 17.37 (0.62) 50.82 0.46

AEnet 16.18 (0.80) 53.67 2.36
SCAD 31.84 (1.77) 50.55 4.74

200 131 42 Truth 89 0
Lasso 16.71 (0.50) 85.17 0.06

ALasso 20.98 (0.92) 88.64 3.98
Enet 14.12 (0.48) 85.35 0.05

AEnet 11.16 (0.46) 88.60 0.87
SCAD 15.27 (0.61) 87.20 1.33

800 339 111 Truth 228 0
Lasso 10.01 (0.16) 221.74 0

ALasso 6.39 (0.12) 226.89 0
Enet 8.01 (0.13) 222.74 0

AEnet 6.23 (0.11) 226.94 0
SCAD 6.62 (0.17) 228.00 0.29

when p is large. In order to overcome these difficulties, Fan and Lv (2008) intro-
duced the Sure Independence Screening (SIS) idea, which reduces the ultra-high
dimensionality to a relatively large scale dn but dn < n. Then, the lower dimension
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TABLE 3
A demonstration of SIS + AEnet: model selection and fitting results based on 100 replications

dn = [5.5n2/3] Model MSE C IC

188 Truth 992 0
SIS + AEnet 0.71 (0.18) 987.45 0.05
SIS + SCAD 1.48 (0.90) 982.20 0.06

methods such as the SCAD can be used to estimate the sparse model. This proce-
dure is referred to as SIS+SCAD. Under regularity conditions, Fan and Lv (2008)
proved that SIS misses true features with an exponentially small probability and
SIS + SCAD holds the oracle property if dn = o(n1/3). Furthermore, with the help
of SIS, the Dantzig selector can achieve the ideal risk up to a log(dn) factor, rather
than the original log(p).

Inspired by the results of Fan and Lv (2008), we consider combining the adap-
tive elastic-net and SIS when p > n. We first apply SIS to reduce the dimension
to dn and then fit the data by using the adaptive elastic-net. We call this procedure
SIS + AEnet.

THEOREM 5.1. Suppose the conditions for Theorem 1 in Fan and Lv (2008)
hold. Let dn = O(nν), ν < 1; then, SIS + AEnet produces an estimator that holds
the oracle property.

We make a note here that Theorem 5.1 is a direct consequence of Theorem 1
in Fan and Lv (2008) and Theorem 3.3; thus, its proof is omitted. Theorem 5.1 is
similar to Theorem 5 in Fan and Lv (2008), but there is a difference. SIS + AEnent
can hold the oracle property when dn exceeds O(n1/3), while Theorem 5 in Fan
and Lv (2008) assumes dn = o(n1/3).

To demonstrate SIS + AEnet, we consider the simulation example used in
Fan and Lv (2008), Section 3.3.1. The model is y = xT β∗ + 1.5N(0,1), where
β∗ = (βT

1 ,0p−|A|)T with |A| = 8. Here, β1 is a 8-dim vector and each component
has the form (−1)u(an +|z|), where an = 4 log(n)/

√
n, u is randomly drawn from

Ber(0.4) and z is randomly drawn from the standard normal distribution. We gen-
erated n = 200 data from the above model. Before applying the adaptive elastic-
net, we used SIS to reduce the dimensionality from 1000 to dn = [5.5n2/3] = 188.
The estimation problem is still rather challenging, as we need to estimate 188 pa-
rameters by using only 200 observations. From Table 3, we see that SIS + AEnet
performs favorably compared to SIS + SCAD.

6. Proofs.

PROOF OF THEOREM 3.1. We write

β̂(λ2,0) = arg min
β

‖y − Xβ‖2
2 + λ2‖β‖2

2.
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By the definition of β̂ŵ(λ2, λ1) and β̂(λ2,0), we know

‖y − Xβ̂ŵ(λ2, λ1)‖2
2 + λ2‖β̂ŵ(λ2, λ1)‖2

2 ≥ ‖y − Xβ̂(λ2,0)‖2
2 + λ2‖β̂(λ2,0)‖2

2

and

‖y − Xβ̂(λ2,0)‖2
2 + λ2‖β̂(λ2,0)‖2

2 + λ1

p∑
j=1

ŵj |β̂(λ2,0)j |

≥ ‖y − Xβ̂ŵ(λ2, λ1)‖2
2 + λ2‖β̂ŵ(λ2, λ1)‖2

2 + λ1

p∑
j=1

ŵj |β̂ŵ(λ2, λ1)j |.

From the above two inequalities, we have

λ1

p∑
j=1

ŵj

(|β̂(λ2,0)j | − |β̂ŵ(λ2, λ1)j |)
≥ (‖y − Xβ̂ŵ(λ2, λ1)‖2

2 + λ2‖β̂ŵ(λ2, λ1)‖2
2
)

(6.1)

− (‖y − Xβ̂(λ2,0)‖2
2 + λ2‖β̂(λ2,0)‖2

2
)
.

On the other hand, we have(‖y − Xβ̂ŵ(λ2, λ1)‖2
2 + λ2‖β̂ŵ(λ2, λ1)‖2

2
)

− (‖y − Xβ̂(λ2,0)‖2
2 + λ2‖β̂(λ2,0)‖2

2
)

= (
β̂ŵ(λ2, λ1) − β̂(λ2,0)

)T
(XT X + λ2I)

(
β̂ŵ(λ2, λ1) − β̂(λ2,0)

)
and

p∑
j=1

ŵj

(|β̂(λ2,0)j | − |β̂ŵ(λ2, λ1)j |)

≤
p∑

j=1

ŵj |β̂(λ2,0)j − β̂ŵ(λ2, λ1)j |

≤
√√√√√ p∑

j=1

ŵ2
j‖β̂(λ2,0) − β̂ŵ(λ2, λ1)‖2.

Note that λmin(XT X + λ2I) = λmin(XT X) + λ2. Therefore, we end up with(
λmin(XT X) + λ2

)‖β̂ŵ(λ2, λ1) − β̂(λ2,0)‖2
2

≤ (
β̂ŵ(λ2, λ1) − β̂(λ2,0)

)T
(XT X + λ2I)

(
β̂ŵ(λ2, λ1) − β̂(λ2,0)

)
(6.2)

≤ λ1

√√√√√ p∑
j=1

ŵ2
j‖β̂(λ2,0) − β̂ŵ(λ2, λ1)‖2,
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which results in the inequality

‖β̂ŵ(λ2, λ1) − β̂(λ2,0)‖2 ≤
λ1

√∑p
j=1 ŵ2

j

λmin(XT X) + λ2
.(6.3)

Note that

β̂(λ2,0) − β∗ = −λ2(XT X + λ2I)−1β∗ + (XT X + λ2I)−1XT ε,

which implies that

E
(‖β̂(λ2,0) − β∗‖2

2
)

≤ 2λ2
2‖(XT X + λ2I)−1β∗‖2

2 + 2E
(‖(XT X + λ2I)−1XT ε‖2

2
)

≤ 2λ2
2
(
λmin(XT X) + λ2

)−2‖β∗‖2
2

(6.4)
+ 2

(
λmin(XT X) + λ2

)−2
E(εT XXT ε)

= 2
(
λmin(XT X) + λ2

)−2(
λ2

2‖β∗‖2
2 + Tr(XT X)σ 2)

≤ 2
(
λmin(XT X) + λ2

)−2(
λ2

2‖β∗‖2
2 + pλmax(XT X)σ 2)

.

Combing (6.3) and (6.4), we have

E
(‖β̂ŵ(λ2, λ1) − β∗‖2

2
)

≤ 2E
(‖β̂(λ2,0) − β∗‖2

2
) + 2E

(‖β̂ŵ(λ2, λ1) − β̂(λ2,0)‖2
2
)

≤ 4λ2
2‖β∗‖2

2 + 4pλmax(XT X)σ 2 + 2λ2
1E[∑p

j=1 ŵ2
j ]

(λmin(XT X) + λ2)2(6.5)

≤ 4
λ2

2‖β∗‖2
2 + Bpnσ 2 + λ2

1E[∑p
j=1 ŵ2

j ]
(bn + λ2)2 .(6.6)

We have used condition (A1) in the last inequality. When ŵj = 1 for all j , we have

E
(‖β̂(λ2, λ1) − β∗‖2

2
) ≤ 4

λ2
2‖β∗‖2

2 + Bpnσ 2 + pλ2
1

(bn + λ2)2 . �

PROOF OF THEOREM 3.2. We show that ((1+ λ2
n

)β̃
∗
A,0) satisfies the Karush–

Kuhn–Tucker (KKT) conditions of (2.2) with probability tending to 1. By the def-
inition of β̃

∗
A, it suffices to show

Pr
(∀j ∈ Ac |−2XT

j (y − XAβ̃
∗
A)| ≤ λ∗

1ŵj

) → 1

or, equivalently,

Pr
(∃j ∈ Ac |−2XT

j (y − XAβ̃
∗
A)| > λ∗

1ŵj

) → 0.
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Let η = minj∈A(|β∗
j |) and η̂ = minj∈A(|β̂(enet)∗j |). We note that

Pr
(∃j ∈ Ac |−2XT

j (y − XAβ̃
∗
A)| > λ∗

1ŵj

)
≤ ∑

j∈Ac

Pr
(|−2XT

j (y − XAβ̃
∗
A)| > λ∗

1ŵj , η̂ > η/2
) + Pr(η̂ ≤ η/2),

Pr(η̂ ≤ η/2) ≤ Pr
(‖β̂(enet) − β∗‖2 ≥ η/2

) ≤ E(‖β̂(enet) − β∗‖2
2)

η2/4
.

Then, by Theorem 3.1, we obtain

Pr(η̂ ≤ η/2) ≤ 16
λ2

2‖β∗‖2
2 + Bpnσ 2 + λ2

1p

(bn + λ2)2η2 .(6.7)

Moreover, let M = (
λ∗

1
n

)1/(1+γ ), and we have∑
j∈Ac

Pr
(|−2XT

j (y − XAβ̃
∗
A)| > λ∗

1ŵj , η̂ > η/2
)

≤ ∑
j∈Ac

Pr
(|−2XT

j (y − XAβ̃
∗
A)| > λ∗

1ŵj , η̂ > η/2, |β̂(enet)j | ≤ M
)

+ ∑
j∈Ac

Pr
(|β̂(enet)j | > M

)
≤ ∑

j∈Ac

Pr
(|−2XT

j (y − XAβ̃
∗
A)| > λ∗

1M
−γ , η̂ > η/2

)
+ ∑

j∈Ac

Pr
(|β̂(enet)j | > M

)

≤ 4M2γ

λ∗2
1

E

( ∑
j∈Ac

|XT
j (y − XAβ̃

∗
A)|2I (η̂ > η/2)

)
(6.8)

+ 1

M2 E

( ∑
j∈Ac

|β̂(enet)j |2
)

≤ 4M2γ

λ∗2
1

E

( ∑
j∈Ac

|XT
j (y − XAβ̃

∗
A)|2I (η̂ > η/2)

)

+ E(‖β̂(enet) − β∗‖2
2)

M2

≤ 4M2γ

λ∗2
1

E

( ∑
j∈Ac

|XT
j (y − XAβ̃

∗
A)|2I (η̂ > η/2)

)

+ 4
λ2

2‖β∗‖2
2 + Bpnσ 2 + λ2

1p

(bn + λ2)2M2 ,
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where we have used Theorem 3.1 in the last step. By the model assumption, we
have∑

j∈Ac

|XT
j (y − XAβ̃

∗
A)|2 = ∑

j∈Ac

|XT
j (XAβ∗

A − XAβ̃
∗
A) + XT

j ε|2

≤ 2
∑

j∈Ac

|XT
j (XAβ∗

A − XAβ̃
∗
A)|2 + 2

∑
j∈Ac

|XT
j ε|2

≤ 2Bn‖XA(β∗
A − β̃

∗
A)‖2

2 + 2
∑

j∈Ac

|XT
j ε|2

≤ 2Bn · Bn‖β∗
A − β̃

∗
A‖2

2 + 2
∑

j∈Ac

|XT
j ε|2,

which gives us the inequality

E

( ∑
j∈Ac

|XT
j (y − XAβ̃

∗
A)|2I (η̂ > η/2)

)
(6.9)

≤ 2B2n2E
(‖β∗

A − β̃
∗
A‖2

2I (η̂ > η/2)
) + 2Bnpσ 2.

We now bound E(‖β∗
A − β̃

∗
A‖2

2I (η̂ > η/2)). Let

β̃
∗
A(λ2,0) = arg min

β

{
‖y − XAβ‖2

2 + λ2
∑
j∈A

β2
j

}
.

Then, by using the same arguments for deriving (6.1), (6.2) and (6.3), we have

‖β̃∗
A − β̃

∗
A(λ2,0)‖2 ≤ λ∗

1 · maxj∈A ŵj

√|A|
λmin(XT

AXA) + λ2
≤ λ∗

1η̂
−γ √

p

bn + λ2
.(6.10)

Note that λmin(XT
AXA) ≥ λmin(XT X) ≥ bn and λmax(XT

AXA) ≤ λmax(XT X) ≤
Bn. Following the rest arguments in the proof of Theorem 3.1, we obtain

E
(‖β∗

A − β̃
∗
A‖2

2I (η̂ > η/2)
)

≤ 4
λ2

2‖β∗
A‖2

2 + λmax(XT
AXA)|A|σ 2 + λ∗2

1 (η/2)−2γ |A|
(λmin(XT

AXA) + λ2)2
(6.11)

≤ 4
λ2

2‖β∗‖2
2 + Bpnσ 2 + λ∗2

1 (η/2)−2γ p

(bn + λ2)2 .

The combination of (6.7), (6.8), (6.9) and (6.11) yields

Pr
(∃j ∈ Ac |−2XT

j (y − XAβ̃
∗
A)| > λ∗

1ŵj

)
≤ 4M2γ n

λ∗2
1

(
8B2n

λ2
2‖β∗‖2

2 + Bpnσ 2 + λ∗2
1 (η/2)−2γ p

(bn + λ2)2 + 2Bpσ 2
)
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+ λ2
2‖β∗‖2

2 + Bpnσ 2 + λ2
1p

(bn + λ2)2

4

M2 + λ2
2‖β∗‖2

2 + Bpnσ 2 + λ2
1p

(bn + λ2)2

16

η2

≡̂ K1 + K2 + K3.

We have chosen γ > 2ν
1−ν

; then, under conditions (A1)–(A6), it follows that

K1 = O

((
λ∗

1√
n
n((1+γ )(1−ν)−1)/2

)−2/(1+γ ))
→ 0,

K2 = O

(
p

n

(
n

λ∗
1

)2/(1+γ ))
→ 0,

(6.12)

K3 = O

(
p

n

1

η2

)

= O

((
λ∗

1

√
p

n
η−γ

)2/γ (
p

n

(
n

λ∗
1

)2/(1+γ ))(1+γ )/γ

p−2/γ

)
→ 0.

Thus, the proof is complete. �

PROOF OF THEOREM 3.3. From Theorem 3.2, we have shown that, with prob-
ability tending to 1, the adaptive elastic-net estimator is equal to ((1 + λ2

n
)β̃

∗
A,0).

Therefore, in order to prove the model selection consistency result, we only need
to show Pr(minj∈A |β̃∗

j | > 0) → 1. By (6.10), we have

min
j∈A

|β̃∗
j | > min

j∈A
|β̃∗(λ2,0)j | − λ∗

1
√

pη̂−γ

bn + λ2
.

Note that

min
j∈A

|β̃∗(λ2,0)j | > min
j∈A

|β∗
j | − ‖β̃∗

A(λ2,0) − β∗
A‖2.

Following (6.6), it is easy to see that

E
(‖β̃∗

A(λ2,0) − β∗
A‖2

2
) ≤ 4

λ2
2‖β∗‖2

2 + Bpnσ 2

(bn + λ2)2 = O

(
p

n

)
.

Moreover,
λ∗

1
√

pη̂−γ

bn+λ2
= O( 1√

n
)(

λ∗
1
√

p√
n

η−γ )(
η̂
η
)−γ and

E

((
η̂

η

)2)
≤ 2 + 2

η2 E
(
(η̂ − η)2)

≤ 2 + 2

η2 E
(‖β̂(λ2, λ1) − β∗‖2

2
)

≤ 2 + 8

η2

λ2
2‖β∗‖2

2 + Bpnσ 2 + λ2
1p

(bn + λ2)2 .
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In (6.12) we have shown η2 n
p

→ ∞. Thus,

λ∗
1
√

pη̂−γ

bn + λ2
= o

(
1√
n

)
OP (1).(6.13)

Hence, we have

min
j∈A

|β̃∗
j | > η −

√
p

n
OP (1) − o

(
1√
n

)
OP (1)

and Pr(minj∈A |β̃∗
j | > 0) → 1.

We now prove the asymptotic normality. For convenience, we write

zn = αT I + λ2�
−1
A

1 + λ2/n
�

1/2
A

(
β̂(AdaEnet)A − β∗

A

)
.

Note that

αT (I + λ2�
−1
A )�

1/2
A

(
β̃

∗
A − β∗

A

1 + λ2/n

)

= αT (I + λ2�
−1
A )�

1/2
A

λ2β
∗
A

n + λ2
+ αT (I + λ2�

−1
A )�

1/2
A

(
β̃

∗
A − β̃

∗
A(λ2,0)

)
+ αT (I + λ2�

−1
A )�

1/2
A

(
β̃

∗
A(λ2,0) − β∗

A

)
.

In addition, we have

(I + λ2�
−1
A )�

1/2
A

(
β̃

∗
A(λ2,0) − β∗

A

) = −λ2�
−1/2
A β∗

A + �
−1/2
A XT

Aε.

Therefore, by Theorem 3.2, it follows that, with probability tending to 1, zn =
T1 + T2 + T3, where

T1 = αT (I + λ2�
−1
A )�

1/2
A

λ2β
∗
A

n + λ2
− αT λ2�

−1/2
A β∗

A,

T2 = αT (I + λ2�
−1
A )�

1/2
A

(
β̃

∗
A − β̃

∗
A(λ2,0)

)
,

T3 = αT �
−1/2
A XT

Aε.

We now show that T1 = o(1), T2 = oP (1) and T3 → N(0, σ 2) in distribution.
Then, by Slutsky’s theorem, we know zn →d N(0, σ 2). By (A1) and αT α = 1,
we have

T 2
1 ≤ 2

∥∥∥∥(I + λ2�
−1
A )�

1/2
A

λ2β
∗
A

n + λ2

∥∥∥∥2

2
+ 2‖λ2�

−1/2
A β∗

A‖2
2

≤ 2
λ2

2

(n + λ2)2 ‖�1/2
A β∗

A‖2
2

(
1 + λ2

bn

)2

+ 2λ2‖β∗
A‖2

2
1

bn

≤ 2λ2
2Bn

(n + λ2)2

(
1 + λ2

bn

)2

‖β∗
A‖2

2 + 2λ2‖β∗
A‖2

2
1

bn
.
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Hence, it follows by (A6) that T1 = o(1). Similarly, we can bound T2 as follows:

T 2
2 ≤

(
1 + λ2

bn

)2∥∥�1/2
A

(
β̃

∗
A − β̃

∗
A(λ2,0)

)∥∥2
2

≤
(

1 + λ2

bn

)2

Bn‖β̃∗
A − β̃

∗
A(λ2,0)‖2

2

≤
(

1 + λ2

bn

)2

Bn

(
λ∗

1η̂
−γ

bn + λ2

)2

,

where we have used (6.10) in the last step. Then, (6.13) tells us that T 2
2 = 1

n2 OP (1).
Next, we consider T3. Let XA[i, ] denote the ith row of the matrix XA. With such
notation, we can write T3 = ∑n

i=1 riεi, where ri = αT (XT
AXA)−1/2(XA[i, ])T .

Then, it is easy to see that
n∑

i=1

r2
i =

n∑
i=1

αT (XT
AXA)−1/2(XA[i, ])T (XA[i, ])(XT

AXA)−1/2α

= αT (XT
AXA)−1/2(XT

AXA)(XT
AXA)−1/2α(6.14)

= αT α = 1.

Furthermore, we have for k = 2 + δ, δ > 0
n∑

i=1

E[|εi |2+δ]|r2+δ
i | ≤ E[|ε|2+δ]

(
n∑

i=1

|r2
i |

(
max

i
|ri |δ

))

= E[|ε|2+δ]
(

max
i

|r2
i |

)δ/2

.

Note that r2
i ≤ ‖�−1/2

A (XA[i, ])T ≤ (
∑

j∈A x2
ij )(λmax(�

−1
A )) ≤

∑p
j=1 x2

ij

bn
. Hence,

n∑
i=1

E[|εi |2+δ]|r2+δ
i | ≤ E[|ε|2+δ]

(maxi (
∑p

j=1 x2
ij )

bn

)δ/2

→ 0.(6.15)

From (6.14) and (6.15), Lyapunov conditions for the central limit theorem are
established. Thus, T3 →d N(0, σ 2). This completes the proof. �
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