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Abstract

Quicksort was first introduced in 1961 by Hoare. Many
variants have been developed, the best of which are
among the fastest generic sorting algorithms available,
as testified by the choice of Quicksort as the default
sorting algorithm in most programming libraries. Some
sorting algorithms are adaptive, i.e. they have a com-
plexity analysis which is better for inputs which are
nearly sorted, according to some specified measure of
presortedness. Quicksort is not among these, as it uses
Ω(n log n) comparisons even when the input is already
sorted. However, in this paper we demonstrate em-
pirically that the actual running time of Quicksort is
adaptive with respect to the presortedness measure Inv.
Differences close to a factor of two are observed be-
tween instances with low and high Inv value. We then
show that for the randomized version of Quicksort, the
number of element swaps performed is provably adap-
tive with respect to the measure Inv. More precisely,
we prove that randomized Quicksort performs expected
O(n(1 + log(1 + Inv/n))) element swaps, where Inv de-
notes the number of inversions in the input sequence.
This result provides a theoretical explanation for the
observed behavior, and gives new insights on the be-
havior of the Quicksort algorithm. We also give some
empirical results on the adaptive behavior of Heapsort
and Mergesort.

1 Introduction

Quicksort was introduced by Hoare in 1961 as a simple
randomized sorting algorithm [8, 9]. Hoare proved
that the expected number of comparisons performed
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by Quicksort for a sequence of n elements is essentially
2n lnn ≈ 1.4n log2 n [10]. Many variants and analysis
of the algorithm have later been given, including [1, 12,
19, 20, 21]. In practice, tuned versions of Quicksort
have turned out to be very competitive, and are used as
standard sorting algorithms in many software libraries,
e.g. C glibc, C++ STL-library, Java JDK, and the .NET
Framework.

A sorting algorithm is called adaptive with respect
to some measure of presortedness if, for some given
input size, the running time of the algorithm is provably
better for inputs with low value of the measure. Perhaps
the most well-known measure is Inv, the number of
inversions (i.e. pairs of elements that are in the wrong
order) in the input. Other measures of presortedness
include Rem, the minimum number of elements that
must be removed for the remaining elements to be
sorted, and Runs, the number of consecutive ascending
runs. More examples of measures can be found in [5].
An example of an adaptive sorting algorithm is insertion
sort using level-linked B-trees with finger searches for
locating each new insertion point [13], which sorts in
O(n(1 + log(1 + Inv/n))) time. In the comparison
model, this is known to be optimal with respect to the
measure Inv [5].

Most classic sorting algorithms, such as Quicksort,
Heapsort [6, 23], and Mergesort [11], are not adaptive:
their time complexity is Θ(n log n) irrespectively of
the input. However, a large body of adaptive sorting
algorithms, such as the one in [13], has been developed
over the last three decades. For an overview of this area,
we refer the reader to the 1992 survey [5]. Later work
on adaptive sorting includes [2, 3, 4, 15, 17].

Most of these results are of theoretical nature,
and few practical gains in running time have been
demonstrated for adaptive sorting algorithms compared
to good non-adaptive algorithms.

Our starting point is the converse observation: the
actual running time of a sorting algorithm could well
be adaptive even if no worst case adaptive analysis
(showing asymptotical improved time complexity for
input instances with low presortedness) can be given.

In this paper, we study such practical adaptability
and demonstrate empirically that significant gains can
be found for the classic non-adaptive algorithms Quick-



sort, Mergesort, and Heapsort, under the measure of
presortedness Inv. Gains of more than a factor of three
are observed.

Furthermore, in the case of Quicksort, we give theo-
retical backing for why this should be the case. Specifi-
cally, we prove that randomized Quicksort performs ex-
pected O(n(1 + log(1 + Inv/n))) element swaps. This
not only provides new insight on the Quicksort algo-
rithm, but it also gives a theoretical explanation for the
observed behavior of Quicksort.

The reason that element swaps in Quicksort should
be correlated with running time is (at least) two-fold:
element swaps incur not only read accesses but also
write accesses (thereby making them more expensive
than read-only operations like comparisons), and ele-
ment swaps in Quicksort are correlated with branch mis-
predictions during the partition procedure of the algo-
rithm.

For Quicksort and Mergesort we show empirically
the strong influence of branch mispredictions on the
running time. This is in line with recent findings of
Sanders and Winkel [18], who demonstrate the practi-
cal importance of avoiding branch mispredictions in the
design of sorting algorithms for current CPU architec-
tures. For Heapsort, our experiments indicate that data
cache misses are the dominant factor for the running
time.

The observed behavior of Mergesort can be ex-
plained using existing results (see Section 4.2), while
we leave open the problem of a theoretical analysis of
the observed behavior of Heapsort. Since our theoreti-
cal contributions regard Quicksort, we concentrate our
experiments on this algorithm, while mostly indicat-
ing that similar gains can be found empirically also for
Mergesort and Heapsort.

The main result of this paper is Theorem 1.1 below
stating a dependence between the expected number
of swaps performed by randomized Quicksort and the
number of inversions in the input. In Section 4, the
theorem is shown to correlate very well with empirical
results.

Theorem 1.1. The expected number of element swaps
performed by randomized Quicksort is at most n +
n ln

(
2Inv

n
+ 1
)
.

We note that the bound on the number of element
swaps in Theorem 1.1 is not optimal for sorting al-
gorithms. Straightforward in-place selection sort uses
O(n2) comparisons but performs at most n− 1 element
swaps for any input. An optimal in-place sorting algo-
rithm performing O(n) swaps and O(n log n) compar-
isons was recently presented in [7].

This paper is organized as follows: In Section 2

#define Item int

#define random(l,r) (l+rand() % (r-l+1))

#define swap(A, B) { Item t = A; A = B; B = t; }

void quicksort(Item a[], int l, int r)

{ int i;

if (r <= l) return;

i = partition(a, l, r);

quicksort(a, l, i-1);

quicksort(a, i+1, r);

}

int partition(Item a[], int l, int r)

{ int i = l-1, j = r+1, p = random(l,r);

Item v = a[p];

for (;;) {

while (++i < j && a[i] <= v);

while (--j > i && v <= a[j]);

if (j <= i) break;

swap(a[i], a[j]);

}

if (p < i) i--;

swap(a[i], a[p]);

return i;

}

Figure 1: Randomized Quicksort.

we prove Theorem 1.1. In Section 3 we describe our
experimental setup, and in Section 4 we describe and
discuss our experimental results. Parts of our proof of
Theorem 1.1 were inspired by the proof by Seidel [22,
Section 5] of the expected number of comparisons
performed by randomized Quicksort.

2 Expected number of swaps by randomized

Quicksort

In this section we analyze the expected number of ele-
ment swaps performed by the classic version of random-
ized Quicksort where in each recursive call a random
pivot is selected. The C code for the specific algorithm
considered is given in Figure 1. The parameters l and
r are the first and last element, respectively, of the seg-
ment of the array a to be sorted.

We assume that the n input elements are distinct.
In the following, let (x1, . . . , xn) denote the input se-
quence, and let πi be the rank of xi in the sorted se-
quence. The number of inversions in the input sequence
is denoted by Inv. The main observation used in the
proof of Theorem 1.1 is that an element xi that has
not yet been moved from its input position i is swapped
during a partitioning step if and only if the selected
pivot xj satisfies i ≤ πj < πi or πi < πj ≤ i, or xi is
itself the pivot element (this is seen by inspection of the
code, noting that after a partitioning step, the pivot el-
ement xj resides at its final position πj). We shall only
need the “only if” part.
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Figure 2: The partitions involving element 8.
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Figure 3: The three different cases of Lemma 2.2.

Fact 2.1. When xi is swapped the first time, the pivot
xj of the current partitioning step satisfies i ≤ πj < πi

or πi < πj ≤ i, or xi is itself the pivot element.

Figure 2 illustrates how the element x5 = 8 is moved
during the execution of randomized Quicksort. Circled
elements are the selected pivots. The first two selected
pivots 14 and 4 do not cause 8 to be swapped, since
8 is already correctly located with respect to the final
positions of of the pivots 14 and 4. The first pivot
causing 8 to be swapped is x15 = 7, since π5 = 7,
π15 = 6, and 5 ≤ π15 < π5.

In the succeeding recursive calls after the first swap
of an element xi, the positions of xi in the array are
unrelated to i and πi. Eventually, xi is either picked as
a pivot or becomes a single element input to a recursive
call (the base case is reached), after which xi does not
move further.

In the following we let di = |πi − i|, i.e. the distance

of xi from its correct position in the sorted output. The
correlation between Inv and the di values is captured by
the following lemma:

Lemma 2.1. Inv ≤
∑n

i=1 di ≤ 2Inv.

Proof. For the left inequality, Inv ≤
∑n

i=1 di, we con-
sider the following algorithm: If there is an element xi

not at its correct position, move xi to position πi, such
that position πi temporarily contains both xi and xπi

in
sorted order. Next move xπi

to its correct position, and
repeat moving an element from the position temporar-
ily containing two elements to its correct position, until
we move an element to position i. Repeat until the se-
quence is sorted. By moving element xi from position i
to its correct position πi, we move xi over the di − 1
elements at positions between i and πi and possibly the
current element at position πi. This decreases the num-
ber of inversions in the sequence by at most di, namely
any inversions between xi and each of the at most di

elements moved over. In the final sorted sequence there
are no inversions, hence we have Inv ≤

∑n

i=1 di.
For the right inequality,

∑n

i=1 di ≤ 2Inv, consider
some xi with πi ≥ i. In the input sequence there are at
least di inversions between xi and other input elements,
since there are at least di elements less than xi with
indices greater than i in the input sequence. A similar
argument holds for the case when πi < i. Taking into
account that we may count the same inversion twice, we
obtain

∑n

i=1 di ≤ 2Inv. 2

The constants in Lemma 2.1 are the best possible.
For even n, the sequence (2, 1, 4, 3, 6, 5, . . . , n, n−1) has
Inv = n/2 and

∑n

i=1 di = n, i.e. (
∑n

i=1 di)/Inv = 2,
whereas the sequence (n, n − 1, n − 2, n − 3, . . . , 3, 2, 1)
has Inv = n(n − 1)/2 and

∑n

i=1 di = n2/2, i.e.
(
∑n

i=1 di)/Inv = 1 + 1
n−1

which converges to one for
increasing n.

For the proof of Theorem 1.1 we make the following
definition:

Definition 2.1. For i 6= j let Xij denote the indicator
variable that is one if and only if there is a recursive
call to quicksort where xj is selected as the pivot in
the partition step and xi is swapped during this partition
step.

Note that xj can at most once become a pivot,
since after a partition with pivot xj the input to the
recursive calls do not contain xj . Furthermore note that
the elements swapped in a partition step with pivot xj

are the elements in the input to the partition which
are placed incorrectly relatively to the final position πj

of xj .



There are three cases where Xij = 0: (i) xj is never
selected as a pivot, i.e. there exists a recursive call where
xj is the only element to be sorted; (ii) xj is selected as
a pivot in a recursive call and xi is not in the input to
this recursive call; and (iii) xj is selected as a pivot in
a recursive call and xi is in the input to this recursive
call, but xi is not swapped because it is placed correctly
relatively to the final position πj of xj .

Lemma 2.2. Pr[Xij = 1] ≤






0 if πj < i ≤ πi or πi ≤ i < πj ,
1

|πi−πj |+1
if i ≤ πj < πi or πi < πj ≤ i ,

1
|πi−πj |+1

− 1
|πi−πj |+1+di

otherwise.

Proof. For the case (i) where xj is never selected as
a pivot for a partition, we in the following adopt
the convention that xj is considered the pivot for the
recursive call where the input consists of xj only. This
ensures that each element becomes a pivot exactly once.

We first note that the probability that xi is in the
input to the recursive call with pivot xj is 1

|πi−πj |+1
,

since this is the probability that xj is the first element
chosen as a pivot among the |πi − πj | + 1 elements xk

with πi ≤ πk ≤ πj or πj ≤ πk ≤ πi (if the first pivot xk

among the |πi − πj | + 1 elements is not xj , then the
selected pivot xk will cause xi and xj to not appear
together in any input to succeeding recursive calls).

To prove the lemma we consider the three different
cases depending on the relative order of i, πi, and πj . In
the following we assume i ≤ πi. The cases where πi < i
are symmetric. The three possible scenarios are shown
in Figure 3.

First consider the case where πj < i ≤ πi, see
Figure 3 (I). If a pivot xk is selected with πj < πk ≤ πi

before xj becomes a pivot, then xi and xj do not appear
together in any input to succeeding recursive calls, so
xi cannot be involved in the partition with pivot xj .
The only other possibility is that xj is a pivot before
any element xk with πj < πk ≤ πi becomes a pivot,
but then by Fact 2.1 xi has not been moved when xj

becomes a pivot, and the partitioning with pivot xj does
not swap xi.

For the second case, where i ≤ πj < πi, see
Figure 3 (II), we bound the probability that Xij equals
one by the probability that xi is in the input to the
recursive call with pivot xj . As argued above, this
probability is 1

|πi−πj |+1
.

For the last case where i ≤ πi < πj , see Fig-
ure 3 (III), we consider the probability that xi is in the
input to the recursive call with pivot xj and xi is not
swapped. This is at least the probability that xj is the
first element chosen as a pivot among the |πi−πj |+1+di

elements xk with i ≤ πk ≤ πj , since then by Fact 2.1

xi has not been moved yet when xj becomes the pivot,
and the partitioning with pivot xj does not swap xi.
It follows that the probability that xi is in the input to
the recursive call with pivot xj and xi is not swapped, is
at least 1

|πi−πj |+1+di
. Since the probability that xi is in

the input to the recursive call with pivot xj is 1
|πi−πj |+1

,

the lemma follows. 2

Using Lemma 2.1 and Lemma 2.2 we now have the
following proof of Theorem 1.1.

Proof (Theorem 1.1). The for-loop in the partitioning
procedure in Figure 1 only swaps non-pivot elements
and each element is swapped at most once in the loop.
The loop is followed by one swap involving the pivot.
Since a swap of two elements xi and xk not involving the
pivot xj are counted by the two indicator variables Xij

and Xkj , the expected number of swaps is at most

E





n∑

j=1



1 +
1

2

n∑

i=1,i6=j

Xij









= n +
1

2

n∑

i=1

n∑

j=1,i6=j

Pr(Xij = 1)

≤ n +
1

2

n∑

i=1

(
di∑

k=1

1

k + 1
+(2.1)

n∑

k=1

(
1

k + 1
−

1

k + 1 + di

))

≤ n +
1

2

n∑

i=1

(

2

di∑

k=1

1

k + 1

)

=

n∑

i=1

di+1∑

k=1

1

k

≤

n∑

i=1

(1 + ln(di + 1))(2.2)

≤ n + n ln

∑n

i=1(di + 1)

n
(2.3)

≤ n + n ln

(
2Inv

n
+ 1

)

(2.4)

where (2.1) follows from Lemma 2.2, (2.2) follows from
∑n

i=1
1
i
≤ 1+ln n, (2.3) follows from the concavity of the

logarithm function, and (2.4) follows from Lemma 2.1.
2

It should be noted that the upper bound achieved
in (2.3) using the concavity of the logarithm function
can be much larger than the value (2.2). As an example,
if there are Θ(n/ log n) di values of size Θ(n) and



the rest of the di values are zero, then the difference
between (2.2) and (2.3) is a factor Θ(log n), i.e. the
upper bound on the expected number of swaps stated
in Theorem 1.1 can be a factor of log n from the actual
bound.

3 Experimental setup

In the remainder of this paper, we investigate whether
classic, theoretically non-adaptive sorting algorithms
can show adaptive behavior in practice. We find that
this indeed is the case—the running times for Quick-
sort, Mergesort, and Heapsort are observed to improve
by factors between 1.5 and 3.5 when the Inv value of
the input goes from high to low. Furthermore, the im-
provements for Quicksort are in very good concordance
with Theorem 1.1, which shows this result to be a likely
explanation for the observed behavior.

In more detail, we study how the number of in-
versions in the input sequence affects the number of
comparisons, the number of element swaps, the num-
ber of branch mispredictions, the running time, and the
number of data cache misses of the version of Quicksort
shown in Figure 1. We also study the behavior of two
variants of Quicksort, namely the randomized version
that chooses the median of three random elements as
a pivot, and the deterministic version that chooses the
middle element as a pivot. Finally, we study the same
questions for the classic sorting algorithms Heapsort and
Mergesort.

The input elements are 4 byte integers. We generate
two types of input, having small di’s and large di’s,
respectively. We generate a sequence with small di’s by
choosing each element xi randomly in [i−d, . . . , i+d] for
some parameter d, whereas the sequence with large di’s
is generated by letting xi = i with the exception of d
random i’s for which xi is chosen randomly in [1, . . . , n].
We perform our experiments by varying the disorder (by
varying d) while keeping the size n of the input sequence
constant. For most experiments, the input size is 2×106,
but we also investigate larger and smaller input sizes.

Our experiments are conducted on two different
machines. One of the machines has an Intel P4 2.4 GHz
CPU with 512 MB RAM, running linux 2.4.20, while
the other has an AMD Athlon XP 2400+ 2.0 GHz
CPU with 256 MB RAM, running linux 2.4.22. On
both machines the C source code was compiled using
gcc-3.3.2 with optimization level -O3. The number of
branch mispredictions and L2 data cache misses was
obtained using the PAPI library [16] version 3.0.

Source code and the plotted data are available at
ftp://ftp.brics.dk/RS/04/47/Experiments.

4 Experimental results

4.1 Quicksort. We first analyze the dependence of
the version of Quicksort shown in Figure 1 on the
number of inversions in the input.

Figure 4 shows our data for the AMD Athlon ar-
chitecture. The number of comparisons is independent
of the number of inversions in the input, as expected.
For the number of element swaps, the plot is very
close to linear when considering the input sequence with
small di’s. Since the x-axis shows log(Inv), this is in very
good correspondence with the bound O(n log(Inv/n))
of Theorem 1.1 (recall that n is fixed in the plot). For
the input sequence with large di’s, the plot is different.
This is a sign of the slack in the analysis (for this type
of input) noted after the proof of Theorem 1.1. We
will demonstrate below that this curve is in very good
correspondence with the version of the bound given by
Equation (2.2). The plots for the number of branch mis-
predictions and for the running time clearly show that
they are correlated with the number of element swaps.
For the number of branch mispredictions, this is ex-
plained by the fact that an element swap is performed
after the two while loops stop, and hence corresponds
to two branch mispredictions. For the running time,
it seems reasonable to infer that branch mispredictions
are a dominant part of the running time of Quicksort on
this type of architecture. Finally, the number of data
cache misses seems independent of the presortedness of
the input sequence, in correspondence with the fact that
for all element swaps, the data to be manipulated is al-
ready in the cache and therefore the element swaps do
not generate additional cache misses.

Figure 5 show the same plots for the P4 architec-
ture, except that we were not able to obtain data for
L2 data cache misses. We note that the plots follow the
same trends as in Figure 4. The number of comparisons
and the number of element swaps are approximately the
same, but the running time is affected by up to a factor
of 1.8 on the P4, while only by up to a factor of 1.42 on
the Athlon. One reason for this behavior is the number
of branch mispredictions, which is slightly smaller for
the Athlon. Also, the length of the pipeline, shorter for
Athlon, makes the branch mispredictions more costly
on a P4 than on an Athlon.

Similar observations on the resemblance between
the data for the two architectures apply to all our
experiments. For this reason, and because of the
extra data for L2 that we have for Athlon, we for
the remaining plots restrict ourselves to the Athlon
architecture.

We now turn to the variants of Quicksort. Figure 6
shows the number comparisons, the number of element
swaps, the number of branch mispredictions, the run-



ning time, and the L2 data cache misses for the version
of Quicksort that chooses as pivot the median of three
random elements in the input sequence. We note that
the plots have a behavior similar to the ones for the ver-
sion of Quicksort shown in Figure 4. However, some im-
provements are noticed. The three-median pivot Quick-
sort performs around 25% less comparisons, due to the
better choice of the pivot. This immediately triggers a
slight improvement in the number of data cache misses.
However, the number of branch mispredictions increases
due to the extra branches required to compute the me-
dian of three elements. The number of element swaps
remains approximately the same.

Figure 7 shows the same plots for the determin-
istic version of Quicksort that chooses the middle el-
ement as pivot. In this case we note that the num-
ber of comparisons does depend on the presortedness
of the input. This is because for small disorder, the
middle element is very close to the median and there-
fore the number of comparisons is close to n log n, as
opposed to ≈ 1.4n logn expected for the randomized
Quicksort [10]. The good pivot choice for small disorder
in the input also triggers a smaller number of compar-
isons and branch mispredictions. However, for large dis-
order, the number of comparisons is larger compared to
randomized median-of-three Quicksort due to bad pivot
choices. Also, the running time is affected by up to a
factor of two by the disorder in the input.

Figure 8 and Figure 9 show that when varying the
input size n, the behavior of the plots remains the same
for randomized Quicksort. Hence, our findings do not
seem to be tied to the particular choice of n = 2 × 106.

Finally, in Figure 10 we demonstrate that the
number of element swaps is very closely related to
∑n

i=1 log di, cf. the comment after the proof of Theo-
rem 1.1. Hence the reason for the non-linear shape of
the previous plots for input sequences with large di’s
seems to be the slack introduced (for this type of input)
after Equation (2.2) in the proof of Theorem 1.1. As
in the other cases, the running time and the number
of branch mispredictions follow the same trend as the
number of swaps.

4.2 Heapsort and Mergesort. We briefly demon-
strate that also for Heapsort and Mergesort, the actual
running time varies with the presortedness of the input.

For Heapsort, Figure 11 shows the way the number
of inversions in the input affects the number of com-
parisons, the number of elements swaps, the number of
branch mispredictions, the running time, and the num-
ber of L2 data cache misses for input sequences of con-
stant length n = 2 × 106. The number of comparisons
and the number of element swaps performed by Heap-

sort is affected slightly, while the number of branch mis-
predictions is affected somewhat more. However, the
number of L2 data cache misses is greatly affected, and
varies by more than a factor of ten. The running time
shows a virtually identical behavior, except the increase
is by a factor close to four. This suggests that data
cache misses are the dominant factor for the running
time for Heapsort on this architecture. We leave open
the question of a theoretical analysis of the number of
cache misses of Heapsort as a function of Inv.

For Mergesort, we focus on the binary merge pro-
cess, and count the number of times there is an alterna-
tion in which of the two input subsequences provides the
next element output. It is easy to verify that the num-
ber of such alternations is dominated by the running
time of the Mergesort algorithm by Moffat [14] based
on merging by finger search trees, which was proved to
have a running time of O(n log Inv

n
), i.e. the number of

alternations by standard Mergesort is O(n log Inv
n

). The
plots in Figure 12 show a very similar behavior for the
number of alternations, the number of branch mispre-
dictions, and the running time. The number of alterna-
tions is clearly correlated to the number of branch mis-
predictions, and these appear to be a dominant factor
for the running time of Mergesort. The number of data
cache misses increases only slightly for large disorder in
the input.

References

[1] J. L. Bentley and M. D. McIlroy. Engineering a
sort function. Software—Practice and Experience,
23(11):1249–1265, Nov. 1993.

[2] A. Elmasry. Priority queues, pairing, and adaptive
sorting. In ICALP: Annual International Colloquium

on Automata, Languages and Programming, 2002.
[3] A. Elmasry. Adaptive sorting with AVL trees. Techni-

cal Report 2003-46, DIMACS, Feb. 2004.
[4] A. Elmasry and M. L. Fredman. Adaptive sorting and

the information theoretic lower bound. In STACS: An-

nual Symposium on Theoretical Aspects of Computer

Science, 2003.
[5] V. Estivill-Castro and D. Wood. A survey of adaptive

sorting algorithms. Computing Surveys, 24:441–476,
1992.

[6] R. W. Floyd. Algorithm 245: Treesort3. Communica-

tions of the ACM, 7(12):701, 1964.
[7] G. Franceschini and V. Geffert. An In-Place Sorting

with O(n log n) Comparisons and O(n) Moves. In
Proc. 44th Annual IEEE Symposium on Foundations

of Computer Science, pages 242–250, 2003.
[8] C. A. R. Hoare. Algorithm 63: Partition. Commun.

ACM, 4(7):321, 1961.
[9] C. A. R. Hoare. Algorithm 64: Quicksort. Commun.

ACM, 4(7):321, 1961.



[10] C. A. R. Hoare. Quicksort. The Computer Journal,
5(1):10–15, April 1962.

[11] D. E. Knuth. The Art of Computer Programming,

Volume III: Sorting and Searching. Addison-Wesley,
Reading, MA, 1973.

[12] C. Mart́ınez and S. Roura. Optimal sampling strate-
gies in Quicksort and Quickselect. SIAM Journal on

Computing, 31(3):683–705, June 2002.
[13] K. Mehlhorn. Sorting and Searching. Springer Verlag,

Berlin, 1984.
[14] A. Moffat, O. Petersson, and N. C. Wormald. Sort-

ing and/by merging finger trees. In Algorithms and

Computation: Third International Symposium, ISAAC

’92, volume 650 of Lecture Notes in Computer Science,
pages 499–508. Springer Verlag, Berlin, 1992.

[15] A. Pagh, R. Pagh, and M. Thorup. On adaptive
integer sorting. In 12th Annual European Symposium

on Algorithms, ESA 2004, volume 3221 of Lecture

Notes in Computer Science, pages 556–567. Springer
Verlag, Berlin, 2004.

[16] PAPI (Performance Application Programming Inter-
face). Software library found at http://icl.cs.utk.

edu/papi/, 2004.
[17] O. Petersson and A. Moffat. A framework for adaptive

sorting. DAMATH: Discrete Applied Mathematics

and Combinatorial Operations Research and Computer

Science, 59, 1995.
[18] P. Sanders and S. Winkel. Super scalar sample sort.

In 12th Annual European Symposium on Algorithms,

ESA 2004, volume 3221 of Lecture Notes in Computer

Science, pages 784–796. Springer Verlag, Berlin, 2004.
[19] R. Sedgewick. Quicksort. PhD thesis, Stanford Uni-

versity, Stanford, CA, May 1975. Stanford Computer
Science Report STAN-CS-75-492.

[20] R. Sedgewick. The analysis of quicksort programs.
Acta Informatica, 7:327–355, 1977.

[21] R. Sedgewick. Implementing quicksort programs.
Communications of the ACM, 21:847–857, 1978.

[22] R. Seidel. Backwards analysis of randomized geomet-
ric algorithms. Technical Report TR-92-014, Interna-
tional Computer Science Institute, Univeristy of Cal-
fornia at Berkeley, February 1992.

[23] J. W. J. Williams. Algorithm 232: Heapsort. Commu-

nications of the ACM, 7(6):347–348, 1964.

Large di

Small di

Comparisons

403530252015

6.2e+07

6e+07

5.8e+07

5.6e+07

5.4e+07

5.2e+07

Large di

Small di

Element swaps

403530252015

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

Large di

Small di

Branch mispredictions

403530252015

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Running time

403530252015

0.6

0.55

0.5

0.45

0.4

0.35

0.3

Large di

Small di

L2 data cache misses

403530252015

900000

800000

700000

600000

500000

400000

300000

Figure 4: The number of comparisons, the number of
element swaps, the number of branch mispredictions,
the running time, and the number of L2 data cache
misses performed by randomized Quicksort on Athlon,
for n = 2 × 106. The x-axis shows log(Inv).
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Figure 5: The number of comparisons, the number of
element swaps, the number of branch mispredictions,
and the running time of randomized Quicksort on P4,
for n = 2 × 106. The x-axis shows log(Inv).
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Figure 6: The number of comparisons, the number of el-
ement swaps, the number of branch mispredictions, the
running time, and the number of L2 data cache misses
performed by randomized median-of-three Quicksort on
Athlon, for n = 2 × 106. The x-axis shows log(Inv).
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Figure 7: The number of comparisons, the number of
element swaps, the number of branch mispredictions,
the running time, and the number of L2 data cache
misses performed by deterministic Quicksort on Athlon,
for n = 2 × 106. The x-axis shows log(Inv).
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Figure 8: The number of comparisons, the number of
element swaps, the number of branch mispredictions,
the running time, and the number of L2 data cache
misses performed by randomized Quicksort on Athlon,
for n = 6 × 104. The x-axis shows log(Inv).
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element swaps, the number of branch mispredictions,
the running time, and the number of L2 data cache
misses performed by randomized Quicksort on Athlon,
for n = 107. The x-axis shows log(Inv).
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Figure 10: The number of comparisons, the number of
element swaps, the number of branch mispredictions,
the running time, and the number of L2 data cache
misses performed by randomized Quicksort on Athlon,
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Figure 11: The number of comparisons, the number of
element swaps, the number of branch mispredictions,
the running time, and the number of L2 data cache
misses performed by Heapsort on Athlon, for n =
2 × 106. The x-axis shows log(Inv).
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Figure 12: The number of alternations, the number
of branch mispredictions, the running time, and the
number of L2 data cache misses performed by Mergesort
on Athlon, for n = 2 × 106. The x-axis shows log(Inv).


