
 Open access Journal Article DOI:10.1145/1227161.1402294

On the adaptiveness of Quicksort — Source link

Gerth Stølting Brodal, Rolf Fagerberg, Gabriel Moruz

Institutions: Aarhus University, University of Southern Denmark, Goethe University Frankfurt

Published on: 29 Aug 2008 - ACM Journal of Experimental Algorithms (ACM)

Topics: Introsort, Insertion sort, Heapsort, Quicksort and Hybrid algorithm

Related papers:

 On the Adaptiveness of Quicksort.

 An Improved Quicksort Algorithm Based on Tissue-Like P Systems with Promoters

 Pracniques: Meansort

 The Art of Computer Programming

 Introduction to Algorithms

Share this paper:

View more about this paper here: https://typeset.io/papers/on-the-adaptiveness-of-quicksort-
3krgopsdwi

https://typeset.io/
https://www.doi.org/10.1145/1227161.1402294
https://typeset.io/papers/on-the-adaptiveness-of-quicksort-3krgopsdwi
https://typeset.io/authors/gerth-stolting-brodal-2s14gbln8w
https://typeset.io/authors/rolf-fagerberg-34e1xptqr2
https://typeset.io/authors/gabriel-moruz-2y031upjyx
https://typeset.io/institutions/aarhus-university-2s1zo7wa
https://typeset.io/institutions/university-of-southern-denmark-2lb737x5
https://typeset.io/institutions/goethe-university-frankfurt-2bengykv
https://typeset.io/journals/acm-journal-of-experimental-algorithms-2xiy57ti
https://typeset.io/topics/introsort-3267uvor
https://typeset.io/topics/insertion-sort-1wz7b15a
https://typeset.io/topics/heapsort-37cscj28
https://typeset.io/topics/quicksort-vzaq8t27
https://typeset.io/topics/hybrid-algorithm-2wuahfcu
https://typeset.io/papers/on-the-adaptiveness-of-quicksort-34aoijrdr1
https://typeset.io/papers/an-improved-quicksort-algorithm-based-on-tissue-like-p-2vwiqnjf4r
https://typeset.io/papers/pracniques-meansort-30yacej27a
https://typeset.io/papers/the-art-of-computer-programming-58bqdcwgeb
https://typeset.io/papers/introduction-to-algorithms-1vhbr8s6fo
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-adaptiveness-of-quicksort-3krgopsdwi
https://twitter.com/intent/tweet?text=On%20the%20adaptiveness%20of%20Quicksort&url=https://typeset.io/papers/on-the-adaptiveness-of-quicksort-3krgopsdwi
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-adaptiveness-of-quicksort-3krgopsdwi
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-adaptiveness-of-quicksort-3krgopsdwi
https://typeset.io/papers/on-the-adaptiveness-of-quicksort-3krgopsdwi

On the Adaptiveness of Quicksort

Gerth Stølting Brodal∗,† Rolf Fagerberg‡,§ Gabriel Moruz∗

December 2004

Abstract

Quicksort was first introduced in 1961 by Hoare. Many variants
have been developed, the best of which are among the fastest generic
sorting algorithms available, as testified by the choice of Quicksort as
the default sorting algorithm in most programming libraries. Some
sorting algorithms are adaptive, i.e. they have a complexity analysis
which is better for inputs which are nearly sorted, according to some
specified measure of presortedness. Quicksort is not among these, as
it uses Ω(n log n) comparisons even when the input is already sorted.
However, in this paper we demonstrate empirically that the actual run-
ning time of Quicksort is adaptive with respect to the presortedness
measure Inv. Differences close to a factor of two are observed between
instances with low and high Inv value. We then show that for the ran-
domized version of Quicksort, the number of element swaps performed
is provably adaptive with respect to the measure Inv. More precisely,
we prove that randomized Quicksort performs expected O(n(1+log(1+
Inv/n))) element swaps, where Inv denotes the number of inversions
in the input sequence. This result provides a theoretical explanation
for the observed behavior, and gives new insights on the behavior of
the Quicksort algorithm. We also give some empirical results on the
adaptive behavior of Heapsort and Mergesort.

∗BRICS (Basic Research in Computer Science, www.brics.dk, funded by the Danish
National Research Foundation), Department of Computer Science, University of Aarhus,
IT Parken, Åbogade 34, DK-8200 Århus N, Denmark. E-mail: {gerth,gabi}@brics.dk.

†Supported by the Carlsberg Foundation (contract number ANS-0257/20) and the
Danish Natural Science Research Council (SNF).

‡Department of Mathematics and Computer Science, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark. E-mail: rolf@imada.sdu.dk.

§Supported in part by the Danish Natural Science Research Council (SNF).

1

1 Introduction

Quicksort was introduced by Hoare in 1961 as a simple randomized sorting
algorithm [8, 9]. Hoare proved that the expected number of comparisons
performed by Quicksort for a sequence of n elements is essentially 2n ln n ≈
1.4n log2 n [10]. Many variants and analysis of the algorithm have later been
given, including [1, 12, 19, 20, 21]. In practice, tuned versions of Quicksort
have turned out to be very competitive, and are used as standard sorting
algorithms in many software libraries, e.g. C glibc, C++ STL-library, Java
JDK, and the .NET Framework.

A sorting algorithm is called adaptive with respect to some measure of
presortedness if, for some given input size, the running time of the algorithm
is provably better for inputs with low value of the measure. Perhaps the most
well-known measure is Inv, the number of inversions (i.e. pairs of elements
that are in the wrong order) in the input. Other measures of presortedness
include Rem, the minimum number of elements that must be removed for
the remaining elements to be sorted, and Runs, the number of consecutive
ascending runs. More examples of measures can be found in [5]. An example
of an adaptive sorting algorithm is insertion sort using level-linked B-trees
with finger searches for locating each new insertion point [13], which sorts
in O(n(1 + log(1 + Inv/n))) time. In the comparison model, this is known
to be optimal with respect to the measure Inv [5].

Most classic sorting algorithms, such as Quicksort, Heapsort [6, 23], and
Mergesort [11], are not adaptive: their time complexity is Θ(n log n) ir-
respectively of the input. However, a large body of adaptive sorting al-
gorithms, such as the one in [13], has been developed over the last three
decades. For an overview of this area, we refer the reader to the 1992 sur-
vey [5]. Later work on adaptive sorting includes [2, 3, 4, 15, 17].

Most of these results are of theoretical nature, and few practical gains
in running time have been demonstrated for adaptive sorting algorithms
compared to good non-adaptive algorithms.

Our starting point is the converse observation: the actual running time
of a sorting algorithm could well be adaptive even if no worst case adaptive
analysis (showing asymptotical improved time complexity for input instances
with low presortedness) can be given.

In this paper, we study such practical adaptability and demonstrate
empirically that significant gains can be found for the classic non-adaptive
algorithms Quicksort, Mergesort, and Heapsort, under the measure of pre-
sortedness Inv. Gains of more than a factor of three are observed.

Furthermore, in the case of Quicksort, we give theoretical backing for

2

why this should be the case. Specifically, we prove that randomized Quick-
sort performs expected O(n(1 + log(1 + Inv/n))) element swaps. This not
only provides new insight on the Quicksort algorithm, but it also gives a
theoretical explanation for the observed behavior of Quicksort.

The reason that element swaps in Quicksort should be correlated with
running time is (at least) two-fold: element swaps incur not only read ac-
cesses but also write accesses (thereby making them more expensive than
read-only operations like comparisons), and element swaps in Quicksort are
correlated with branch mispredictions during the partition procedure of the
algorithm.

For Quicksort and Mergesort we show empirically the strong influence
of branch mispredictions on the running time. This is in line with recent
findings of Sanders and Winkel [18], who demonstrate the practical impor-
tance of avoiding branch mispredictions in the design of sorting algorithms
for current CPU architectures. For Heapsort, our experiments indicate that
data cache misses are the dominant factor for the running time.

The observed behavior of Mergesort can be explained using existing re-
sults (see Section 4.2), while we leave open the problem of a theoretical
analysis of the observed behavior of Heapsort. Since our theoretical contri-
butions regard Quicksort, we concentrate our experiments on this algorithm,
while mostly indicating that similar gains can be found empirically also for
Mergesort and Heapsort.

The main result of this paper is Theorem 1 below stating a dependence
between the expected number of swaps performed by randomized Quicksort
and the number of inversions in the input. In Section 4, the theorem is
shown to correlate very well with empirical results.

Theorem 1 The expected number of element swaps performed by random-

ized Quicksort is at most n + n ln
(

2Inv

n
+ 1

)

.

We note that the bound on the number of element swaps in Theorem 1
is not optimal for sorting algorithms. Straightforward in-place selection sort
uses O(n2) comparisons but performs at most n − 1 element swaps for any
input. An optimal in-place sorting algorithm performing O(n) swaps and
O(n log n) comparisons was recently presented in [7].

This paper is organized as follows: In Section 2 we prove Theorem 1. In
Section 3 we describe our experimental setup, and in Section 4 we describe
and discuss our experimental results. Parts of our proof of Theorem 1 were
inspired by the proof by Seidel [22, Section 5] of the expected number of
comparisons performed by randomized Quicksort.

3

#define Item int

#define random(l,r) (l+rand() % (r-l+1))

#define swap(A, B) { Item t = A; A = B; B = t; }

void quicksort(Item a[], int l, int r)

{ int i;

if (r <= l) return;

i = partition(a, l, r);

quicksort(a, l, i-1);

quicksort(a, i+1, r);

}

int partition(Item a[], int l, int r)

{ int i = l-1, j = r+1, p = random(l,r);

Item v = a[p];

for (;;) {

while (++i < j && a[i] <= v);

while (--j > i && v <= a[j]);

if (j <= i) break;

swap(a[i], a[j]);

}

if (p < i) i--;

swap(a[i], a[p]);

return i;

}

Figure 1: Randomized Quicksort.

2 Expected number of swaps by randomized

Quicksort

In this section we analyze the expected number of element swaps performed
by the classic version of randomized Quicksort where in each recursive call
a random pivot is selected. The C code for the specific algorithm considered
is given in Figure 1. The parameters l and r are the first and last element,
respectively, of the segment of the array a to be sorted.

We assume that the n input elements are distinct. In the following,
let (x1, . . . , xn) denote the input sequence, and let πi be the rank of xi in
the sorted sequence. The number of inversions in the input sequence is
denoted by Inv. The main observation used in the proof of Theorem 1 is
that an element xi that has not yet been moved from its input position i
is swapped during a partitioning step if and only if the selected pivot xj

satisfies i ≤ πj < πi or πi < πj ≤ i, or xi is itself the pivot element (this
is seen by inspection of the code, noting that after a partitioning step, the
pivot element xj resides at its final position πj). We shall only need the
“only if” part.

4

����������
����������
����������

����������
����������
����������

�����������
�����������
�����������

�����������
�����������
�����������

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

�����
�����
�����

�����
�����
�����

������������
������������
������������

������������
������������
������������

��������
��������
��������

��������
��������
��������

12 16151413

π5

8 9 10

8

π15

π11

π13

π8

20 18 12 9 8 16 2 14 6 1 4 21 10 19 7 5

5 7 12 9 8 10 2 4 6 1 14

4 9 8 10 7 12 6 5

7 10 12 8 9

1 2 3 4 5 6 7 8 9 10 11

Figure 2: The partitions involving element 8.

Fact 1 When xi is swapped the first time, the pivot xj of the current par-
titioning step satisfies i ≤ πj < πi or πi < πj ≤ i, or xi is itself the pivot
element.

Figure 2 illustrates how the element x5 = 8 is moved during the execution
of randomized Quicksort. Circled elements are the selected pivots. The first
two selected pivots 14 and 4 do not cause 8 to be swapped, since 8 is already
correctly located with respect to the final positions of of the pivots 14 and
4. The first pivot causing 8 to be swapped is x15 = 7, since π5 = 7, π15 = 6,
and 5 ≤ π15 < π5.

In the succeeding recursive calls after the first swap of an element xi,
the positions of xi in the array are unrelated to i and πi. Eventually, xi is
either picked as a pivot or becomes a single element input to a recursive call
(the base case is reached), after which xi does not move further.

In the following we let di = |πi− i|, i.e. the distance of xi from its correct
position in the sorted output. The correlation between Inv and the di values
is captured by the following lemma:

Lemma 1 Inv ≤
∑n

i=1 di ≤ 2Inv.

Proof. For the left inequality, Inv ≤
∑n

i=1 di, we consider the following
algorithm: If there is an element xi not at its correct position, move xi to
position πi, such that position πi temporarily contains both xi and xπi

in
sorted order. Next move xπi

to its correct position, and repeat moving an
element from the position temporarily containing two elements to its correct
position, until we move an element to position i. Repeat until the sequence
is sorted. By moving element xi from position i to its correct position πi, we
move xi over the di − 1 elements at positions between i and πi and possibly

5

��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��������������
��������������
��������������

��������������
��������������
��������������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

 I

II

III

Sorted

Input xi

i

xj

j

xj xi

πj πi

︸ ︷︷ ︸

Input

Sorted

xj

j

πk

xj xi

xi

i

πj πi

Sorted

Input

xj

πj

︸ ︷︷ ︸

xi

i

xj

j

xi

πk

︸ ︷︷ ︸

︸ ︷︷ ︸

di πj − πi + 1

πi − πj + 1

πi − πj

πi

Figure 3: The three different cases of Lemma 2.

the current element at position πi. This decreases the number of inversions
in the sequence by at most di, namely any inversions between xi and each
of the at most di elements moved over. In the final sorted sequence there
are no inversions, hence we have Inv ≤

∑n
i=1 di.

For the right inequality,
∑n

i=1 di ≤ 2Inv, consider some xi with πi ≥ i.
In the input sequence there are at least di inversions between xi and other
input elements, since there are at least di elements less than xi with indices
greater than i in the input sequence. A similar argument holds for the case
when πi < i. Taking into account that we may count the same inversion
twice, we obtain

∑n
i=1 di ≤ 2Inv. ✷

The constants in Lemma 1 are the best possible. For even n, the se-
quence (2, 1, 4, 3, 6, 5, . . . , n, n − 1) has Inv = n/2 and

∑n
i=1 di = n, i.e.

(
∑n

i=1 di)/Inv = 2, whereas the sequence (n, n − 1, n − 2, n − 3, . . . , 3, 2, 1)
has Inv = n(n − 1)/2 and

∑n
i=1 di = n2/2, i.e. (

∑n
i=1 di)/Inv = 1 + 1

n−1

which converges to one for increasing n.
For the proof of Theorem 1 we make the following definition:

Definition 1 For i 6= j let Xij denote the indicator variable that is one if
and only if there is a recursive call to quicksort where xj is selected as the
pivot in the partition step and xi is swapped during this partition step.

Note that xj can at most once become a pivot, since after a partition with

6

pivot xj the input to the recursive calls do not contain xj. Furthermore note
that the elements swapped in a partition step with pivot xj are the elements
in the input to the partition which are placed incorrectly relatively to the
final position πj of xj.

There are three cases where Xij = 0: (i) xj is never selected as a pivot,
i.e. there exists a recursive call where xj is the only element to be sorted;
(ii) xj is selected as a pivot in a recursive call and xi is not in the input to
this recursive call; and (iii) xj is selected as a pivot in a recursive call and
xi is in the input to this recursive call, but xi is not swapped because it is
placed correctly relatively to the final position πj of xj.

Lemma 2

Pr[Xij = 1] ≤

0 if πj < i ≤ πi or πi ≤ i < πj ,
1

|πi−πj |+1
if i ≤ πj < πi or πi < πj ≤ i ,

1

|πi−πj |+1
− 1

|πi−πj |+1+di
otherwise.

Proof. For the case (i) where xj is never selected as a pivot for a partition,
we in the following adopt the convention that xj is considered the pivot for
the recursive call where the input consists of xj only. This ensures that each
element becomes a pivot exactly once.

We first note that the probability that xi is in the input to the recursive
call with pivot xj is 1

|πi−πj |+1
, since this is the probability that xj is the

first element chosen as a pivot among the |πi − πj| + 1 elements xk with
πi ≤ πk ≤ πj or πj ≤ πk ≤ πi (if the first pivot xk among the |πi − πj | + 1
elements is not xj , then the selected pivot xk will cause xi and xj to not
appear together in any input to succeeding recursive calls).

To prove the lemma we consider the three different cases depending on
the relative order of i, πi, and πj. In the following we assume i ≤ πi. The
cases where πi < i are symmetric. The three possible scenarios are shown
in Figure 3.

First consider the case where πj < i ≤ πi, see Figure 3 (I). If a pivot xk

is selected with πj < πk ≤ πi before xj becomes a pivot, then xi and xj do
not appear together in any input to succeeding recursive calls, so xi cannot
be involved in the partition with pivot xj. The only other possibility is that
xj is a pivot before any element xk with πj < πk ≤ πi becomes a pivot, but
then by Fact 1 xi has not been moved when xj becomes a pivot, and the
partitioning with pivot xj does not swap xi.

For the second case, where i ≤ πj < πi, see Figure 3 (II), we bound the
probability that Xij equals one by the probability that xi is in the input

7

to the recursive call with pivot xj . As argued above, this probability is
1

|πi−πj |+1
.

For the last case where i ≤ πi < πj, see Figure 3 (III), we consider the
probability that xi is in the input to the recursive call with pivot xj and xi

is not swapped. This is at least the probability that xj is the first element
chosen as a pivot among the |πi −πj|+ 1+ di elements xk with i ≤ πk ≤ πj,
since then by Fact 1 xi has not been moved yet when xj becomes the pivot,
and the partitioning with pivot xj does not swap xi. It follows that the
probability that xi is in the input to the recursive call with pivot xj and xi

is not swapped, is at least 1

|πi−πj |+1+di
. Since the probability that xi is in

the input to the recursive call with pivot xj is 1

|πi−πj |+1
, the lemma follows.

✷

Using Lemma 1 and Lemma 2 we now have the following proof of The-
orem 1.

Proof (Theorem 1). The for-loop in the partitioning procedure in Figure 1
only swaps non-pivot elements and each element is swapped at most once
in the loop. The loop is followed by one swap involving the pivot. Since a
swap of two elements xi and xk not involving the pivot xj are counted by
the two indicator variables Xij and Xkj , the expected number of swaps is
at most

E

n∑

j=1

1 +
1

2

n∑

i=1,i6=j

Xij

= n +
1

2

n∑

i=1

n∑

j=1,i6=j

Pr(Xij = 1)

≤ n +
1

2

n∑

i=1

di∑

k=1

1

k + 1
+

n∑

k=1

(
1

k + 1
−

1

k + 1 + di

)

 (1)

≤ n +
1

2

n∑

i=1

2
di∑

k=1

1

k + 1

=
n∑

i=1

di+1
∑

k=1

1

k

≤
n∑

i=1

(1 + ln(di + 1)) (2)

8

≤ n + n ln

∑n
i=1(di + 1)

n
(3)

≤ n + n ln

(
2Inv

n
+ 1

)

(4)

where (1) follows from Lemma 2, (2) follows from
∑n

i=1
1

i
≤ 1 + ln n, (3)

follows from the concavity of the logarithm function, and (4) follows from
Lemma 1. ✷

It should be noted that the upper bound achieved in (3) using the con-
cavity of the logarithm function can be much larger than the value (2). As
an example, if there are Θ(n/ log n) di values of size Θ(n) and the rest of
the di values are zero, then the difference between (2) and (3) is a factor
Θ(log n), i.e. the upper bound on the expected number of swaps stated in
Theorem 1 can be a factor of log n from the actual bound.

3 Experimental setup

In the remainder of this paper, we investigate whether classic, theoretically
non-adaptive sorting algorithms can show adaptive behavior in practice. We
find that this indeed is the case—the running times for Quicksort, Merge-
sort, and Heapsort are observed to improve by factors between 1.5 and 3.5
when the Inv value of the input goes from high to low. Furthermore, the
improvements for Quicksort are in very good concordance with Theorem 1,
which shows this result to be a likely explanation for the observed behavior.

In more detail, we study how the number of inversions in the input
sequence affects the number of comparisons, the number of element swaps,
the number of branch mispredictions, the running time, and the number of
data cache misses of the version of Quicksort shown in Figure 1. We also
study the behavior of two variants of Quicksort, namely the randomized
version that chooses the median of three random elements as a pivot, and
the deterministic version that chooses the middle element as a pivot. Finally,
we study the same questions for the classic sorting algorithms Heapsort and
Mergesort.

The input elements are 4 byte integers. We generate two types of input,
having small di’s and large di’s, respectively. We generate a sequence with
small di’s by choosing each element xi randomly in [i − d, . . . , i + d] for
some parameter d, whereas the sequence with large di’s is generated by
letting xi = i with the exception of d random i’s for which xi is chosen
randomly in [1, . . . , n]. We perform our experiments by varying the disorder
(by varying d) while keeping the size n of the input sequence constant. For

9

most experiments, the input size is 2 × 106, but we also investigate larger
and smaller input sizes.

Our experiments are conducted on two different machines. One of the
machines has an Intel P4 2.4 GHz CPU with 512 MB RAM, running linux
2.4.20, while the other has an AMD Athlon XP 2400+ 2.0 GHz CPU with
256 MB RAM, running linux 2.4.22. On both machines the C source code
was compiled using gcc-3.3.2 with optimization level -O3. The number of
branch mispredictions and L2 data cache misses was obtained using the
PAPI library [16] version 3.0.

Source code and the plotted data are available at ftp://ftp.brics.dk/
RS/04/27/Experiments.

4 Experimental results

4.1 Quicksort.

We first analyze the dependence of the version of Quicksort shown in Figure 1
on the number of inversions in the input.

Figure 4 shows our data for the AMD Athlon architecture. The number
of comparisons is independent of the number of inversions in the input, as
expected. For the number of element swaps, the plot is very close to linear
when considering the input sequence with small di’s. Since the x-axis shows
log(Inv), this is in very good correspondence with the bound O(n log(Inv/n))
of Theorem 1 (recall that n is fixed in the plot). For the input sequence with
large di’s, the plot is different. This is a sign of the slack in the analysis (for
this type of input) noted after the proof of Theorem 1. We will demonstrate
below that this curve is in very good correspondence with the version of the
bound given by Equation (2). The plots for the number of branch mispredic-
tions and for the running time clearly show that they are correlated with the
number of element swaps. For the number of branch mispredictions, this
is explained by the fact that an element swap is performed after the two
while loops stop, and hence corresponds to two branch mispredictions. For
the running time, it seems reasonable to infer that branch mispredictions
are a dominant part of the running time of Quicksort on this type of archi-
tecture. Finally, the number of data cache misses seems independent of the
presortedness of the input sequence, in correspondence with the fact that
for all element swaps, the data to be manipulated is already in the cache
and therefore the element swaps do not generate additional cache misses.

Figure 5 show the same plots for the P4 architecture, except that we
were not able to obtain data for L2 data cache misses. We note that the

10

plots follow the same trends as in Figure 4. The number of comparisons and
the number of element swaps are approximately the same, but the running
time is affected by up to a factor of 1.8 on the P4, while only by up to a
factor of 1.42 on the Athlon. One reason for this behavior is the number
of branch mispredictions, which is slightly smaller for the Athlon. Also, the
length of the pipeline, shorter for Athlon, makes the branch mispredictions
more costly on a P4 than on an Athlon.

Similar observations on the resemblance between the data for the two
architectures apply to all our experiments. For this reason, and because of
the extra data for L2 that we have for Athlon, we for the remaining plots
restrict ourselves to the Athlon architecture.

We now turn to the variants of Quicksort. Figure 6 shows the number
comparisons, the number of element swaps, the number of branch mispre-
dictions, the running time, and the L2 data cache misses for the version of
Quicksort that chooses as pivot the median of three random elements in the
input sequence. We note that the plots have a behavior similar to the ones
for the version of Quicksort shown in Figure 4. However, some improve-
ments are noticed. The three-median pivot Quicksort performs around 25%
less comparisons, due to the better choice of the pivot. This immediately
triggers a slight improvement in the number of data cache misses. However,
the number of branch mispredictions increases due to the extra branches
required to compute the median of three elements. The number of element
swaps remains approximately the same.

Figure 7 shows the same plots for the deterministic version of Quicksort
that chooses the middle element as pivot. In this case we note that the
number of comparisons does depend on the presortedness of the input. This
is because for small disorder, the middle element is very close to the median
and therefore the number of comparisons is close to n log n, as opposed to
≈ 1.4n log n expected for the randomized Quicksort [10]. The good pivot
choice for small disorder in the input also triggers a smaller number of
comparisons and branch mispredictions. However, for large disorder, the
number of comparisons is larger compared to randomized median-of-three
Quicksort due to bad pivot choices. Also, the running time is affected by up
to a factor of two by the disorder in the input.

Figure 8 and Figure 9 show that when varying the input size n, the
behavior of the plots remains the same for randomized Quicksort. Hence,
our findings do not seem to be tied to the particular choice of n = 2 × 106.

Finally, in Figure 10 we demonstrate that the number of element swaps
is very closely related to

∑n
i=1 log di, cf. the comment after the proof of

Theorem 1. Hence the reason for the non-linear shape of the previous plots

11

for input sequences with large di’s seems to be the slack introduced (for this
type of input) after Equation (2) in the proof of Theorem 1. As in the other
cases, the running time and the number of branch mispredictions follow the
same trend as the number of swaps.

4.2 Heapsort and Mergesort.

We briefly demonstrate that also for Heapsort and Mergesort, the actual
running time varies with the presortedness of the input.

For Heapsort, Figure 11 shows the way the number of inversions in the
input affects the number of comparisons, the number of elements swaps,
the number of branch mispredictions, the running time, and the number of
L2 data cache misses for input sequences of constant length n = 2 × 106.
The number of comparisons and the number of element swaps performed
by Heapsort is affected slightly, while the number of branch mispredictions
is affected somewhat more. However, the number of L2 data cache misses
is greatly affected, and varies by more than a factor of ten. The running
time shows a virtually identical behavior, except the increase is by a factor
close to four. This suggests that data cache misses are the dominant factor
for the running time for Heapsort on this architecture. We leave open the
question of a theoretical analysis of the number of cache misses of Heapsort
as a function of Inv.

For Mergesort, we focus on the binary merge process, and count the num-
ber of times there is an alternation in which of the two input subsequences
provides the next element output. It is easy to verify that the number of
such alternations is dominated by the running time of the Mergesort algo-
rithm by Moffat [14] based on merging by finger search trees, which was
proved to have a running time of O(n log Inv

n
), i.e. the number of alterna-

tions by standard Mergesort is O(n log Inv

n
). The plots in Figure 12 show a

very similar behavior for the number of alternations, the number of branch
mispredictions, and the running time. The number of alternations is clearly
correlated to the number of branch mispredictions, and these appear to be
a dominant factor for the running time of Mergesort. The number of data
cache misses increases only slightly for large disorder in the input.

12

References

[1] J. L. Bentley and M. D. McIlroy. Engineering a sort function.
Software—Practice and Experience, 23(11):1249–1265, Nov. 1993.

[2] A. Elmasry. Priority queues, pairing, and adaptive sorting. In ICALP:
Annual International Colloquium on Automata, Languages and Pro-
gramming, 2002.

[3] A. Elmasry. Adaptive sorting with AVL trees. Technical Report 2003-
46, DIMACS, Feb. 2004.

[4] A. Elmasry and M. L. Fredman. Adaptive sorting and the information
theoretic lower bound. In STACS: Annual Symposium on Theoretical
Aspects of Computer Science, 2003.

[5] V. Estivill-Castro and D. Wood. A survey of adaptive sorting algo-
rithms. Computing Surveys, 24:441–476, 1992.

[6] R. W. Floyd. Algorithm 245: Treesort3. Communications of the ACM,
7(12):701, 1964.

[7] G. Franceschini and V. Geffert. An In-Place Sorting with
O(n log n) Comparisons and O(n) Moves. In Proc. 44th Annual IEEE
Symposium on Foundations of Computer Science, pages 242–250, 2003.

[8] C. A. R. Hoare. Algorithm 63: Partition. Commun. ACM, 4(7):321,
1961.

[9] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321,
1961.

[10] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–15, April
1962.

[11] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, Reading, MA, 1973.

[12] C. Mart́ınez and S. Roura. Optimal sampling strategies in Quicksort
and Quickselect. SIAM Journal on Computing, 31(3):683–705, June
2002.

[13] K. Mehlhorn. Sorting and Searching. Springer Verlag, Berlin, 1984.

13

[14] A. Moffat, O. Petersson, and N. C. Wormald. Sorting and/by merging
finger trees. In Algorithms and Computation: Third International Sym-
posium, ISAAC ’92, volume 650 of Lecture Notes in Computer Science,
pages 499–508. Springer Verlag, Berlin, 1992.

[15] A. Pagh, R. Pagh, and M. Thorup. On adaptive integer sorting. In
12th Annual European Symposium on Algorithms, ESA 2004, volume
3221 of Lecture Notes in Computer Science, pages 556–567. Springer
Verlag, Berlin, 2004.

[16] PAPI (Performance Application Programming Interface). Software li-
brary found at http://icl.cs.utk.edu/papi/, 2004.

[17] O. Petersson and A. Moffat. A framework for adaptive sorting.
DAMATH: Discrete Applied Mathematics and Combinatorial Opera-
tions Research and Computer Science, 59, 1995.

[18] P. Sanders and S. Winkel. Super scalar sample sort. In 12th Annual
European Symposium on Algorithms, ESA 2004, volume 3221 of Lecture
Notes in Computer Science, pages 784–796. Springer Verlag, Berlin,
2004.

[19] R. Sedgewick. Quicksort. PhD thesis, Stanford University, Stanford,
CA, May 1975. Stanford Computer Science Report STAN-CS-75-492.

[20] R. Sedgewick. The analysis of quicksort programs. Acta Informatica,
7:327–355, 1977.

[21] R. Sedgewick. Implementing quicksort programs. Communications of
the ACM, 21:847–857, 1978.

[22] R. Seidel. Backwards analysis of randomized geometric algorithms.
Technical Report TR-92-014, International Computer Science Institute,
Univeristy of Calfornia at Berkeley, February 1992.

[23] J. W. J. Williams. Algorithm 232: Heapsort. Communications of the
ACM, 7(6):347–348, 1964.

14

Large di

Small di

Comparisons

403530252015

6.2e+07

6e+07

5.8e+07

5.6e+07

5.4e+07

5.2e+07

Large di

Small di

Element swaps

403530252015

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

Large di

Small di

Branch mispredictions

403530252015

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Running time

403530252015

0.6

0.55

0.5

0.45

0.4

0.35

0.3

Large di

Small di

L2 data cache misses

403530252015

900000

800000

700000

600000

500000

400000

300000

Figure 4: The number of comparisons, the number of element swaps, the
number of branch mispredictions, the running time, and the number of L2
data cache misses performed by randomized Quicksort on Athlon, for n =
2 × 106. The x-axis shows log(Inv).

15

Large di

Small di

Comparisons

403530252015

6.2e+07

6e+07

5.8e+07

5.6e+07

5.4e+07

5.2e+07

Large di

Small di

Element swaps

403530252015

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

Large di

Small di

Branch mispredictions

403530252015

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Running time

403530252015

0.4

0.35

0.3

0.25

0.2

Figure 5: The number of comparisons, the number of element swaps, the
number of branch mispredictions, and the running time of randomized
Quicksort on P4, for n = 2 × 106. The x-axis shows log(Inv).

16

Large di

Small di

Comparisons

403530252015

5.1e+07

5e+07

4.9e+07

4.8e+07

4.7e+07

4.6e+07

4.5e+07

Large di

Small di

Element swaps

403530252015

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

Large di

Small di

Branch mispredictions

403530252015

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Running time

403530252015

0.7

0.65

0.6

0.55

0.5

Large di

Small di

L2 data cache misses

403530252015

800000

750000

700000

650000

600000

550000

500000

450000

400000

350000

300000

Figure 6: The number of comparisons, the number of element swaps, the
number of branch mispredictions, the running time, and the number of L2
data cache misses performed by randomized median-of-three Quicksort on
Athlon, for n = 2 × 106. The x-axis shows log(Inv).

17

Large di

Small di

Comparisons

403530252015

5.5e+07

5e+07

4.5e+07

4e+07

Large di

Small di

Element swaps

403530252015

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

Large di

Small di

Branch mispredictions

403530252015

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Running time

403530252015

0.5

0.45

0.4

0.35

0.3

0.25

0.2

Large di

Small di

L2 data cache misses

403530252015

700000

650000

600000

550000

500000

450000

400000

350000

300000

Figure 7: The number of comparisons, the number of element swaps, the
number of branch mispredictions, the running time, and the number of L2
data cache misses performed by deterministic Quicksort on Athlon, for n =
2 × 106. The x-axis shows log(Inv).

18

Large di

Small di

Comparisons

32302826242220181614

2.5e+06

2.4e+06

2.3e+06

2.2e+06

2.1e+06

2e+06

Large di

Small di

Element swaps

32302826242220181614

450000

400000

350000

300000

250000

200000

150000

100000

50000

Large di

Small di

Branch mispredictions

32302826242220181614

900000

800000

700000

600000

500000

400000

300000

200000

100000

Large di

Small di

Running time

32302826242220181614

0.02

0.019

0.018

0.017

0.016

0.015

0.014

0.013

0.012

0.011

Large di

Small di

L2 data cache misses

32302826242220181614

25000

20000

15000

10000

5000

0

Figure 8: The number of comparisons, the number of element swaps, the
number of branch mispredictions, the running time, and the number of L2
data cache misses performed by randomized Quicksort on Athlon, for n =
6 × 104. The x-axis shows log(Inv).

19

Large di

Small di

Comparisons

454035302520

3.15e+08

3.1e+08

3.05e+08

3e+08

2.95e+08

Large di

Small di

Element swaps

454035302520

6e+07

5e+07

4e+07

3e+07

2e+07

1e+07

Large di

Small di

Branch mispredictions

454035302520

1.4e+08

1.2e+08

1e+08

8e+07

6e+07

4e+07

2e+07

Large di

Small di

Running time

454035302520

3.2

3

2.8

2.6

2.4

2.2

2

Large di

Small di

L2 data cache misses

454035302520

5e+06

4.5e+06

4e+06

3.5e+06

3e+06

Figure 9: The number of comparisons, the number of element swaps, the
number of branch mispredictions, the running time, and the number of L2
data cache misses performed by randomized Quicksort on Athlon, for n =
107. The x-axis shows log(Inv).

20

Large di

Small di

Comparisons

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

6.2e+07

6e+07

5.8e+07

5.6e+07

5.4e+07

5.2e+07

Large di

Small di

Element swaps

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

Large di

Small di

Branch mispredictions

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Running time

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

Large di

Small di

L2 data cache misses

4e+073.5e+073e+072.5e+072e+071.5e+071e+075e+060

900000

800000

700000

600000

500000

400000

300000

Figure 10: The number of comparisons, the number of element swaps, the
number of branch mispredictions, the running time, and the number of L2
data cache misses performed by randomized Quicksort on Athlon, for the
input size n = 2 × 106. The x-axis shows

∑n
i=1 log(di + 1).

21

Large di

Small di

Comparisons

403530252015

7.75e+07

7.7e+07

7.65e+07

7.6e+07

Large di

Small di

Element swaps

403530252015

3.9e+07

3.88e+07

3.86e+07

3.84e+07

3.82e+07

3.8e+07

3.78e+07

3.76e+07

3.74e+07

Large di

Small di

Branch mispredictions

403530252015

2.4e+07

2.3e+07

2.2e+07

2.1e+07

2e+07

1.9e+07

1.8e+07

1.7e+07

1.6e+07

1.5e+07

Large di

Small di

Running time

403530252015

2

1.5

1

0.5

Large di

Small di

L2 data cache misses

403530252015

1.6e+07

1.4e+07

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

0

Figure 11: The number of comparisons, the number of element swaps, the
number of branch mispredictions, the running time, and the number of L2
data cache misses performed by Heapsort on Athlon, for n = 2 × 106. The
x-axis shows log(Inv).

22

Large di

Small di

Alternations

403530252015

2e+07

1.5e+07

1e+07

5e+06

Large di

Small di

Branch mispredictions

403530252015

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

0

Large di

Small di

Running time

403530252015

0.6

0.55

0.5

0.45

0.4

Large di

Small di

L2 data cache misses

403530252015

1.47e+06

1.46e+06

1.45e+06

1.44e+06

1.43e+06

1.42e+06

1.41e+06

1.4e+06

1.39e+06

Figure 12: The number of alternations, the number of branch mispredictions,
the running time, and the number of L2 data cache misses performed by
Mergesort on Athlon, for n = 2 × 106. The x-axis shows log(Inv).

23

