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ON THE ADEQUACY OF PLANE-WAVE REFLECTION/TRANSMISSION 

COEFFICIENTS IN THE ANALYSIS OF SEISMIC BODY WAVES 

BY PAUL G. RICHARDS 

ABSTRACT 

In order to estimate the effect (on body waves) of discontinuities within the Earth, 

it is common practice to use the theory for plane waves incident upon the plane 

boundary between two homogeneous half-spaces. The resulting reflection/P~ V 

conversion/transmission coefficients are shown here to he inaccurate for many 

problems of current interest. Corrected coefficients are needed, in particular, for 

cases where the discontinuity (upon which boundary conditions are to be applied) is 

near a turning point of the P- or S-wave rays, or if one of these rays intersects the 

discontinuity at a near-grazing angle. 

Adequate corrections, based upon the Langer approximation to a full wave 

theory, are shown to be easily derived in practice. The method is first to write out the 

plane-wave coefficients as a rational polynomial, in sines and cosines of the angles 

of incidence upon the boundary, and second to introduce a multiplicative factor for 

each cosine. The new factors depart from unity only when the associated cosine 

tends to zero; i.e., when a turning point is approached. They incorporate all the 

corrections required for curvature of the boundary, frequency dependence, and 

Earth structure (velocity gradients) near the boundary. 

INTRODUCTION 

This paper is concerned with the theory of elastic body waves in the Earth which, near 
their turning point, are affected by some discontinuity Such as the crust-mantle boundary 
(the "Moho") or the mantle-core boundary. A turning point is the position, along the 
propagation path taken by a body wave, at which a wave is traveling horizontally, so the 
general subject area of this paper includes problems of waves incident at near-grazing 
angles upon the boundary between two different media. There are many observed 
examples in the Earth of waves of this type: in particular, it appears in practice that every 
known core phase (PKP, SKS, SKKP, PKKKKP, PKIKP, etc.) is, at least in some range of 
epicentral distances, affected by the consequences of near-grazing incidence on either the 
core-mantle boundary, or the inner core/outer core boundary. 

The practical interpretation of body waves (i.e., their travel times and amplitudes) has, 
in large part, simply been based upon the geometrical spreading of rays in inhomogeneous 
media, together with the use of plane-wave coefficients to allow for reflection and 
transmission at discontinuities (see, e.g., page 298 of Gutenberg and Richter, 1935). 
However, the justification for this procedure has come relatively recently (see, e.g., Scholte, 
1956; Seckler and Keller, 1959). The justification involves development of a full-wave 
theory and asymptotic approximations to the body-wave amplitudes predicted by the full- 
wave theory. Unfortunately, ray theory is inadequate to explain many of the observed 
phenomena associated with body waves, such as caustics and various types of diffraction, 
so it must be acknowledged that some of the asymptotic approximations applied tO the 
full-wave theory are inaccurate at seismic frequencies. In cases of body waves incident at 
near-grazing angles upon discontinuities in the Earth, the defective asymptotic 
approXimation is the widely used WKBJ approximation to the function describing the 
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radial dependence of waves propagating at fixed ray parameter. The WKBJ 
approximation fails in just these cases, because it is inaccurate near turning points. Since 
the justification for using plane-wave coefficients is based upon WKBJ approximations, it 
must be expected that such coefficients become suspect wherever near-grazing angles are 
involved. It is shown by a specific example that plane-wave coefficients can indeed be very 
inaccurate in such cases. 

This paper is concerned with a uniformly asymptotic approximation, due principally to 
Langer, which is an improvement upon WKBJ approximations in precisely those cases 
involving waves interacting with a discontinuity at near-grazing angles. The suitability of 
Langer's methods in seismology has been pointed out previously by Alenitsyn (1967) and 
Chapman (1974). However, the matrix methods of these authors are avoided here, as they 
are not necessary to obtain the main conclusion of this paper: namely, that plane-wave 
coefficients can readily be modified in practice to obtain accurate frequency-dependent 
coefficients which describe the exchange from an incident wave to reflected and 
transmitted P and S waves, for the case of discontinuities in the Earth. The derived 
coefficients incorporate the effects of curvature of the discontinuity, and Earth structure 
(e.g., velocity gradients) on either side of the discontinuity. 

The sections which follow give an introduction to the necessary parts of Langer's 
theory. Then it is shown how plane-wave coefficients can become inadequate, and how 
they can be generalized to give accurate results in practice. 

PRAGMATIC DESCRIPTION OF THE LANGER APPROXIMATION 

Rather than repeat the original clear theoretical development (Langer, 1931, 1932, 1949, 
1951), only an outline of the failure of other methods is given, and then it is shown why 
Langer's asymptotic formulas do indeed have the important properties which are claimed 
for them. 

At periods shorter than about l min, Richards (1974) has shown that elastic 
displacement u in the inhomogeneous Earth can be meaningfully represented as the sum 
of three vector terms 

u = p-  1/2 [grad P + curl curl (rS, 0, 0)7 + #-  1/2 curl (rH, 0, 0). (1) 

Here, the three right-hand-side vectors are, respectively, the P, SV, and SH components of 
displacement, with scalar potentials P, S, H satisfying (in the frequency domain) the 
decoupled wave equations 

0) 2 0) 2 60 2 
VgP +~g- P=O; V2S +~- S=O; V2H +~T H=O. (2) 

In equations (1) and (2), the quantities p (density), p (rigidity), e (P-wave speed) and fl (S- 
wave speed) are each functions only of radius r in the spherical polar system (r, 0, ~b). Thus, 
each of the wave equations in (2) has the form of a Helmholtz equation with radially 
varying wavenumber, and solutions are a sum over surface harmonics, each weighted by a 
radial factor. Efficient evaluation of the radial factor, appropriate to a given order n (say) 
of surface harmonic, is the key to providing practical solutions for a wide range of wave 
propagation problems. If this radial factor is, for P-waves, R(r), then from (2) it follows 
that 

d 2 ( r R ) + ~  2 [1  n(n+l)~ 
dr 2 d 2 ~ r  2 j rR=O" (3) 
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This equation is central to the theory of wave propagation in spherically symmetric 

media. For body waves, the Legendre function phase permits identification of (n + ½)/o~ as 
p, the seismic ray parameter describing horizontal slowness of the solution under study, 
and for this reason we often write R(r, p) for the radial function. Occasionally, when the 
frequency-dependence is also under discussion, we use notation R (r, p, co). The immediate 
objective now appears to be that of finding accurate solutions to (3), for fixed p (and ~o), as r 
varies. However, solutions to (3) are usually required at fixed r, as p (and often co) varies. 
This latter case is so common, because it arises whenever a boundary condition has to be 
taken into account. Solutions are therefore needed which remain uniformly valid as p 
varies, i.e., as the angle of incidence changes. It is this additional requirement which often 
vitiates the WKBJ solutions to (3), namely 

~where 

R ~ U = Q- 1/2r- 1 exp ( _+ icon) (4) 

Q = [ - 1 / ~ 2  _ pZ/rZ ] 112, 

and  rp is the "turning point" radius at which Q is zero. It should be noted that our 
discussion is restricted here to media for which a real ray bottoms at every depth. 

The WKBJ solution has been rediscovered and fruitfully applied in many different 
fields, and its failure near turning points (i.e., for r varying near  rp, with p fixed) is well 
known. It is useful to see this failure in terms of the equation satisfied by U, 

I ] [ r U +  1 1 
d 2 1 n ( n + l )  1 d2Q 3 ( d Q ~ 2 r 2  
dr 2 (rU) +°2  ~2 (D2r 2 2Q dr 2 4Q 2 \ d r  t] rU~-O. (5) 

The difference between (5) and the equation (3) we seek to solve is a term which is relatively 
negligible at high enough frequencies, except near turning points (for which Q is near zero, 
giving a singularity in (5) in the term which elsewhere is relatively small). 

Early attempts to provide a solution for (3) as r varies near rp hinged on developing a 
Taylor series expansion for the coefficient of the rR term, i.e., expanding this term as a 
series in powers of (r-rp).  See, for example, Rayleigh (1912) and Pekeris (1946). In the 
vicinity of the turning, point, equation (3) is then seen to reduce essentially to an Airy 
equation, and solutions are given asymptotically by 

R ~ V= r- 1/2Ai[y exp ( ± 2i~/3)] (6) 

where 

y = [2 (1 - bp)/p] 1/3 co2/3 (p _ r/~p), 

b = (r/~)(d~/dr), i 

and a suffix p denotes evaluation at the turning point radius. 
Equation (6) permits evaluation of the radial factor R in precisely the region for which 

the WKBJ approximation breaks down. However, since its applicability is restricted only 
to this turning point region, practical questions arise as to which approximation, (4) or (6), 
should be used for a particular choice of p, r, and co. Is there an overlap in the re~ions for 
which (4) and (6) are accurate ? Or (much worse) are these different regions disjoint ? These 
are questions which apparently must be answered if the function R is required for a 
substantial range of values of p, with r fixed. Such is usually the case if the problem being 
studied involves waves observed at distances for which the ray path between source and 
receiver has near its turning point a discontinuity in the Earth's structure. Even though (4) 
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may be accurate at the receiver, an evaluation of boundary conditions at the discontinuity 
requires that R be known accurately at the radius (depth) of the discontinuity itself, and 

the choice between (4) and (6) must apparently be made. 
The necessity for making such a choice can, however, be evaded via Langer's uniformly 

asymptotic formulas, which provide the approximation 

R ~ W--- ~1/2Q- 1/2 r-  1 / / ~  3 (co~) (7) 

wherej = 1 or 2, H•J]3 (o)~) represents a Hanket function of order 1/3, and ~ is the variable 
introduced in equation (4). The choice j = 1 corresponds to an upcoming wave, and j = 2 
to a downgoing wave. This follows from the choice of sign convention in the Fourier 

transform underlying wave equations (2)--namely, that the time domain field P(r, t) is 
transformed to the frequency domain via S ~  P(r, t)exp(+ iox)dt.) 

The uniform validity of (7) can be appreciated directly from the equation satisfied by W; 
namely, 

d2rWdr 2 4- (D 2 f 1 n ( ~ r  2-1)] rW+ I l d2Q 3 (dQ)  2 5Q2 ! ]  
~2 2Q dr 2 ~\drJ + ~  42 4 ff rW=O. (8) 

At distances far from the turning point, Q and ~ are not near zero, and there is a negligible 
difference between this equation and the equation satisfied by R, i.e., equation (3). The 
difference term is similar to that occurring in the equation satisfied by the WKBJ 
approximation, equation (5), but now there is an additional term (5/36)Q2~ - 2. The effect 
of this term is to remove the singularity at the turning point, as it may be shown that 

1 d2Q 3 (dQ~ 2 --~5 02 
2Q dr 2 4QZ\dr, l  + 3 6 ~  2=E(say )  

is bounded, and tends to a constant as r~rp. To establish this last result, one first shows 
that ~ = Cl ( r -  rp) 3/2 + C 2 ( r -  rv) 5/2 + 0 [ ( r -  rp) 7/2] as r--,rp (for some constants cl and c2). 

Using Q = d~/dr, the power series for E can then be developed as E = constant + 0 ( r -  rp) as 
r~  rp. Since E is bounded everywhere, it/ollows that equation (8) is everywhere a close 
approximation to the equation for R, and, hence, that the explicit expression (7) is 

uniformly valid. Since the principal concern of this paper is an assessment of the usefulness 
of this expression in seismic body-wave problems, some of its general properties are given 

below. 
(a) At fixed radius, the radial function R(r, p) must everywhere be analytic in p, with no 

singularities at finite values (Friedman, 1951). This property is also true of W in equation 
(7). Although ~, Q and H]J~3 individually have branch cuts, and Q-1/2 and uu) ~* 1/3 a r e  

unbounded (so that the product appears to be multivalued and singular), a choice for the 
branch cuts can be made so that W is indeed single-valued, analytic, and bounded for finite 
values of p. 

(b) Using the asymptotic formulas for g/(1)/( 2} r.,,~ with large ~a 1/3 ~ !  

C0~,21/27Z - 1/2(C0~)-1/aexpE+i(co~'-5~t/12)], it follows that the Langer approximation 
reduces to WKBJ formulas at distances away from the turning point. That is, W tends to a 

constant times U as o)~ ~ oc. Furthermore, W tends to a constant times V as co~--, 0. To see 
this, note that co~ ,-~ (2/3)( -y)3/a as r ~  rp, and use the identity 

H(1)/(2), , - exp ( -T- i7~/2)31/6 (2/z)l/3Ai[ _ (3/2.z)2/3 exp( -I- 2i7z/3)]. (9) 1/3 tz)=Z 

It follows that W(r,p) retains the merits both of the WKBJ solution and of the non- 
uniformly asymptotic approximation (6), in regions where these are appropriate. 

(c) It is often useful to establish a standard normalization for the radial functions, 
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especially in cases where a particular source is to be represented by summation over 

surface harmonics. A convenient normalization is suggested by first considering the well- 
established theory for a homogeneous medium, ~(r)= % (say), since then the radial-wave 
equation (3) is solved exactly by spherical Hankel functions h,°)(cor/%). To determine the 
Langer approximation for this function, it thus remains to find the A °t such that 

(J) ,~A(J)~I/2Q-1/2 r-  • ho, p _ (1/2)(cor/O~s) *H0~a (co~). (10) 

Any choice of (r, p, co) will suffice to evaluate the A (J), and taking r small and cop large, one 
may use the Debye approximation for the left-hand side in (10), and the asymptotic form 

given above for H(lf)3 (co~) at large co~, to conclude 

A (1)/(2) = (rrc~j2) */z exp( _+ irt/6)/co */2. (11 ) 

Note that the right-hand side of (10) already includes, via {, all the dependence of the 
radial function on (r, p). With (11), it is extended to give the dependence on (r, p, co) which 
is needed to examine frequency effects and synthesis in the time domain. 

A useful normalization can now be stated for the radial function in media with varying 
velocity ~(r). We use (10) and (11) to give 

R(r,p, co)=g(1)/(2)~(rrO~s/2)l/2exp(+irc/6)(co~/Q)l/2(cor)-lH~(2)(co~). (12) 

Again, note tha t j  = 1 corresponds to an upcoming wave (andj = 2 to a downgoing wave) 
at radii above the turning point. Each of gm and g(2) grows exponentially with depth 

below the turning point, and the linear combination which there decays with depth is 
simply gin+g(2). The Wronskian of g{1) and g(2) is often needed, and, with our 
normalization, 

g(1) 63g {2) _ g(2) ~g(1) 2i% 

0r 0r r2co ' 

The explicit formula (12) still contains a constant velocity value, % and Richards (1973) 
has shown how the waves radiated from an explosive point source, situated at the radius r s 
(say) such that c~ s = ~(rs), can be represented as an integral over g{Jl functions normalized as 
in (12). The integral is taken with respect to ray parameter p, and by taking integration 

paths into the complex p plane, a rapid and numerically stable method becomes available 
for the examination of a wide variety of body-wave phenomena associated (for example) 
with caustics and diffraction. 

(d) The radial derivative, OR(r,p, co.)/&, is often needed to evaluate boundary 
conditions. From (12) and the property 

we find 

d H11)/3(21(0,)~ ) = 09 exp( + 2 ire~3 )H(2~)/a(2)(co{), 
d4 

" ( Q 2 ~ )  1/2exp(4-5iTz/6) rl(ll/(2t(''';~ ~ g{1)/(2) Ires COg- (13) 
- **2/3  ku~'"~ I" Or r 

The explicit formulas (12) and (13) are the main subject of discussion in the remainder of 
this paper. Since they are not exact, it is well to be aware at the outset of the order of error 
they introduce. If Ico~l is large, and co large, then gO) in (1 2) is 0(co- *), and terms 0(co- 2) are 

neglected in this Langer formula for gOl; in (13), 8g°)/2r is 0(1) and terms 0(co-*) are 
neglected. However, if{ is very small, so that Ico~.l is small even though co is large, then gIJ)is 
0(co-5/6) and terms 0(co-3/2) are neglected; agO)~& is 0{co-1/6) and terms 0(co-5/6) are 
neglected. The size of these neglected terms can be estimated by using the dimensionless 
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ratio eft(cot). At worst, the Langer approximation can introduce errors of order 
[c~/(cor)] 2/3, and this remains below 5 per cent for almost all body waves with period less 

than 40 sec. Where this error is unacceptable, it is possible to develop explicitly the next 

term in the asymptotic series (Langer, 1951 ; Chapman, 1974). 
(e) Two specific stages may be identified in practical computations involving the 

Langer approximation. The first is to obtain ~ for a given radius, ray parameter, and Earth 
model; and the second is to evaluate a low-order (1/3 or 2/3) Hankel function, possibly 

with complex argument. 
The integral for ~ can be made a sum of FORTRAN-supplied functions, if the 

interpolation law c~(r) -- ar b is used between radii on which c~ is specified. This interpolation 
law is widely used in travel-time computations (Julian and Anderson, 1968), and we can 
thus use available programs for travel-time T and distance A, as a function of ray 

parameter, together with the result 

~(r,p)= T ( p ) - p A ( p )  

(see Bulten, 1963, page 112). Here, Tand A are the time and distance taken to travel down 
the ray from level r to the turning point rp. A problem can arise in that the velocity profile, 

as interpolated between shells on which c~(r) is given, is not analytic. Then rp, and hence 
and the Langer approximation, do not turn out to be analytic functions of p, although 
their variation with p does turn out to be sufficiently smooth in practice. 

Program packages to evaluate Hv~J)(z) for small v and complex z are widely available: 
SHARE program 1489 has been found completely adequate. 

(f) The theory outlined above is for media in which precisely one turning point rp exists 

for each p. However, for a medium with a low-velocity zone, the value ofr  in R(r, p, co) may 
be such that rp is a multivalued function of p. Formulas (12) and (13) are no longer 
uniformly asymptotic in p, since they fail at p values such that two different solutions rp are 
nearly equal. The theory must then be re-cast with confluent hypergeometric functions, 

rather than H ~j)3 . Langer (1951) has given a specific example of this type, in the context of 
microwave propagation. 

TRANSMISSION AND REFLECTION COEFFICIENTS FOR A DISCONTINUITY: 

GENERALIZATION OF RESULTS FOR PLANE WAVES/PLANE BOUNDARIES 

At the heart of any derivation of transmission/reflection coefficients, for a horizontal 
discontinuity, lies the constraint that certain linear combinations of the vertical-wave 
function and its vertical derivative are continuous throughout the medium. In this section, 
it is shown that this constraint can be used to derive transmission/reflection coefficients for 
a discontinuity between two inhomogeneous media (e.g., the core-mantle boundary) in 
terms of the corresponding coefficients for a simple plane-wave problem, with a plane 
boundary between two homogeneous media. The general problem (for inhomogeneous 
media, with a discontinuity on a spherical surface such as the Moho, or inner core/outer 
core boundary) would appear to involve coefficients which are very different from the 
plane wave/plane boundary problem, since phenomena associated with grazing incidence 
are, in general, likely to be frequency-dependent. However, the complications of the more 
general problem are found to be resolved by generalizing, in the plane-wave problem, the 
concept of "cosine of angle of incidence". Fortunately, the generalization which results is 
well suited to evaluation via the Langer approximation, since it is independent of the 
normalization used for the radial functions R(r, p, co), and many of the factors in formulas 
(12) and (13) are not required. 

These several results are developed below by first considering in some detail the 
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elementary case of sound waves in a fluid, and subsequently outlining a P-SVprob lem for 

the core mantle boundary. 

Sound waves in a transversely homogeneous fluid, with discontinuity at z ---0 

7he plane wave/plane boundary problem. This elementary problem serves to introduce 

notation, and also to provide reflectioh/transmission coefficients in a form which 

subsequently are generalized. In Figure 1 is shown the coordinate system, for a plane wave 

incident from above upon the boundary between two homogeneous fluids. Using pressure 

P as the dependent variable, not to be confused with the P-wave potential of the previous 

section, the incident plane wave with frequency co, ray parameter  q (=s in  i/a), and 

amplitude A is given by 

pine= A exp ( - icoz cos il/ct I ) exp [ico(qx - t)] (downgoing). (14) 

INCIDENT FLECTED 

~ ~ ~ ~ ~ I T Y  al, DENSITY P1 
Z:O :) 

az Pa 

TRANSMITTED 

FIG. 1. Parameters for the elementary problem of an incident pressure wave, reflected and transmitted from the 
boundary between two homogeneous fluids. Recall that the ray parameter for plane layered media is (sin i)/ct. 

Here, cos i 1 = ( 1 -  ~i2q 2)1/2, and the factor exp[ ico(qx- t ) ]  is common to reflected and 

transmitted waves 

pref_ Bexp ( + icoz cos il/~ 1 ) exp [ico(qx -- t)] (upcoming) (15) 

pt . . . .  = C e x p ( _ i c o z c o s i z / ~ 2 ) e x p [ i c o ( q x _ t ) ]  (downgoing). (16) 

Since P and (1/p)(OP/t?z) are continuous across z = 0, the reflection coefficient is found 

to be 

B p20~zCOSil - -PlO~lCOSi  2 
(17) 

A P2~2 cos  i 1 + P i l l  cos  i 2 

and the transmission coefficient is 

C _ 2p2c~2 cos i x . (18) 

A p a ~ z c o s i i + p l o : l c o s i  2 

At this stage, it is instructive to take a close look at the reasons why cosines appear in the 

familiar formulas (17) and (18). We note that in either medium the upcoming vertical wave 

function is V(a)(z, q, co), say, with 

V (1) (z, q, co ) = exp (i(,)z cos i/~) 
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and the downgoing factor is 

V ~2) (z, q, co) = exp ( - icoz cos i/~). 

For homogeneous media, then, in terms of the vertical wave functions, the cosines in 
coefficient formulas (17) and (18) arise from the relations 

(~V (1) /V(1)_C(1) 
cosi=ico ~?z / = (say)=C(1)(z'q'co) 

and also (19) 

~ V  (2) 
/ / V (2)- C ~2) ( say)  -SC(2)(Z, q, CO). cos i=  G / 

The main points to be made in the generalization to inhomogeneous media are that (a) 
the three quantities, cos i, C (1), and C (2) are in general unequal (although they are equal at 

the W K BJ level of approximation to the vertical-wave functions V (1) and V(21): (b) it is C ") 
and C (2) which should appear, in place of cos i, in the formulas for reflection/transmission 
coefficients; and that (c) major differences due to this replacement will show up where cos i 

is small (i.e., near grazing), for this is where the WKBJ approximation breaks down, and 
cos i departs most from C (1) and C ~2). 

In fact, cosines appear in four places in the reflection coefficient (17). Taking account of 
whether an upcoming or downgoing function is differentiated, in imposing the constraint 
of continuity on (1/p)(~?P/&), one finds the reflection coefficient is 

B p2o~2cl(a)-plO~1C2 (2) 
_ (20) A pzo~2Cl(1)+plO;1C2 (2) 

and the transmission coefficient is 

C p2~zECl(1)+C212)] 
A - P2~2C1 (1) + P151 C2 (2)' (21 ) 

A suffix on the C u) and V u) functions is used wherever it is necessary to indicate the half- 
space for which identities (19) are applied. 

These coefficients, (20) and (21), do give the required generalization for inhomogeneous 

media, as discussed next. 
The problem of two inhomogeneous fluid half-spaces, in contact at a plane boundary. The 

equation of motion is now p//= - g r a d  P and the equation of state (for small motions) is 
P = -  k div u, where k is the bulk modulus. Although we seek reflection/transmission 
coefficients for pressure, we shall work with the dependent variable 

X = [-p ( z ) ]  - 1/2p, 
since X satisfies an equation which, in the frequency domain, is effectively a Helmholtz 
equation with variable wavenumber. This equation (Brekhovskikh, 1960, p. 171) is 

(.02 ,, , 2 
V2X-}-~X+I~--}(~) ]X=O 

where ~ ~ (k/p) 1/2, and a prime denotes the derivative O/Oz. The terms in p" and (p,)2 c a n  

he ignored, since they do not affect the Langer approximation for X. 
Figure 2 shows an example of two inhomogeneous half-spaces, with the medium 

immediately above the boundary being faster than that below, so that near-grazing 
incidence is possible from above, with a real ray being transmitted. If the ray parameter 



ADEQUACY OF PLANE-WAVE COEFFICIENTS IN SEISMIC BODY-WAVE ANALYSIS 709 

were somewhat  greater than that  illustrated in Figure 2b, then total internal reflection 

occurs in the upper medium, as shown in Figure 2c. A turning point  is present, and angle il 

is complex at z = 0. However,  energy can still leak through into the lower-velocity region 

below z =0 ,  and can there propagate  again along a direction which departs from the 

boundary  with a real value for i z. We shall find this effect is successfully quantified by the 

transmission coefficient (21). In Figure 3 is shown an example where the faster medium lies 

below the boundary .  Figure 3b shows the case of a transmitted wave depart ing almost  at 

the grazing angle (90°), and we shall discuss in a later section an example of this type, in 

(a) 

Z 

z=O 

(b) (c) 

q>qc 

FIG. 2. Illustrations for a pressure wave incident within an inhomogeneous fluid upon the boundary of 
another inhomogeneous fluid having lower velocities: (a) the velocity profile near the boundary z=0; (b) ray 
trajectories for ray parameter q less than the boundary-grazing value qc; and (c) ray trajectories for q > q~. 

(a) 

Z 

z = o  / 

(b) (c) 

q>qc " ~  

FIG. 3. As for Figure 2, but with the lower velocities on the side of the incident wave: (a) the velocity profile; (b) 
the case of ray parameter q less than qc, the critical value at which the transmitted ray departs at the grazing angle 
( i 2  = 90°); and (c) the case q > qc. 

which there is a substantial effect on the amplitude and phase of the r e f l e c t e d  wave, even 

though this does not  itself approach  grazing. 

In any of  the inhomogeneous  regions depicted in Figures 2 and 3, the separated solution 

for X which propagates  to the right, with ray parameter  q and frequency co, is 

X = V (z, q, co) exp [i~o ( q x  - t )]  

where Vsatisfies 

~Z 2 ~_ £02 -- q2 V =  0 (22) 
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(cf equation 3). Uniformly asymptotic solutions are 

V ¢:) ~exp(ir~/6)~l/ZQ - :/2H]l/)a(co~) (upcoming) and 

V ~2 )~exp ( -  i~z/6)~1/ZQ - :/2H~2)3(co¢) (downgoing), (23) 

with Q2 = (~¢- 2, _q2)  and ~ =~0 Qdz, where Zq is the unique depth at which Q =0. 
The phase factors in (23) have been chosen to make V m + V Cz) the solution of (22) which 

is exponentially decaying below 1he turning point. In practice, when (23) is to be 
computed, the depth zq often has to be found by extrapolation (analytic continuation) of 
~(z) outside the depth range in which the velocity profile is physically defined. This 
presents no difficulty when, for example, the profile is given by some power law ~(z)oc z u, 

or by a polynomial. However, when the profile is given merely as velocity values at a finite 
number of depths, the solution Zq of equation co(z) = q- : requires some prior curve fitting. 

The incident, reflected, and transmitted waves of Figures 2 and 3 are 

X inc = A vl(Z)(z, q, co) exp[ico(qx - t)] 

xre f=  B gl (1) exp[ ico( q x -  t )] 

X t .... = CV2 (2) exp[ico(qx - t)] 

and the ratios B/A, C/A are determined from requiring continuity of p:/2X and 
p-1/20X/Oz across z=0. [N.B. p-:~P/~?z=p-1/20X/Oz-½p-a/2(Op/~?z}X, but the last 
term here is of the order of terms we neglect in the Langer approximation for OX/Oz, and 
hence is itself negligible. This is a characteristic feature of the asymptotic method we are 
developing: once the correct dependent variable is clearly identified, only the leading term 
need be retained in most of the operations which have to be carried out on the variable.] 
These constraints give two equations relating A, B, and C, with solutions 

B VI(2)(0, q, co) p20~2Clt2)-plO~lC2 (z) 

A - V1 (1) (0, q, co)" p20~2C1(1) q - plO~l C2 (2) 

C [pl(0)]  1/2 Vl~2)(0, q, co) P2~2[C1~1)+C1 ~2)] 

A = [  P - ~ J  " ~ c o ) ' P 2 ~ 2 C :  (1) +p1~:C2(2)" (24) 

Recalling that the incident pressure at z = 0 is 

pin~ = [p: (0)] :J2A V:(2~(0, q, co) exp [ico (qx - t)], 

with similar results for reflected and transmitted pressures at z=0, it follows that the 
reflection coefficient is 

pref B (I01 ~1/2 rl(1) P2~2C1(2) _ P i l l  C2(2) 
| / (25) 

pine = ~ \ ~ ]  Va(2)-p2:zzC(:)+p:cqC2CZ) 

and the transmission coefficient is 

r t  .... C (p2~1/2 V2(2) P2~2[C1(1)_[_C1(2)] 

einc = A \Pll  } rl(2)-p2o~aClll)-~PlO~1C2(2) (26) 

which indeed are the results anticipated in equations (20) and (21). Given the intricacy of 
theories of wave propagation in inhomogeneous media, the seismologist who is concerned 
with applications can justifiably feel relieved that familiar plane-wave formula (e.g., 
equations 17 and 18) require only minor modification, involving a generalization only of 
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the cosine terms. Furthermore, the replacements C o) are simple to compute, since from 

(19), (13) and (12) we find the explicit result 

CO)/(Z)(z,q, co)~(1 ~2q2)l/Zexp(___. , 2 / 3 ~ .  (27) 
- m/6) H(1~)3/(2)(o94) 

Noting that (1--~2 qZ)U2 =cos i, equation (27) can be seen as providing a necessary 

correction factor in cases where z, q, co are such that co~ is small. (When co~ is large, this 

factor approaches unity.) For  real values of the ray parameter, C (1) and C (2) are complex 

(o) IMq 

I 

./? 
F 

(b) 

I 
REq 

I 

cl 

IMq 

I 
cl 

• "O~" REq 

og\. 

F1G. 4. Diagrams of the complex ray parameter plane, showing (a) poles of C (1), and (b) poles of C C2~. All these 
poles lie close to Stokes' lines (on which ¢ is real). 

conjugates. If q > 1/e(z), then the branches chosen to make V (1) and V (2) analytic in q are 
such that 

6(1)~i (0~2q2-1)1/2~-C (2) as  c o ~ o G .  (28) 

More generally, it may be shown (Choy and Cormier, personal commt~nication) that 

C (1) and C (2) are analytic functions of q, with singularities consisting of strings of poles 

which have properties similar to branch cuts. Thus, the string of poles of C (1) are the zeros 
o fH o) to~" 1/3 ~ C), and are shown in Figure 4a. The two strings depart from the real axis at values 
near ± 1/~, and lie close to Stokes' lines given in the first and third quadrants by requiring 
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to be real. As shown in Figure 4b, the strings of poles for C (2) lie close to Stokes' lines in the 

second and fourth quadrants. Away from the singularities, C0)~(1-~2q2) 1/2. For 

example, this approximation would be accurate along lines such as AB in Figure 4a. As a 

line of singularities is approached, the approximation fails, and fails radically if the path 

BC lies on or very close to one of the poles in the string. After crossing the line of 
singu!arit!es, then again C (l~~ (1 -o~2q 2)1/2, but a sign change is found to have occurred, 

giving the appearance of having crossed a branch cut in the square root. Since ABCD does 
not cross a line of singularities for C (21, C (2~  (1 _ ~ 2 q 2 ) 1 / 2  is accurate for the whole path 

ABCD, and does not undergo a jump to the other root. 

This discussion of acoustic waves is concluded with a brief description of 

reflectionitransmission coefficients for the problem shown in Figure 2. The critical ray 

parameter is for grazing incidence (il =90 °) and has value qc (say) = [al(0)] 1 

For values q < qc, the ray picture (Figure 2b) is similar to Figure 1 in that three real rays 

are interacting with the boundary. Nothing new is needed to interpret the 

reflection/transmission formulas (25) and (26), although, if q is only slightly less than qc, it 

may be necessary to use Hankel functions to evaluate C1C1~ and C1 ~2). C2 (a~ is probably 

given sufficiently accurately by cos/2 . However, if q > q~, then the ray picture of Figure 2c 

results. The transmission coefficient is likely to be small, since energy must leak (or, 

"tunnel") from level z=  Zq to z =0, and the reflection coefficient should tend to unit 

amplitude. Both these results can be inferred from the coefficient formulas (25) and (26), 

using the asymptotic property (28). However, this inference is misleading, because it is 

based on the use of z = 0 as the reference level for the incident wave, and, in the ray picture, 

the incident wave never appears to reach this level, nor does the reflected ray depart from 

it. A natural reference level to use is the turning point level Z=Zq, but this has the 

disadvantage of varying with ray parameter and of being the level at which ray theory 

completely fails. Therefore, a reference level z =  z o well above z =  zq is taken, so that 

reflection/transmission coefficients include a phase factor due to vertical propagation. The 

ratios of interest are then taken between 

pinc (z0, q, co) = [Pl (Zo)] 1/2 A V1 {2) (Zo, q, CO) exp [ico (qx -- t)] (29) 

pref(zo, q, co) = [Pl (Zo)] 1/2B VI(1 } (Zo, q, oo) exp[ioo(qx - t)] (30) 

and 

pt .... (0, q, co) = [P2 (0)31/2CV2(2)(0, q, co)expEico(qx -- t)]. (31 ) 

The ratios B/A, C/A are given in equation (24), so that now the reflection coefficient is 

Pra(zo, q,o) ) VI(1)(Z0)  Vl (2) (0 )  p2o~2ClI2)-PlglCOSi2 
pinc(zo, q, co)- Vl(2)(Zo)'Vl(1)(O)'D20~2Cl(1)-l-plO~l c o s  i 2 ' (32) 

If the reference level z o is far above the turning point, then the first factor here is given by 

vl"'(Zo) 
Vl(2)(Zo ) - iexp(2ie)~) 

in which ~ =~Z°(cos i/a)dz, a n d -  i is the familiar phase shift at a turning point. If also Zq is 

sufficiently far above the boundary z = 0, then each of the remaining two factors in (32) is 
- 1 ,  and ffnc+uef could have been analyzed purely in terms of the standing wave V1 I1) 

+ViI 2~. 

The transmission coefficient is 

pt . . . .  (O,q, oo)_Fpl(O ) ]1j2 1 p20~2Vl~Z'(O)ECl~l)q-Cl ~2)] (33) 

pi~C(zo,q,e) ) "VI(2)(Z0)"  w' (1) P2~2,~. 1 + p l O {  1 COS i 2 
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The factor 1/V1C2)(Zo) here carries the incident wave down from level z o to the turning 

point, and our interest is principally in the factor V1(21(0)[C1(1).-.~-C1{2)], which must 

describe the tunnelling effect, quantifying the amount of energy which can leak from the 
level z = zq to z =0  in Figure 2c. The form of this factor is initially somewhat surprising, as 

V 1(2)(0) is an exponentially growing term as frequency increases, of order exp(a)t/) where ~/ 

= , f ~ q ( ~ 2 q  2 - -  1 )l/2dz. However, we can use the Wronskian 

Vt2) (~V Ill __ V(1) ~ V  (2) _4 i  

8z 8z 

[-appropriate for the normalization used in (23)] to find that C1(1)+C~ (z) is of order 

e x p ( -  2coq). In fact, 4cq (0) 

V(2)(0)[-C1 (1) .-~ C1 {2)] = ~(o Vl(1) (0) 

and the exponential decay is of the order expected. 

The above interpretation of reflection/transmission coefficients has merely dem- 

onstrated that our formulas do have the correct properties as frequency is increased at 

fixed ray parameter. This discussion separated the cases ofq >< qc, and it extended the work 

of Gans (1915)and Brekhovskikh (1960, pages 206 215) in that properties of the wave 

function itself were emphasized, rather than properties of non-uniformly asymptot ic  

formulas such as (4) and (6). Let us now turn to a numerical study, in which the different 

ranges of ray parameter are treated with the same uniformly asymptotic theory. 

A numerical example: P waves within the core, incident upon the mantle from below. 

The Langer approximation was introduced above for the radial wave function 

R(r, p, ~o) in spherical polar coordinates (r, 0, ~b), and was subsequently used for vertical 

wave functions in cartesian coordinates. In this section, the quantities C (1) and C (2I are 

obtained for a specific problem in spherical geometry. These functions are compared with 

the corresponding cosine of plane-wave theory and are shown to be significantly different 

in a manner which can influence even short-period seismic body waves. 

The "cosine" to be studied here is that for P waves which impinge upon the core-mantle 

boundary from above. When such waves are incident at near-grazing angles, they can 

generate a variety of effects which plane-wave theory would not predict. These waves can 

be diffracted around the base of the mantle (Phinney and Alexander, 1966), and can also 

tunnel efficiently into the core when the ray parameter is greater than that for the core- 

grazing ray (Richards, 1973). The angle of incidence, im (say), with suffix m denoting the 

base of the mantle, is shown at the top left of Figure 5, and cosi m is simply 

(1- ~mZpZr~-m2) 1/2, where p is the ray parameter and rcm is the radius of the core-mantle 

boundary. The radial wave functions, and their radial derivatives, can be calculated for the 

lower mantle using a specific Earth model, and the B1 model of Jordan and Anderson 

(1974) is used here. Then C(1)= C(1)(rcm, p, oJ) = 7,,(dR/dr)/(ie)R) can be found from (27). In 

this model, the core-grazing ray parameter has value 254.9 sec/radian, and C (!) and cos i,, 

are shown in Figure 5. At infinite frequency, C (1) and cos i" are identical, being real for p 

< 254.9 and positive imaginary for p > 254.9. At frequency ! Hz, Figure 5 shows that the use 

of cos im for C (1) might lead to substantial errors throughout the range 253 <p<257 .  At 

frequency 0.1 Hz, cos i" is a poor approximation to C (~) throughout the plotted range 248 

<p<262 .  

To assess the significance of differences between values of cos/,, and C (1), the 

consequences for the reflection coefficient for P waves within the core, incident upon the 

core-mantle boundary from below are shown in Figure 6. This is a case similar to that 



714  PAUL G. RICHARDS 

shown in Figure 3, in that the incident wave is traveling within a relatively low-velocity 

medium and impinges upon the boundary of a higher-velocity medium. However, 

transmitted SVi s  now also possible (see the upper part of Figure 6), and the plane-wave 

reflection coefficient is RKK (say) where 

-- pcO~c COS i m + P m  COS ic{C~ m COS 2 2j,. -t- 4pZrZmZ flm 3 cosj., c o s  ira} 
RKK = (34) 

Pc~c cos i,, +Pm cos io{~,, cos 2 2jm + 4p2r~mZ[tm 3 cosjm cos ira} 

Suffixes c and m, respectively, denote the top of the core and the base of the mantle. 

In order to generalize this coefficient to account for frequency-dependence, curvature of 

the core-mantle boundary, and velocity gradients near the boundary, we have seen it is 

necessary to replace cosine terms in formulas such as (34). Only cos ira, cos ic, and cos j,, 

REAL IMAG. 
cos i m co Hz 

C(l) ~ 1 Hz 

L O.l Hz . . . . . . . . . . . . . . . . . . .  

o z " ' - .  ..... :;;, . 

- . .  ...,'~/ ,,.,,.,'" 

• - / . . \  
\ 

o.o -'-..---.-i ...':~...:....'~...'.7. ........... I, - ~ _  ; 

250 255 2 6 0  

Roy parameter p, sec/mdian 

I I I I I I I  
76 78 80 82 84 90 

im,  d e g r e e s  

FIG. 5. Real and imaginary parts are plotted (against ray parameter) for the cosine and generalized cosine C (1) 
(equation 27) appropriate to P waves at the base of the mantle in Earth model B1 (Jordan and Anderson, 1974). 
At the top left and right are shown ray positions for, respectively, ray parameter less than and greater than the 
core-grazing value of 254.9 s/rad. As frequency increases from 0.1 Hz to 1 Hz, one sees that curves for C (1~ tend to 
the values at infinite frequency, given by cos i,,. At the bottom of the figure are shown values of angle i,,, for ray 
parameter values which permit the angle to be real. 

need be considered, as c o s 2 / , , = l - 2 s i n 2 j , , = l - 2 p 2 f i , , , 2 r - , , ,  2. [Using various tri- 

gonometrical identities, RKK can be presented in many different ways. The form of the 

right-hand side in (34) has been chosen to bring out the explicit dependence on cosines of 
ira, ic, and j,,. Since cosines are to be replaced by the ratios C I1) and C (2) given in (27), it 

might be thought that the identity cos 2 i=  1 - s i n  2 i=  1 - p 2 r  2(~2 is to be avoided in prior 

manipulation of the plane-wave coefficients. However, full advantage can still be taken of 

this identity, since it is effectively equivalent to the radial wave equation 

d e (02( 1 P 2 ~ r R .  
ar2IrR)=- \ J -T j  

That is, "cos 2 i" arises from a double derivative of the radial wave function, but this is still 

equivalent to scalar multiplication, even in the radially heterogeneous medium.] 
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Our present concern is with evaluation of RKK in model B1, for ray parameter values 

such that the transmitted P wave into the base of the mantle departs from the core-mantle 

boundary at near-grazing angles, and in fact tunnels out, if p > 254.9 sec/radian (see the 

upper right of Figure 6). The angles ic andjm are nowhere near 90 ° for the range 248 __<p 

< 262, and so cos i c and cOSjm may be retained in (34). To determine where co; i m should be 

replaced by C m, and where by C (2), we note that the problem has no downgoing P wave in 

the mantle, so C (2) does not appear, and we work with 

-- pcet<C (1) + pro cos i<{ct m cos 2 2jm + 4p 2 r~-~2 flm 3 cos  jm C  (I )} 

R K K -  Pc~cCO) " " ~ ' m  c°S  ic{°~mCOS2 2jm +4p2rcZf lm3  COSjmCO)} • (35) 

s 

P 

K K 
K K 

AMR PHASE 
CO Hz  . . . . . . . . . . .  * . . . . . . . .  

1 Hz 

0.1Hz 

O•"'"'""''".":'':2Z'• / "  

- 1  ~ 
o . , _ _  . . . . . . . . . . . . . . . .  . . . .  . . -  . . . . .  

o.o I I I L 3 . _ ~  
250 255 260 4 

Ray parameter p, sec/radian 

FIG. 6. Amplitude and phase for the reflection coefficient RKK, i.e., for the internally reflected core wave. 
Values are plotted against ray parameter, and the computation is based on Earth model B1 of Jordan and 
Anderson (1974). Solid line and dotted line give amplitude and phase for the plane-wave reflection coefficient 
(equation 34). The frequency-dependent coefficient is also plotted for 1 Hz and 0.1 Hz (values from equation 35), 
and substantial departures from the plane-wave coefficient (which is correct in the limit of high frequencies) are 
apparent. 

At infinite frequency, formulas (34) and (35) yield the same value, with amplitude and 

phase as shown in Figure 6. At finite frequencies, (35) should be used, and the figure shows 

substantial frequency-dependent effects in both the amplitude and phase. Even at 1. Hz, 

the amplitude of RKK is substantially different from the plane-wave value throughout the 

range254 < p < 257. It is within this range that core phases such as P K K K K P  are observed, 

and in this case of multiple internal reflections, RKK is raised ro the third power. At 0.1 Hz, 

RKK is very poorly represented by the plane-wave formula. 

CONCLUSIONS 

The Langer approximation is found to have significant practical applications in the 
analysis of seismic body waves. It is a little more cumbersome to work with than the 

WUBO
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WKBJ approximation (which it replaces), since both require prior evaluation of travel- 
time Tand epicentral distance A as a function o£ ray parameter to construct the frequency- 
independent quantity 4= T-pA. Whereas the Langer approximation involves com- 
putation of  H(~)3/(2)(o)~), and the WKBJ method requires only exp( +_ i~o~), the former has 
merits of providing a uniformly asymptotic approximation to vertical wave functions. It 
can therefore be applied to analyze body waves near their turning point. 

Such applications commonly arise when the body wave under study has, somewhere 
along its propagation path through the Earth, interacted with a discontinuity (such as the 
core-mantle boundary) in a fashion which generates waves propagating nearly parallel to 
the discontinuity. Examples include waves incident at near-grazing angles upon the 
discontinuity. Further examples arise when the angle of incidence is much less than 90 °, 
but is near critical in the sense that a transmitted wave or mode-converted wave (e.g., S to 
P) travels nearly parallel to the discontinuity. 

Plane-wave coefficients are found to be inadequate for such waves, but it is found that 
such coefficients can readily be adapted to the required form. The technique involves 
recognition that cosines, appearing in plane-wave coefficients, arise from vertical 
differentiation of the vertical wave functions in the vicinity of the discontinuity. This 
vertical differentiation is simple to carry out in radially inhomogeneous media, using the 
Langer approximation, and the resulting generalized "cosine" incorporates the effects of 
frequency-dependence, curvature of the discontinuity, and Earth structure on either side 
of the discontinuity. 

Practical examples of the failure of plane-wave coefficients abound in seismic core 
phases. A numerical study is given for the cosine associated with P waves at the base of the 
mantle (see Figure 5). Further numerical results show that even for fairly short periods 
(~ 1 Hz), plane-wave reflection and transmission coefficients are often inaccurate for the 
core-mantle boundary. Accurate coefficients can readily be obtained (see Figure 6), and 
have significant frequency-dependence. 
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