# Applicable Analysis and Discrete Mathematics <br> available online at http://pefmath.etf.rs 

Appl. Anal. Discrete Math. 10 (2016), 102-127.

# ON THE ADJACENCY DIMENSION OF GRAPHS 

A. Estrada-Moreno, Y. Ramírez-Cruz, J. A. Rodríguez-Velázquez

In this article we study the problem of finding the $k$-adjacency dimension of a graph. We give some necessary and sufficient conditions for the existence of a $k$-adjacency basis of an arbitrary graph $G$ and we obtain general results on the $k$-adjacency dimension, including general bounds and closed formulae for some families of graphs.

## 1. INTRODUCTION

A generator of a metric space $(X, d)$ is a set $S \subset X$ of points in the space with the property that every point of $X$ is uniquely determined by the distances from the elements of $S$. Given a simple and connected graph $G=(V, E)$, we consider the function $d_{G}: V \times V \rightarrow \mathbb{N} \cup\{0\}$, where $d_{G}(x, y)$ is the length of a shortest path between $u$ and $v$ and $\mathbb{N}$ is the set of positive integers. Then $\left(V, d_{G}\right)$ is a metric space since $d_{G}$ satisfies $(i) d_{G}(x, x)=0$ for all $x \in V,(i i) d_{G}(x, y)=d_{G}(y, x)$ for all $x, y \in V$ and (iii) $d_{G}(x, y) \leq d_{G}(x, z)+d_{G}(z, y)$ for all $x, y, z \in V$. A vertex $v \in V$ is said to distinguish two vertices $x$ and $y$ if $d_{G}(v, x) \neq d_{G}(v, y)$. A set $S \subset V$ is said to be a metric generator for $G$ if any pair of vertices of $G$ is distinguished by some element of $S$. A minimum cardinality metric generator is called a metric basis, and its cardinality the metric dimension of $G$, denoted by $\operatorname{dim}(G)$.

The notion of metric dimension of a graph was introduced by SLATER in [17], where metric generators were called locating sets. Harary and Melter independently introduced the same concept in [9], where metric generators were called resolving sets. Applications of this invariant to the navigation of robots in networks are discussed in $[\mathbf{1 4}]$ and applications to chemistry in $[\mathbf{1 2}, \mathbf{1 3}]$. Several variations of metric generators, including resolving dominating sets [1], independent resolving

[^0]sets [2], local metric sets [15], strong resolving sets [16], adjacency resolving sets [11], $k$-metric generators [3, 4], etc., have since been introduced and studied. In this article, we focus on the last of these issues: we are interested in the study of adjacency resolving sets and $k$-metric generators.

The notion of adjacency generator was first introduced by Jannesari and Omoomi in $[\mathbf{1 1}]$ as a tool to study the metric dimension of lexicographic product graphs. This concept has been studied further by Fernau and RodríguezVelázquez in $[\mathbf{7}, \mathbf{8}]$ where they showed that the (local) metric dimension of the corona product of a graph of order $n$ and some non-trivial graph $H$ equals $n$ times the (local) adjacency dimension of $H$. As a consequence of this strong relation they showed that the problem of computing the adjacency dimension is NP-hard. A set $S \subset V$ of vertices in a graph $G=(V, E)$ is said to be an adjacency generator for $G$ if for every two vertices $x, y \in V \backslash S$ there exists $s \in S$ such that $s$ is adjacent to exactly one of $x$ and $y$. A minimum cardinality adjacency generator is called an adjacency basis of $G$, and its cardinality the adjacency dimension of $G$, denoted by $\operatorname{adim}(G)$.

Notice that $S$ is an adjacency generator for $G$ if and only if $S$ is an adjacency generator for its complement $\bar{G}$. This is justified by the fact that given an adjacency generator $S$ for $G$, it holds that for every $x, y \in V \backslash S$ there exists $s \in S$ such that $s$ is adjacent to exactly one of $x$ and $y$, and this property holds in $\bar{G}$. Thus, $\operatorname{adim}(G)=\operatorname{adim}(\bar{G})$. Besides, from the definition of adjacency and metric bases, we deduce that $S$ is an adjacency basis of a graph $G$ of diameter at most two if and only if $S$ is a metric basis of $G$. In these cases, $\operatorname{adim}(G)=\operatorname{dim}(G)$.

As pointed out in $[\mathbf{7}, \mathbf{8}]$, any adjacency generator of a graph $G=(V, E)$ is also a metric generator in a suitably chosen metric space. Given a positive integer $t$, we define the distance function $d_{G, t}: V \times V \rightarrow \mathbb{N} \cup\{0\}$, where

$$
d_{G, t}(x, y)=\min \left\{d_{G}(x, y), t\right\}
$$

Then any metric generator for $\left(V, d_{G, t}\right)$ is a metric generator for $\left(V, d_{G, t+1}\right)$ and, as a consequence, the metric dimension of $\left(V, d_{G, t+1}\right)$ is less than or equal to the metric dimension of $\left(V, d_{G, t}\right)$. In particular, the metric dimension of $\left(V, d_{G, 1}\right)$ is equal to $|V|-1$, the metric dimension of $\left(V, d_{G, 2}\right)$ is equal to $\operatorname{adim}(G)$ and, if $G$ has diameter $D(G)$, then $d_{G, D(G)}=d_{G}$ and so the metric dimension of $\left(V, d_{G, D(G)}\right)$ is equal to $\operatorname{dim}(G)$. Notice that when using the metric $d_{G, t}$ the concept of metric generator needs not be restricted to the case of connected graphs, as for any pair of vertices $x, y$ belonging to different connected components of $G$ we can assume that $d_{G}(x, y)=\infty>2$ and so $d_{G, t}(x, y)=t$.

The concept of $k$-metric generator, introduced by Estrada-Moreno, Yero and Rodríguez-Velázquez in $[\mathbf{4}, \mathbf{6}]$, is a natural extension of the concept of metric generator. A set $S \subseteq V$ is said to be a $k$-metric generator for $G$ if and only if any pair of vertices of $G$ is distinguished by at least $k$ elements of $S$, i.e., for any pair of different vertices $u, v \in V$, there exist at least $k$ vertices $w_{1}, w_{2}, \ldots, w_{k} \in S$ such that

$$
d_{G}\left(u, w_{i}\right) \neq d_{G}\left(v, w_{i}\right), \text { for every } i \in\{1, \ldots, k\} .
$$

A $k$-metric generator of minimum cardinality in $G$ is called a $k$-metric basis, and its cardinality the $k$-metric dimension of $G$, denoted by $\operatorname{dim}_{k}(G)$.


Figure 1. For $k \in\{1,2,3,4\}, \operatorname{dim}_{k}(G)=k+1$.
As an example we take a graph $G$ obtained from the cycle graph $C_{5}$ and the path $P_{t}$, by identifying one of the vertices of the cycle, say $u_{1}$, and one of the extremes of $P_{t}$, as we show in Figure 1. Let $S_{1}=\left\{v_{1}, v_{2}\right\}, S_{2}=\left\{v_{1}, v_{2}, u_{t}\right\}$, $S_{3}=\left\{v_{1}, v_{2}, v_{3}, u_{t}\right\}$ and $S_{4}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, u_{t}\right\}$. For $k \in\{1,2,3,4\}$ the set $S_{k}$ is $k$-metric basis of $G$.

Note that every $k$-metric generator $S$ satisfies that $|S| \geq k$ and, if $k>1$, then $S$ is also a $(k-1)$-metric generator. Moreover, 1-metric generators are the standard metric generators (resolving sets or locating sets as defined in $[\mathbf{9}]$ or $[\mathbf{1 7}]$, respectively). Some basic results on the $k$-metric dimension of a graph have recently been obtained in $[\mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{1 8}]$. In particular, it was shown in $[\mathbf{1 8}]$ that the problem of computing the $k$-metric dimension of a graph is NP-hard.

We say that a set $S \subseteq V(G)$ is a $k$-adjacency generator for $G$ if for every two vertices $x, y \in V(G)$, there exist at least $k$ vertices $w_{1}, w_{2}, \ldots, w_{k} \in S$ such that

$$
d_{G, 2}\left(x, w_{i}\right) \neq d_{G, 2}\left(y, w_{i}\right), \text { for every } i \in\{1, \ldots, k\}
$$

A minimum $k$-adjacency generator is called a $k$-adjacency basis of $G$ and its cardinality, the $k$-adjacency dimension of $G$, is denoted by $\operatorname{adim}_{k}(G)$. For connected graphs, any $k$-adjacency basis is a $k$-metric basis. Hence, if there exists a $k$ adjacency basis of a connected graph $G$, then

$$
\operatorname{dim}_{k}(G) \leq \operatorname{adim}_{k}(G)
$$

Moreover, if $G$ has diameter at most two, then $\operatorname{dim}_{k}(G)=\operatorname{adim}_{k}(G)$.
For the graph $G$ shown in Figure 2 we have $\operatorname{dim}_{1}(G)=8<9=\operatorname{adim}_{1}(G)$, $\operatorname{dim}_{2}(G)=12<14=\operatorname{adim}_{2}(G)$ and $\operatorname{dim}_{3}(G)=20=\operatorname{adim}_{3}(G)$. Note that the only 3 -adjacency basis of $G$, and at the same time the only 3 -metric basis, is $V(G)-\{0,6,12,18\}$.

In this article we study the problem of finding the $k$-adjacency dimension of a graph. The paper is organized as follows: in Section 2 we give some necessary and sufficient conditions for the existence of a $k$-adjacency basis of an arbitrary graph $G$, i.e., we determine the range of $k$ where $\operatorname{adim}_{k}(G)$ makes sense. Section 3 is devoted to the study of the $k$-adjacency dimension. We obtain general results on this


Figure 2. The set $\{2,4,6,8,10,14,16,20,21\}$ is an adjacency basis of $G$, while the set $\{2 l+1: l \in\{0, \ldots, 11\}\} \cup\{6,12\}$ is a 2 -adjacency basis and $V(G)-\{0,6,12,18\}$ is a 3 -adjacency basis.
invariants including tight bounds and closed formulae for some particular families of graphs. Finally, in Section 4 we obtain closed formulae for the $k$-adjacency dimension of join graphs $G+H$ in terms of the $k$-adjacency dimension of $G$ and $H$. These results concern the $k$-metric dimension, as join graphs have diameter two.

As we can expect, the obtained results will become important tools for the study of the $k$-metric dimension of lexicographic product graphs and corona product graphs. Moreover, we would point out that several results obtained in this article, like those in Remark 9 and subsequent, until Theorem 13, need not be restricted to the metric $d_{G, 2}$, they can be expressed in a more general setting, for instance, by using the metric $d_{G, t}$ for any positive integer $t$.

We will use the notation $K_{n}, K_{r, s}, C_{n}, N_{n}$ and $P_{n}$ for complete graphs, complete bipartite graphs, cycle graphs, empty graphs and path graphs, respectively. We use the notation $u \sim v$ if $u$ and $v$ are adjacent and $G \cong H$ if $G$ and $H$ are isomorphic graphs. For a vertex $v$ of a graph $G, N_{G}(v)$ will denote the set of neighbours or open neighborhood of $v$ in $G$, i.e., $N_{G}(v)=\{u \in V(G): u \sim v\}$. The closed neighborhood, denoted by $N_{G}[x]$, equals $N_{G}(x) \cup\{x\}$. If there is no ambiguity, we will simply write $N(x)$ or $N[x]$. We also define $\delta(v)=|N(v)|$ as the degree of vertex $v$, as well as, $\delta(G)=\min _{v \in V(G)}\{\delta(v)\}$ and $\Delta(G)=\max _{v \in V(G)}\{\delta(v)\}$. The subgraph induced by a set $S$ of vertices will be denoted by $\langle S\rangle$, the diameter of a graph will be denoted by $D(G)$ and the girth by $\mathrm{g}(G)$. For the remainder of the paper, definitions will be introduced whenever a concept is needed.

## 2. $k$-ADJACENCY DIMENSIONAL GRAPHS

We say that a graph $G$ is $k$-adjacency dimensional if $k$ is the largest integer such that there exists a $k$-adjacency basis of $G$. Notice that if $G$ is a $k$-adjacency dimensional graph, then for each positive integer $r \leq k$, there exists at least one $r$-adjacency basis of $G$.

Given a connected graph $G$ and two different vertices $x, y \in V(G)$, we denote by $\mathcal{C}_{G}(x, y)$ the set of vertices that distinguish the pair $x, y$ with regard to the metric $d_{G, 2}$, i.e.,

$$
\mathcal{C}_{G}(x, y)=\left\{z \in V(G): d_{G, 2}(x, z) \neq d_{G, 2}(y, z)\right\} .
$$

Then a set $S \subseteq V(G)$ is a $k$-adjacency generator for $G$ if $\left|\mathcal{C}_{G}(x, y) \cap S\right| \geq k$ for all $x, y \in V(G)$. Notice that two vertices $x, y$ are twins if and only if $\mathcal{C}_{G}(x, y)=\{x, y\}$.

Since for every $x, y \in V(G)$ we have that $\left|\mathcal{C}_{G}(x, y)\right| \geq 2$, it follows that the whole vertex set $V(G)$ is a 2-adjacency generator for $G$ and, as a consequence, we deduce that every graph $G$ is $k$-adjacency dimensional for some $k \geq 2$. On the other hand, for any graph $G$ of order $n \geq 3$, there exists at least one vertex $v \in V(G)$ such that $\left|N_{G}(v)\right| \geq 2$ or $\left|V(G)-N_{G}(v)\right| \geq 2$, so for any pair $x, y \in N_{G}(v)$ or $x, y \in V(G)-N_{G}(v)$, we deduce that $v \notin \mathcal{C}_{G}(x, y)$ and, as a result, there is no $n$-adjacency dimensional graph of order $n \geq 3$.

We define the following parameter

$$
\mathcal{C}(G)=\min _{x, y \in V(G)}\left\{\left|\mathcal{C}_{G}(x, y)\right|\right\}
$$

Theorem 1. A graph $G$ is $k$-adjacency dimensional if and only if $k=\mathcal{C}(G)$. Moreover, $\mathcal{C}(G)$ can be computed in $O\left(|V(G)|^{3}\right)$ time.

Proof. First we shall prove the equivalence. (Necessity) If $G$ is a $k$-adjacency dimensional graph, then for any $k$-adjacency basis $B$ and any pair of vertices $x, y \in$ $V(G)$, we have $\left|B \cap \mathcal{C}_{G}(x, y)\right| \geq k$. Thus, $k \leq \mathcal{C}(G)$. Now we suppose that $k<\mathcal{C}(G)$. In such a case, for every $x^{\prime}, y^{\prime} \in V(G)$ such that $\left|B \cap \mathcal{C}_{G}\left(x^{\prime}, y^{\prime}\right)\right|=k$, there exists $z_{x^{\prime} y^{\prime}} \in \mathcal{C}_{G}\left(x^{\prime}, y^{\prime}\right)-B$ such that $d_{G, 2}\left(z_{x^{\prime} y^{\prime}}, x^{\prime}\right) \neq d_{G, 2}\left(z_{x^{\prime} y^{\prime}}, y^{\prime}\right)$. Hence, the set

$$
B \cup\left(\bigcup_{x^{\prime}, y^{\prime} \in V(G):\left|B \cap \mathcal{C}_{G}\left(x^{\prime}, y^{\prime}\right)\right|=k}\left\{z_{x^{\prime} y^{\prime}}\right\}\right)
$$

is a $(k+1)$-adjacency generator for $G$, which is a contradiction. Therefore, $k=$ $\mathcal{C}(G)$.
(Sufficiency) Let $a, b \in V(G)$ such that $\min _{x, y \in V(G)}\left|\mathcal{C}_{G}(x, y)\right|=\left|\mathcal{C}_{G}(a, b)\right|=k$. Since no set $S \subseteq V(G)$ satisfies $\left|S \cap \mathcal{C}_{G}(a, b)\right|>k$ and $V(G)$ is a $k$-adjacency generator for $G$, we conclude that $G$ is a $k$-adjacency dimensional graph.

Now, we assume that the graph $G$ is represented by its adjacency matrix $\mathbf{A}$. We recall that $\mathbf{A}$ is a symmetric $(n \times n)$-matrix given by

$$
\mathbf{A}(i, j)= \begin{cases}1, & \text { if } u_{i} \sim u_{j} \\ 0, & \text { otherwise }\end{cases}
$$

Now observe that for every $z \in V(G)-\{x, y\}$ we have that $z \in \mathcal{C}_{G}(x, y)$ if and only if $\mathbf{A}(x, z) \neq \mathbf{A}(y, z)$. Considering this, we can compute $\left|\mathcal{C}_{G}(x, y)\right|$ in linear time for each pair $x, y \in V(G)$. Therefore, the overall running time for determining $\mathcal{C}(G)$ is dominated by the cubic time of computing the value of $\left|\mathcal{C}_{G}(x, y)\right|$ for $\binom{|V(G)|}{2}$ pairs of vertices $x, y$ of $G$.

As Theorem 1 shows, given a graph $G$ and a positive integer $k$, the problem of deciding if $G$ is $k$-adjacency dimensional is easy to solve. Even so, we would point out some useful particular cases.

REmARK 2. A graph $G$ is 2-adjacency dimensional if and only if there are at least two vertices of $G$ belonging to the same twin equivalence class.

Note that by the previous remark we deduce that graphs such as the complete graph $K_{n}$ and the complete bipartite graph $K_{r, s}$ are 2-adjacency dimensional.

If $u, v \in V(G)$ are adjacent vertices of degree two and they are not twin vertices, then $\left|\mathcal{C}_{G}(u, v)\right|=4$. Thus, for any integer $n \geq 5, C_{n}$ is 4-adjacency dimensional and we can state the following more general remark.

REmARK 3. Let $G$ be a twins-free graph of minimum degree two. If $G$ has two adjacent vertices of degree two, then $G$ is 4 -adjacency dimensional.

For any hypercube $Q_{r}, r \geq 2$, we have $\left|\mathcal{C}_{Q_{r}}(u, v)\right|=2 r$ if $u \sim v,\left|\mathcal{C}_{Q_{r}}(u, v)\right|=$ $2 r-2$ if $d_{Q_{r}}(u, v)=2$ and $\left|\mathcal{C}_{Q_{r}}(u, v)\right|=2 r+2$ if $d_{Q_{r}}(u, v) \geq 3$. Hence, $\mathcal{C}\left(Q_{r}\right)=$ $2 r-2$.

Remark 4. For any integer $r \geq 2$ the hypercube $Q_{r}$ is ( $2 r-2$ )-adjacency dimensional.
It is straightforward that for any graph $G$ of girth $\mathrm{g}(G) \geq 5$ and minimum degree $\delta(G) \geq 2, \mathcal{C}(G) \geq 2 \delta(G)$. Hence, the following remark is immediate.

REmARK 5. Let $G$ be a $k$-adjacency dimensional graph. If $\mathrm{g}(G) \geq 5$ and $\delta(G) \geq 2$, then $k \geq 2 \delta(G)$.

An end-vertex of a graph $G$ is a vertex of degree one, and its neighbour is its support vertex. If there is an end-vertex $u$ in $G$ whose support vertex $v$ has degree two, then $\left|\mathcal{C}_{G}(u, v)\right|=\left|N_{G}[v]\right|=3$. Hence, we deduce the following result.
REMARK 6. Let $G$ be a twins-free graph. If there exists an end-vertex whose support vertex has degree two, then $G$ is 3-adjacency dimensional.

The case of trees is summarized in the following remark. Before stating it, we need some additional terminology. Let $T$ be a tree. A vertex of degree at least 3 is called a major vertex of $T$. A leaf $u$ of $T$ is said to be a terminal vertex of a major vertex $v$ of $T$ if $d_{T}(u, v)<d_{T}(u, w)$ for every other major vertex $w$ of $T$. The terminal degree of a major vertex $v$ is the number of terminal vertices of $v$. A major vertex $v$ of $T$ is an exterior major vertex of $T$ if it has positive terminal degree.
Remark 7. Let $T$ be a $k$-adjacency dimensional tree of order $n \geq 3$. Then $k \in\{2,3\}$ and $k=2$ if and only if there are two leaves sharing a common support vertex.

Proof. By Remark 2 we conclude that $k=2$ if and only if there are two leaves sharing a common support vertex. Also, if $T$ is a path different from $P_{3}$, then by Remark 6 we have that $k=3$.

If $T$ is not a path, then there exists at least one exterior major vertex $u$ of terminal degree greater than one. Then, either $u$ is the support vertex of all its terminal vertices, in which case Remark 2 leads to $k=2$, or $u$ has at least one terminal vertex whose support vertex has degree two, in which case Remark 6 leads to $k=3$ if there are no leaves of $T$ sharing a common support vertex.

Since $\left|\mathcal{C}_{G}(x, y)\right| \leq \delta(x)+\delta(y)+2$, for all $x, y \in V(G)$, the following remark immediately follows.
Remark 8. If $G$ is a $k$-adjacency dimensional graph, then

$$
k \leq \min _{x, y \in V(G)}\{\delta(x)+\delta(y)\}+2
$$

This bound is achieved, for instance, for any graph $G$ constructed as follows. Take a cycle $C_{n}$ whose vertex set is $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and an empty graph $N_{n}$ whose vertex set is $V\left(N_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and then, for $i=1$ to $n$, connect by an edge $u_{i}$ to $v_{i}$. In this case, $G$ is 4 -adjacency dimensional. Also, a trivial example is the case of graphs having two isolated vertices, which are 2-adjacency dimensional.

As defined in [3], a connected graph $G$ is $k$-metric dimensional if $k$ is the largest integer such that there exists a $k$-metric basis. Since any $k$-adjacency generator is a $k$-metric generator, the following result is straightforward.

Remark 9. If a graph $G$ is $k$-adjacency dimensional and $k^{\prime}$-metric dimensional, then $k \leq k^{\prime}$. Moreover, if $D(G) \leq 2$, then $k^{\prime}=k$.

## 3. $k$-ADJACENCY DIMENSION. BASIC RESULTS

In this section we present some results that allow us to compute the $k$ adjacency dimension of several families of graphs. We also give some tight bounds on the $k$-adjacency dimension of a graph.

Theorem 10 (Monotony). Let $G$ be a $k$-adjacency dimensional graph and let $k_{1}, k_{2}$ be two integers. If $1 \leq k_{1}<k_{2} \leq k$, then $\operatorname{adim}_{k_{1}}(G)<\operatorname{adim}_{k_{2}}(G)$.

Proof. Let $B$ be a $k$-adjacency basis of $G$. Let $x \in B$. Since $\left|B \cap \mathcal{C}_{G}(y, z)\right| \geq k$, for all $y, z \in V(G)$, we have that $B-\{x\}$ is a $(k-1)$-adjacency generator for $G$ and, as a consequence, $\operatorname{adim}_{k-1}(G) \leq|B-\{x\}|<|B|=\operatorname{adim}_{k}(G)$. By analogy we deduce that $\operatorname{adim}_{k-2}(G)<\operatorname{adim}_{k-1}(G)$ and, repeating this process until we get $\operatorname{adim}(G)<\operatorname{adim}_{2}(G)$, we obtain the result.

Corollary 11. Let $G$ be a $k$-adjacency dimensional graph of order $n$.
(i) For any $r \in\{2, \ldots, k\}, \operatorname{adim}_{r}(G) \geq \operatorname{adim}_{r-1}(G)+1$.
(ii) For any $r \in\{1, \ldots, k\}, \operatorname{adim}_{r}(G) \geq \operatorname{adim}(G)+(r-1)$.
(iii) For any $r \in\{1, \ldots, k-1\}, \operatorname{adim}_{r}(G)<n$.

For instance, for the Petersen graph we have $\operatorname{adim}_{6}(G)=\operatorname{adim}_{5}(G)+1=$ $\operatorname{adim}_{4}(G)+2=\operatorname{adim}_{3}(G)+3=10$ and $\operatorname{adim}_{2}(G)=\operatorname{adim}_{1}(G)+1=4$.

In order to continue presenting our results, we need to define a new parameter:

$$
\mathcal{C}_{k}(G)=\bigcup_{\left|\mathcal{C}_{G}(x, y)\right|=k} \mathcal{C}_{G}(x, y) .
$$

For any $k$-adjacency basis $A$ of a $k$-adjacency dimensional graph $G$, it holds that every pair of vertices $x, y \in V(G)$ satisfies $\left|A \cap \mathcal{C}_{G}(x, y)\right| \geq k$. Thus, for every $x, y \in V(G)$ such that $\left|\mathcal{C}_{G}(x, y)\right|=k$ we have that $\mathcal{C}_{G}(x, y) \subseteq A$, and so $\mathcal{C}_{k}(G) \subseteq A$. The following result is a direct consequence of this.
Remark 12. If $G$ is a $k$-adjacency dimensional graph and $A$ is a $k$-adjacency basis, then $\mathcal{C}_{k}(G) \subseteq A$ and, as a consequence,

$$
\operatorname{adim}_{k}(G) \geq\left|\mathcal{C}_{k}(G)\right| .
$$

Theorem 13. Let $G$ be a $k$-adjacency dimensional graph of order $n \geq 2$. Then $\operatorname{adim}_{k}(G)=n$ if and only if $\mathcal{C}_{k}(G)=V(G)$.

Proof. Assume that $\mathcal{C}_{k}(G)=V(G)$. Since every $k$-adjacency dimensional graph $G$ satisfies that $\operatorname{adim}_{k}(G) \leq n$, by Remark 12 we obtain that $\operatorname{adim}_{k}(G)=n$.

Suppose that there exists at least one vertex $x$ such that $x \notin \mathcal{C}_{k}(G)$. In such a case, for any $a, b \in V(G)$ such that $x \in \mathcal{C}_{G}(a, b)$, we have that $\left|\mathcal{C}_{G}(a, b)\right|>k$. Hence, $\left|\mathcal{C}_{G}(a, b)-\{x\}\right| \geq k$, for all $a, b \in V(G)$ and, as a consequence, $V(G)-\{x\}$ is a $k$-adjacency generator for $G$, which leads to $\operatorname{adim}_{k}(G)<n$. Therefore, if $\operatorname{adim}_{k}(G)=n$, then $\mathcal{C}_{k}(G)=V(G)$.

As we will show in Propositions 32 and $33, \operatorname{adim}_{3}\left(P_{n}\right)=n$ for $n \in\{4, \ldots, 8\}$ and $\operatorname{adim}_{4}\left(C_{n}\right)=n$ for $n \geq 5$. These are examples of graphs satisfying conditions of Theorem 13.

Corollary 14. Let $G$ be a graph of order $n \geq 2$. Then $\operatorname{adim}_{2}(G)=n$ if and only if every vertex of $G$ belongs to a non-singleton twin equivalence class.

Since $\mathcal{C}_{G}(x, y)=\mathcal{C}_{\bar{G}}(x, y)$ for all $x, y \in V(G)$, we deduce the following result, which was previously observed for $k=1$ by Jannesari and Omoomi in [11].
Remark 15. For any nontrivial graph $G$ and $k \in\{1,2, \ldots, \mathcal{C}(G)\}$,

$$
\operatorname{adim}_{k}(G)=\operatorname{adim}_{k}(\bar{G}) .
$$

Now we consider the limit case of the trivial bound $\operatorname{adim}_{k}(G) \geq k$. The case $k=1$ was studied in [11] where the authors showed that $\operatorname{adim}_{1}(G)=1$ if and only if $G \in\left\{P_{2}, P_{3}, \bar{P}_{2}, \bar{P}_{3}\right\}$.

Proposition 16. If $G$ is a graph of order $n \geq 2$, then $\operatorname{adim}_{k}(G)=k$ if and only if $k \in\{1,2\}$ and $G \in\left\{P_{2}, P_{3}, \bar{P}_{2}, \bar{P}_{3}\right\}$

Proof. The case $k=1$ was studied in [11]. On the other hand, by performing some simple calculations, it is straightforward to see that $\operatorname{adim}_{2}(G)=2$ for $G \in$ $\left\{P_{2}, P_{3}, \bar{P}_{2}, \bar{P}_{3}\right\}$.

Now, suppose that $\operatorname{adim}_{k}(G)=k$ for some $k \geq 2$. By Corollary 11 we have $k=\operatorname{adim}_{k}(G) \geq \operatorname{adim}_{1}(G)+k-1$ and, as a consequence, $\operatorname{adim}_{1}(G)=1$. Hence, $G \in\left\{P_{2}, P_{3}, \bar{P}_{2}, \bar{P}_{3}\right\}$. Finally, since the graphs in $\left\{P_{2}, P_{3}, \bar{P}_{2}, \bar{P}_{3}\right\}$ are 2-adjacency dimensional, the proof is complete.

According to the result above, it is interesting to study the graphs where $\operatorname{adim}_{k}(G)=k+1$. To begin with, we state the following remark.
Remark 17. If $G$ is a graph of order $n \geq 7$, then $\operatorname{adim}_{1}(G) \geq 3$.
Proof. Suppose, for purposes of contradiction, that $\operatorname{adim}_{1}(G) \leq 2$. By Proposition 16 we deduce that $\operatorname{adim}_{1}(G)=2$. Let $B=\{u, v\}$ be an adjacency basis of $G$. Then for any $w \in$ $V(G)-B$ the distance vector $\left(d_{G, 2}(u, w), d_{G, 2}(v, w)\right)$ must belong to $\{(1,1),(1,2),(2,1)$, $(2,2)\}$. Since $|V(G)-B| \geq 5$, by Dirichlet's box principle at least two elements of $V(G)-B$ have the same distance vector, which is a contradiction. Therefore, $\operatorname{adim}_{1}(G) \geq 3$.

By Corollary 11 (ii) and Remark 17 we obtain the following result.
Theorem 18. For any graph $G$ of order $n \geq 7$ and $k \in\{1, \ldots, \mathcal{C}(G)\}$,

$$
\operatorname{adim}_{k}(G) \geq k+2
$$

From Remark 17 and Theorem 18, we only need to consider graphs of order $n \in\{3,4,5,6\}$ to determine those satisfying $\operatorname{adim}_{k}(G)=k+1$. If $n=3$, then by Proposition 16 we conclude that $\operatorname{adim}_{1}(G)=2$ or $\operatorname{adim}_{2}(G)=3$ if and only if $G \in$ $\left\{K_{3}, N_{3}\right\}$. For $k \in\{1,2\}$ and $n \in\{4,5,6\}$ the graphs satisfying $\operatorname{adim}_{k}(G)=k+1$ can be determined by a simple calculation. Here we just show some of these graphs in Figure 3. Finally, the cases $\operatorname{adim}_{3}(G)=4$ and $\operatorname{adim}_{5}(G)=5$ are studied in the following two remarks.

$G_{1}$

$G_{2}$

$G_{3}$

Figure 3. Any graph belonging to the families $\mathcal{G}_{B}\left(G_{1}\right), \mathcal{G}_{B}\left(G_{2}\right)$ or $\left\{K_{1} \cup K_{3}, G_{3}\right\}$, where $B=\left\{v_{1}, v_{2}, v_{3}\right\}$, satisfies $\operatorname{adim}_{2}(G)=3$. The reader is referred to Subsection 3.1 for the construction of the families $\mathcal{G}_{B}\left(G_{i}\right)$.

The set of nontrivial distinctive vertices of a pair $x, y \in V(G)$, with regard to the metric $d_{G, 2}$, will be denoted by $\mathcal{C}_{G}^{*}(x, y)=\mathcal{C}_{G}(x, y)-\{x, y\}$. Notice that two vertices $x, y$ are twins if and only if $\mathcal{C}_{G}^{*}(x, y)=\emptyset$.
Remark 19. A graph $G$ of order greater than or equal to four satisfies $\operatorname{adim}_{3}(G)=4$ if and only if $G \in\left\{P_{4}, C_{5}\right\}$.

Proof. If $G \in\left\{P_{4}, C_{5}\right\}$, then it is straightforward to check that $\operatorname{adim}_{3}(G)=4$. Assume that $B=\left\{v_{1}, \ldots, v_{4}\right\}$ is a 3 -adjacency basis of $G$. Since for any pair of
vertices $v_{i}, v_{j} \in B$, there exists $v_{l} \in B \cap \mathcal{C}^{*}\left(v_{i}, v_{j}\right)$, by inspection we can check that $\langle B\rangle \cong P_{4}$. We assume that $v_{i} \sim v_{i+1}$ for $i \in\{1,2,3\}$. If $V(G)-B=\emptyset$, then $G \cong P_{4}$. Suppose that there exists $v \in V(G)-B$. If $v \sim v_{2}$, then the fact that $\left|B \cap \mathcal{C}^{*}\left(v, v_{1}\right)\right| \geq 2$ leads to $v \sim v_{3}$ and $v \sim v_{4}$. Since $\left|B \cap \mathcal{C}^{*}\left(v, v_{4}\right)\right| \geq 2$ and $v \sim v_{3}$, it follows that $v \sim v_{1}$. Thus, $v$ is connected to any vertices in $B$, which leads to $\left|B \cap \mathcal{C}^{*}\left(v, v_{2}\right)\right|=\left|\left\{v_{4}\right\}\right|=1$, contradicting the fact that $B$ is a 3 -adjacency basis of $G$. Analogously if $v \sim v_{3}$, then we arrive at the same contradiction. Thus, $v \sim v_{1}$ or $v \sim v_{4}$. If $v \sim v_{1}$ and $v \nsim v_{4}$, then $\left|B \cap \mathcal{C}^{*}\left(v, v_{2}\right)\right|=\left|\left\{v_{3}\right\}\right|=1$, contradicting the fact that $B$ is a 3 -adjacency basis of $G$. Now, if $v \sim v_{1}$ and $v \sim v_{4}$, then $G \cong C_{5}$. If $|V(G)| \geq 6$, then there exist $u, v \in V(G)-B$. Since $|B \cap \mathcal{C}(u, v)| \geq 3$, then either $|B \cap N(u)| \geq 2$ or $|B \cap N(v)| \geq 2$. Suppose that $|B \cap N(u)| \geq 2$. As discussed earlier, $B \cap N(u)=\left\{v_{1}, v_{4}\right\}$. Since $|B \cap \mathcal{C}(u, v)| \geq 3$, it follows that either $v \sim v_{2}$ or $v \sim v_{3}$, which, as we saw earlier, contradicts the fact that $B$ is a 3 -adjacency basis of $G$.

By Corollary 11 (i) and Remark 19 we deduce that $\operatorname{adim}_{4}(G) \geq 6$ for any graph $G$ of order at least five such that $G \not \equiv C_{5}$. Since $\operatorname{adim}_{4}\left(C_{5}\right)=5$, we obtain the following result.
Remark 20. A graph $G$ of order $n \geq 5$ satisfies that $\operatorname{adim}_{4}(G)=5$ if and only if $G \cong C_{5}$.
From Corollary 11 (i) and Remark 20, it follows that any 4-adjacency dimensional graph $G$ of order six satisfies $\operatorname{adim}_{4}(G)=6$, as the case of $C_{6}$.

### 3.1. Large families of graphs having a common $k$-adjacency generator

Given a $k$-adjacency basis $B$ of a graph $G=(V, E)$, we say that a graph $G^{\prime}=\left(V, E^{\prime}\right)$ belongs to the family $\mathcal{G}_{B}(G)$ if and only if $N_{G^{\prime}}(x)=N_{G}(x)$, for every $x \in B$. Figure 4 shows some graphs belonging to the family $\mathcal{G}_{B}(G)$ having a common 2-adjacency basis $B=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$.

Notice that if $B \neq V(G)$, then the edge set of any graph $G^{\prime} \in \mathcal{G}_{B}(G)$ can be partitioned into two sets $E_{1}, E_{2}$, where $E_{1}$ consists of all edges of $G$ having at least one vertex in $B$ and $E_{2}$ is a subset of edges of a complete graph whose vertex set is $V(G)-B$. Hence, $\mathcal{G}_{B}(G)$ contains $2 \frac{|V(G)-B|(|V(G)-B|-1)}{2}$ different graphs.

With the above notation in mind we can state our next result.
Theorem 21. Any $k$-adjacency basis $B$ of a graph $G$ is a $k$-adjacency generator for any graph $G^{\prime} \in \mathcal{G}_{B}(G)$, and as a consequence,

$$
\operatorname{adim}_{k}\left(G^{\prime}\right) \leq \operatorname{adim}_{k}(G)
$$

Proof. Assume that $B$ is a $k$-adjacency basis of a graph $G=(V, E)$. Let $G^{\prime}=$ ( $V, E^{\prime}$ ) such that $N_{G^{\prime}}(x)=N_{G}(x)$, for every $x \in B$. We will show that $B$ is a $k$-adjacency generator for any graph $G^{\prime}$. To this end, we take two different vertices $u, v \in V$. Since $B$ is a $k$-adjacency basis of $G$, there exists $B_{u v} \subseteq B$ such that $\left|B_{u v}\right| \geq k$ and for every $x \in B_{u v}$ we have that $d_{G, 2}(x, u) \neq d_{G, 2}(x, v)$.

Now, since for every $x \in B_{u v}$ we have that $N_{G^{\prime}}(x)=N_{G}(x)$, we obtain that $d_{G^{\prime}, 2}(u, x)=d_{G, 2}(u, x) \neq d_{G, 2}(v, x)=d_{G^{\prime}, 2}(v, x)$. Hence, $B$ is a $k$-adjacency generator for $G^{\prime}$ and, in consequence, $|B|=\operatorname{adim}_{k}(G) \geq \operatorname{adim}_{k}\left(G^{\prime}\right)$.

By Proposition 16 we have that if $G$ is a graph of order $n \geq 2$, then $\operatorname{adim}_{k}(G)=k$ if and only if $k \in\{1,2\}$ and $G \in\left\{P_{2}, P_{3}, \bar{P}_{2}, \bar{P}_{3}\right\}$. Thus, for any graph $H$ of order greater than three, $\operatorname{adim}_{k}(H) \geq k+1$. Therefore, the next corollary is a direct consequence of Theorem 21 .


Figure 4. $B=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a 2-adjacency basis of $G$ and $\left\{G, G_{1}, G_{2}, G_{4}, G_{5}\right\}$ is a subfamily of $\mathcal{G}_{B}(G)$.

Corollary 22. Let $B$ be a $k$-adjacency basis of a graph $G$ of order $n \geq 4$ and let $G^{\prime} \in \mathcal{G}_{B}(G)$. If $\operatorname{adim}_{k}(G)=k+1$, then $\operatorname{adim}_{k}\left(G^{\prime}\right)=k+1$.

Our next result immediately follows from Theorems 18 and 21.
Theorem 23. Let $B$ be a $k$-adjacency basis of a graph $G$ of order $n \geq 7$ and let $G^{\prime} \in \mathcal{G}_{B}(G)$. If $\operatorname{adim}_{k}(G)=k+2$, then $\operatorname{adim}_{k}\left(G^{\prime}\right)=k+2$.

An example of application of the result above is shown in Figure 4, where
$\operatorname{adim}_{2}\left(G^{\prime}\right)=4$ for all $G^{\prime} \in \mathcal{G}_{B}(G)$. In this case $\mathcal{G}_{B}(G)$ contains $2^{10}=1024$ different graphs.

## 4. THE $k$-ADJACENCY DIMENSION OF JOIN GRAPHS

The join $G+H$ of two vertex-disjoint graphs $G=\left(V_{1}, E_{1}\right)$ and $H=\left(V_{2}, E_{2}\right)$ is the graph with vertex set $V(G+H)=V_{1} \cup V_{2}$ and edge set

$$
E(G+H)=E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}, v \in V_{2}\right\}
$$

Note that $D(G+H) \leq 2$ and so for any pair of graphs $G$ and $H$,

$$
\operatorname{dim}_{k}(G+H)=\operatorname{adim}_{k}(G+H)
$$

### 4.1. The particular case of $K_{1}+\boldsymbol{H}$

The following remark is a particular case of Corollary 14.
Remark 24. Let $H$ be a graph of order $n$. Then $\operatorname{adim}_{2}\left(K_{1}+H\right)=n+1$ if and only if $\Delta(H)=n-1$ and every vertex $v \in V(H)$ of degree $\delta(v)<n-1$ belongs to a non-singleton twin equivalence class.

For any graph $H$, if $x, y \in V(H)$, then $\mathcal{C}_{K_{1}+H}(x, y)=\mathcal{C}_{H}(x, y)$. Also, if $x \notin V(H)$ then $\mathcal{C}_{K_{1}+H}(x, y)=\{x\} \cup\left(V(H)-N_{H}(y)\right)$. Hence,

$$
\mathcal{C}\left(K_{1}+H\right)=\min \{\mathcal{C}(H), n-\Delta(H)+1\} .
$$

Proposition 25. Let $H$ be a graph of order $n \geq 2$ and $k \in\left\{1, \ldots, \mathcal{C}\left(K_{1}+H\right)\right\}$. Then

$$
\operatorname{adim}_{k}\left(K_{1}+H\right) \geq \operatorname{adim}_{k}(H)
$$

Proof. Let $A$ be a $k$-adjacency basis of $K_{1}+H, A_{H}=A \cap V(H)$ and let $x, y \in$ $V(H)$ be two different vertices. Since $\mathcal{C}_{K_{1}+H}(x, y)=\mathcal{C}_{H}(x, y)$, it follows that $\left|A_{H} \cap \mathcal{C}_{H}(x, y)\right|=\left|A \cap \mathcal{C}_{K_{1}+H}(x, y)\right| \geq k$, and as a consequence, $A_{H}$ is a $k$-adjacency generator for $H$. Therefore, $\operatorname{adim}_{k}\left(K_{1}+H\right)=|A| \geq\left|A_{H}\right| \geq \operatorname{adim}_{k}(H)$.

Theorem 26. For any nontrivial graph $H$, the following assertions are equivalent:
(i) There exists a $k$-adjacency basis $A$ of $H$ such that $\left|A-N_{H}(y)\right| \geq k$, for all $y \in V(H)$.
(ii) $\operatorname{adim}_{k}\left(K_{1}+H\right)=\operatorname{adim}_{k}(H)$.

Proof. Let $A$ be a $k$-adjacency basis of $H$ such that $\left|A-N_{H}(y)\right| \geq k$, for all $y \in V(H)$. By Proposition 25 we have that $\operatorname{adim}_{k}\left(K_{1}+H\right) \geq \operatorname{adim}_{k}(H)$. It remains to prove that $\operatorname{adim}_{k}\left(K_{1}+H\right) \leq \operatorname{adim}_{k}(H)$. We will prove that $A$ is a $k$-adjacency generator for $K_{1}+H$. We differentiate two cases for two vertices $x, y \in V\left(K_{1}+H\right)$. If $x, y \in V(H)$, then the fact that $A$ is a $k$-adjacency basis of $H$ leads to $k \leq\left|A \cap \mathcal{C}_{H}(x, y)\right|=\left|A \cap \mathcal{C}_{K_{1}+H}(x, y)\right|$. On the other hand, if $x$ is the vertex
of $K_{1}$ and $y \in V(H)$, then the fact that $\mathcal{C}_{K_{1}+H}(x, y)=\{x\} \cup\left(V(H)-N_{H}(y)\right)$ and $\left|A-N_{H}(y)\right| \geq k$ leads to $\left|A \cap \mathcal{C}_{K_{1}+H}(x, y)\right| \geq k$. Therefore, $A$ is a $k$-adjacency generator for $K_{1}+H$, and as a consequence, $\operatorname{adim}_{k}(H)=|A| \geq \operatorname{adim}_{k}\left(K_{1}+H\right)$.

On the other hand, let $B$ be a $k$-adjacency basis of $K_{1}+H$ such that $|B|=$ $\operatorname{adim}_{k}(H)$ and let $B_{H}=B \cap V(H)$. Since for any $h_{1}, h_{2} \in V(H)$ the vertex of $K_{1}$ does not belong to $\mathcal{C}_{K_{1}+H}\left(h_{1}, h_{2}\right)$, we conclude that $B_{H}$ is a $k$-adjacency generator for $H$. Thus, $\left|B_{H}\right|=\operatorname{adim}_{k}(H)$ and, as a consequence, $B_{H}$ is a $k$ adjacency basis of $H$. If there exists $h \in V(H)$ such that $\left|B_{H}-N_{H}(h)\right|<k$, then $\left|B \cap \mathcal{C}_{K_{1}+H}(v, h)\right|=\left|B_{H}-N_{H}(h)\right|<k$, which is a contradiction. Therefore, the result follows.

Our next result on graphs of diameter grater than or equal to six, is a direct consequence of Theorem 26.

Corollary 27. For any graph $H$ of diameter $D(H) \geq 6$ and $k \in\left\{1, \ldots, \mathcal{C}\left(K_{1}+\right.\right.$ H) \},

$$
\operatorname{adim}_{k}\left(K_{1}+H\right)=\operatorname{adim}_{k}(H)
$$

Proof. Let $S$ be a $k$-adjacency basis of $H$. We will show that $\left|S-N_{H}(x)\right| \geq k$, for all $x \in V(H)$. Suppose, for the purpose of contradiction, that there exists $x \in V(H)$ such that $\left|S \cap\left(V(H)-N_{H}(x)\right)\right|<k$. Let $F(x)=S \cap N_{H}[x]$. Notice that $|S| \geq k$ and hence $F(x) \neq \emptyset$.

From the assumptions above, if $V(H)=F(x) \cup\{x\}$, then $D(H) \leq 2$, which is a contradiction. If for every $y \in V(H)-(F(x) \cup\{x\})$ there exists $z \in F(x)$ such that $d_{H}(y, z)=1$, then $d_{H}\left(v, v^{\prime}\right) \leq 4$ for all $v, v^{\prime} \in V(H)-(F(x) \cup\{x\})$. Hence $D(H) \leq 4$, which is a contradiction. So, we assume that there exists a vertex $y^{\prime} \in V(H)-(F(x) \cup\{x\})$ such that $d_{H}\left(y^{\prime}, z\right)>1$, for every $z \in F(x)$, i.e, $N_{H}\left(y^{\prime}\right) \cap F(x)=\emptyset$. If $V(H)=F(x) \cup\left\{x, y^{\prime}\right\}$, then by the connectivity of $H$ we have $y^{\prime} \sim x$ and, as consequence, $D(H)=2$, which is also a contradiction. Hence, $V(H)-\left(F(x) \cup\left\{x, y^{\prime}\right\}\right) \neq \emptyset$. Now, for any $w \in V(H)-\left(F(x) \cup\left\{x, y^{\prime}\right\}\right)$ we have that $\left|\mathcal{C}_{H}\left(y^{\prime}, w\right) \cap S\right| \geq k$ and, since $\left|S \cap\left(V(H)-N_{H}(x)\right)\right|<k$ and $N_{H}\left(y^{\prime}\right) \cap F(x)=\emptyset$, we deduce that $N_{H}(w) \cap F(x) \neq \emptyset$. From this fact and the connectivity of $H$, we obtain that $d_{H}\left(y^{\prime}, w\right) \leq 5$. Hence $D(H) \leq 5$, which is also a contradiction. Therefore, if $D(H) \geq 6$, then for every $x \in V(H)$ we have that $\left|S \cap\left(V(H)-N_{H}(x)\right)\right| \geq k$. Therefore, the result follows by Theorem 26.

Corollary 28. Let $H$ be a graph of girth $\mathrm{g}(H) \geq 5$ and minimum degree $\delta(H) \geq 3$. Then for any $k \in\left\{1, \ldots, \mathcal{C}\left(K_{1}+H\right)\right\}$,

$$
\operatorname{adim}_{k}\left(K_{1}+H\right)=\operatorname{adim}_{k}(H)
$$

Proof. Let $A$ be a $k$-adjacency basis of $H$ and let $x \in V(H)$ and $y \in N_{H}(x)$. Since $\mathrm{g}(H) \geq 5$, for any $u, v \in N_{H}(y)-\{x\}$ we have that $\mathcal{C}_{H}(u, v) \cap N_{H}[x]=\emptyset$. Also, since $\left|\mathcal{C}_{H}(u, v) \cap A\right| \geq k$, we obtain that $\left|A-N_{H}(x)\right| \geq k$. Therefore, by Theorem 26 we conclude the proof.

A fan graph is defined as the join graph $K_{1}+P_{n}$, where $P_{n}$ is a path of order $n$, and a wheel graph is defined as the join graph $K_{1}+C_{n}$, where $C_{n}$ is a cycle graph of order $n$. The following closed formulae for the $k$-metric dimension of fan and wheel graphs were obtained in $[\mathbf{4}, \mathbf{1 0}]$. Since these graphs have diameter two, we express the result in terms of the $k$-adjacency dimension.

Proposition 29. [10]
(i) $\operatorname{adim}_{1}\left(K_{1}+P_{n}\right)= \begin{cases}1, & \text { if } n=1, \\ 2, & \text { if } n=2,3,4,5, \\ 3, & \text { if } n=6, \\ \left\lfloor\frac{2 n+2}{5}\right\rfloor, & \text { otherwise. }\end{cases}$
(ii) $\operatorname{adim}_{1}\left(K_{1}+C_{n}\right)= \begin{cases}3, & \text { if } n=3,6, \\ \left\lfloor\frac{2 n+2}{5}\right\rfloor, & \text { otherwise. }\end{cases}$

Proposition 30. [11] For any integer $n \geq 4$,

$$
\operatorname{adim}_{1}\left(P_{n}\right)=\operatorname{adim}_{1}\left(C_{n}\right)=\left\lfloor\frac{2 n+2}{5}\right\rfloor .
$$

Notice that by Propositions 29 and 30 , for any $n \geq 4, n \neq 6$, we have that

$$
\operatorname{adim}_{1}\left(P_{n}\right)=\operatorname{adim}_{1}\left(K_{1}+P_{n}\right)=\operatorname{adim}_{1}\left(C_{n}\right)=\operatorname{adim}_{1}\left(K_{1}+C_{n}\right) .
$$

In order to show the relationship between the $k$-adjacency dimension of fan (wheel) graphs and path (cycle) graphs, we state the following known results.

Proposition 31. [4]
(i) $\operatorname{adim}_{2}\left(K_{1}+P_{n}\right)= \begin{cases}3, & \text { if } n=2, \\ 4, & \text { if } n=3,4,5, \\ \left\lceil\frac{n+1}{2}\right\rceil, & \text { if } n \geq 6 .\end{cases}$
(ii) $\operatorname{adim}_{2}\left(K_{1}+C_{n}\right)= \begin{cases}4, & \text { if } n=3,4,5,6, \\ \left\lceil\frac{n}{2}\right\rceil, & \text { if } n \geq 7 .\end{cases}$
(iii) $\operatorname{adim}_{3}\left(K_{1}+P_{n}\right)= \begin{cases}5, & \text { if } n=4,5, \\ n-\left\lfloor\frac{n-4}{5}\right\rfloor, & \text { if } n \geq 6 .\end{cases}$
(iv) $\operatorname{adim}_{3}\left(K_{1}+C_{n}\right)= \begin{cases}5, & \text { if } n=5,6, \\ n-\left\lfloor\frac{n}{5}\right\rfloor, & \text { if } n \geq 7 .\end{cases}$
(v) $\operatorname{adim}_{4}\left(K_{1}+C_{n}\right)= \begin{cases}6, & \text { if } n=5,6, \\ n, & \text { if } n \geq 7 .\end{cases}$

By Theorem 1 we have that any path graph of order at least four is 3adjacency dimensional and any cycle graph of order at least five is 4-adjacency dimensional. From Propositions 25 and 31 we will derive closed formulae for the $k$-adjacency dimension of paths (for $k \in\{2,3\}$ ) and cycles (for $k \in\{2,3,4\}$ ).

Proposition 32. For any integer $n \geq 4$,

$$
\operatorname{adim}_{2}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil \text { and } \operatorname{adim}_{3}\left(P_{n}\right)=n-\left\lfloor\frac{n-4}{5}\right\rfloor .
$$

Proof. Let $k \in\{2,3\}$ and $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v_{i}$ is adjacent to $v_{i+1}$ for every $i \in\{1, \ldots, n-1\}$.

We first consider the case $n \geq 7$. Since $\mathcal{C}_{P_{n}}\left(v_{1}, v_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\mathcal{C}_{P_{n}}\left(v_{n-1}, v_{n}\right)=\left\{v_{n-2}, v_{n-1}, v_{n}\right\}$, we deduce that for any $k$-adjacency basis $A$ of $P_{n}$ and any $y \in V(T),\left|A-N_{P_{n}}(y)\right| \geq k$. Hence, Theorem 26 leads to $\operatorname{adim}_{k}\left(K_{1}+P_{n}\right)=\operatorname{adim}_{k}\left(P_{n}\right)$. Therefore, by Proposition 31 we deduce the result for $n \geq 7$.

Now, for $n=6$, since $\mathcal{C}_{P_{6}}\left(v_{1}, v_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\mathcal{C}_{P_{6}}\left(v_{5}, v_{6}\right)=\left\{v_{4}, v_{5}, v_{6}\right\}$, we deduce that $\operatorname{adim}_{2}\left(P_{6}\right) \geq 4$ and $\operatorname{adim}_{3}\left(P_{6}\right)=6$. In addition, $\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$ is a 2-adjacency generator for $P_{6}$ and so $\operatorname{adim}_{2}\left(P_{6}\right)=4$.

From now on, let $n \in\{4,5\}$. By Proposition 25 we have $\operatorname{dim}_{k}\left(K_{1}+P_{n}\right) \geq$ $\operatorname{adim}_{k}\left(P_{n}\right)$. It remains to prove that $\operatorname{adim}_{k}\left(K_{1}+P_{n}\right) \leq \operatorname{adim}_{k}\left(P_{n}\right)$.

If $n=4$ or $n=5$, then by Proposition 16, $\operatorname{adim}_{2}\left(P_{n}\right) \geq 3$. Note that $\left\{v_{1}, v_{2}, v_{4}\right\}$ and $\left\{v_{1}, v_{3}, v_{5}\right\}$ are 2-adjacency generators for $P_{4}$ and $P_{5}$, respectively. Thus, $\operatorname{adim}_{2}\left(P_{4}\right)=\operatorname{adim}_{2}\left(P_{5}\right)=3$. Let $A$ be a 3 -adjacency basis of $P_{n}$, where $n \in\{4,5\}$. Since $\mathcal{C}_{P_{n}}\left(v_{1}, v_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\mathcal{C}_{P_{n}}\left(v_{n-1}, v_{n}\right)=\left\{v_{n-2}, v_{n-1}, v_{n}\right\}$, we have that $\left(A \cap \mathcal{C}_{P_{n}}\left(v_{1}, v_{2}\right)\right) \cup\left(A \cap \mathcal{C}_{P_{n}}\left(v_{n-1}, v_{n}\right)\right)=V\left(P_{n}\right)$, and as consequence, $A=V\left(P_{n}\right)$. Therefore, $\operatorname{adim}_{3}\left(P_{4}\right)=4$ and $\operatorname{adim}_{3}\left(P_{5}\right)=5$ and, as a consequence, the result follows.

Proposition 33. For any integer $n \geq 5$,

$$
\operatorname{adim}_{2}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil, \operatorname{adim}_{3}\left(C_{n}\right)=n-\left\lfloor\frac{n}{5}\right\rfloor \text { and } \operatorname{adim}_{4}\left(C_{n}\right)=n
$$

Proof. Let $k \in\{2,3,4\}$ and $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v_{i}$ is adjacent to $v_{i+1}$ and the subscripts are taken modulo $n$.

First, consider the case $n \geq 7$. Since $\mathcal{C}_{C_{n}}\left(v_{i+3}, v_{i+4}\right)=\left\{v_{i+2}, v_{i+3}, v_{i+4}, v_{i+5}\right\}$, we deduce that for any $k$-adjacency basis $A$ of $C_{n},\left|A-N_{C_{n}}\left(v_{i}\right)\right| \geq k$. Hence, Theorem 26 leads to $\operatorname{adim}_{k}\left(K_{1}+C_{n}\right)=\operatorname{adim}_{k}\left(C_{n}\right)$. Therefore, by Proposition 31 we deduce the result for $n \geq 7$.

From now on, let $n \in\{5,6\}$. By Proposition 25 we have $\operatorname{dim}_{k}\left(K_{1}+G\right) \geq$ $\operatorname{adim}_{k}(G)$. It remains to prove that $\operatorname{adim}_{k}\left(K_{1}+H\right) \leq \operatorname{adim}_{k}(H)$.

By Theorem 10, we deduce that $2=\operatorname{adim}_{1}\left(C_{5}\right)<\operatorname{adim}_{2}\left(C_{5}\right)<\operatorname{adim}_{3}\left(C_{5}\right)<$ $\operatorname{adim}_{4}\left(C_{5}\right) \leq 5$. Hence, $\operatorname{adim}_{2}\left(C_{5}\right)=3, \operatorname{adim}_{3}\left(C_{5}\right)=4$ and $\operatorname{adim}_{4}\left(C_{5}\right)=5$. Therefore, for $n=5$ the result follows.

By Theorem 10, $\operatorname{adim}_{2}\left(C_{6}\right)>\operatorname{adim}_{1}\left(C_{6}\right)=2$ and, since $\left\{v_{1}, v_{3}, v_{5}\right\}$ is a 2-adjacency generator for $C_{6}$, we obtain that $\operatorname{adim}_{2}\left(C_{6}\right)=3$. Now, let $A_{4}$ be a 4adjacency basis of $C_{6}$. If $\left|A_{4}\right| \leq 5$, then there exists at least one vertex which does not belong to $A_{4}$, say $v_{1}$. Then, $\left|\mathcal{C}_{C_{n}}\left(v_{1}, v_{2}\right) \cap A_{4}\right| \leq 3$, which is a contradiction. Thus, $\operatorname{adim}_{4}\left(C_{6}\right)=\left|A_{4}\right|=6$. Let $A_{3}^{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, A_{3}^{2}=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$ and $A_{3}^{3}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$. Note that any manner of selecting four different vertices from $C_{6}$ is equivalent to some of these $A_{3}^{1}, A_{3}^{2}, A_{3}^{3}$. Since $\left|\mathcal{C}_{C_{n}}\left(v_{5}, v_{6}\right) \cap A_{3}^{1}\right|=\left|\left\{v_{1}, v_{4}\right\}\right|=$ $2<3,\left|\mathcal{C}_{C_{n}}\left(v_{4}, v_{6}\right) \cap A_{3}^{2}\right|=\left|\left\{v_{1}, v_{3}\right\}\right|=2<3$ and $\left|\mathcal{C}_{C_{n}}\left(v_{1}, v_{2}\right) \cap A_{3}^{3}\right|=\left|\left\{v_{1}, v_{2}\right\}\right|=$ $2<3$, we deduce that $\operatorname{adim}_{3}\left(C_{6}\right) \geq 5>\left|A_{3}^{1}\right|=\left|A_{3}^{2}\right|=\left|A_{3}^{3}\right|=4$. By Theorem 10, $5 \leq \operatorname{adim}_{3}\left(C_{6}\right)<\operatorname{adim}_{4}\left(C_{6}\right) \leq 6$. Thus, $\operatorname{adim}_{3}\left(C_{6}\right)=5$ and, as a consequence, the result follows.

By Propositions 29, 30, 31, 32 and 33 we observe that for any $k \in\{1,2,3\}$ and $n \geq 7, \operatorname{adim}_{k}\left(K_{1}+P_{n}\right)=\operatorname{adim}_{k}\left(P_{n}\right)$ and for any $k \in\{1,2,3,4\}, \operatorname{adim}_{k}\left(K_{1}+\right.$ $\left.C_{n}\right)=\operatorname{adim}_{k}\left(C_{n}\right)$. The next result is devoted to characterize the trees where $\operatorname{adim}_{k}\left(K_{1}+T\right)=\operatorname{adim}_{k}(T)$.

Proposition 34. Let $T$ be a tree. The following statements hold.
(a) $\operatorname{adim}_{1}\left(K_{1}+T\right)=\operatorname{adim}_{1}(T)$ if and only if $T \notin \mathcal{F}_{1}=\left\{P_{2}, P_{3}, P_{6}, K_{1, n}, T^{\prime}\right\}$, where $n \geq 3$ and $T^{\prime}$ is obtained from $P_{5} \cup\left\{K_{1}\right\}$ by joining by an edge the vertex of $K_{1}$ to the central vertex of $P_{5}$.
(b) $\operatorname{adim}_{2}\left(K_{1}+T\right)=\operatorname{adim}_{2}(T)$ if and only if $T \notin \mathcal{F}_{2}=\left\{P_{r}, K_{1, n}, T^{\prime}\right\}$, where $r \in\{2, \ldots, 5\}, n \geq 3$ and $T^{\prime}$ is a graph obtained from $K_{1, n} \cup K_{2}$ by joining by an edge one leaf of $K_{1, n}$ to one leaf of $K_{2}$.
(c) $\operatorname{adim}_{3}\left(K_{1}+T\right)=\operatorname{adim}_{3}(T)$ if and only if $T \notin \mathcal{F}_{3}=\left\{P_{4}, P_{5}\right\}$.

Proof. For any $k \in\{1,2,3\}$ and $T \in \mathcal{F}_{k}$, a simple inspection shows that $\operatorname{adim}_{k}\left(K_{1}+\right.$ $T) \neq \operatorname{adim}_{k}(T)$. From now on, assume that $T \notin \mathcal{F}_{k}$, for $k \in\{1,2,3\}$, and let $\operatorname{Ext}(T)$ be the number of exterior major vertices of $T$. We differentiate the following three cases.
Case 1. $T=P_{n}$. The result is a direct consequence of combining Propositions 29 and 30 for $k=1$ and Propositions 31 and 32 for $k>1$.

In the following cases we shall show that there exists a $k$-adjacency basis $A$ of $T$ such that $\left|A-N_{T}(v)\right| \geq k$, for all $v \in V(T)$. Therefore, the result follows by Theorem 26.
Case $2 . \operatorname{Ext}(T)=1$. Let $u$ be the only exterior major vertex of $T$.
We first take $k=1$. Since any two vertices adjacent to $u$ must be distinguished by at least one vertex, we have that all paths from $u$ to its terminal vertices, except at most one, contain at least one vertex in $A$. Thus, $\left|A-N_{T}(y)\right| \geq 1$, for all $y \in V(T)-\{u\}$. Now we shall show that $\left|A-N_{T}(u)\right| \geq 1$. If $u \in A$ or $A \nsubseteq N_{T}(u)$, then we are done, so we suppose that for any adjacency basis $A$ of $T, u \notin A$ and $A \subseteq N_{T}(u)$. If there exists a leaf $v$ such that $d_{T}(u, v) \geq 4$, then the support $v^{\prime}$ of $v$ satisfies $\mathcal{C}_{T}\left(v, v^{\prime}\right) \cap A=\emptyset$, which is a contradiction. Hence, the
eccentricity of $u$ satisfies $2 \leq \epsilon(u) \leq 3$. If $w$ is a leaf of $T$ such that $d_{T}(u, w)=\epsilon(u)$, then the vertex $u^{\prime} \in N_{T}(u)$ belonging to the path from $u$ to $w$ must belong to $A$ and, as a consequence $A^{\prime}=\left(A-\left\{u^{\prime}\right\}\right) \cup\{w\}$ is an adjacency basis of $T$, which is a contradiction.

We now take $k=2$. Let $A$ be a 2 -adjacency basis of $T$. Since any two vertices adjacent to $u$ must be distinguished by at least two vertices in $A$, either all paths joining $u$ to its terminal vertices contain at least one vertex of $A$ or all but one contain at least two vertices of $A$. Thus, any vertex $y \in V(T)-\{u\}$ and any 2-adjacency basis $A$ of $T$ satisfy that $\left|A-N_{T}(y)\right| \geq 2$.

If there exist two vertices $v, v^{\prime} \in V(T)$ such that $d_{T}(u, v) \geq 3$ and $d_{T}\left(u, v^{\prime}\right) \geq$ 3 , then $\left|A-N_{T}(u)\right| \geq 2$, as $\left|A \cap \mathcal{C}_{2}\left(v, v^{\prime}\right)\right| \geq 2$. On the other hand, if there exists only one leaf $v$ such that $d_{T}(u, v) \geq 3$ and another leaf $w$ such that $d_{T}(u, w)=2$, we have that in order to distinguish $v$ and it support as well as $w$ and its support, $\left|A \cap N_{T}[v]\right| \geq 1$ and $|A \cap\{u, w\}| \geq 1$ and, as a result, $\left|A-N_{T}(u)\right| \geq 2$. Now, since $T \notin \mathcal{F}_{2}$ it remains to consider the case where $u$ has eccentricity two. Let $v, w$ be two leaves such that $d_{T}(u, v)=d_{T}(u, w)=2$. If $\left|N_{T}(u)\right|=3$, then the set $A$ composed by $u$ and its three terminal vertices is a 2 -adjacency basis of $T$ such that $\left|A-N_{T}(u)\right| \geq 2$. Assume that $\left|N_{T}(u)\right| \geq 4$. In order to distinguish $v$ and its support vertex $v^{\prime}$, as well as $w$ and its support vertex $w^{\prime}$, any 2-adjacency basis $A$ of $T$ must contain at least two vertices of $\left\{u, v, v^{\prime}\right\}$ and at least two vertices of $\left\{u, w, w^{\prime}\right\}$. If $u \notin A$, then $v, w \in A$, and as a consequence, $\left|A-N_{T}(u)\right| \geq 2$. Assume that $u \in A$. In this case, if $A-N_{T}[u] \neq \emptyset$, then $\left|A-N_{T}(u)\right| \geq 2$. Otherwise, $A \subseteq N_{T}[u]$ and $\left\{u, v^{\prime}, w^{\prime}\right\} \subset A$ and, as a consequence, $A^{\prime}=\left(A-\left\{v^{\prime}\right\}\right) \cup\{v\}$ is a 2-adjacency basis of $T$ and $\left|A^{\prime}-N_{T}(u)\right| \geq 2$.
Finally, suppose that there exists exactly one leaf $v$ such that $d_{T}(u, v)=2$. Let $v^{\prime}$ be the support vertex of $v$. In this case, $V(T)-\left\{v^{\prime}\right\}$ is a 2 -adjacency basis $A$ of $T$ such that $\left|A-N_{T}(u)\right| \geq 2$.
We now take $k=3$. In this case, there exist two leaves $v, w$ such that $d_{T}(u, v) \geq 2$ and $d_{T}(u, w) \geq 2$. Since $v$ and its support vertex $v^{\prime}$ must be distinguished by at least three vertices, they must belong to any 3 -adjacency basis. Analogously, $w$ and its support vertex $w^{\prime}$ must belong to any 3 -adjacency basis. In general, any leaf that is not adjacent to $u$ and its support vertex belong to any 3 -adjacency basis of $T$. Moreover, there exists at most one terminal vertex $x$ adjacent to $u$. If $x$ exists, it must be distinguished from any vertex belonging to $N_{T}(u)-\{x\}$ by at least three vertices. Thus, they must belong to any 3 -adjacency basis. Any vertex $y$ different from $u$ and any 3 -adjacency basis $A$ of $T$ satisfy $v, v^{\prime} \in A-N_{T}(y)$ or $w, w^{\prime} \in A-N_{T}(y)$. If $v, v^{\prime} \in A-N_{T}(y)$ and $w, w^{\prime} \in A-N_{T}(y)$, then $\left|A-N_{T}(y)\right| \geq 3$. Otherwise, assuming without loss of generality that $v, v^{\prime} \in A-N_{T}(y)$, there exists a terminal vertex $z$ different from $w$ such that $y \nsim z$. Thus, again $\left|A-N_{T}(y)\right| \geq 3$. If $d_{T}(u, v)=2$, then $v, v^{\prime}$ are distinguished only by $u, v, v^{\prime}$, so $u$ must belong to any 3 -adjacency basis of $T$. Thus, for any 3 -adjacency basis $A$ of $T$ we have that $u, v, w \in A-N_{T}(u)$, and as a consequence, $\left|A-N_{T}(u)\right| \geq 3$. Finally, if $d_{T}(u, v)>2$ and $d_{T}(u, w)>2$, then $v, v^{\prime}, w, w^{\prime} \in A-N_{T}(u)$. Hence $\left|A-N_{T}(u)\right| \geq 3$.

Case 3. $\operatorname{Ext}(T) \geq 2$. In this case, there are at least two exterior major vertices $u, v$
of $T$ having terminal degree at least two. Let $u_{1}, u_{2}$ be two terminal vertices of $u$ and $v_{1}, v_{2}$ be two terminal vertices of $v$. Let $u_{1}^{\prime}$ and $u_{2}^{\prime}$ be the vertices adjacent to $u$ in the paths $u-u_{1}$ and $u-u_{2}$, respectively. Likewise, let $v_{1}^{\prime}$ and $v_{2}^{\prime}$ be the vertices adjacent to $v$ in the paths $v-v_{1}$ and $v-v_{2}$, respectively. Notice that it is possible that $u_{1}=$ $u_{1}^{\prime}, u_{2}=u_{2}^{\prime}, v_{1}=v_{1}^{\prime}$ or $v_{2}=v_{2}^{\prime}$. Note also that $\mathcal{C}\left(u_{1}^{\prime}, u_{2}^{\prime}\right)=\left(N_{T}\left[u_{1}^{\prime}\right] \cup N_{T}\left[u_{2}^{\prime}\right]\right)-\{u\}$ and $\mathcal{C}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\left(N_{T}\left[v_{1}^{\prime}\right] \cup N_{T}\left[v_{2}^{\prime}\right]\right)-\{v\}$. Since for any $k$-adjacency basis $A$ of $T$ it holds that $\left|\mathcal{C}\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \cap A\right| \geq k$ and $\left|\mathcal{C}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \cap A\right| \geq k$, and for any vertex $w \in V(T)$ we have that $\left(A-N_{T}(w)\right) \cap \mathcal{C}\left(u_{1}^{\prime}, u_{2}^{\prime}\right)=\emptyset$ or $\left(A-N_{T}(w)\right) \cap \mathcal{C}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\emptyset$, we conclude that $\left|A-N_{T}(w)\right| \geq k$.

From now on, we shall study some cases where $\operatorname{adim}_{k}\left(K_{1}+H\right)>\operatorname{adim}_{k}(H)$. First of all, notice that by Corollary 27, if $H$ is a connected graph and $\operatorname{adim}_{k}\left(K_{1}+\right.$ $H) \geq \operatorname{adim}_{k}(H)+1$, then $D(H) \leq 5$ and, by Corollary 28, if $H$ has minimum degree $\delta(H) \geq 3$, then it has girth $\mathrm{g}(H) \leq 4$. We would point out the following consequence of Theorem 26.

Corollary 35. If $\operatorname{adim}_{k}\left(K_{1}+H\right) \geq \operatorname{adim}_{k}(H)+1$, then either $H$ is connected or $H$ has exactly two connected components, one of which is an isolated vertex.

Proof. Let $A$ be a $k$-adjacency basis of $H$. We differentiate three cases for $H$.
Case 1. There are two connected components $H_{1}$ and $H_{2}$ of $H$ such that $\left|V\left(H_{1}\right)\right| \geq 2$ and $\left|V\left(H_{2}\right)\right| \geq 2$. As for any $i \in\{1,2\}$ and $u, v \in V\left(H_{i}\right), \mid C_{H}(u, v) \cap$ $A\left|=\left|C_{H_{i}}(u, v) \cap A\right| \geq k\right.$ we deduce that $| A \cap V\left(H_{1}\right) \mid \geq k$ and $\left|A \cap V\left(H_{2}\right)\right| \geq k$. Hence, if $x \in V\left(H_{1}\right)$, then $\left|A-N_{H}(x)\right| \geq\left|A \cap V\left(H_{2}\right)\right| \geq k$ and if $x \in V(H)-V\left(H_{1}\right)$, then $\left|A-N_{H}(x)\right| \geq\left|A \cap V\left(H_{1}\right)\right| \geq k$. Thus, by Theorem 26, $\operatorname{adim}_{k}\left(K_{1}+H\right)=$ $\operatorname{adim}_{k}(H)$.

Case 2. There is a connected component $H_{1}$ of $H$ such that $\left|V\left(H_{1}\right)\right| \geq 2$ and there are two isolated vertices $u, v \in V(H)$. From $C_{H}(u, v)=\{u, v\}$ we conclude that $k \leq 2$ and $|\{u, v\} \cap A| \geq k$. Moreover, for any $x, y \in V\left(H_{1}\right), x \neq y$, we have that $\left|C_{H}(x, y) \cap A\right|=\left|C_{H_{1}}(u, v) \cap A\right| \geq k$ and so $\left|A \cap V\left(H_{1}\right)\right| \geq k$. Hence, if $x \in V\left(H_{1}\right)$, then $\left|A-N_{H}(x)\right| \geq|\{u, v\} \cap A| \geq k$ and if $x \in V(H)-V\left(H_{1}\right)$, then $\left|A-N_{H}(x)\right| \geq\left|A \cap V\left(H_{1}\right)\right| \geq k$. Thus, by Theorem 26, $\operatorname{adim}_{k}\left(K_{1}+H\right)=\operatorname{adim}_{k}(H)$.

Case 3. $H \cong N_{n}$, for $n \geq 2$. In this case $k \in\{1,2\}, \operatorname{adim}_{1}\left(K_{1}+N_{n}\right)=$ $\operatorname{adim}_{1}\left(N_{n}\right)=n-1$ and $\operatorname{adim}_{2}\left(K_{1}+N_{n}\right)=\operatorname{adim}_{2}\left(N_{n}\right)=n$.

Therefore, according to the three cases above, the result follows.
By Proposition 25 and Theorem 26, $\operatorname{adim}_{k}\left(K_{1}+H\right) \geq \operatorname{adim}_{k}(H)+1$ if and only if for any $k$-adjacency basis $A$ of $H$, there exists $h \in V(H)$ such that $\left|A-N_{H}(h)\right|<k$. Consider, for instance, the graph $G$ showed in Figure 4. The only 2-adjacency basis of $G$ is $B=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $\left|B-N_{G}\left(v_{1}\right)\right|=0$, so $\operatorname{adim}_{2}\left(K_{1}+\right.$ $G) \geq \operatorname{adim}_{2}(G)+1=5$. It is easy to check that $A=\left\{v_{1}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$ is a 2adjacency generator for $K_{1}+G$, and so $\operatorname{adim}_{2}\left(K_{1}+G\right)=\operatorname{adim}_{2}(G)+1=5$. We emphasize that neither $B \cup\left\{v_{1}\right\}$ nor $B \cup\{x\}$ are 2-adjacency bases of $\langle x\rangle+G$.

Proposition 36. Let $H$ be a graph of order $n \geq 2$ and let $k \in\left\{1, \ldots, \mathcal{C}\left(K_{1}+H\right)\right\}$. If for any $k$-adjacency basis $A$ of $H$, there exists $h \in V(H)$ such that $\left|A-N_{H}(h)\right|=$
$k-1$ and $\left|A-N_{H}\left(h^{\prime}\right)\right| \geq k-1$, for all $h^{\prime} \in V(H)$, then

$$
\operatorname{adim}_{k}\left(K_{1}+H\right)=\operatorname{adim}_{k}(H)+1
$$

Proof. If for any $k$-adjacency basis $A$ of $H$, there exists a vertex $h \in V(H)$ such that $\left|A-N_{H}(h)\right|=k-1$, then by Theorem 26, $\operatorname{adim}_{k}\left(K_{1}+H\right) \geq \operatorname{adim}_{k}(H)+1$.

Now, let $A$ be a $k$-adjacency basis of $H$ and let $v$ be the vertex of $K_{1}$. Since $\left|A-N_{H}\left(h^{\prime}\right)\right| \geq k-1$, for all $h^{\prime} \in V(H)$, the set $A \cup\{v\}$, is a $k$-adjacency generator for $K_{1}+H$ and, as a consequence, $\operatorname{adim}_{k}\left(K_{1}+H\right) \leq|A \cup\{v\}|=\operatorname{adim}_{k}(H)+1$.

The graph $H$ shown in Figure 5 has six 3-adjacency basis. For instance, one of them is $B=\{1,2,3,4,5,8,9\}$ and the remaining ones can be found by symmetry. Notice that for any 3-adjacency basis, say $A$, there are two vertices $i, j$ such that $\left|A-N_{H}(i)\right|=2,\left|A-N_{H}(j)\right|=2$ and $\left|A-N_{H}(l)\right| \geq 3$, for all $l \neq i, j$. In particular, for the basis $B$ we have $i=3$ and $j=4$. Therefore, Proposition 36 leads to $\operatorname{adim}_{3}\left(K_{1}+H\right)=\operatorname{adim}_{3}(H)+1=8$.

By Theorem 26 and Proposition 36 we deduce the following result previously


Figure 5. The set
$B=\{1,2,3,4,5,8,9\}$ is a
3 -adjacency basis of this graph. obtained in [11].

Proposition 37. [11] Let $H$ be graph of order $n \geq 2$. If for any adjacency basis $A$ of $H$, there exists $h \in V(H)-A$ such that $A \subseteq N_{H}(h)$, then

$$
\operatorname{adim}_{1}\left(K_{1}+H\right)=\operatorname{adim}_{1}(H)+1
$$

otherwise,

$$
\operatorname{adim}_{1}\left(K_{1}+H\right)=\operatorname{adim}_{1}(H)
$$

Theorem 38. For any nontrivial graph H,

$$
\operatorname{adim}_{2}\left(K_{1}+H\right) \leq \operatorname{adim}_{2}(H)+2
$$

Proof. Let $A$ be a 2-adjacency basis of $H$ and let $u$ be the vertex of $K_{1}$. Notice that there exists at most one vertex $x \in V(H)$ such that $A \subseteq N_{H}(x)$. Now, if $\left|A-N_{H}(v)\right| \geq 1$ for all $v \in V(H)$, then we define $X=A \cup\{u\}$ and, if there exists $x \in V(H)$ such that $A \subseteq N_{H}(x)$, then we define $X=A \cup\{x, u\}$. We claim that $X$ is a 2 -adjacency generator for $K_{1}+H$. To show this, we first note that for any $y \in V(H)$ we have that $\left|\mathcal{C}_{K_{1}+H}(u, y) \cap X\right|=\left|\left(\left(A-N_{H}(y)\right) \cup\{u\}\right) \cap X\right| \geq 2$. Moreover, for any $a, b \in V(H)$ we have that $\mathcal{C}_{K_{1}+H}(a, b)=\mathcal{C}_{H}(a, b)$. Therefore, $X$ is a 2-adjacency generator for $K_{1}+H$ and, as a consequence, $\operatorname{adim}_{2}\left(K_{1}+H\right) \leq$ $\operatorname{adim}_{2}(H)+2$.

We would point out that if for any 2-adjacency basis $A$ of a graph $H$, there exists a vertex $x$ such that $A \subseteq N_{H}(x)$, then not necessarily $\operatorname{adim}_{2}\left(K_{1}+\right.$ $H)=\operatorname{adim}_{2}(H)+2$. To see this, consider the graph $G$ shown Figure 4, where $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is the only 2 -adjacency basis of $G$ and $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\} \subseteq N_{H}\left(v_{1}\right)$. However, $\left\{v_{1}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$ is a 2 -adjacency basis of $K_{1}+G$ and so $\operatorname{adim}_{2}\left(K_{1}+H\right)=$ $\operatorname{adim}(H)+1$. Now, we prove some results showing that the inequality given in Theorem 38 is tight.

Theorem 39. Let $H$ be a nontrivial graph. If there exists a vertex $x$ of degree $\delta(x)=|V(H)|-1$ not belonging to any 2-adjacency basis of $H$, then

$$
\operatorname{adim}_{2}\left(K_{1}+H\right)=\operatorname{adim}_{2}(H)+2
$$

Proof. Let $u$ be the vertex of $K_{1}$ and let $x \in V(H)$ be a vertex of degree $\delta(x)=|V(H)|-1$ not belonging to any 2-adjacency basis of $H$. In such a case, $\mathcal{C}_{K_{1}+H}(x, u)=\{x, u\}$ and, as a result, both $x$ and $u$ must belong to any 2-adjacency basis $X$ of $K_{1}+H$. Since $X-\{u\}$ is a 2-adjacency generator for $H$ and $x \in X-\{u\}$ we conclude that $|X-\{u\}| \geq \operatorname{adim}_{2}(H)+1$ and so $\operatorname{adim}_{2}\left(K_{1}+H\right)=|X| \geq$ $\operatorname{adim}_{2}(H)+2$. By Theorem 38 we conclude the proof.

Examples of graphs satisfying the premises of Theorem 39 are the fan graphs $F_{1, n}=K_{1}+P_{n}$ and the wheel graphs $W_{1, n}=K_{1}+C_{n}$ for $n \geq 7$. For these graphs we have $\operatorname{adim}_{2}\left(K_{1}+F_{1, n}\right)=\operatorname{adim}_{2}\left(F_{1, n}\right)+2$ and $\operatorname{adim}_{2}\left(K_{1}+W_{1, n}\right)=\operatorname{adim}_{2}\left(W_{1, n}\right)+2$.

Theorem 40. Let $H$ be a graph having an isolated vertex $v$ and a vertex $u$ of degree $\delta(x)=|V(H)|-2$. If for any 2-adjacency basis $B$ of $H$, neither u nor $v$ belongs to $B$, then

$$
\operatorname{adim}_{2}\left(K_{1}+H\right)=\operatorname{adim}_{2}(H)+2
$$

Proof. Let $u$ be the vertex of $K_{1}$. Since $\mathcal{C}_{K_{1}+H}(x, u)=\{x, u, v\}$, at least two vertices of $\{x, u, v\}$ must belong to any 2 -adjacency basis $X$ of $K_{1}+H$. Then we have that $x \in X-\{u\}$ or $v \in X-\{u\}$. Since $X-\{u\}$ is a 2-adjacency generator for $H$, we conclude that if $|X \cap\{x, v\}|=1$, then $\operatorname{adim}_{2}\left(K_{1}+H\right)>|X-\{u\}| \geq$ $\operatorname{adim}_{2}(H)+1$, whereas if $|X \cap\{x, v\}|=2$, then $\operatorname{adim}_{2}\left(K_{1}+H\right) \geq|X-\{u\}| \geq$ $\operatorname{adim}_{2}(H)+2$. Hence, $\operatorname{adim}_{2}\left(K_{1}+H\right)=|X| \geq \operatorname{adim}_{2}(H)+2$. By Theorem 38 we conclude the proof.

For instance, we take a family of graphs $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots\right\}$ such that for any $G_{i} \in \mathcal{G}$, every vertex in $V\left(G_{i}\right)$ belongs to a non-singleton true twin equivalence class. Then $X=\bigcup_{G_{i} \in \mathcal{G}} V\left(G_{i}\right)$ is the only 2-adjacency basis of $H=K_{1} \cup\left(K_{1}+\bigcup_{G_{i} \in \mathcal{G}} G_{i}\right)$. Therefore, $\operatorname{adim}_{2}\left(K_{1}+H\right)=\operatorname{adim}_{2}(H)+2$.

Proposition 41. Let $H$ be graph and $k \in\left\{1, \ldots, \mathcal{C}\left(K_{1}+H\right)\right\}$. If there exists a vertex $x \in V(H)$ and a $k$-adjacency basis $A$ of $H$ such that $A \subseteq N_{H}(x)$, then

$$
\operatorname{adim}_{k}\left(K_{1}+H\right) \leq \operatorname{adim}_{k}(H)+k
$$

Proof. Let $u$ be the vertex of $K_{1}$ and assume that there exists a vertex $v_{1} \in V(H)$ and a $k$-adjacency basis $A$ of $H$ such that $A \subseteq N_{H}\left(v_{1}\right)$. Since $k \leq|V(H)|-$ $\Delta(H)+1$, we have that $\left|V(H)-N_{H}\left(v_{1}\right)\right| \geq k-1$. With this fact in mind, we shall show that $X=A \cup\{u\} \cup A^{\prime}$ is a $k$-adjacency generator for $K_{1}+H$, where $A^{\prime}=\emptyset$ if $k=1$ and $A^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\} \subset V(H)-N_{H}\left(v_{1}\right)$ if $k \geq 2$. To this end we only need to check that $\left|\mathcal{C}_{K_{1}+H}(u, v) \cap X\right| \geq k$, for all $v \in V(H)$. On one hand, $\left|\mathcal{C}_{K_{1}+H}\left(u, v_{1}\right) \cap X\right|=\left|\{u\} \cup A^{\prime}\right|=k$. On the other hand, since $A \subseteq N_{H}\left(v_{1}\right)$, for any $v \in$ $V(H)-\left\{v_{1}\right\}$ we have that $\left|A-N_{H}(v)\right| \geq k$ and, as a consequence, $\left|\mathcal{C}_{K_{1}+H}(u, v) \cap X\right| \geq k$. Therefore, $X$ is a $k$-adjacency generator for $K_{1}+H$ and, as a result, $\operatorname{adim}_{k}\left(K_{1}+H\right) \leq|X|=$ $\operatorname{adim}_{k}(H)+k$.
The bound above is tight. It is achieved, for instance, for the graph shown in Figure 6. In this case $\operatorname{adim}_{3}\left(K_{1}+H\right)=\operatorname{adim}_{3}(H)+3=9$. The set $\{2,3,5,6,7,9\}$ is the only 3 -adjacency basis of $H$, whereas $\langle u\rangle+H$ has four 3 -adjacency bases, i.e., $\{1,2,3,4,5,6,7,8, u\},\{1,2,3,4,5,6,7,9, u\}$ $\{1,2,3,4,5,7,8,9, u\}$ and $\{1,2,3,4,6,7,8,9, u\}$.


Figure 6. The set
$A=\{2,3,5,6,7,9\}$ is the only 3-adjacency basis of $H$ and $A \subset N_{H}(1)$.

Conjecture 42. Let $H$ be graph of order $n \geq 2$ and $k \in\left\{1, \ldots, \mathcal{C}\left(K_{1}+H\right)\right\}$. Then

$$
\operatorname{adim}_{k}\left(K_{1}+H\right) \leq \operatorname{adim}_{k}(H)+k
$$

We have shown that Conjecture 42 is true for any graph $H$ and $k \in\{1,2\}$, and for any $H$ and $k$ satisfying the premises of Proposition 41. Moreover, in order to assess the potential validity of Conjecture 42, we explored the entire set of graphs of order $n \leq 11$ and minimum degree two by means of an exhaustive search algorithm. This search yielded no graph $H$ such that $\operatorname{adim}_{k}\left(K_{1}+H\right)>\operatorname{adim}_{k}(H)+k, k \in$ $\{3,4\}$, a fact that empirically supports our conjecture.

### 4.2. The $k$-adjacency dimension of $G+H$ for $G \not \approx K_{1}$ and $H \not \approx K_{1}$

Two different vertices $u, v$ of $G+H$ belong to the same twin equivalence class if and only if at least one of the following three statements hold.
(a) $u, v \in V(G)$ and $u, v$ belong to the same twin equivalence class of $G$.
(b) $u, v \in V(H)$ and $u, v$ belong to the same twin equivalence class of $H$.
(c) $u \in V(G), v \in V(H), N_{G}[u]=V(G)$ and $N_{H}[v]=V(H)$.

The following two remarks are direct consequence of Corollary 14.
Remark 43. Let $G$ and $H$ be two graphs of order $n_{1} \geq 2$ and $n_{2} \geq 2$, respectively. Then $\operatorname{adim}_{2}(G+H)=n_{1}+n_{2}$ if and only if one of the two following statements hold.
(a) Every vertex of $G$ belongs to a non-singleton twin equivalence class of $G$ and every vertex of $H$ belongs to a non-singleton twin equivalence class of $H$.
(b) $\Delta(G)=n_{1}-1, \Delta(H)=n_{2}-1$, every vertex $u \in V(G)$ of degree $\delta(u)<n_{1}-1$ belongs to a non-singleton twin equivalence class of $G$ and every vertex $v \in V(H)$ of degree $\delta(v)<n_{2}-1$ belongs to a non-singleton twin equivalence class of $H$.

Let $G$ and $H$ be two graphs of order $n_{1} \geq 2$ and $n_{2} \geq 2$, respectively. If $x, y \in V(G)$, then $\mathcal{C}_{G+H}(x, y)=\mathcal{C}_{G}(x, y)$. Analogously, if $x, y \in V(H)$, then $\mathcal{C}_{G+H}(x, y)=\mathcal{C}_{H}(x, y)$. Also, if $x \in V(G)$ and $y \in V(H)$, then $\mathcal{C}_{G+H}(x, y)=$ $\left(V(G)-N_{G}(x)\right) \cup\left(V(H)-N_{H}(y)\right)$. Therefore,

$$
\mathcal{C}(G+H)=\min \left\{\mathcal{C}(G), \mathcal{C}(H), n_{1}-\Delta(G)+n_{2}-\Delta(H)\right\}
$$

Theorem 44. Let $G$ and $H$ be two nontrivial graphs. Then the following assertions hold:
(i) For any $k \in\{1, \ldots, \mathcal{C}(G+H)\}$,

$$
\operatorname{adim}_{k}(G+H) \geq \operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)
$$

(ii) For any $k \in\left\{1, \ldots, \min \left\{\mathcal{C}(H), \mathcal{C}\left(K_{1}+G\right)\right\}\right\}$

$$
\operatorname{adim}_{k}(G+H) \leq \operatorname{adim}_{k}\left(K_{1}+G\right)+\operatorname{adim}_{k}(H)
$$

Proof. First we proceed to deduce the lower bound. Let $A$ be a $k$-adjacency basis of $G+H, A_{G}=A \cap V(G), A_{H}=A \cap V(H)$ and let $x, y \in V(G)$ be two different vertices. Notice that $A_{G} \neq \emptyset$ and $A_{H} \neq \emptyset$, as $n_{1} \geq 2$ and $n_{2} \geq 2$. Now, since $\mathcal{C}_{G+H}(x, y)=\mathcal{C}_{G}(x, y)$, it follows that $\left|A_{G} \cap \mathcal{C}_{G}(x, y)\right|=\left|A \cap \mathcal{C}_{G+H}(x, y)\right| \geq k$, and as a consequence, $A_{G}$ is a $k$-adjacency generator for $G$. By analogy we deduce that $A_{H}$ is a $k$-adjacency generator for $H$. Therefore, $\operatorname{adim}_{k}(G+H)=|A|=$ $\left|A_{G}\right|+\left|A_{H}\right| \geq \operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)$.

To obtain the upper bound, first we suppose that there exists a $k$-adjacency basis $U$ of $K_{1}+G$ such that the vertex of $K_{1}$ does not belong to $U$. We claim that for any $k$-adjacency basis $B$ of $H$ the set $X=U \cup B$ is a $k$-adjacency generator for $G+H$. To see this we take two different vertices $a, b \in V(G+H)$. If $a, b \in$ $V(G)$, then $\left|\mathcal{C}_{G+H}(a, b) \cap X\right|=\left|\mathcal{C}_{K_{1}+G}(a, b) \cap U\right| \geq k$. If $a, b \in V(H)$, then $\left|\mathcal{C}_{G+H}(a, b) \cap X\right|=\left|\mathcal{C}_{H}(a, b) \cap B\right| \geq k$. Now, assume that $a \in V(G)$ and $b \in V(H)$. Since $U$ is a $k$-adjacency generator for $\langle b\rangle+G$, we have that $\left|\mathcal{C}_{\langle b\rangle+G}(a, b) \cap U\right| \geq k$. Hence, $\left|\mathcal{C}_{G+H}(a, b) \cap X\right|=\left|\mathcal{C}_{\langle b\rangle+G}(a, b) \cap U\right| \geq k$. Therefore, $X$ is a $k$-adjacency generator for $G+H$ and, as a consequence, $\operatorname{adim}_{k}(G+H) \leq|X|=|U|+|B|=$ $\operatorname{adim}_{k}\left(K_{1}+G\right)+\operatorname{adim}_{k}(H)$.

Suppose from now on that the vertex $u$ of $K_{1}$ belongs to any $k$-adjacency basis $U$ of $K_{1}+G$. We differentiate two cases:

Case 1. For any $k$-adjacency basis $B$ of $H$, there exists a vertex $x$ such that $B \subseteq N_{H}(x)$. We claim that $X=U^{\prime} \cup(B \cup\{x\})$ is a $k$-adjacency generator for $G+H$, where $U^{\prime}=U-\{u\}$. To see this we take two different vertices $a, b \in V(G+H)$.

Notice that since $B$ is $k$-adjacency basis of $H$, there exists exactly one vertex $x \in$ $V(H)$ such that $B \subseteq N_{H}(x)$ and for any $y \in V(H)-\{x\}$ it holds $\left|B-N_{H}(y)\right| \geq k$. If $a, b \in V(G)$, then $\left|\mathcal{C}_{G+H}(a, b) \cap X\right|=\left|\mathcal{C}_{K_{1}+G}(a, b) \cap U^{\prime}\right|=\left|\mathcal{C}_{K_{1}+G}(a, b) \cap U\right| \geq k$. If $a, b \in V(H)$, then $\left|\mathcal{C}_{G+H}(a, b) \cap X\right|=\left|\mathcal{C}_{H}(a, b) \cap(B \cup\{x\})\right| \geq k$. Now, assume that $a \in V(G)$ and $b \in V(H)$. Since $U^{\prime} \cup\{b\}$ is a $k$-adjacency basis of $\langle b\rangle+G$, we have that $\left|\mathcal{C}_{\langle b\rangle+G}(a, b) \cap U^{\prime}\right| \geq k-1$. Furthermore, $\left|\mathcal{C}_{\langle a\rangle+H}(a, b) \cap(B \cup\{x\})\right| \geq 1$. Hence, $\left|\mathcal{C}_{G+H}(a, b) \cap X\right|=\left|\mathcal{C}_{\langle b\rangle+G}(a, b) \cap U^{\prime}\right|+\left|\mathcal{C}_{\langle a\rangle+H}(a, b) \cap(B \cup\{x\})\right| \geq k$. Therefore, $X$ is a $k$-adjacency generator for $G+H$ and, as a consequence, $\operatorname{adim}_{k}(G+H) \leq|X|=$ $\left|U^{\prime}\right|+|B \cup\{x\}|=\left(\operatorname{adim}_{k}\left(K_{1}+G\right)-1\right)+\left(\operatorname{adim}_{k}(H)+1\right)=\operatorname{adim}_{k}\left(K_{1}+G\right)+\operatorname{adim}_{k}(H)$.

Case 2. There exists a $k$-adjacency basis $B^{\prime}$ of $H$ such that $\left|B^{\prime}-N_{H}\left(h^{\prime}\right)\right| \geq 1$, for all $h^{\prime} \in V(H)$. We take $X=U^{\prime} \cup B^{\prime}$ and we proceed as above to show that $X$ is a $k$-adjacency generator for $G+H$. As above, for $a, b \in V(G)$ or $a, b \in V(H)$ we deduce that $\left|\mathcal{C}_{G+H}(a, b) \cap X\right| \geq k$. Now, for $a \in V(G)$ and $b \in V(H)$ we have $\left|\mathcal{C}_{\langle b\rangle+G}(a, b) \cap U^{\prime}\right| \geq k-1$ and $\left|\mathcal{C}_{\langle a\rangle+H}(a, b) \cap B^{\prime}\right| \geq 1$. Hence, $\left|\mathcal{C}_{G+H}(a, b) \cap X\right|=$ $\left|\mathcal{C}_{\langle b\rangle+G}(a, b) \cap U^{\prime}\right|+\left|\mathcal{C}_{\langle a\rangle+H}(a, b) \cap B\right| \geq k$ and, as a consequence, $\operatorname{adim}_{k}(G+$ $H) \leq|X|=\left|U^{\prime}\right|+\left|B^{\prime}\right|=\left(\operatorname{adim}_{k}\left(K_{1}+G\right)-1\right)+\operatorname{adim}_{k}(H) \leq \operatorname{adim}_{k}\left(K_{1}+G\right)+$ $\operatorname{adim}_{k}(H)$.

By Proposition 37 and Theorem 44 we obtain the following result.
Proposition 45. Let $G$ and $H$ be two non-trivial graphs. If for any adjacency basis $A$ of $G$, there exists $g \in V(G)$ such that $A \subseteq N_{G}(g)$ and for any adjacency basis $B$ of $H$, there exists $h \in V(H)$ such that $B \subseteq N_{H}(h)$, then

$$
\operatorname{adim}_{1}(G+H)=\operatorname{adim}_{1}(G)+\operatorname{adim}_{1}(H)+1
$$

Otherwise,

$$
\operatorname{adim}_{1}(G+H)=\operatorname{adim}_{1}(G)+\operatorname{adim}_{1}(H)
$$

Corollary 46. Let $G$ and $H$ be two nontrivial graphs and $k \in\{1, \ldots, \mathcal{C}(G+H)\}$. If $\operatorname{adim}_{k}\left(K_{1}+G\right)=\operatorname{adim}_{k}(G)$, then

$$
\operatorname{adim}_{k}(G+H)=\operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)
$$

In the previous section we showed that there are several classes of graphs where $\operatorname{adim}_{k}\left(K_{1}+G\right)=\operatorname{adim}_{k}(G)$. This is the case, for instance, of graphs of diameter $D(G) \geq 6$, or $G \in\left\{P_{n}, C_{n}\right\}, n \geq 7$, or graphs of girth $\mathrm{g}(G) \geq 5$ and minimum degree $\delta(G) \geq 3$. Hence, for any of these graphs, any nontrivial graph $H$, and any $k \in\left\{1, \ldots, \min \left\{\mathcal{C}(H), \mathcal{C}\left(K_{1}+G\right)\right\}\right\}$ we have that $\operatorname{adim}_{k}(G+H)=$ $\operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)$.

Theorem 47. Let $G$ and $H$ be two nontrivial graphs. Then the following assertions are equivalent:
(i) There exists a $k$-adjacency basis $A_{G}$ of $G$ and a $k$-adjacency basis $A_{H}$ of $H$ such that $\left|\left(A_{G}-N_{G}(x)\right) \cup\left(A_{H}-N_{H}(y)\right)\right| \geq k$, for all $x \in V(G)$ and $y \in V(H)$.
(ii) $\operatorname{adim}_{k}(G+H)=\operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)$.

Proof. Let $A_{G}$ be a $k$-adjacency basis of $G$ and and let $A_{H}$ be a $k$-adjacency basis of $H$ such that $\left|\left(A_{G}-N_{G}(x)\right) \cup\left(A_{H}-N_{H}(y)\right)\right| \geq k$, for all $x \in V(G)$ and $y \in V(H)$. By Theorem 44, $\operatorname{adim}_{k}(G+H) \geq \operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)$. It remains to prove that $\operatorname{adim}_{k}(G+H) \leq \operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)$. We will prove that $A=A_{G} \cup A_{H}$ is a $k$-adjacency generator for $G+H$. We differentiate three cases for two vertices $x, y \in V(G+H)$. If $x, y \in V(G)$, then the fact that $A_{G}$ is a $k$-adjacency basis of $G$ leads to $k \leq\left|A_{G} \cap \mathcal{C}_{G}(x, y)\right|=\left|A \cap \mathcal{C}_{G+H}(x, y)\right|$. Analogously we deduce the case $x, y \in V(H)$. If $x \in V(G)$ and $y \in V(H)$, then the fact that $\mathcal{C}_{G+H}(x, y)=$ $\left(V(G)-N_{G}(x)\right) \cup\left(V(H)-N_{H}(y)\right)$ and $\left|\left(A_{G}-N_{G}(x)\right) \cup\left(A_{H}-N_{H}(y)\right)\right| \geq k$ leads to $\left|A \cap \mathcal{C}_{G+H}(x, y)\right| \geq k$. Therefore, $A$ is a $k$-adjacency generator for $G+H$, as a consequence, $|A|=\left|A_{G}\right|+\left|A_{H}\right|=\operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H) \geq \operatorname{adim}_{k}(G+H)$.

On the other hand, let $B$ be a $k$-adjacency basis of $G+H$ such that $|B|=$ $\operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)$ and let $B_{G}=B \cap V(G)$ and $B_{H}=B \cap V(H)$. Since for any $g_{1}, g_{2} \in V(G)$ and $h \in V(H), h \notin \mathcal{C}_{G+H}\left(g_{1}, g_{2}\right)$, we conclude that $B_{G}$ is a $k$-adjacency generator for $G$ and, by analogy, $B_{H}$ is a $k$-adjacency generator for $H$. Thus, $\operatorname{adim}_{k}(G) \leq\left|B_{G}\right|$, $\operatorname{adim}_{k}(H) \leq\left|B_{H}\right|$ and $\left|B_{G}\right|+\left|B_{H}\right|=|B|=$ $\operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)$. Hence, $\left|B_{G}\right|=\operatorname{adim}_{k}(G),\left|B_{H}\right|=\operatorname{adim}_{k}(H)$ and, as a consequence, $B_{G}$ and $B_{H}$ are $k$-adjacency bases of $G$ and $H$, respectively. If there exists $g \in V(G)$ and $h \in V(H)$ such that $\left|\left(B_{G}-N_{G}(g)\right) \cup\left(B_{H}-N_{H}(h)\right)\right|<k$, then $\left|B \cap \mathcal{C}_{G+H}(g, h)\right|=\left|\left(B_{G}-N_{G}(g)\right) \cup\left(B_{H}-N_{H}(h)\right)\right|<k$, which is a contradiction. Therefore, the result follows.

We would point out the following particular cases of the previous result.
Corollary 48. Let $C_{n}$ be a cycle graph of order $n \geq 5$ and $P_{n^{\prime}}$ a path graph of order $n^{\prime} \geq 4$. If $G \in\left\{K_{t}+C_{n}, N_{t}+C_{n}\right\}$, then

$$
\operatorname{adim}_{1}(G)=\left\lfloor\frac{2 n+2}{5}\right\rfloor+t-1 \text { and } \operatorname{adim}_{2}(G)=\left\lceil\frac{n}{2}\right\rceil+t
$$

If $G \in\left\{K_{t}+P_{n^{\prime}}, N_{t}+P_{n^{\prime}}\right\}$, then

$$
\operatorname{adim}_{1}(G)=\left\lfloor\frac{2 n^{\prime}+2}{5}\right\rfloor+t-1 \text { and } \operatorname{adim}_{2}(G)=\left\lceil\frac{n^{\prime}+1}{2}\right\rceil+t .
$$

Proof. Let $G_{1} \in\left\{K_{t}, N_{t}\right\}$ and $G_{2} \in\left\{P_{n}, C_{n}\right\}$. By Propositions 32 and 33 we deduce that $\operatorname{adim}_{2}\left(G_{2}\right)-\Delta\left(G_{2}\right) \geq 1$. On the other hand, for any 2 -adjacency basis $A$ of $G_{1}$ and $x \in V\left(G_{1}\right)$ we have $\left|B-N_{G_{1}}(y)\right| \in\{1, t\}$. Therefore, by Theorem 47 we obtain the result for $G=G_{1}+G_{2}$.

Notice that for $n \geq 7$ and $n^{\prime} \geq 6$, the previous result can be derived from Corollary 46.

Corollary 49. Let $G$ be a graph of order $n \geq 7$ and maximum degree $\Delta(G) \leq 3$.
Then for any integer $t \geq 2$ and $H \in\left\{K_{t}, N_{t}\right\}$,

$$
\operatorname{adim}_{2}(G+H)=\operatorname{adim}_{2}(G)+t
$$

Proof. By Theorem 18 we deduce that $\operatorname{adim}_{2}(G) \geq 4$, so for any 2 -adjacency basis $A$ of $G$ and $x \in V(G)$ we have $\left|A-N_{G}(x)\right| \geq 1$. Moreover, for any 2-adjacency basis $B$ of $H$ and $y \in V(H)$ we have $\left|B-N_{H}(y)\right| \in\{1, t\}$. Therefore, by Theorem 47 we obtain the result.

Corollary 50. Let $G$ and $H$ be two graphs of order at least seven such that $G$ is $k_{1}$-adjacency dimensional and $H$ is $k_{2}$-adjacency dimensional. For any integer $k$ such that $\Delta(G)+\Delta(H)-4 \leq k \leq \min \left\{k_{1}, k_{2}\right\}$,

$$
\operatorname{adim}_{k}(G+H)=\operatorname{adim}_{k}(G)+\operatorname{adim}_{k}(H)
$$

Proof. By Theorem 18, for any positive integer $k \leq \min \left\{k_{1}, k_{2}\right\}$, we have that $\operatorname{adim}_{k}(G) \geq k+2$ and $\operatorname{adim}_{k}(H) \geq k+2$. Thus, if $k \geq \Delta(G)+\Delta(H)-4$, then $\left(\operatorname{adim}_{k}(G)-\Delta(G)\right)+\left(\operatorname{adim}_{k}(H)-\Delta(H)\right) \geq k$. Therefore, by Theorem 47 we conclude the proof.

As a particular case of the result above we derive the following remark.
Remark 51. Let $G$ and $H$ be two 3 -regular graphs of order at least seven. Then

$$
\operatorname{adim}_{2}(G+H)=\operatorname{adim}_{2}(G)+\operatorname{adim}_{2}(H) .
$$

## REFERENCES

1. R. C. Brigham, G. Chartrand, R. D. Dutton, P. Zhang: Resolving domination in graphs. Math. Bohem., 128 (1) (2003), 25-36.
2. G. Chartrand, V. Saenpholphat, P. Zhang: The independent resolving number of a graph. Math. Bohem., 128 (4) (2003), 379-393.
3. A. Estrada-Moreno, J. A. Rodríguez-Velázquez, I. G. Yero: The k-metric dimension of a graph. Appl. Math. Inf. Sci., 9 (6) (2015), 2829-2840.
4. A. Estrada-Moreno, I. G. Yero, J. A. Rodríguez-Velázquez: The $k$-metric dimension of corona product graphs. Bull. Malays. Math. Sci. Soc., to appear.
5. A. Estrada-Moreno, I. G. Yero, J. A. Rodríguez-Velázquez: The $k$-metric dimension of the lexicographic product of graphs. Discrete Math., to appear.
6. A. Estrada-Moreno, I. G. Yero, J. A. Rodríguez-Velázquez: $k$-metric resolvability in graphs. Electron. Notes Discrete Math., 46 (2014), 121-128.
7. H. Fernau, J. A. Rodríguez-Velázquez: On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. arXiv:1309.2275, 2013.
8. H. Fernau, J. A. Rodríguez-Velázquez: Notions of metric dimension of corona products: Combinatorial and computational results. Lecture Notes in Comput. Sci., 8476 (2014), 153-166.
9. F. Harary, R. A. Melter: On the metric dimension of a graph. Ars Combin., 2 (1976), 191-195.
10. C. Hernando, M. Mora, I. M. Pelayo, C. Seara, J. Cáceres, M. L. Puertas: On the metric dimension of some families of graphs. Electron. Notes Discrete Math., 22 (2005), 129-133.
11. M. Jannesari, B. Omoomi: The metric dimension of the lexicographic product of graphs. Discrete Math., 312 (22) (2012), 3349-3356.
12. M. Johnson: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Statist., 3 (2) (1993), 203-236.
13. M. Johnson: Browsable structure-activity datasets. In: R. Carbó-Dorca, P. Mezey (eds.), Advances in Molecular Similarity, JAI Press Inc, Stamford, Connecticut, (1998), 153-170.
14. S. Khuller, B. Raghavachari, A. Rosenfeld: Landmarks in graphs. Discrete Appl. Math., 70 (3) (1996), 217-229.
15. F. Okamoto, B. Phinezy, P. Zhang: The local metric dimension of a graph. Math. Bohem., 135 (3) (2010), 239-255.
16. A. Sebö, E. Tannier: On metric generators of graphs. Math. Oper. Res., 29 (2) (2004), 383-393.
17. P. J. Slater: Leaves of trees. Congr. Numer., 14 (1975), 549-559.
18. I. G. Yero, A. Estrada-Moreno, J. A. Rodríguez-Velázquez: The k-metric dimension of a graph: Complexity and algorithms. arXiv:1401.0342, 2014.

Departament d'Enginyeria Informàtica i Matemàtiques, (Received January 19, 2015)
Universitat Rovira i Virgili,
(Revised November 8, 2015)
Av. Països Catalans 26, 43007 Tarragona
Spain
E-mails: alejandro.estrada@urv.cat
yunior.ramirez@urv.cat
juanalberto.rodriguez@urv.cat


[^0]:    2010 Mathematics Subject Classification. 05C75, 05C12, 05C76.
    Keywords and Phrases. Adjacency dimension, metric dimension, $k$-metric dimension.

