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ON THE ADJACENCY DIMENSION OF GRAPHS

A. Estrada-Moreno, Y. Ramı́rez-Cruz, J. A. Rodŕıguez-Velázquez

In this article we study the problem of finding the k-adjacency dimension of
a graph. We give some necessary and sufficient conditions for the existence
of a k-adjacency basis of an arbitrary graph G and we obtain general results
on the k-adjacency dimension, including general bounds and closed formulae
for some families of graphs.

1. INTRODUCTION

A generator of a metric space (X, d) is a set S ⊂ X of points in the space with
the property that every point of X is uniquely determined by the distances from
the elements of S. Given a simple and connected graph G = (V,E), we consider
the function dG : V × V → N∪ {0}, where dG(x, y) is the length of a shortest path
between u and v and N is the set of positive integers. Then (V, dG) is a metric
space since dG satisfies (i) dG(x, x) = 0 for all x ∈ V ,(ii) dG(x, y) = dG(y, x) for all
x, y ∈ V and (iii) dG(x, y) ≤ dG(x, z) + dG(z, y) for all x, y, z ∈ V . A vertex v ∈ V
is said to distinguish two vertices x and y if dG(v, x) 6= dG(v, y). A set S ⊂ V
is said to be a metric generator for G if any pair of vertices of G is distinguished
by some element of S. A minimum cardinality metric generator is called a metric

basis, and its cardinality the metric dimension of G, denoted by dim(G).

The notion of metric dimension of a graph was introduced by Slater in [17],
where metric generators were called locating sets. Harary and Melter indepen-
dently introduced the same concept in [9], where metric generators were called re-

solving sets. Applications of this invariant to the navigation of robots in networks
are discussed in [14] and applications to chemistry in [12, 13]. Several variations
of metric generators, including resolving dominating sets [1], independent resolving
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sets [2], local metric sets [15], strong resolving sets [16], adjacency resolving sets
[11], k-metric generators [3, 4], etc., have since been introduced and studied. In
this article, we focus on the last of these issues: we are interested in the study of
adjacency resolving sets and k-metric generators.

The notion of adjacency generator was first introduced by Jannesari and
Omoomi in [11] as a tool to study the metric dimension of lexicographic prod-
uct graphs. This concept has been studied further by Fernau and Rodŕıguez-

Velázquez in [7, 8] where they showed that the (local) metric dimension of the
corona product of a graph of order n and some non-trivial graph H equals n times
the (local) adjacency dimension of H . As a consequence of this strong relation they
showed that the problem of computing the adjacency dimension is NP-hard. A set
S ⊂ V of vertices in a graph G = (V,E) is said to be an adjacency generator for
G if for every two vertices x, y ∈ V \ S there exists s ∈ S such that s is adjacent
to exactly one of x and y. A minimum cardinality adjacency generator is called an
adjacency basis of G, and its cardinality the adjacency dimension of G, denoted by
adim(G).

Notice that S is an adjacency generator for G if and only if S is an adjacency
generator for its complement G. This is justified by the fact that given an adjacency
generator S for G, it holds that for every x, y ∈ V \ S there exists s ∈ S such that
s is adjacent to exactly one of x and y, and this property holds in G. Thus,
adim(G) = adim(G). Besides, from the definition of adjacency and metric bases,
we deduce that S is an adjacency basis of a graph G of diameter at most two if
and only if S is a metric basis of G. In these cases, adim(G) = dim(G).

As pointed out in [7, 8], any adjacency generator of a graph G = (V,E) is
also a metric generator in a suitably chosen metric space. Given a positive integer
t, we define the distance function dG,t : V × V → N ∪ {0}, where

dG,t(x, y) = min{dG(x, y), t}.

Then any metric generator for (V, dG,t) is a metric generator for (V, dG,t+1) and,
as a consequence, the metric dimension of (V, dG,t+1) is less than or equal to the
metric dimension of (V, dG,t). In particular, the metric dimension of (V, dG,1) is
equal to |V | − 1, the metric dimension of (V, dG,2) is equal to adim(G) and, if G
has diameter D(G), then dG,D(G) = dG and so the metric dimension of (V, dG,D(G))
is equal to dim(G). Notice that when using the metric dG,t the concept of metric
generator needs not be restricted to the case of connected graphs, as for any pair
of vertices x, y belonging to different connected components of G we can assume
that dG(x, y) = ∞ > 2 and so dG,t(x, y) = t.

The concept of k-metric generator, introduced by Estrada-Moreno, Yero

and Rodŕıguez-Velázquez in [4, 6], is a natural extension of the concept of
metric generator. A set S ⊆ V is said to be a k-metric generator for G if and only
if any pair of vertices of G is distinguished by at least k elements of S, i.e., for any
pair of different vertices u, v ∈ V , there exist at least k vertices w1, w2, . . . , wk ∈ S
such that

dG(u,wi) 6= dG(v, wi), for every i ∈ {1, . . . , k}.
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A k-metric generator of minimum cardinality in G is called a k-metric basis, and
its cardinality the k-metric dimension of G, denoted by dimk(G).

Figure 1. For k ∈ {1, 2, 3, 4}, dimk(G) = k + 1.

As an example we take a graph G obtained from the cycle graph C5 and
the path Pt, by identifying one of the vertices of the cycle, say u1, and one of
the extremes of Pt, as we show in Figure 1. Let S1 = {v1, v2}, S2 = {v1, v2, ut},
S3 = {v1, v2, v3, ut} and S4 = {v1, v2, v3, v4, ut}. For k ∈ {1, 2, 3, 4} the set Sk is
k-metric basis of G.

Note that every k-metric generator S satisfies that |S| ≥ k and, if k > 1,
then S is also a (k − 1)-metric generator. Moreover, 1-metric generators are the
standard metric generators (resolving sets or locating sets as defined in [9] or [17],
respectively). Some basic results on the k-metric dimension of a graph have recently
been obtained in [3, 4, 5, 6, 18]. In particular, it was shown in [18] that the
problem of computing the k-metric dimension of a graph is NP-hard.

We say that a set S ⊆ V (G) is a k-adjacency generator for G if for every two
vertices x, y ∈ V (G), there exist at least k vertices w1, w2, . . . , wk ∈ S such that

dG,2(x,wi) 6= dG,2(y, wi), for every i ∈ {1, . . . , k}.

A minimum k-adjacency generator is called a k-adjacency basis of G and its car-
dinality, the k-adjacency dimension of G, is denoted by adimk(G). For connected
graphs, any k-adjacency basis is a k-metric basis. Hence, if there exists a k-
adjacency basis of a connected graph G, then

dimk(G) ≤ adimk(G).

Moreover, if G has diameter at most two, then dimk(G) = adimk(G).

For the graph G shown in Figure 2 we have dim1(G) = 8 < 9 = adim1(G),
dim2(G) = 12 < 14 = adim2(G) and dim3(G) = 20 = adim3(G). Note that
the only 3-adjacency basis of G, and at the same time the only 3-metric basis, is
V (G)− {0, 6, 12, 18}.

In this article we study the problem of finding the k-adjacency dimension of a
graph. The paper is organized as follows: in Section 2 we give some necessary and
sufficient conditions for the existence of a k-adjacency basis of an arbitrary graphG,
i.e., we determine the range of k where adimk(G) makes sense. Section 3 is devoted
to the study of the k-adjacency dimension. We obtain general results on this
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Figure 2. The set {2, 4, 6, 8, 10, 14, 16, 20, 21} is an adjacency basis of G, while the set

{2l + 1 : l ∈ {0, . . . , 11}} ∪ {6, 12} is a 2-adjacency basis and V (G)− {0, 6, 12, 18} is a

3-adjacency basis.

invariants including tight bounds and closed formulae for some particular families
of graphs. Finally, in Section 4 we obtain closed formulae for the k-adjacency
dimension of join graphs G+H in terms of the k-adjacency dimension of G and H .
These results concern the k-metric dimension, as join graphs have diameter two.

As we can expect, the obtained results will become important tools for the
study of the k-metric dimension of lexicographic product graphs and corona product
graphs. Moreover, we would point out that several results obtained in this article,
like those in Remark 9 and subsequent, until Theorem 13, need not be restricted
to the metric dG,2, they can be expressed in a more general setting, for instance,
by using the metric dG,t for any positive integer t.

We will use the notation Kn, Kr,s, Cn, Nn and Pn for complete graphs, com-
plete bipartite graphs, cycle graphs, empty graphs and path graphs, respectively.
We use the notation u ∼ v if u and v are adjacent and G ∼= H if G and H are
isomorphic graphs. For a vertex v of a graph G, NG(v) will denote the set of neigh-
bours or open neighborhood of v in G, i.e., NG(v) = {u ∈ V (G) : u ∼ v}. The
closed neighborhood, denoted by NG[x], equals NG(x)∪ {x}. If there is no ambigu-
ity, we will simply write N(x) or N [x]. We also define δ(v) = |N(v)| as the degree
of vertex v, as well as, δ(G) = minv∈V (G){δ(v)} and ∆(G) = maxv∈V (G){δ(v)}.
The subgraph induced by a set S of vertices will be denoted by 〈S〉, the diameter
of a graph will be denoted by D(G) and the girth by g(G). For the remainder of
the paper, definitions will be introduced whenever a concept is needed.

2. k-ADJACENCY DIMENSIONAL GRAPHS

We say that a graph G is k-adjacency dimensional if k is the largest integer
such that there exists a k-adjacency basis of G. Notice that if G is a k-adjacency
dimensional graph, then for each positive integer r ≤ k, there exists at least one
r-adjacency basis of G.

Given a connected graph G and two different vertices x, y ∈ V (G), we denote
by CG(x, y) the set of vertices that distinguish the pair x, y with regard to the
metric dG,2, i.e.,

CG(x, y) = {z ∈ V (G) : dG,2(x, z) 6= dG,2(y, z)}.
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Then a set S ⊆ V (G) is a k-adjacency generator for G if |CG(x, y) ∩ S| ≥ k for all
x, y ∈ V (G). Notice that two vertices x, y are twins if and only if CG(x, y) = {x, y}.

Since for every x, y ∈ V (G) we have that |CG(x, y)| ≥ 2, it follows that the
whole vertex set V (G) is a 2-adjacency generator for G and, as a consequence, we
deduce that every graph G is k-adjacency dimensional for some k ≥ 2. On the other
hand, for any graph G of order n ≥ 3, there exists at least one vertex v ∈ V (G)
such that |NG(v)| ≥ 2 or |V (G) − NG(v)| ≥ 2, so for any pair x, y ∈ NG(v) or
x, y ∈ V (G) − NG(v), we deduce that v /∈ CG(x, y) and, as a result, there is no
n-adjacency dimensional graph of order n ≥ 3.

We define the following parameter

C(G) = min
x,y∈V (G)

{|CG(x, y)|}.

Theorem 1. A graph G is k-adjacency dimensional if and only if k = C(G).
Moreover, C(G) can be computed in O(|V (G)|3) time.

Proof. First we shall prove the equivalence. (Necessity) If G is a k-adjacency
dimensional graph, then for any k-adjacency basis B and any pair of vertices x, y ∈
V (G), we have |B∩CG(x, y)| ≥ k. Thus, k ≤ C(G). Now we suppose that k < C(G).
In such a case, for every x′, y′ ∈ V (G) such that |B ∩ CG(x′, y′)| = k, there exists
zx′y′ ∈ CG(x′, y′)−B such that dG,2(zx′y′ , x′) 6= dG,2(zx′y′ , y′). Hence, the set

B ∪





⋃

x′,y′∈V (G): |B∩CG(x′,y′)|=k

{zx′y′}





is a (k + 1)-adjacency generator for G, which is a contradiction. Therefore, k =
C(G).

(Sufficiency) Let a, b ∈ V (G) such that min
x,y∈V (G)

|CG(x, y)| = |CG(a, b)| = k.

Since no set S ⊆ V (G) satisfies |S ∩ CG(a, b)| > k and V (G) is a k-adjacency
generator for G, we conclude that G is a k-adjacency dimensional graph.

Now, we assume that the graph G is represented by its adjacency matrix A.
We recall that A is a symmetric (n× n)-matrix given by

A(i, j) =

{

1, if ui ∼ uj ,
0, otherwise.

Now observe that for every z ∈ V (G)−{x, y} we have that z ∈ CG(x, y) if and
only ifA(x, z) 6= A(y, z). Considering this, we can compute |CG(x, y)| in linear time
for each pair x, y ∈ V (G). Therefore, the overall running time for determining C(G)

is dominated by the cubic time of computing the value of |CG(x, y)| for
(

|V (G)|
2

)

pairs of vertices x, y of G.

As Theorem 1 shows, given a graph G and a positive integer k, the problem
of deciding if G is k-adjacency dimensional is easy to solve. Even so, we would
point out some useful particular cases.
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Remark 2. A graph G is 2-adjacency dimensional if and only if there are at least two
vertices of G belonging to the same twin equivalence class.

Note that by the previous remark we deduce that graphs such as the complete
graph Kn and the complete bipartite graph Kr,s are 2-adjacency dimensional.

If u, v ∈ V (G) are adjacent vertices of degree two and they are not twin
vertices, then |CG(u, v)| = 4. Thus, for any integer n ≥ 5, Cn is 4-adjacency
dimensional and we can state the following more general remark.

Remark 3. Let G be a twins-free graph of minimum degree two. If G has two adjacent
vertices of degree two, then G is 4-adjacency dimensional.

For any hypercube Qr, r ≥ 2, we have |CQr
(u, v)| = 2r if u ∼ v, |CQr

(u, v)| =
2r − 2 if dQr

(u, v) = 2 and |CQr
(u, v)| = 2r + 2 if dQr

(u, v) ≥ 3. Hence, C(Qr) =
2r − 2.

Remark 4. For any integer r ≥ 2 the hypercube Qr is (2r − 2)-adjacency dimensional.

It is straightforward that for any graph G of girth g(G) ≥ 5 and minimum
degree δ(G) ≥ 2, C(G) ≥ 2δ(G). Hence, the following remark is immediate.

Remark 5. Let G be a k-adjacency dimensional graph. If g(G) ≥ 5 and δ(G) ≥ 2, then
k ≥ 2δ(G).

An end-vertex of a graph G is a vertex of degree one, and its neighbour is its
support vertex. If there is an end-vertex u in G whose support vertex v has degree
two, then |CG(u, v)| = |NG[v]| = 3. Hence, we deduce the following result.

Remark 6. Let G be a twins-free graph. If there exists an end-vertex whose support
vertex has degree two, then G is 3-adjacency dimensional.

The case of trees is summarized in the following remark. Before stating it,
we need some additional terminology. Let T be a tree. A vertex of degree at least
3 is called a major vertex of T . A leaf u of T is said to be a terminal vertex of

a major vertex v of T if dT (u, v) < dT (u,w) for every other major vertex w of T .
The terminal degree of a major vertex v is the number of terminal vertices of v.
A major vertex v of T is an exterior major vertex of T if it has positive terminal
degree.

Remark 7. Let T be a k-adjacency dimensional tree of order n ≥ 3. Then k ∈ {2, 3} and
k = 2 if and only if there are two leaves sharing a common support vertex.

Proof. By Remark 2 we conclude that k = 2 if and only if there are two leaves
sharing a common support vertex. Also, if T is a path different from P3, then by
Remark 6 we have that k = 3.

If T is not a path, then there exists at least one exterior major vertex u
of terminal degree greater than one. Then, either u is the support vertex of all
its terminal vertices, in which case Remark 2 leads to k = 2, or u has at least one
terminal vertex whose support vertex has degree two, in which case Remark 6 leads
to k = 3 if there are no leaves of T sharing a common support vertex.
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Since |CG(x, y)| ≤ δ(x) + δ(y) + 2, for all x, y ∈ V (G), the following remark
immediately follows.

Remark 8. If G is a k-adjacency dimensional graph, then

k ≤ min
x,y∈V (G)

{δ(x) + δ(y)}+ 2.

This bound is achieved, for instance, for any graph G constructed as follows.
Take a cycle Cn whose vertex set is V (Cn) = {u1, u2, . . . , un} and an empty graph
Nn whose vertex set is V (Nn) = {v1, v2, . . . , vn} and then, for i = 1 to n, connect
by an edge ui to vi. In this case, G is 4-adjacency dimensional. Also, a trivial
example is the case of graphs having two isolated vertices, which are 2-adjacency
dimensional.

As defined in [3], a connected graph G is k-metric dimensional if k is the
largest integer such that there exists a k-metric basis. Since any k-adjacency gen-
erator is a k-metric generator, the following result is straightforward.

Remark 9. If a graph G is k-adjacency dimensional and k′-metric dimensional, then
k ≤ k′. Moreover, if D(G) ≤ 2, then k′ = k.

3. k-ADJACENCY DIMENSION. BASIC RESULTS

In this section we present some results that allow us to compute the k-
adjacency dimension of several families of graphs. We also give some tight bounds
on the k-adjacency dimension of a graph.

Theorem 10 (Monotony). Let G be a k-adjacency dimensional graph and let k1, k2
be two integers. If 1 ≤ k1 < k2 ≤ k, then adimk1

(G) < adimk2
(G).

Proof. Let B be a k-adjacency basis of G. Let x ∈ B. Since |B ∩ CG(y, z)| ≥ k,
for all y, z ∈ V (G), we have that B − {x} is a (k − 1)-adjacency generator for G
and, as a consequence, adimk−1(G) ≤ |B − {x}| < |B| = adimk(G). By analogy
we deduce that adimk−2(G) < adimk−1(G) and, repeating this process until we get
adim(G) < adim2(G), we obtain the result.

Corollary 11. Let G be a k-adjacency dimensional graph of order n.

(i) For any r ∈ {2, . . . , k}, adimr(G) ≥ adimr−1(G) + 1.

(ii) For any r ∈ {1, . . . , k}, adimr(G) ≥ adim(G) + (r − 1).

(iii) For any r ∈ {1, . . . , k − 1}, adimr(G) < n.

For instance, for the Petersen graph we have adim6(G) = adim5(G) + 1 =
adim4(G) + 2 = adim3(G) + 3 = 10 and adim2(G) = adim1(G) + 1 = 4.

In order to continue presenting our results, we need to define a new parameter:

Ck(G) =
⋃

|CG(x,y)|=k

CG(x, y).
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For any k-adjacency basis A of a k-adjacency dimensional graph G, it holds
that every pair of vertices x, y ∈ V (G) satisfies |A ∩ CG(x, y)| ≥ k. Thus, for every
x, y ∈ V (G) such that |CG(x, y)| = k we have that CG(x, y) ⊆ A, and so Ck(G) ⊆ A.
The following result is a direct consequence of this.

Remark 12. If G is a k-adjacency dimensional graph and A is a k-adjacency basis, then
Ck(G) ⊆ A and, as a consequence,

adimk(G) ≥ |Ck(G)|.

Theorem 13. Let G be a k-adjacency dimensional graph of order n ≥ 2. Then

adimk(G) = n if and only if Ck(G) = V (G).

Proof. Assume that Ck(G) = V (G). Since every k-adjacency dimensional graph G
satisfies that adimk(G) ≤ n, by Remark 12 we obtain that adimk(G) = n.

Suppose that there exists at least one vertex x such that x 6∈ Ck(G). In such
a case, for any a, b ∈ V (G) such that x ∈ CG(a, b), we have that |CG(a, b)| > k.
Hence, |CG(a, b)− {x}| ≥ k, for all a, b ∈ V (G) and, as a consequence, V (G)− {x}
is a k-adjacency generator for G, which leads to adimk(G) < n. Therefore, if
adimk(G) = n, then Ck(G) = V (G).

As we will show in Propositions 32 and 33, adim3(Pn) = n for n ∈ {4, . . . , 8}
and adim4(Cn) = n for n ≥ 5. These are examples of graphs satisfying conditions
of Theorem 13.

Corollary 14. Let G be a graph of order n ≥ 2. Then adim2(G) = n if and only

if every vertex of G belongs to a non-singleton twin equivalence class.

Since CG(x, y) = CG(x, y) for all x, y ∈ V (G), we deduce the following result,
which was previously observed for k = 1 by Jannesari and Omoomi in [11].

Remark 15. For any nontrivial graph G and k ∈ {1, 2, . . . , C(G)},

adimk(G) = adimk(G).

Now we consider the limit case of the trivial bound adimk(G) ≥ k. The case
k = 1 was studied in [11] where the authors showed that adim1(G) = 1 if and only
if G ∈ {P2, P3, P 2, P 3}.

Proposition 16. If G is a graph of order n ≥ 2, then adimk(G) = k if and only

if k ∈ {1, 2} and G ∈ {P2, P3, P 2, P 3}

Proof. The case k = 1 was studied in [11]. On the other hand, by performing
some simple calculations, it is straightforward to see that adim2(G) = 2 for G ∈
{P2, P3, P 2, P 3}.

Now, suppose that adimk(G) = k for some k ≥ 2. By Corollary 11 we have
k = adimk(G) ≥ adim1(G) + k − 1 and, as a consequence, adim1(G) = 1. Hence,
G ∈ {P2, P3, P 2, P 3}. Finally, since the graphs in {P2, P3, P 2, P 3} are 2-adjacency
dimensional, the proof is complete.
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According to the result above, it is interesting to study the graphs where
adimk(G) = k + 1. To begin with, we state the following remark.

Remark 17. If G is a graph of order n ≥ 7, then adim1(G) ≥ 3.

Proof. Suppose, for purposes of contradiction, that adim1(G) ≤ 2. By Proposition 16 we
deduce that adim1(G) = 2. Let B = {u, v} be an adjacency basis of G. Then for any w ∈
V (G)−B the distance vector (dG,2(u, w), dG,2(v, w)) must belong to {(1, 1), (1, 2), (2, 1),
(2, 2)}. Since |V (G)−B| ≥ 5, by Dirichlet’s box principle at least two elements of V (G)−B

have the same distance vector, which is a contradiction. Therefore, adim1(G) ≥ 3.

By Corollary 11 (ii) and Remark 17 we obtain the following result.

Theorem 18. For any graph G of order n ≥ 7 and k ∈ {1, . . . , C(G)},

adimk(G) ≥ k + 2.

From Remark 17 and Theorem 18, we only need to consider graphs of order
n ∈ {3, 4, 5, 6} to determine those satisfying adimk(G) = k + 1. If n = 3, then by
Proposition 16 we conclude that adim1(G) = 2 or adim2(G) = 3 if and only if G ∈
{K3, N3}. For k ∈ {1, 2} and n ∈ {4, 5, 6} the graphs satisfying adimk(G) = k + 1
can be determined by a simple calculation. Here we just show some of these graphs
in Figure 3. Finally, the cases adim3(G) = 4 and adim5(G) = 5 are studied in the
following two remarks.

Figure 3. Any graph belonging to the families GB(G1), GB(G2) or {K1 ∪K3, G3}, where

B = {v1, v2, v3}, satisfies adim2(G) = 3. The reader is referred to Subsection 3.1 for the

construction of the families GB(Gi).

The set of nontrivial distinctive vertices of a pair x, y ∈ V (G), with regard to
the metric dG,2, will be denoted by C∗

G(x, y) = CG(x, y) − {x, y}. Notice that two
vertices x, y are twins if and only if C∗

G(x, y) = ∅.

Remark 19. A graph G of order greater than or equal to four satisfies adim3(G) = 4 if
and only if G ∈ {P4, C5}.

Proof. If G ∈ {P4, C5}, then it is straightforward to check that adim3(G) = 4.
Assume that B = {v1, . . . , v4} is a 3-adjacency basis of G. Since for any pair of
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vertices vi, vj ∈ B, there exists vl ∈ B ∩C∗(vi, vj), by inspection we can check that
〈B〉 ∼= P4. We assume that vi ∼ vi+1 for i ∈ {1, 2, 3}. If V (G) − B = ∅, then
G ∼= P4. Suppose that there exists v ∈ V (G) − B. If v ∼ v2, then the fact that
|B∩C∗(v, v1)| ≥ 2 leads to v ∼ v3 and v ∼ v4. Since |B∩C∗(v, v4)| ≥ 2 and v ∼ v3,
it follows that v ∼ v1. Thus, v is connected to any vertices in B, which leads to
|B ∩ C∗(v, v2)| = |{v4}| = 1, contradicting the fact that B is a 3-adjacency basis of
G. Analogously if v ∼ v3, then we arrive at the same contradiction. Thus, v ∼ v1
or v ∼ v4. If v ∼ v1 and v 6∼ v4, then |B∩C∗(v, v2)| = |{v3}| = 1, contradicting the
fact that B is a 3-adjacency basis of G. Now, if v ∼ v1 and v ∼ v4, then G ∼= C5. If
|V (G)| ≥ 6, then there exist u, v ∈ V (G) −B. Since |B ∩ C(u, v)| ≥ 3, then either
|B ∩ N(u)| ≥ 2 or |B ∩ N(v)| ≥ 2. Suppose that |B ∩ N(u)| ≥ 2. As discussed
earlier, B∩N(u) = {v1, v4}. Since |B∩C(u, v)| ≥ 3, it follows that either v ∼ v2 or
v ∼ v3, which, as we saw earlier, contradicts the fact that B is a 3-adjacency basis
of G.

By Corollary 11 (i) and Remark 19 we deduce that adim4(G) ≥ 6 for any
graph G of order at least five such that G 6∼= C5. Since adim4(C5) = 5, we obtain
the following result.

Remark 20. A graph G of order n ≥ 5 satisfies that adim4(G) = 5 if and only if G ∼= C5.

From Corollary 11 (i) and Remark 20, it follows that any 4-adjacency dimen-
sional graph G of order six satisfies adim4(G) = 6, as the case of C6.

3.1. Large families of graphs having a common k-adjacency generator

Given a k-adjacency basis B of a graph G = (V,E), we say that a graph
G′ = (V,E′) belongs to the family GB(G) if and only if NG′(x) = NG(x), for
every x ∈ B. Figure 4 shows some graphs belonging to the family GB(G) having a
common 2-adjacency basis B = {v2, v3, v4, v5}.

Notice that if B 6= V (G), then the edge set of any graph G′ ∈ GB(G) can be
partitioned into two sets E1, E2, where E1 consists of all edges of G having at least
one vertex in B and E2 is a subset of edges of a complete graph whose vertex set

is V (G)−B. Hence, GB(G) contains 2
|V (G)−B|(|V (G)−B|−1)

2 different graphs.

With the above notation in mind we can state our next result.

Theorem 21. Any k-adjacency basis B of a graph G is a k-adjacency generator

for any graph G′ ∈ GB(G), and as a consequence,

adimk(G
′) ≤ adimk(G).

Proof. Assume that B is a k-adjacency basis of a graph G = (V,E). Let G′ =
(V,E′) such that NG′(x) = NG(x), for every x ∈ B. We will show that B is
a k-adjacency generator for any graph G′. To this end, we take two different
vertices u, v ∈ V . Since B is a k-adjacency basis of G, there exists Buv ⊆ B
such that |Buv| ≥ k and for every x ∈ Buv we have that dG,2(x, u) 6= dG,2(x, v).
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Now, since for every x ∈ Buv we have that NG′(x) = NG(x), we obtain that
dG′,2(u, x) = dG,2(u, x) 6= dG,2(v, x) = dG′,2(v, x). Hence, B is a k-adjacency
generator for G′ and, in consequence, |B| = adimk(G) ≥ adimk(G

′).

By Proposition 16 we have that if G is a graph of order n ≥ 2, then
adimk(G) = k if and only if k ∈ {1, 2} and G ∈ {P2, P3, P 2, P 3}. Thus, for
any graph H of order greater than three, adimk(H) ≥ k + 1. Therefore, the next
corollary is a direct consequence of Theorem 21.

Figure 4. B = {v2, v3, v4, v5} is a 2-adjacency basis of G and {G,G1, G2, G4, G5} is a

subfamily of GB(G).

Corollary 22. Let B be a k-adjacency basis of a graph G of order n ≥ 4 and let

G′ ∈ GB(G). If adimk(G) = k + 1, then adimk(G
′) = k + 1.

Our next result immediately follows from Theorems 18 and 21.

Theorem 23. Let B be a k-adjacency basis of a graph G of order n ≥ 7 and let

G′ ∈ GB(G). If adimk(G) = k + 2, then adimk(G
′) = k + 2.

An example of application of the result above is shown in Figure 4, where
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adim2(G
′) = 4 for all G′ ∈ GB(G). In this case GB(G) contains 210 = 1024 different

graphs.

4. THE k-ADJACENCY DIMENSION OF JOIN GRAPHS

The join G+H of two vertex-disjoint graphs G = (V1, E1) and H = (V2, E2)
is the graph with vertex set V (G+H) = V1 ∪ V2 and edge set

E(G+H) = E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}

Note that D(G +H) ≤ 2 and so for any pair of graphs G and H ,

dimk(G+H) = adimk(G+H).

4.1. The particular case of K1 + H

The following remark is a particular case of Corollary 14.

Remark 24. Let H be a graph of order n. Then adim2(K1 +H) = n + 1 if and only if
∆(H) = n−1 and every vertex v ∈ V (H) of degree δ(v) < n−1 belongs to a non-singleton
twin equivalence class.

For any graph H , if x, y ∈ V (H), then CK1+H(x, y) = CH(x, y). Also, if
x 6∈ V (H) then CK1+H(x, y) = {x} ∪ (V (H)−NH(y)). Hence,

C(K1 +H) = min{C(H), n−∆(H) + 1}.

Proposition 25. Let H be a graph of order n ≥ 2 and k ∈ {1, . . . , C(K1 + H)}.
Then

adimk(K1 +H) ≥ adimk(H).

Proof. Let A be a k-adjacency basis of K1 +H , AH = A ∩ V (H) and let x, y ∈
V (H) be two different vertices. Since CK1+H(x, y) = CH(x, y), it follows that
|AH∩CH(x, y)| = |A∩CK1+H(x, y)| ≥ k, and as a consequence, AH is a k-adjacency
generator for H . Therefore, adimk(K1 +H) = |A| ≥ |AH | ≥ adimk(H).

Theorem 26. For any nontrivial graph H, the following assertions are equivalent:

(i) There exists a k-adjacency basis A of H such that |A − NH(y)| ≥ k, for all

y ∈ V (H).

(ii) adimk(K1 +H) = adimk(H).

Proof. Let A be a k-adjacency basis of H such that |A − NH(y)| ≥ k, for all
y ∈ V (H). By Proposition 25 we have that adimk(K1 + H) ≥ adimk(H). It
remains to prove that adimk(K1 + H) ≤ adimk(H). We will prove that A is a
k-adjacency generator for K1 + H . We differentiate two cases for two vertices
x, y ∈ V (K1 +H). If x, y ∈ V (H), then the fact that A is a k-adjacency basis of H
leads to k ≤ |A∩CH(x, y)| = |A∩CK1+H(x, y)|. On the other hand, if x is the vertex
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of K1 and y ∈ V (H), then the fact that CK1+H(x, y) = {x} ∪ (V (H)−NH(y)) and
|A − NH(y)| ≥ k leads to |A ∩ CK1+H(x, y)| ≥ k. Therefore, A is a k-adjacency
generator for K1 +H , and as a consequence, adimk(H) = |A| ≥ adimk(K1 +H).

On the other hand, let B be a k-adjacency basis of K1 +H such that |B| =
adimk(H) and let BH = B ∩ V (H). Since for any h1, h2 ∈ V (H) the vertex
of K1 does not belong to CK1+H(h1, h2), we conclude that BH is a k-adjacency
generator for H . Thus, |BH | = adimk(H) and, as a consequence, BH is a k-
adjacency basis of H . If there exists h ∈ V (H) such that |BH −NH(h)| < k, then
|B ∩ CK1+H(v, h)| = |BH − NH(h)| < k, which is a contradiction. Therefore, the
result follows.

Our next result on graphs of diameter grater than or equal to six, is a direct
consequence of Theorem 26.

Corollary 27. For any graph H of diameter D(H) ≥ 6 and k ∈ {1, . . . , C(K1 +
H)},

adimk(K1 +H) = adimk(H).

Proof. Let S be a k-adjacency basis of H . We will show that |S − NH(x)| ≥ k,
for all x ∈ V (H). Suppose, for the purpose of contradiction, that there exists
x ∈ V (H) such that |S ∩ (V (H) − NH(x))| < k. Let F (x) = S ∩ NH [x]. Notice
that |S| ≥ k and hence F (x) 6= ∅.

From the assumptions above, if V (H) = F (x) ∪ {x}, then D(H) ≤ 2, which
is a contradiction. If for every y ∈ V (H) − (F (x) ∪ {x}) there exists z ∈ F (x)
such that dH(y, z) = 1, then dH(v, v′) ≤ 4 for all v, v′ ∈ V (H) − (F (x) ∪ {x}).
Hence D(H) ≤ 4, which is a contradiction. So, we assume that there exists a
vertex y′ ∈ V (H) − (F (x) ∪ {x}) such that dH(y′, z) > 1, for every z ∈ F (x), i.e,
NH(y′) ∩ F (x) = ∅. If V (H) = F (x) ∪ {x, y′}, then by the connectivity of H we
have y′ ∼ x and, as consequence, D(H) = 2, which is also a contradiction. Hence,
V (H)−(F (x)∪{x, y′}) 6= ∅. Now, for any w ∈ V (H)−(F (x)∪{x, y′}) we have that
|CH(y′, w)∩S| ≥ k and, since |S∩(V (H)−NH(x)) | < k and NH(y′)∩F (x) = ∅, we
deduce that NH(w)∩F (x) 6= ∅. From this fact and the connectivity of H , we obtain
that dH(y′, w) ≤ 5. Hence D(H) ≤ 5, which is also a contradiction. Therefore,
if D(H) ≥ 6, then for every x ∈ V (H) we have that |S ∩ (V (H)−NH(x)) | ≥ k.
Therefore, the result follows by Theorem 26.

Corollary 28. Let H be a graph of girth g(H) ≥ 5 and minimum degree δ(H) ≥ 3.
Then for any k ∈ {1, . . . , C(K1 +H)},

adimk(K1 +H) = adimk(H).

Proof. Let A be a k-adjacency basis of H and let x ∈ V (H) and y ∈ NH(x). Since
g(H) ≥ 5, for any u, v ∈ NH(y) − {x} we have that CH(u, v) ∩ NH [x] = ∅. Also,
since |CH(u, v) ∩ A| ≥ k, we obtain that |A−NH(x)| ≥ k. Therefore, by Theorem
26 we conclude the proof.
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A fan graph is defined as the join graph K1+Pn, where Pn is a path of order
n, and a wheel graph is defined as the join graph K1 + Cn, where Cn is a cycle
graph of order n. The following closed formulae for the k-metric dimension of fan
and wheel graphs were obtained in [4, 10]. Since these graphs have diameter two,
we express the result in terms of the k-adjacency dimension.

Proposition 29. [10]

(i) adim1(K1 + Pn) =



















1, if n = 1,
2, if n = 2, 3, 4, 5,
3, if n = 6,
⌊

2n+ 2

5

⌋

, otherwise.

(ii) adim1(K1 + Cn) =

{

3, if n = 3, 6,
⌊

2n+ 2

5

⌋

, otherwise.

Proposition 30. [11] For any integer n ≥ 4,

adim1(Pn) = adim1(Cn) =

⌊

2n+ 2

5

⌋

.

Notice that by Propositions 29 and 30, for any n ≥ 4, n 6= 6, we have that

adim1(Pn) = adim1(K1 + Pn) = adim1(Cn) = adim1(K1 + Cn).

In order to show the relationship between the k-adjacency dimension of fan
(wheel) graphs and path (cycle) graphs, we state the following known results.

Proposition 31. [4]

(i) adim2(K1 + Pn) =











3, if n = 2,
4, if n = 3, 4, 5,
⌈

n+ 1

2

⌉

, if n ≥ 6.

(ii) adim2(K1 + Cn) =

{

4, if n = 3, 4, 5, 6,
⌈

n

2

⌉

, if n ≥ 7.

(iii) adim3(K1 + Pn) =

{

5, if n = 4, 5,

n−
⌊

n− 4

5

⌋

, if n ≥ 6.

(iv) adim3(K1 + Cn) =

{

5, if n = 5, 6,

n−
⌊

n

5

⌋

, if n ≥ 7.

(v) adim4(K1 + Cn) =

{

6, if n = 5, 6,
n, if n ≥ 7.
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By Theorem 1 we have that any path graph of order at least four is 3-
adjacency dimensional and any cycle graph of order at least five is 4-adjacency
dimensional. From Propositions 25 and 31 we will derive closed formulae for the
k-adjacency dimension of paths (for k ∈ {2, 3}) and cycles (for k ∈ {2, 3, 4}).

Proposition 32. For any integer n ≥ 4,

adim2(Pn) =

⌈

n+ 1

2

⌉

and adim3(Pn) = n−

⌊

n− 4

5

⌋

.

Proof. Let k ∈ {2, 3} and V (Pn) = {v1, v2, . . . , vn}, where vi is adjacent to vi+1

for every i ∈ {1, . . . , n− 1}.

We first consider the case n ≥ 7. Since CPn
(v1, v2) = {v1, v2, v3} and

CPn
(vn−1, vn) = {vn−2, vn−1, vn}, we deduce that for any k-adjacency basis A

of Pn and any y ∈ V (T ), |A − NPn
(y)| ≥ k. Hence, Theorem 26 leads to

adimk(K1 + Pn) = adimk(Pn). Therefore, by Proposition 31 we deduce the re-
sult for n ≥ 7.

Now, for n = 6, since CP6
(v1, v2) = {v1, v2, v3} and CP6

(v5, v6) = {v4, v5, v6},
we deduce that adim2(P6) ≥ 4 and adim3(P6) = 6. In addition, {v1, v3, v4, v6} is a
2-adjacency generator for P6 and so adim2(P6) = 4.

From now on, let n ∈ {4, 5}. By Proposition 25 we have dimk(K1 + Pn) ≥
adimk(Pn). It remains to prove that adimk(K1 + Pn) ≤ adimk(Pn).

If n = 4 or n = 5, then by Proposition 16, adim2(Pn) ≥ 3. Note that
{v1, v2, v4} and {v1, v3, v5} are 2-adjacency generators for P4 and P5, respectively.
Thus, adim2(P4) = adim2(P5) = 3. Let A be a 3-adjacency basis of Pn, where
n ∈ {4, 5}. Since CPn

(v1, v2) = {v1, v2, v3} and CPn
(vn−1, vn) = {vn−2, vn−1, vn},

we have that (A∩CPn
(v1, v2))∪ (A∩CPn

(vn−1, vn)) = V (Pn), and as consequence,
A = V (Pn). Therefore, adim3(P4) = 4 and adim3(P5) = 5 and, as a consequence,
the result follows.

Proposition 33. For any integer n ≥ 5,

adim2(Cn) =
⌈n

2

⌉

, adim3(Cn) = n−
⌊n

5

⌋

and adim4(Cn) = n.

Proof. Let k ∈ {2, 3, 4} and V (Cn) = {v1, v2, . . . , vn}, where vi is adjacent to vi+1

and the subscripts are taken modulo n.

First, consider the case n ≥ 7. Since CCn
(vi+3, vi+4) = {vi+2, vi+3, vi+4, vi+5},

we deduce that for any k-adjacency basis A of Cn, |A−NCn
(vi)| ≥ k. Hence, The-

orem 26 leads to adimk(K1 + Cn) = adimk(Cn). Therefore, by Proposition 31 we
deduce the result for n ≥ 7.

From now on, let n ∈ {5, 6}. By Proposition 25 we have dimk(K1 + G) ≥
adimk(G). It remains to prove that adimk(K1 +H) ≤ adimk(H).

By Theorem 10, we deduce that 2 = adim1(C5) < adim2(C5) < adim3(C5) <
adim4(C5) ≤ 5. Hence, adim2(C5) = 3, adim3(C5) = 4 and adim4(C5) = 5.
Therefore, for n = 5 the result follows.
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By Theorem 10, adim2(C6) > adim1(C6) = 2 and, since {v1, v3, v5} is a
2-adjacency generator for C6, we obtain that adim2(C6) = 3. Now, let A4 be a 4-
adjacency basis of C6. If |A4| ≤ 5, then there exists at least one vertex which does
not belong to A4, say v1. Then, |CCn

(v1, v2) ∩ A4| ≤ 3, which is a contradiction.
Thus, adim4(C6) = |A4| = 6. Let A1

3 = {v1, v2, v3, v4}, A2
3 = {v1, v2, v3, v5} and

A3
3 = {v1, v2, v4, v5}. Note that any manner of selecting four different vertices from

C6 is equivalent to some of these A1
3, A

2
3, A

3
3. Since |CCn

(v5, v6)∩A1
3| = |{v1, v4}| =

2 < 3, |CCn
(v4, v6) ∩ A2

3| = |{v1, v3}| = 2 < 3 and |CCn
(v1, v2) ∩ A3

3| = |{v1, v2}| =
2 < 3, we deduce that adim3(C6) ≥ 5 > |A1

3| = |A2
3| = |A3

3| = 4. By Theorem 10,
5 ≤ adim3(C6) < adim4(C6) ≤ 6. Thus, adim3(C6) = 5 and, as a consequence, the
result follows.

By Propositions 29, 30, 31, 32 and 33 we observe that for any k ∈ {1, 2, 3}
and n ≥ 7, adimk(K1 + Pn) = adimk(Pn) and for any k ∈ {1, 2, 3, 4}, adimk(K1 +
Cn) = adimk(Cn). The next result is devoted to characterize the trees where
adimk(K1 + T ) = adimk(T ).

Proposition 34. Let T be a tree. The following statements hold.

(a) adim1(K1 + T ) = adim1(T ) if and only if T 6∈ F1 = {P2, P3, P6,K1,n, T
′},

where n ≥ 3 and T ′ is obtained from P5∪{K1} by joining by an edge the vertex

of K1 to the central vertex of P5.

(b) adim2(K1 + T ) = adim2(T ) if and only if T 6∈ F2 = {Pr,K1,n, T
′}, where

r ∈ {2, . . . , 5}, n ≥ 3 and T ′ is a graph obtained from K1,n ∪K2 by joining by

an edge one leaf of K1,n to one leaf of K2.

(c) adim3(K1 + T ) = adim3(T ) if and only if T 6∈ F3 = {P4, P5}.

Proof. For any k ∈ {1, 2, 3} and T ∈ Fk, a simple inspection shows that adimk(K1+
T ) 6= adimk(T ). From now on, assume that T 6∈ Fk, for k ∈ {1, 2, 3}, and let Ext(T )
be the number of exterior major vertices of T . We differentiate the following three
cases.

Case 1. T = Pn. The result is a direct consequence of combining Propositions 29
and 30 for k = 1 and Propositions 31 and 32 for k > 1.

In the following cases we shall show that there exists a k-adjacency basis A
of T such that |A−NT (v)| ≥ k, for all v ∈ V (T ). Therefore, the result follows by
Theorem 26.

Case 2. Ext(T ) = 1. Let u be the only exterior major vertex of T .

We first take k = 1. Since any two vertices adjacent to u must be distin-
guished by at least one vertex, we have that all paths from u to its terminal ver-
tices, except at most one, contain at least one vertex in A. Thus, |A−NT (y)| ≥ 1,
for all y ∈ V (T ) − {u}. Now we shall show that |A − NT (u)| ≥ 1. If u ∈ A or
A 6⊆ NT (u), then we are done, so we suppose that for any adjacency basis A of
T , u 6∈ A and A ⊆ NT (u). If there exists a leaf v such that dT (u, v) ≥ 4, then
the support v′ of v satisfies CT (v, v

′) ∩A = ∅, which is a contradiction. Hence, the
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eccentricity of u satisfies 2 ≤ ǫ(u) ≤ 3. If w is a leaf of T such that dT (u,w) = ǫ(u),
then the vertex u′ ∈ NT (u) belonging to the path from u to w must belong to A
and, as a consequence A′ = (A − {u′}) ∪ {w} is an adjacency basis of T , which is
a contradiction.

We now take k = 2. Let A be a 2-adjacency basis of T . Since any two
vertices adjacent to u must be distinguished by at least two vertices in A, either all
paths joining u to its terminal vertices contain at least one vertex of A or all but
one contain at least two vertices of A. Thus, any vertex y ∈ V (T )− {u} and any
2-adjacency basis A of T satisfy that |A−NT (y)| ≥ 2.

If there exist two vertices v, v′ ∈ V (T ) such that dT (u, v) ≥ 3 and dT (u, v
′) ≥

3, then |A −NT (u)| ≥ 2, as |A ∩ C2(v, v′)| ≥ 2. On the other hand, if there exists
only one leaf v such that dT (u, v) ≥ 3 and another leaf w such that dT (u,w) = 2,
we have that in order to distinguish v and it support as well as w and its support,
|A ∩ NT [v]| ≥ 1 and |A ∩ {u,w}| ≥ 1 and, as a result, |A − NT (u)| ≥ 2. Now,
since T 6∈ F2 it remains to consider the case where u has eccentricity two. Let
v, w be two leaves such that dT (u, v) = dT (u,w) = 2. If |NT (u)| = 3, then the
set A composed by u and its three terminal vertices is a 2-adjacency basis of T
such that |A − NT (u)| ≥ 2. Assume that |NT (u)| ≥ 4. In order to distinguish v
and its support vertex v′, as well as w and its support vertex w′, any 2-adjacency
basis A of T must contain at least two vertices of {u, v, v′} and at least two vertices
of {u,w,w′}. If u /∈ A, then v, w ∈ A, and as a consequence, |A − NT (u)| ≥ 2.
Assume that u ∈ A. In this case, if A−NT [u] 6= ∅, then |A−NT (u)| ≥ 2. Otherwise,
A ⊆ NT [u] and {u, v′, w′} ⊂ A and, as a consequence, A′ = (A − {v′}) ∪ {v} is a
2-adjacency basis of T and |A′ −NT (u)| ≥ 2.

Finally, suppose that there exists exactly one leaf v such that dT (u, v) = 2. Let v′

be the support vertex of v. In this case, V (T )− {v′} is a 2-adjacency basis A of T
such that |A−NT (u)| ≥ 2.

We now take k = 3. In this case, there exist two leaves v, w such that dT (u, v) ≥ 2
and dT (u,w) ≥ 2. Since v and its support vertex v′ must be distinguished by at
least three vertices, they must belong to any 3-adjacency basis. Analogously, w and
its support vertex w′ must belong to any 3-adjacency basis. In general, any leaf
that is not adjacent to u and its support vertex belong to any 3-adjacency basis
of T . Moreover, there exists at most one terminal vertex x adjacent to u. If x
exists, it must be distinguished from any vertex belonging to NT (u) − {x} by at
least three vertices. Thus, they must belong to any 3-adjacency basis. Any vertex
y different from u and any 3-adjacency basis A of T satisfy v, v′ ∈ A − NT (y) or
w,w′ ∈ A−NT (y). If v, v

′ ∈ A−NT (y) and w,w′ ∈ A−NT (y), then |A−NT (y)| ≥ 3.
Otherwise, assuming without loss of generality that v, v′ ∈ A−NT (y), there exists
a terminal vertex z different from w such that y 6∼ z. Thus, again |A−NT (y)| ≥ 3.
If dT (u, v) = 2, then v, v′ are distinguished only by u, v, v′, so u must belong to
any 3-adjacency basis of T . Thus, for any 3-adjacency basis A of T we have that
u, v, w ∈ A−NT (u), and as a consequence, |A−NT (u)| ≥ 3. Finally, if dT (u, v) > 2
and dT (u,w) > 2, then v, v′, w, w′ ∈ A−NT (u). Hence |A−NT (u)| ≥ 3.

Case 3. Ext(T ) ≥ 2. In this case, there are at least two exterior major vertices u, v
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of T having terminal degree at least two. Let u1, u2 be two terminal vertices of u and
v1, v2 be two terminal vertices of v. Let u′

1 and u′
2 be the vertices adjacent to u in the

paths u−u1 and u−u2, respectively. Likewise, let v
′
1 and v′2 be the vertices adjacent

to v in the paths v−v1 and v−v2, respectively. Notice that it is possible that u1 =
u′
1, u2 = u′

2, v1 = v′1 or v2 = v′2. Note also that C(u′
1, u

′
2) = (NT [u

′
1]∪NT [u

′
2])−{u}

and C(v′1, v
′
2) = (NT [v

′
1] ∪NT [v

′
2])− {v}. Since for any k-adjacency basis A of T it

holds that |C(u′
1, u

′
2)∩A| ≥ k and |C(v′1, v

′
2)∩A| ≥ k, and for any vertex w ∈ V (T )

we have that (A − NT (w)) ∩ C(u′
1, u

′
2) = ∅ or (A − NT (w)) ∩ C(v′1, v

′
2) = ∅, we

conclude that |A−NT (w)| ≥ k.

From now on, we shall study some cases where adimk(K1 +H) > adimk(H).
First of all, notice that by Corollary 27, if H is a connected graph and adimk(K1+
H) ≥ adimk(H) + 1, then D(H) ≤ 5 and, by Corollary 28, if H has minimum
degree δ(H) ≥ 3, then it has girth g(H) ≤ 4. We would point out the following
consequence of Theorem 26.

Corollary 35. If adimk(K1 +H) ≥ adimk(H) + 1, then either H is connected or

H has exactly two connected components, one of which is an isolated vertex.

Proof. Let A be a k-adjacency basis of H . We differentiate three cases for H .

Case 1. There are two connected components H1 and H2 of H such that
|V (H1)| ≥ 2 and |V (H2)| ≥ 2. As for any i ∈ {1, 2} and u, v ∈ V (Hi), |CH(u, v) ∩
A| = |CHi

(u, v) ∩ A| ≥ k we deduce that |A ∩ V (H1)| ≥ k and |A ∩ V (H2)| ≥ k.
Hence, if x ∈ V (H1), then |A−NH(x)| ≥ |A∩V (H2)| ≥ k and if x ∈ V (H)−V (H1),
then |A − NH(x)| ≥ |A ∩ V (H1)| ≥ k. Thus, by Theorem 26, adimk(K1 + H) =
adimk(H).

Case 2. There is a connected component H1 of H such that |V (H1)| ≥ 2 and
there are two isolated vertices u, v ∈ V (H). From CH(u, v) = {u, v} we conclude
that k ≤ 2 and |{u, v} ∩ A| ≥ k. Moreover, for any x, y ∈ V (H1), x 6= y, we
have that |CH(x, y) ∩ A| = |CH1

(u, v) ∩ A| ≥ k and so |A ∩ V (H1)| ≥ k. Hence, if
x ∈ V (H1), then |A −NH(x)| ≥ |{u, v} ∩ A| ≥ k and if x ∈ V (H) − V (H1), then
|A−NH(x)| ≥ |A∩V (H1)| ≥ k. Thus, by Theorem 26, adimk(K1+H) = adimk(H).

Case 3. H ∼= Nn, for n ≥ 2. In this case k ∈ {1, 2}, adim1(K1 + Nn) =
adim1(Nn) = n− 1 and adim2(K1 +Nn) = adim2(Nn) = n.

Therefore, according to the three cases above, the result follows.

By Proposition 25 and Theorem 26, adimk(K1 + H) ≥ adimk(H) + 1 if
and only if for any k-adjacency basis A of H , there exists h ∈ V (H) such that
|A−NH(h)| < k. Consider, for instance, the graph G showed in Figure 4. The only
2-adjacency basis of G is B = {v2, v3, v4, v5} and |B−NG(v1)| = 0, so adim2(K1+
G) ≥ adim2(G) + 1 = 5. It is easy to check that A = {v1, v6, v7, v8, v9} is a 2-
adjacency generator for K1 +G, and so adim2(K1 +G) = adim2(G) + 1 = 5. We
emphasize that neither B ∪ {v1} nor B ∪ {x} are 2-adjacency bases of 〈x〉 +G.

Proposition 36. Let H be a graph of order n ≥ 2 and let k ∈ {1, . . . , C(K1+H)}.
If for any k-adjacency basis A of H, there exists h ∈ V (H) such that |A−NH(h)| =
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k − 1 and |A−NH(h′)| ≥ k − 1, for all h′ ∈ V (H), then

adimk(K1 +H) = adimk(H) + 1.

Proof. If for any k-adjacency basis A of H , there exists a vertex h ∈ V (H) such
that |A−NH(h)| = k − 1, then by Theorem 26, adimk(K1 +H) ≥ adimk(H) + 1.

Now, let A be a k-adjacency basis of H and let v be the vertex of K1. Since
|A−NH(h′)| ≥ k− 1, for all h′ ∈ V (H), the set A∪{v}, is a k-adjacency generator
for K1+H and, as a consequence, adimk(K1+H) ≤ |A∪{v}| = adimk(H)+1.

The graph H shown in Figure 5 has
six 3-adjacency basis. For instance, one of
them is B = {1, 2, 3, 4, 5, 8, 9} and the re-
maining ones can be found by symmetry.
Notice that for any 3-adjacency basis, say
A, there are two vertices i, j such that
|A − NH(i)| = 2, |A − NH(j)| = 2 and
|A − NH(l)| ≥ 3, for all l 6= i, j. In par-
ticular, for the basis B we have i = 3 and
j = 4. Therefore, Proposition 36 leads to
adim3(K1 +H) = adim3(H) + 1 = 8.

By Theorem 26 and Proposition 36
we deduce the following result previously
obtained in [11].

Figure 5. The set

B = {1, 2, 3, 4, 5, 8, 9} is a

3-adjacency basis of this graph.

Proposition 37. [11] Let H be graph of order n ≥ 2. If for any adjacency basis

A of H, there exists h ∈ V (H)−A such that A ⊆ NH(h), then

adim1(K1 +H) = adim1(H) + 1,

otherwise,

adim1(K1 +H) = adim1(H).

Theorem 38. For any nontrivial graph H,

adim2(K1 +H) ≤ adim2(H) + 2.

Proof. Let A be a 2-adjacency basis of H and let u be the vertex of K1. Notice
that there exists at most one vertex x ∈ V (H) such that A ⊆ NH(x). Now, if
|A − NH(v)| ≥ 1 for all v ∈ V (H), then we define X = A ∪ {u} and, if there
exists x ∈ V (H) such that A ⊆ NH(x), then we define X = A ∪ {x, u}. We claim
that X is a 2-adjacency generator for K1 +H . To show this, we first note that for
any y ∈ V (H) we have that |CK1+H(u, y) ∩X | = |((A − NH(y)) ∪ {u}) ∩X | ≥ 2.
Moreover, for any a, b ∈ V (H) we have that CK1+H(a, b) = CH(a, b). Therefore, X
is a 2-adjacency generator for K1 + H and, as a consequence, adim2(K1 + H) ≤
adim2(H) + 2.
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We would point out that if for any 2-adjacency basis A of a graph H ,
there exists a vertex x such that A ⊆ NH(x), then not necessarily adim2(K1 +
H) = adim2(H) + 2. To see this, consider the graph G shown Figure 4, where
{v2, v3, v4, v5} is the only 2-adjacency basis of G and {v2, v3, v4, v5} ⊆ NH(v1).
However, {v1, v6, v7, v8, v9} is a 2-adjacency basis ofK1+G and so adim2(K1+H) =
adim(H)+1. Now, we prove some results showing that the inequality given in The-
orem 38 is tight.

Theorem 39. Let H be a nontrivial graph. If there exists a vertex x of degree

δ(x) = |V (H)| − 1 not belonging to any 2-adjacency basis of H, then

adim2(K1 +H) = adim2(H) + 2.

Proof. Let u be the vertex of K1 and let x ∈ V (H) be a vertex of degree
δ(x) = |V (H)| − 1 not belonging to any 2-adjacency basis of H . In such a case,
CK1+H(x, u) = {x, u} and, as a result, both x and u must belong to any 2-adjacency
basis X of K1+H . Since X−{u} is a 2-adjacency generator for H and x ∈ X−{u}
we conclude that |X − {u}| ≥ adim2(H) + 1 and so adim2(K1 + H) = |X | ≥
adim2(H) + 2. By Theorem 38 we conclude the proof.

Examples of graphs satisfying the premises of Theorem 39 are the fan graphs
F1,n = K1+Pn and the wheel graphsW1,n = K1+Cn for n ≥ 7. For these graphs we
have adim2(K1+F1,n) = adim2(F1,n)+2 and adim2(K1+W1,n) = adim2(W1,n)+2.

Theorem 40. Let H be a graph having an isolated vertex v and a vertex u of degree

δ(x) = |V (H)| − 2. If for any 2-adjacency basis B of H, neither u nor v belongs to

B, then

adim2(K1 +H) = adim2(H) + 2.

Proof. Let u be the vertex of K1. Since CK1+H(x, u) = {x, u, v}, at least two
vertices of {x, u, v} must belong to any 2-adjacency basis X of K1 +H . Then we
have that x ∈ X − {u} or v ∈ X − {u}. Since X − {u} is a 2-adjacency generator
for H , we conclude that if |X ∩ {x, v}| = 1, then adim2(K1 +H) > |X − {u}| ≥
adim2(H) + 1, whereas if |X ∩ {x, v}| = 2, then adim2(K1 + H) ≥ |X − {u}| ≥
adim2(H) + 2. Hence, adim2(K1 +H) = |X | ≥ adim2(H) + 2. By Theorem 38 we
conclude the proof.

For instance, we take a family of graphs G = {G1, G2, . . .} such that for any
Gi ∈ G, every vertex in V (Gi) belongs to a non-singleton true twin equivalence class.
Then X =

⋃

Gi∈G V (Gi) is the only 2-adjacency basis of H = K1∪(K1+
⋃

Gi∈G Gi).
Therefore, adim2(K1 +H) = adim2(H) + 2.

Proposition 41. Let H be graph and k ∈ {1, . . . , C(K1 + H)}. If there exists a

vertex x ∈ V (H) and a k-adjacency basis A of H such that A ⊆ NH(x), then

adimk(K1 +H) ≤ adimk(H) + k.



122 A. Estrada-Moreno, Y. Ramı́rez-Cruz, J. A. Rodŕıguez-Velázquez

Proof. Let u be the vertex of K1 and assume that there exists a vertex v1 ∈ V (H)
and a k-adjacency basis A of H such that A ⊆ NH(v1). Since k ≤ |V (H)| −
∆(H) + 1, we have that |V (H) − NH(v1)| ≥ k − 1. With this fact in mind, we
shall show that X = A ∪ {u} ∪ A′ is a k-adjacency generator for K1 +H , where
A′ = ∅ if k = 1 and A′ = {v1, v2, . . . , vk−1} ⊂ V (H) − NH(v1) if k ≥ 2. To this
end we only need to check that |CK1+H(u, v) ∩X | ≥ k, for all v ∈ V (H). On one

hand, |CK1+H(u, v1) ∩X | = |{u} ∪ A′| = k. On
the other hand, since A ⊆ NH(v1), for any v ∈
V (H)−{v1} we have that |A−NH(v)| ≥ k and,
as a consequence, |CK1+H(u, v)∩X | ≥ k. There-
fore, X is a k-adjacency generator for K1 + H
and, as a result, adimk(K1 + H) ≤ |X | =
adimk(H) + k. �

The bound above is tight. It is achieved, for
instance, for the graph shown in Figure 6. In this
case adim3(K1 +H) = adim3(H) + 3 = 9. The
set {2, 3, 5, 6, 7, 9} is the only 3-adjacency basis of
H , whereas 〈u〉+H has four 3-adjacency bases,
i.e., {1, 2, 3, 4, 5, 6, 7, 8, u}, {1, 2, 3, 4, 5, 6, 7, 9, u}
{1, 2, 3, 4, 5, 7, 8, 9, u} and {1, 2, 3, 4, 6, 7, 8, 9, u}.

Figure 6. The set

A = {2, 3, 5, 6, 7, 9} is the only

3-adjacency basis of H and

A ⊂ NH(1).

Conjecture 42. Let H be graph of order n ≥ 2 and k ∈ {1, . . . , C(K1+H)}. Then

adimk(K1 +H) ≤ adimk(H) + k.

We have shown that Conjecture 42 is true for any graphH and k ∈ {1, 2}, and
for any H and k satisfying the premises of Proposition 41. Moreover, in order to
assess the potential validity of Conjecture 42, we explored the entire set of graphs of
order n ≤ 11 and minimum degree two by means of an exhaustive search algorithm.
This search yielded no graph H such that adimk(K1 + H) > adimk(H) + k, k ∈
{3, 4}, a fact that empirically supports our conjecture.

4.2. The k-adjacency dimension of G+ H for G 6∼= K1 and H 6∼= K1

Two different vertices u, v of G+H belong to the same twin equivalence class
if and only if at least one of the following three statements hold.

(a) u, v ∈ V (G) and u, v belong to the same twin equivalence class of G.

(b) u, v ∈ V (H) and u, v belong to the same twin equivalence class of H .

(c) u ∈ V (G), v ∈ V (H), NG[u] = V (G) and NH [v] = V (H).

The following two remarks are direct consequence of Corollary 14.

Remark 43. Let G and H be two graphs of order n1 ≥ 2 and n2 ≥ 2, respectively. Then
adim2(G+H) = n1 + n2 if and only if one of the two following statements hold.
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(a) Every vertex of G belongs to a non-singleton twin equivalence class of G and every
vertex of H belongs to a non-singleton twin equivalence class of H .

(b) ∆(G) = n1 − 1, ∆(H) = n2 − 1, every vertex u ∈ V (G) of degree δ(u) < n1 − 1
belongs to a non-singleton twin equivalence class of G and every vertex v ∈ V (H) of
degree δ(v) < n2 − 1 belongs to a non-singleton twin equivalence class of H .

Let G and H be two graphs of order n1 ≥ 2 and n2 ≥ 2, respectively. If
x, y ∈ V (G), then CG+H(x, y) = CG(x, y). Analogously, if x, y ∈ V (H), then
CG+H(x, y) = CH(x, y). Also, if x ∈ V (G) and y ∈ V (H), then CG+H(x, y) =
(V (G)−NG(x)) ∪ (V (H)−NH(y)). Therefore,

C(G+H) = min{C(G), C(H), n1 −∆(G) + n2 −∆(H)}.

Theorem 44. Let G and H be two nontrivial graphs. Then the following assertions

hold:

(i) For any k ∈ {1, . . . , C(G+H)},

adimk(G+H) ≥ adimk(G) + adimk(H).

(ii) For any k ∈ {1, . . . ,min{C(H), C(K1 +G)}}

adimk(G+H) ≤ adimk(K1 +G) + adimk(H).

Proof. First we proceed to deduce the lower bound. Let A be a k-adjacency basis
of G +H , AG = A ∩ V (G), AH = A ∩ V (H) and let x, y ∈ V (G) be two different
vertices. Notice that AG 6= ∅ and AH 6= ∅, as n1 ≥ 2 and n2 ≥ 2. Now, since
CG+H(x, y) = CG(x, y), it follows that |AG ∩ CG(x, y)| = |A ∩ CG+H(x, y)| ≥ k, and
as a consequence, AG is a k-adjacency generator for G. By analogy we deduce
that AH is a k-adjacency generator for H . Therefore, adimk(G + H) = |A| =
|AG|+ |AH | ≥ adimk(G) + adimk(H).

To obtain the upper bound, first we suppose that there exists a k-adjacency
basis U of K1 +G such that the vertex of K1 does not belong to U . We claim that
for any k-adjacency basis B of H the set X = U ∪ B is a k-adjacency generator
for G + H . To see this we take two different vertices a, b ∈ V (G + H). If a, b ∈
V (G), then |CG+H(a, b) ∩ X | = |CK1+G(a, b) ∩ U | ≥ k. If a, b ∈ V (H), then
|CG+H(a, b)∩X | = |CH(a, b)∩B| ≥ k. Now, assume that a ∈ V (G) and b ∈ V (H).
Since U is a k-adjacency generator for 〈b〉+G, we have that |C〈b〉+G(a, b)∩U | ≥ k.
Hence, |CG+H(a, b) ∩ X | = |C〈b〉+G(a, b) ∩ U | ≥ k. Therefore, X is a k-adjacency
generator for G +H and, as a consequence, adimk(G + H) ≤ |X | = |U | + |B| =
adimk(K1 +G) + adimk(H).

Suppose from now on that the vertex u of K1 belongs to any k-adjacency
basis U of K1 +G. We differentiate two cases:

Case 1. For any k-adjacency basis B of H , there exists a vertex x such that
B ⊆ NH(x). We claim that X = U ′∪(B∪{x}) is a k-adjacency generator for G+H ,
where U ′ = U − {u}. To see this we take two different vertices a, b ∈ V (G +H).
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Notice that since B is k-adjacency basis of H , there exists exactly one vertex x ∈
V (H) such that B ⊆ NH(x) and for any y ∈ V (H)−{x} it holds |B−NH(y)| ≥ k.
If a, b ∈ V (G), then |CG+H(a, b)∩X | = |CK1+G(a, b)∩U ′| = |CK1+G(a, b)∩U | ≥ k.
If a, b ∈ V (H), then |CG+H(a, b)∩X | = |CH(a, b)∩(B∪{x})| ≥ k. Now, assume that
a ∈ V (G) and b ∈ V (H). Since U ′ ∪ {b} is a k-adjacency basis of 〈b〉+G, we have
that |C〈b〉+G(a, b)∩U ′| ≥ k−1. Furthermore, |C〈a〉+H(a, b)∩ (B∪{x})| ≥ 1. Hence,
|CG+H(a, b)∩X | = |C〈b〉+G(a, b)∩U ′|+ |C〈a〉+H(a, b)∩ (B∪{x})| ≥ k. Therefore, X
is a k-adjacency generator for G+H and, as a consequence, adimk(G+H) ≤ |X | =
|U ′|+|B∪{x}| = (adimk(K1+G)−1)+(adimk(H)+1) = adimk(K1+G)+adimk(H).

Case 2. There exists a k-adjacency basis B′ of H such that |B′−NH(h′)| ≥ 1,
for all h′ ∈ V (H). We take X = U ′ ∪B′ and we proceed as above to show that X
is a k-adjacency generator for G + H . As above, for a, b ∈ V (G) or a, b ∈ V (H)
we deduce that |CG+H(a, b) ∩ X | ≥ k. Now, for a ∈ V (G) and b ∈ V (H) we have
|C〈b〉+G(a, b) ∩ U ′| ≥ k − 1 and |C〈a〉+H(a, b) ∩ B′| ≥ 1. Hence, |CG+H(a, b) ∩X | =
|C〈b〉+G(a, b) ∩ U ′| + |C〈a〉+H(a, b) ∩ B| ≥ k and, as a consequence, adimk(G +
H) ≤ |X | = |U ′| + |B′| = (adimk(K1 + G) − 1) + adimk(H) ≤ adimk(K1 + G) +
adimk(H).

By Proposition 37 and Theorem 44 we obtain the following result.

Proposition 45. Let G and H be two non-trivial graphs. If for any adjacency

basis A of G, there exists g ∈ V (G) such that A ⊆ NG(g) and for any adjacency

basis B of H, there exists h ∈ V (H) such that B ⊆ NH(h), then

adim1(G+H) = adim1(G) + adim1(H) + 1

Otherwise,

adim1(G+H) = adim1(G) + adim1(H).

Corollary 46. Let G and H be two nontrivial graphs and k ∈ {1, . . . , C(G+H)}.
If adimk(K1 +G) = adimk(G), then

adimk(G+H) = adimk(G) + adimk(H).

In the previous section we showed that there are several classes of graphs
where adimk(K1 + G) = adimk(G). This is the case, for instance, of graphs of
diameter D(G) ≥ 6, or G ∈ {Pn, Cn}, n ≥ 7, or graphs of girth g(G) ≥ 5 and
minimum degree δ(G) ≥ 3. Hence, for any of these graphs, any nontrivial graph
H , and any k ∈ {1, . . . ,min{C(H), C(K1 + G)}} we have that adimk(G + H) =
adimk(G) + adimk(H).

Theorem 47. Let G and H be two nontrivial graphs. Then the following assertions

are equivalent:

(i) There exists a k-adjacency basis AG of G and a k-adjacency basis AH of H
such that |(AG−NG(x))∪(AH−NH(y))| ≥ k, for all x ∈ V (G) and y ∈ V (H).

(ii) adimk(G+H) = adimk(G) + adimk(H).
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Proof. Let AG be a k-adjacency basis of G and and let AH be a k-adjacency basis
ofH such that |(AG−NG(x))∪(AH −NH(y))| ≥ k, for all x ∈ V (G) and y ∈ V (H).
By Theorem 44, adimk(G+H) ≥ adimk(G) + adimk(H). It remains to prove that
adimk(G + H) ≤ adimk(G) + adimk(H). We will prove that A = AG ∪ AH is
a k-adjacency generator for G + H . We differentiate three cases for two vertices
x, y ∈ V (G +H). If x, y ∈ V (G), then the fact that AG is a k-adjacency basis of
G leads to k ≤ |AG ∩ CG(x, y)| = |A ∩ CG+H(x, y)|. Analogously we deduce the
case x, y ∈ V (H). If x ∈ V (G) and y ∈ V (H), then the fact that CG+H(x, y) =
(V (G)−NG(x))∪ (V (H)−NH(y)) and |(AG −NG(x))∪ (AH −NH(y))| ≥ k leads
to |A ∩ CG+H(x, y)| ≥ k. Therefore, A is a k-adjacency generator for G +H , as a
consequence, |A| = |AG|+ |AH | = adimk(G) + adimk(H) ≥ adimk(G+H).

On the other hand, let B be a k-adjacency basis of G +H such that |B| =
adimk(G) + adimk(H) and let BG = B ∩ V (G) and BH = B ∩ V (H). Since
for any g1, g2 ∈ V (G) and h ∈ V (H), h 6∈ CG+H(g1, g2), we conclude that BG

is a k-adjacency generator for G and, by analogy, BH is a k-adjacency generator
for H . Thus, adimk(G) ≤ |BG|, adimk(H) ≤ |BH | and |BG| + |BH | = |B| =
adimk(G) + adimk(H). Hence, |BG| = adimk(G), |BH | = adimk(H) and, as a
consequence, BG and BH are k-adjacency bases of G and H , respectively. If there
exists g ∈ V (G) and h ∈ V (H) such that |(BG−NG(g))∪ (BH −NH(h))| < k, then
|B ∩ CG+H(g, h)| = |(BG −NG(g)) ∪ (BH −NH(h))| < k, which is a contradiction.
Therefore, the result follows.

We would point out the following particular cases of the previous result.

Corollary 48. Let Cn be a cycle graph of order n ≥ 5 and Pn′ a path graph of

order n′ ≥ 4. If G ∈ {Kt + Cn, Nt + Cn}, then

adim1(G) =

⌊

2n+ 2

5

⌋

+ t− 1 and adim2(G) =
⌈n

2

⌉

+ t.

If G ∈ {Kt + Pn′ , Nt + Pn′}, then

adim1(G) =

⌊

2n′ + 2

5

⌋

+ t− 1 and adim2(G) =

⌈

n′ + 1

2

⌉

+ t.

Proof. Let G1 ∈ {Kt, Nt} and G2 ∈ {Pn, Cn}. By Propositions 32 and 33 we
deduce that adim2(G2)−∆(G2) ≥ 1. On the other hand, for any 2-adjacency basis
A of G1 and x ∈ V (G1) we have |B −NG1

(y)| ∈ {1, t}. Therefore, by Theorem 47
we obtain the result for G = G1 +G2.

Notice that for n ≥ 7 and n′ ≥ 6, the previous result can be derived from
Corollary 46.

Corollary 49. Let G be a graph of order n ≥ 7 and maximum degree ∆(G) ≤ 3.
Then for any integer t ≥ 2 and H ∈ {Kt, Nt},

adim2(G+H) = adim2(G) + t.
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Proof. By Theorem 18 we deduce that adim2(G) ≥ 4, so for any 2-adjacency basis
A of G and x ∈ V (G) we have |A − NG(x)| ≥ 1. Moreover, for any 2-adjacency
basis B of H and y ∈ V (H) we have |B −NH(y)| ∈ {1, t}. Therefore, by Theorem
47 we obtain the result.

Corollary 50. Let G and H be two graphs of order at least seven such that G is

k1-adjacency dimensional and H is k2-adjacency dimensional. For any integer k
such that ∆(G) + ∆(H)− 4 ≤ k ≤ min{k1, k2},

adimk(G+H) = adimk(G) + adimk(H).

Proof. By Theorem 18, for any positive integer k ≤ min{k1, k2}, we have that
adimk(G) ≥ k + 2 and adimk(H) ≥ k + 2. Thus, if k ≥ ∆(G) + ∆(H) − 4, then
(adimk(G) − ∆(G)) + (adimk(H) − ∆(H)) ≥ k. Therefore, by Theorem 47 we
conclude the proof.

As a particular case of the result above we derive the following remark.

Remark 51. Let G and H be two 3-regular graphs of order at least seven. Then

adim2(G+H) = adim2(G) + adim2(H).
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7. H. Fernau, J. A. Rodŕıguez-Velázquez: On the (adjacency) metric dimension of
corona and strong product graphs and their local variants: combinatorial and compu-
tational results. arXiv:1309.2275, 2013.

8. H. Fernau, J. A. Rodŕıguez-Velázquez: Notions of metric dimension of corona
products: Combinatorial and computational results. Lecture Notes in Comput. Sci.,
8476 (2014), 153–166.

9. F. Harary, R. A. Melter: On the metric dimension of a graph. Ars Combin., 2
(1976), 191–195.

10. C. Hernando, M. Mora, I. M. Pelayo, C. Seara, J. Cáceres, M. L. Puertas:
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