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Coalescence as one of the operations on a pair of graphs is signi�cant due to its simple form of chromatic polynomial.�e adjacency
matrix, Laplacian matrix, and signless Laplacian matrix are common matrices usually considered for discussion under spectral
graph theory. In this paper, we compute adjacency, Laplacian, and signless Laplacian energy (� energy) of coalescence of pair of
complete graphs. Also, as an application, we obtain the adjacency energy of subdivision graph and line graph of coalescence from
its � energy.

1. Introduction

�roughout the discussion by a graph we mean simple graph
without self loops or multiple edges. Let � be a simple
graph on � vertices with vertex set [V1, V2, . . . , V�]. �e line
graph of a graph � is the graph with vertex set as edge
set of � with two vertices (edges of G) adjacent if and
only if they are having a vertex in common. Similarly, the
subdivision graph of a graph � is the graph �(�) obtained
by inserting a vertex of degree two in each edge of �. �e
adjacency matrix of � denoted by �(�) is a matrix �(�) =[���] , where ��� = 1 if vertex V� is adjacent to V� and 0
otherwise. Clearly,�(�) is real symmetric so that eigenvalues
of �(�) which are roots of its characteristic equation given
by �(�; 	) = |	
 − �(�)| = 0 are real. �ey are denoted
by 	1, 	2, . . . , 	� and can be arranged in descending order
as 	1 ≥ 	2 ≥ ⋅ ⋅ ⋅ ≥ 	�. �e spectrum of � is collection
of eigenvalues along with their multiplicity and energy of
a graph is simply de�ned as ∑ |	�|. For more details and
rigorous treatment on adjacency spectra and energy, see [1–
4]. Let �� denote the degree of a vertex V� which is the number
of edges incident on it. �e degree matrix � is a diagonal
matrix having diagonal entry as the degree of the corre-
sponding vertex. We denote the average degree of a graph�, as avd(�) = twice the no edges of �/no. of vertices of �.

�e matrix �(�) = �(�) − �(�) is called Laplacian
matrix. �e roots of the characteristic polynomial of the
Laplacian matrix are called Laplacian eigenvalues denoted
by �1, �2, . . . , ��. �e matrix �(�) is also real symmetric but
singular so eigenvalues can be arranged as �1 ≥ �2 ≥ ⋅ ⋅ ⋅≥ �� = 0. �e Laplacian spectrum of � is the collection
of Laplacian eigenvalues along with their multiplicity and
Laplacian energy is de�ned as �L(�) = |∑�� − avd(�)|.

For an extensive literature on Laplacian spectra and
energy, one can refer to [5–11]. On similar lines, the signless
Laplacian matrix of a graph � is de�ned as �(�) = �(�) +�(�).�e signless Laplacian eigenvalues are also real and can
be denoted by V1, V2, . . . , V�.�e signless Laplacian energy (or
simply � energy) is de�ned similar to Laplacian energy as�SL(�) = |∑ V� − avd(�)|.

Some results on signless Laplacian energy are available in
[12–15]. �e Laplacian and signless Laplacian eigenvalues for
a connected graph are nonnegative.

Let �1 and �2 be graphs on disjoint sets of vertices,
respectively. Suppose � = {�1, �2, . . . , ��} is a clique in �1
and� = {�1, �2, . . . , ��} is a clique in �2. Let � be a graph
obtained from �1 and �2 by identifying (coalescing into a
single vertex) �� and �� 1 ≤ � ≤ �. �en, � is an overlap of�1 and�2 in��. It may be viewed as generalized coalescence
denoted by�1 ∘ �2.
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�e structure of �1 ∘ �2 depends on vertices chosen for
overlap. Its chromatic polynomial can be split into chromatic
polynomials of�1 and�2 (see [16]). If � = 1, we call it vertex
coalescence denoted by�1∘V�2 and for � = 2 we call it edge
coalescence denoted by �1∘��2. For vertex coalescence of
two graphs�1 and�2, the adjacency matrix has the form

� (�1∘V�2) = [[[
[

0 " "
"� � (�1 − �) #
"� # � (�2 − V)

]]]
]
. (1)

Similarly, the edge coalescence of two graphs �1 and �2
has the adjacency matrix structure

� (�1∘��2) = [[[
[

� (�2) " "
"� � (�1 − ') #
"� # � (�2 − ')

]]]
]
, (2)

where " is matrix of all 1’s and # is the matrix of all zeros
having appropriate order.

2. Results

2.1. Adjacency Energy

�eorem 1. 	e energy (adjacency energy) of��∘V�� is given
by �[��∘V��] = (* + � − 4) + |-| + |3| + |5|, where-, 3, and 5 are the roots of the cubic:

63 − (* + � − 4) 62 + (*� − 3* − 3� + 6) 6
+ (2*� − 3* − 3� + 4) = 0. (3)

Proof. �ecoalescence of the complete graphs�� and�� at a
point results in a graphwith*+�−1 vertices and (*�2+��2)
edges. �e adjacency matrix takes the form

� (��∘V��) = [[
[

0 "1×�−1 "1×�−1
"�−1×1 � (��−1) #
"�−1×1 # � (��−1)

]]
]

(4)

so that characteristic polynomial is

� [��∘V�� : 	] = >>>>	
 − � (��∘V��)>>>>

=
>>>>>>>>>>>>>>>

	 −"1×�−1 −"1×�−1
−"�−1×1 	
�−1 − � (��−1) #
−"�−1×1 # 	
�−1 − � (��−1)

>>>>>>>>>>>>>>>
. (5)

By performing �1 + ∑�−1�=2 ��/(	 − (* − 2)) and �1 +∑�+�−1�=�+1 ��/(	 − (� − 2)) in succession, we have

� [��∘V�� : 	] = (	 − * − 1
	 − (* − 2) −

� − 1
	 − (� − 2))

⋅ � [��−1 : 	] � [��−1 : 	]
= (	 − * − 1

	 − (* − 2) −
� − 1

	 − (� − 2)) [	 − (* − 2)]
⋅ (	 + 1)�−2 [	 − (� − 2)] (	 + 1)�−2 .

(6)

On simplifying, �nally we get

� [��∘V�� : 	] : (	 + 1)�+�−4 [	3 − (* + � − 4) 	2
+ (*� − 3* − 3� + 6) 	 + (* − 1) (� − 2)
+ (� − 1) (* − 2)] .

(7)

From this equation, the theorem follows.

�eorem2. 	e energy (adjacency energy) of edge coalescence(��∘���) of complete graphs is given by�[��∘���] = (*+�−5) + |-| + |3| + |5|, where -, 3, and 5 are the roots of the cubic
equation:

63 − (* + � − 5) 62 + (*� − 4* − 4� + 11) 6
+ (3*� − 7* − 7� + 15) = 0. (8)

Proof. �e coalescence of the complete graphs�� and�� on
an edge results in a graph with* + � − 2 vertices and*�2 +��2 − 1 edges. �e adjacency matrix takes the form

� (��∘���) = [[[
[

� (�2) "2×�−2 "2×�−2
"�−2×2 � (�� − ') #
"�−2×2 # � (�� − ')

]]]
]

(9)

so that the characteristic polynomial of the edge coalescence
is

� [��∘��� : 	] = >>>>	
 − � (��∘���)>>>>

=
>>>>>>>>>>>>>>>

	
 − � (�2) −"2×�−2 −"2×�−2
−"�−2×2 	
 − � (�� − ') #
−"�−2×2 # 	
 − � (�� − ')

>>>>>>>>>>>>>>>
. (10)

By performing �� +∑��=3 ��/(	−*+3) for E = 1, 2 we have

� [(��∘���) : 	] =

>>>>>>>>>>>>>>>>>>>>>>>>>

	 − * − 2
	 − * + 3 −1 − * − 2

−* + 3 −"1×�−2 −"1×�−2
−1 − * − 2

−* + 3 	 − * − 2
	 − * + 3 −"1×�−2 −"1×�−2

# # 	
 − � (��−2) #
−"�−2×1 −"�−2×1 # 	
 − � (��−2)

>>>>>>>>>>>>>>>>>>>>>>>>>
. (11)
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By performing �� + ∑�+�−2�=�+1 ��/(	 − � + 3) for E = 1, 2 we
have

� [(��∘���) : 	] =

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

	 − * − 2
	 − * + 3 −

� − 2
	 − � + 3 −1 − * − 2

	 − * + 3 −
� − 2

	 − � + 3 −"1×�−2 −"1×�−2
−1 − * − 2

	 − * + 3 −
� − 2

	 − � + 3 	 − * − 2
	 − * + 3 −

� − 2
	 − � + 3 −"1×�−2 −"1×�−2

# # 	
 − � (��−2) #
# # # 	
 − � (��−2)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
= [	 − * − 2

	 − * + 3 −
� − 2

	 − � + 3]
2 − [−1 − * − 2

	 − * + 3 −
� − 2

	 − � + 3]
2 � [��−2 : 	] � [��−2 : 	] .

(12)

On expanding and simplifying, we get the required polyno-
mial and hence the theorem.

2.2. Laplacian Energy. Now we discuss the Laplacian energy
of coalescence.

Lemma 3 (see [17]). If G is any connected graph of order n
with Laplacian eigenvalues �1, �2, . . . , �� with �� = 0, then,
the number of spanning trees of G is given by

H (�) = �1, �2, . . . , ��−1� . (13)

�eorem 4. 	e Laplacian energy of the vertex coalescence of
complete graphs �� and �� is given by

�	 (��∘V��) = (3*
2 + 3�2 − 5* − 5� + 1)

(* + � − 1) . (14)

Proof. �e degree matrix of the vertex coalescence ��∘V��
with suitable labeling has the form

�[��∘V��] =

[[[[[[[[[[[[[[[[[[[[[[[[[
[

* + � − 2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0
0 * − 1 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0
0 0 * − 1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
0 0 0 ⋅ ⋅ ⋅ * − 1 0 0 0 0
0 0 0 ⋅ ⋅ ⋅ 0 � − 1 0 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0 � − 1 0 0
... ... ... ... ... ... ... d

...
0 0 0 0 0 0 0 ⋅ ⋅ ⋅ � − 1

]]]]]]]]]]]]]]]]]]]]]]]]]
]

(15)

�e adjacency matrix is

� (��∘V��) = [[[
[

# " "
"� � [��−1] #
"� # � [��−1]

]]]
]
. (16)
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�e Laplacian matrix now becomes

� (��∘V��) =

[[[[[[[[[[[[[[[[[[[[[[
[

* + � − 2 −1 −1 ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1
−1 * − 1 −1 ⋅ ⋅ ⋅ −1 0 0 ⋅ ⋅ ⋅ 0
−1 −1 * − 1 ⋅ ⋅ ⋅ −1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
−1 −1 −1 ⋅ ⋅ ⋅ * − 1 0 0 ⋅ ⋅ ⋅ 0
−1 0 0 ⋅ ⋅ ⋅ 0 � − 1 −1 ⋅ ⋅ ⋅ −1
−1 0 0 ⋅ ⋅ ⋅ 0 −1 � − 1 ⋅ ⋅ ⋅ −1
... ... ... ... ... ... ... d

...
−1 0 0 0 0 −1 −1 ⋅ ⋅ ⋅ � − 1

]]]]]]]]]]]]]]]]]]]]]]
]

(17)

so that the Laplacian polynomial is

>>>>�
 − � (��∘V��)>>>>

=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

� − (* + � − 2) 1 1 ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1
1 � − (* − 1) 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0
1 1 � − (* − 1) ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
1 1 1 ⋅ ⋅ ⋅ � − (* − 1) 0 0 ⋅ ⋅ ⋅ 0
1 0 0 ⋅ ⋅ ⋅ 0 � − (* − 1) 0 0 0
1 0 0 ⋅ ⋅ ⋅ 0 0 � − (* − 1) 0 0
... ... ... ... ... ... ... d

...
1 0 0 0 0 0 0 ⋅ ⋅ ⋅ � − (* − 1)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

. (18)

Performing �1 − (1/(� − 1))∑��=2 �� we get
>>>>�
 − � (��∘V��)>>>>

=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

� − (* + � − 2) − * − 1	 − 1 1 1 ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1
1 � − (* − 1) 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0
1 1 � − (* − 1) ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
1 1 1 ⋅ ⋅ ⋅ � − (* − 1) 0 0 ⋅ ⋅ ⋅ 0
1 0 0 ⋅ ⋅ ⋅ 0 � − (* − 1) 0 0 0
1 0 0 ⋅ ⋅ ⋅ 0 0 � − (* − 1) 0 0
... ... ... ... ... ... ... d

...
1 0 0 0 0 0 0 ⋅ ⋅ ⋅ � − (* − 1)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

. (19)
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Again performing �1 − (1/(� − 1))∑�+�−1�=�+1 �� and directly
expanding along �rst column, we get

>>>>�
 − � (��∘V��)>>>>
= [� − (* + � − 2) − � − 1� − 1 −

* − 1
� − 1 ]

⋅ M [��−1 : 	] M [��−1 : 	] = � [� − (* + � − 1)]
⋅ (� − 1) (� − *)�−2 (� − �)�−2 .

(20)

So that the Laplacian spectrum is �L(��∘V��) = *,* −2 times, �, � − 2 times,* + � − 1, 1, and 0.
Now the avd(��∘V��) = (*(*−1)+�(�−1))/(*+�−1);

hence, the Laplacian energy becomes

�L (��∘V��) =
>>>>>>>>>>
�+�−1∑
�=1

�� − * (* − 1) + � (� − 1)* + � − 1
>>>>>>>>>>

= >>>>>>>>* −
* (* − 1) + � (� − 1)

* + � − 1
>>>>>>>> (* − 2)

+ >>>>>>>>� −
* (* − 1) + � (� − 1)

* + � − 1
>>>>>>>> (� − 2)

+ >>>>>>>>* + � − 1 −
* (* − 1) + � (� − 1)

* + � − 1
>>>>>>>>

+ >>>>>>>>1 −
* (* − 1) + � (� − 1)

* + � − 1
>>>>>>>>

+ >>>>>>>>0 −
* (* − 1) + � (� − 1)

* + � − 1
>>>>>>>>

= 3*2 + 3�2 − 5* − 5� + 1* + � − 1 .

(21)

Corollary 5. 	e number of spanning trees of��∘V�� accord-
ing to Lemma 3 is H(��∘V��) = *(* − 2)�(� − 2)(* + � −1)/(* + � − 1) = *(* − 2)�(� − 2) as expected since ��∘V��
has a cut point with number of spanning trees *�−2 and ��−2
in each block (complete graph) separately.

�eorem 6. 	e Laplacian energy of the edge coalescence of
complete graphs �� and �� is given by

�	 (��∘���) =
>>>>>>>>
(* − �) (* − 1) + 2

* + � − 2
>>>>>>>> (* − 3)

+ >>>>>>>>
(� − *) (* − 1) + 2

* + � − 2
>>>>>>>> (� − 3)

+ >>>>>>>>>- −
*2 + �2 − * − � − 2

* + � − 2
>>>>>>>>>

+ >>>>>>>>>3 −
*2 + �2 − * − � − 2

* + � − 2
>>>>>>>>>

+ >>>>>>>>>5 −
*2 + �2 − * − � − 2

* + � − 2
>>>>>>>>> ,

(22)

where -, 3, and 5 are the roots of the cubic equation:
63 − 2 (* + � − 1) 62 + (*2 + �2 + 2*� − 4) 6

− 2 (* + � − 2)2 = 0. (23)

Proof. �e degree matrix of the edge coalescence (��∘���)
with suitable labeling has the form

�(��∘���) =

[[[[[[[[[[[[[[[[[[[[[[
[

* + � − 3 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0
0 * + � − 3 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0
0 0 * − 1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
0 0 0 ⋅ ⋅ ⋅ * − 1 0 0 0 0
0 0 0 ⋅ ⋅ ⋅ 0 � − 1 0 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0 � − 1 0 0
... ... ... ... ... ... ... d

...
0 0 0 0 0 0 0 ⋅ ⋅ ⋅ � − 1

]]]]]]]]]]]]]]]]]]]]]]
]

. (24)

�e adjacency matrix is

� (��∘���) =
[[[[[
[

# 1 "1×�−2 "1×�−2
1 0 "1×�−2 "1×�−2

"�−2×1 "�−2×1 � (��−2) #
"�−2×1 "�−2×1 # � (��−2)

]]]]]
]
.
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� (��∘V��) =

[[[[[[[[[[[[[[[[[[[[[[
[

* + � − 3 −1 −1 ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1
−1 * + � − 3 −1 ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1
−1 −1 * − 1 ⋅ ⋅ ⋅ −1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
−1 −1 −1 ⋅ ⋅ ⋅ * − 1 0 0 ⋅ ⋅ ⋅ 0
−1 −1 0 ⋅ ⋅ ⋅ 0 � − 1 −1 ⋅ ⋅ ⋅ −1
−1 −1 0 ⋅ ⋅ ⋅ 0 −1 � − 1 ⋅ ⋅ ⋅ −1
... ... ... ... ... ... ... d

...
−1 −1 0 ⋅ ⋅ ⋅ 0 −1 −1 ⋅ ⋅ ⋅ � − 1

]]]]]]]]]]]]]]]]]]]]]]
]

(25)

�e Laplacian polynomial is then given by

>>>>�
 − � (��∘���)>>>>

=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

� − (* + � − 3) 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1
1 � − (* + � − 3) 1 ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1
1 1 � − (* − 1) ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
1 1 1 ⋅ ⋅ ⋅ � − (* − 1) 0 0 ⋅ ⋅ ⋅ 0
1 1 0 ⋅ ⋅ ⋅ 0 � − (� − 1) 1 ⋅ ⋅ ⋅ 1
1 1 0 ⋅ ⋅ ⋅ 0 1 � − (� − 1) ⋅ ⋅ ⋅ 1
... ... ... ... ... ... ... d

...
1 1 0 ⋅ ⋅ ⋅ 0 1 1 ⋅ ⋅ ⋅ � − (� − 1)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

. (26)

Performing �1 − (1/(� − 2))∑��=3 �� and �2 − (1/(� −2))∑��=3 �� ,
>>>>�
 − � (��∘���)>>>>

=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

� − (* + � − 3) − * − 2� − 2 1 − * − 2� − 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1
1 − * − 2� − 2 � − (* + � − 3) − * − 2� − 2 1 ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1

1 1 � − (* − 1) ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
1 1 1 ⋅ ⋅ ⋅ � − (* − 1) 0 0 ⋅ ⋅ ⋅ 0
1 1 0 ⋅ ⋅ ⋅ 0 � − (� − 1) 1 ⋅ ⋅ ⋅ 1
1 1 0 ⋅ ⋅ ⋅ 0 1 � − (� − 1) ⋅ ⋅ ⋅ 1
... ... ... ... ... ... ... d

...
1 1 0 ⋅ ⋅ ⋅ 0 1 1 ⋅ ⋅ ⋅ � − (� − 1)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

(27)
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Again performing �1 − (1/(� − 2))∑�+�−2�=�+1 �� and �2 −(1/(� − 2))∑�+�−2�=�+1 �� and directly expanding give

>>>>�
 − � (��∘���)>>>> =
>>>>>>>>>>>>>>>>>>

� − (* + � − 3) − * + � − 4� − 2 1 − * + � − 4� − 2
1 − * + � − 4� − 2 � − (* + � − 3) − * + � − 4� − 2

>>>>>>>>>>>>>>>>>>
M [��−2 : �] M [��−2 : �] . (28)

On simplifying, we get the Laplacian polynomial as

>>>>�
 − � (��∘���)>>>> = � (� − *)�−3 (� − �)�−3 [�3
− 2 (* + � − 1) �2 + (*2 + �2 + 2*� − 4) �
− 2 (* + � − 2)2] .

(29)

On equating to zero and extracting eigenvalues from the
equation above, the theorem follows.

Note. When* = �, the Laplacian polynomial is

>>>>�
 − � (��∘���)>>>> = (� − �)2�−3
⋅ [�3 − 2 (2� − 1) �2 + (4�2 − 4) � − 8 (� − 1)2]
= (� − �)2�−3 [� − 2] [� − 2 (� − 1)2] .

(30)

�e Laplacian eigenvalues are �, 2� − 3 times, 2(� − 1) twice,
2, and 0 once.

Since adg(��∘���) = (�2 − � − 1)/(2� − 2) the Laplacian
energy is

�L (��∘���) =
>>>>>>>>>0 −

�2 − � − 1
2� − 2

>>>>>>>>> +
>>>>>>>>>2 −

�2 − � − 1
2� − 2

>>>>>>>>>
+ >>>>>>>>>� −

�2 − � − 1
2� − 2

>>>>>>>>> (2� − 3)

+ >>>>>>>>>2 (� − 1) −
�2 − � − 1
2� − 2

>>>>>>>>> × (2)

= 2�3 + �2 − 5� + 62� − 2 for � = 2, 3, 4,

= 2�3 + 3�2 − 15� + 92� − 2 for � ≥ 5.
(31)

2.3. Signless Laplacian Energy. Now we consider the case
of signless Laplacian matrix of the coalescence of complete
graphs and deduce the corresponding energy. Before we do
so, consider the following results.

Lemma 7 (see [17]). If G is any graph with p vertices and
q edges, then characteristic polynomial of line graph M(�) in
terms of � (signless Laplacian) polynomial is given by

� [M (�) : 	] = (	 + 2)
−� � [� : 	 + 2] . (32)

Lemma 8 (see [18]). If G is any graph with p vertices and q
edges, then characteristic polynomial of subdivision graph �(�)
in terms of � (signless Laplacian) polynomial is given by

� [� (�) : 	] = 	
−��[� : 	2] . (33)

�eorem9. 	e signless Laplacian energy of the vertex coales-
cence of complete graphs �� and �� is given by

��	 (��∘V��)

= |*� − 3* − � + 5| (* − 2) + |*� − 3� − * + 5| (� − 2) + >>>>2*� − 3.5* − 3.5� + 6 + √�>>>> + >>>>2*� − 3.5* + 3.5� + 6 − √�>>>> + |2*� − * − � + 7|* + � − 2 ,
(34)

where � = (* − �)2 + * + � − 1.75.
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Proof. From the degree matrix and adjacency matrix of the
vertex coalescence (��∘V��), we have the signless Laplacian
matrix:

� (��∘V��) =

[[[[[[[[[[[[[[[[[[[[[[
[

* + � − 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1
1 * − 1 1 ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1
1 1 * − 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
1 1 1 ⋅ ⋅ ⋅ * − 1 0 0 ⋅ ⋅ ⋅ 0
1 0 0 ⋅ ⋅ ⋅ 0 � − 1 1 ⋅ ⋅ ⋅ 1
1 0 0 ⋅ ⋅ ⋅ 0 1 � − 1 ⋅ ⋅ ⋅ 1
... ... ... ... ... ... ... d

...
1 0 0 ⋅ ⋅ ⋅ 0 1 1 ⋅ ⋅ ⋅ � − 1

]]]]]]]]]]]]]]]]]]]]]]
]

. (35)

�e signless Laplacian polynomial is then

>>>>]
 − � (��∘V��)>>>>

=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

] − (* + � − 2) −1 −1 ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1
−1 ] − (* − 1) −1 ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1
−1 −1 ] − (* − 1) ⋅ ⋅ ⋅ −1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
−1 −1 −1 ⋅ ⋅ ⋅ ] − (* − 1) 0 0 ⋅ ⋅ ⋅ −1
−1 0 0 ⋅ ⋅ ⋅ 0 ] − (� − 1) −1 ⋅ ⋅ ⋅ −1
−1 0 0 ⋅ ⋅ ⋅ 0 −1 ] − (� − 1) ⋅ ⋅ ⋅ 0
... ... ... ... ... ... ... d

...
−1 0 0 ⋅ ⋅ ⋅ 0 −1 −1 ⋅ ⋅ ⋅ ] − (� − 1)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

. (36)

Performing �1 + (1/(] − 2* + 3))∑��=2 ��,
>>>>]
 − � (��∘V��)>>>>

=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

] − (* + � − 2) − * − 1
] − (* − 1) −1 −1 ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1

−1 ] − (* − 1) −1 ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1
−1 −1 ] − (* − 1) ⋅ ⋅ ⋅ −1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
−1 −1 −1 ⋅ ⋅ ⋅ ] − (* − 1) 0 0 ⋅ ⋅ ⋅ −1
−1 0 0 ⋅ ⋅ ⋅ 0 ] − (� − 1) −1 ⋅ ⋅ ⋅ −1
−1 0 0 ⋅ ⋅ ⋅ 0 −1 ] − (� − 1) ⋅ ⋅ ⋅ 0
... ... ... ... ... ... ... d

...
−1 0 0 ⋅ ⋅ ⋅ 0 −1 −1 ⋅ ⋅ ⋅ ] − (� − 1)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

. (37)
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Again performing �1 + (1/(] − 2* + 3))∑�+�−1�=�+1 �� then

directly expanding along �rst column, we obtain

>>>>]
 − � (��∘V��)>>>> = [] − (* + � − 3)]
⋅ [] − (* − 2)]�−2 [] − (� − 2)]�−2
⋅ []2 − (2* + 2� − 5) ] + 4*� − 6* − 6� + 8] .

(38)

�e signless Laplacian eigenvalues are (* − 2)(* − 2)
times, (� − 2)(� − 2) times, (* + � − 2.5) ±√(* − �)2 + * + � − 1.75, and* + � − 3.

Now the adg(��∘���) = (*(* − 1) + �(� − 1) − 1)/(* +� − 2); hence, the theorem follows.

Corollary 10. From Lemma 7, the energy (adjacency energy)
of line graph of ��∘V�� is given by

� [M (��∘V��)] = (*2 + �2 − 3* − 3� + 2)
+ (* − 2) |* − 4| + (� − 2) |� − 4|
+ (2* + 2� − 9) *, � ≥ 3.

(39)

In particular for*, � ≥ 4,
� [M (��∘V��)] = 2 (* − 2)2 + 2 (� − 2)2 − 3

+ 2√(* − �)2 + * + � − 1.75.
(40)

Corollary 11. From Lemma 8, the energy (adjacency) of
subdivision graph of ��∘V�� where*, � ≥ 2, is given by

� [� (��∘V��)] = 2√* + � − 3 + 2√* − 2 (* − 2)
+ 2√� − 2 (� − 2)

+ √2√(2* + 2� − 5)
± 2√*2 + �2 − 11* − 11� − 8.

(41)

�eorem 12. 	e signless Laplacian energy of the edge coales-
cence of complete graphs �� and �� is given by

��	 (��∘���) = >>>>>>>
2*� − 5* − 5� + 10

* + � − 2
>>>>>>> (* + � − 2)

+ >>>>>>>>>
*� − �2 − 3* − � + 6

* + � − 2
>>>>>>>>> (* − 3)

+ >>>>>>>>>
*� − *2 − 3� − * + 6

* + � − 2
>>>>>>>>> (� − 3)

+ >>>>>>>>>- −
*2 + �2 − * − � − 2

* + � − 2
>>>>>>>>>

+ >>>>>>>>>3 −
*2 + �2 − * − � − 2

* + � − 2
>>>>>>>>>

+ >>>>>>>>>5 −
*2 + �2 − * − � − 2

* + � − 2
>>>>>>>>> ,

(42)

where -, 3, and 5 are roots of the cubic equation:
63 − (3* + 3� − 10) 62

+ 2 (*2 + �2 + 4*� − 11* − 11� + 20) 6
− 4 (* + � − 4) (* − 2) (� − 2) = 0.

(43)

Proof. From the degree and adjacency matrix, the signless
Laplacian matrix of the edge coalescence is

� (��∘���) =

[[[[[[[[[[[[[[[[[[[[[[[[[[
[

* + � − 3 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1
1 * + � − 3 1 ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅ 1
1 1 * − 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
1 1 1 ⋅ ⋅ ⋅ * − 1 0 0 ⋅ ⋅ ⋅ 0
1 1 0 ⋅ ⋅ ⋅ 0 � − 1 1 ⋅ ⋅ ⋅ 1
1 1 0 ⋅ ⋅ ⋅ 0 1 � − 1 ⋅ ⋅ ⋅ 1
... ... ... ... ... ... ... d

...
1 1 0 ⋅ ⋅ ⋅ 0 1 1 ⋅ ⋅ ⋅ � − 1

]]]]]]]]]]]]]]]]]]]]]]]]]]
]

. (44)
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�e signless Laplacian polynomial is then given by

>>>>]
 − � (��∘���)>>>>

=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

] − (* + � − 3) −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1
−1 ] − (* + � − 3) −1 ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1
−1 −1 ] − (* − 1) ⋅ ⋅ ⋅ −1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
−1 −1 −1 ⋅ ⋅ ⋅ ] − (* − 1) 0 0 ⋅ ⋅ ⋅ 0
−1 −1 0 ⋅ ⋅ ⋅ 0 ] − (� − 1) 1 ⋅ ⋅ ⋅ −1
−1 −1 0 ⋅ ⋅ ⋅ 0 −1 ] − (� − 1) ⋅ ⋅ ⋅ −1
... ... ... ... ... ... ... d

...
−1 −1 0 ⋅ ⋅ ⋅ 0 −1 −1 ⋅ ⋅ ⋅ ] − (� − 1)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

. (45)

Performing �1, �2 + (1/(] − 2* + 4))∑��=3 ��,
>>>>]
 − � (��∘���)>>>>

=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

] − (* + � − 3) − * − 2
] − 2* + 4 −1 − * − 2

] − 2* + 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1
−1 − * − 2

] − 2* + 4 ] − (* + � − 3) − * − 2
] − 2* + 4 −1 ⋅ ⋅ ⋅ −1 −1 −1 ⋅ ⋅ ⋅ −1

0 0 ] − (* − 1) ⋅ ⋅ ⋅ −1 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

... ... ... ... ...
0 0 −1 ⋅ ⋅ ⋅ ] − (* − 1) 0 0 ⋅ ⋅ ⋅ 0
−1 −1 0 ⋅ ⋅ ⋅ 0 ] − (� − 1) −1 ⋅ ⋅ ⋅ −1
−1 −1 0 ⋅ ⋅ ⋅ 0 −1 ] − (� − 1) ⋅ ⋅ ⋅ −1
... ... ... ... ... ... ... d

...
−1 −1 0 ⋅ ⋅ ⋅ 0 −1 −1 ⋅ ⋅ ⋅ ] − (� − 1)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

. (46)

Again performing �1, �2 + (1/(] − 2))∑�+�−2�=3 �� and ex-

panding directly yield

>>>>]
 − � (��∘���)>>>> = � (��−2 : ]) � (��−2 : ])

⋅
>>>>>>>>>>>>>>>>

] − (* + � − 3) − * − 2
] − (2* + 4) −

� − 2
] − (2� + 4) −1 − * − 2

] − (2* + 4) −
� − 2

] − (2� + 4)
−1 − * − 2

] − (2* + 4) −
� − 2

] − (2� + 4) ] − (* + � − 3) − * − 2
] − (2* + 4) −

� − 2
] − (2� + 4)

>>>>>>>>>>>>>>>>
. (47)

On performing elementary operations, we �nally arrive at

>>>>]
 − � (��∘���)>>>>
= [] − (* + � − 4)] [] − (* − 2)]�−3 [] − (� − 2)]�−3 []3
− (3* + 3� − 10) ]2

+ (2*2 + �2 + 4*� − 11* − 11� + 20) ]
− 4 (* + � − 4) (* − 2) (� − 2)] .

(48)

On equating to zero and extracting eigenvalues from the
equation above, the theorem follows.
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Corollary 13. From Lemma 7, the energy (adjacency) of line
graph of ��∘��� is given by

� [M (��∘���)] = >>>>>*2 + �2 − 3* − 3� + 2>>>>>
+ |* + � − 6| + |* − 4| (* − 3)
+ |� − 4| (� − 3) + >>>>	1>>>> + >>>>	2>>>>
+ >>>>	3>>>> ,

(49)

where, 	1, 	2, and 	3 are the roots of the cubic equation:
	3 − (3* + 3� − 16) 	2

+ (2*2 + 2�2 + 8*� − 34* − 34� + 92) 	
+ 4 (*2 + �2 + 4*� − 14* − 14� + 32)
− (* + � − 4) (*� − 2* − 2� + 4) = 0.

(50)

Corollary 14. From Lemma 8, the energy (adjacency) of
subdivision graph of ��∘��� where*, � ≥ 2 is given by

� [� (��∘���)] = 2√* + � − 4 + 2√* − 2 (* − 3)
+ 2√� − 2 (� − 3) + >>>>>>>√	1

>>>>>>> +
>>>>>>>√	2

>>>>>>>
+ >>>>>>>√	3

>>>>>>> ,
(51)

where 	1, 	2, and 	3 are the roots of the equation
	3 − (3* + 3� − 10) 	2

+ 2 (*2 + �2 + 4*� − 11* − 11� + 20) 	
− 4 (* + � − 4) (* − 2) (� − 2) = 0.

(52)

Competing Interests

�e authors declare that they have no competing interests.

References
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[4] D. Stevanović, “Energy and NEPS of graphs,” Linear and
Multilinear Algebra, vol. 53, no. 1, pp. 67–74, 2005.

[5] J. Anderson and T. D.Morley, “Eigenvalues of the Laplacian of a
graph,” Linear andMultilinear Algebra, vol. 18, no. 2, pp. 141–145,
1985.

[6] B.Mohar, “�e Laplacian spectrum of graphs,” inGraph	eory,
Combinatorics, and Applications, vol. 2, pp. 871–898, 1988.

[7] B. Zhou, I. Gutman, and T. Aleksić, “A note on Laplacian energy
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