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On the adjacent eccentric distance sum of graphs

Abstract. In this paper we show bounds for the adjacent eccentric distance
sum of graphs in terms of Wiener index, maximum degree and minimum
degree. We extend some earlier results of Hua and Yu [Bounds for the Adjacent
Eccentric Distance Sum, International Mathematical Forum, Vol. 7 (2002) no.
26, 1289–1294].
The adjacent eccentric distance sum index of the graph G is defined as

ξ
sv(G) =

∑

v∈V (G)

ε(v)D(v)

deg(v)
,

where ε(v) is the eccentricity of the vertex v, deg(v) is the degree of the vertex
v and D(v) =

∑
u∈V (G) d(u, v) is the sum of all distances from the vertex v.

1. Introduction. In this paper we will consider simple connected graphs.
Let us start with a few definitions and notations. Let G = (V (G), E(G)) be
a simple connected graph. For two vertex disjoint graphs G and F by G∪F

we denote the vertex disjoint union of G and F and by G + F we denote
the join of the graphs. Moreover, by 2G, we denote the graph G ∪G. If H
is a subgraph of G, then by G−H we denote the graph obtained from G by
deleting all edges of H. By G we denote the complement of the graph G.
For a vertex v ∈ V (G), by deg(v) we denote the degree of v in G. By the
symbol δ(G) (resp. ∆(G)) we denote the minimum degree (resp. maximum
degree) over all vertices of G. A graph G is r-regular if all vertices of G
have degree r. A graph G is (∆(G), r)-regular if all vertices of G have degree
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in the set {r,∆(G)} with integer r, r �= ∆(G). For vertices u, v ∈ V (G)
we define a distance d(u, v) as the length of the shortest path between u

and v. What is more, D(v) denotes the sum of all distances from the
vertex v. The eccentricity ε(v) of a vertex v is the maximum from the
distances between v and all other vertices. The minimum eccentricity over
all vertices is denoted by rad(G) and called the radius of the graph G, while
the maximum eccentricity is denoted by diam(G) and called the diameter
of the graph G. Let Kn be a complete graph and Pn a path on n vertices.
Let Si be the set of vertices of the eccentricity i in the graph G and let

ni = |Si|, where 1 ≤ i ≤ diam(G). Let

δǫ>2(G) =

{

min{deg(y)|y ∈ V (G)\(S1 ∪ S2)}, Si �= ∅ for i > 2

1, Si = ∅ for i > 2

∆ǫ>2(G) =

{

max{deg(y)|y ∈ V (G)\(S1 ∪ S2)}, Si �= ∅ for i > 2

∆(G), Si = ∅ for i > 2

and

∆ǫ=2(G) =

{

max{deg(y)|y ∈ S2}, S2 �= ∅

∆(G), S2 = ∅.

For other notation and terminology not defined here, the reader is referred
to [1].
The Wiener index – the oldest topological index and probably the most
used one is defined as a sum of the distances between all pairs of vertices in
a graph G:

W (G) =
∑

{u,v}⊆V (G)

d(u, v) =
1

2

∑

v∈V (G)

D(v).

The adjacent eccentric distance sum index (shortly AEDS) has been in-
troduced some time ago as follows

ξsv(G) =
∑

v∈V (G)

ε(v)D(v)

deg(v)
.

The index is studied in [7] (see also references) for some molecular graphs
and in [4] some relations to Wiener index are presented. Some mathematical
properties of other molecular topological indices and their application for
predicting biological and physical properties have been investigated in [2]
–[8]. In this paper we give additional properties of the adjacent eccentric
distance sum index for simple connected graphs.

2. Bounds for adjacent eccentric distance sum index. Hongbo Hua
and Guihai Yu [4] presented and proved a few theorems. Motivated by this
we were trying to find a more general bounds for the adjacent eccentric
distance sum index, but let us now focus on the theorems.
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Theorem 2.1 (Hua and Yu [4]). Let G be a connected graph on n vertices.
Then

ξsv(G) ≥ n1 +
2n(n− n1)

n− 2

with equality holding if and only if G ≃ Kn−
n−n1

2 K2, n−n1 is even, where
Kn − kK2 is a graph obtained from Kn by deleting k independent edges for
0 ≤ k ≤ ⌊n2 
.

The next theorem presents us the inequality holding for the adjacent
eccentric distance sum index and total eccentricity.

Theorem 2.2 (Hua and Yu [4]). Let G be a connected graph on n ≥ 3
vertices. Then

ξsv(G) ≥ ζ(G)

with equality holding if and only if G ≃ Kn.

The next theorem we want to present is simply connected with the Wiener
index.

Theorem 2.3 (Hua and Yu [4]). Let G be a connected graph on n ≥ 3
vertices with the minimum degree δ. Then

ξsv(G) ≤
2(n− δ)

δ
W (G)

with equality holding if and only if G ≃ Kn, or G ≃ Kn − n
2K2 for even n.

Let us now consider the first extended result of the Theorem 2.1.

Theorem 2.4. Let G be a connected graph on n vertices. Then

ξsv(G) ≥ n1 − 2n2 +
4n2(n− 1)

n− 2
+ 3(n− n1 − n2)

(

2 +
6

n− 3
−

n− 2

δǫ>2(G)

)

.

Moreover,

ξsv(G) ≥ n1 − 2n2 +
4n2(n− 1)

∆ǫ=2(G)
− 3(n− n1 − n2)

(

1−
2n− 1

∆ǫ>2(G)

)

.

Proof. Let S1 = {v1, v2, . . . , vn1} be the set of vertices with eccentricity
equal to 1 and S2 = {u1, u2, . . . , un2} the set of vertices with eccentricity
equal to 2. Let for y ∈ V (G), Ni(y) be the set of vertices at the distance i
from the vertex y, where 1 ≤ i ≤ ε(y).
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By the definition we have:

ξsv(G) =

n1
∑

i=1

ε(vi)D(vi)

deg(vi)
+

n2
∑

i=1

ε(ui)D(ui)

deg(ui)
+

∑

y∈V (G)\(S1∪S2)

ε(y)D(y)

deg(y)

≥ n1 + 2

n2
∑

i=1

D(ui)

deg(ui)
+ 3

∑

y∈V (G)\(S1∪S2)

D(y)

deg(y)

= n1 + 2

n2
∑

i=1

deg(ui) + 2(n− deg(ui)− 1)

deg(ui)

+ 3
∑

y∈V (G)\(S1∪S2)

1

deg(y)

ε(y)
∑

i=1

i · |Ni(y)|

≥ n1 + 2

n2
∑

i=1

− deg(ui) + 2n− 2

deg(ui)

+ 3
∑

y∈V (G)\(S1∪S2)

deg(y) + 2|N2(y)|+ 3(n− 1− deg(y)− |N2(y)|)

deg(y)

= n1 − 2n2 + 4

n2
∑

i=1

n− 1

deg(ui)

+ 3
∑

y∈V (G)\(S1∪S2)

−|N2(y)|+ 3(n− 1)− 2 deg(y)

deg(y)

≥ n1 − 2n2 +
4(n− 1)n2

n− 2
− 6(n− n1 − n2)

+
9(n− 1)(n− n1 − n2)

n− 3
− 3

∑

y∈V (G)\(S1∪S2)

|N2(y)|

deg(y)

≥ n1 − 2n2 +
4n2(n− 1)

n− 2
+ 6(n− n1 − n2) +

18

n− 3
(n− n1 − n2)

− 3(n− 2)
∑

y∈V (G)\(S1∪S2)

1

deg(y)

≥ n1 − 2n2 +
4n2(n− 1)

n− 2

+ 3(n− n1 − n2)

(

2 +
6

n− 3
−

n− 2

δǫ>2(G)

)

.

(2.1)

The last two inequalities hold by |N2(y)| ≤ n − 2 − deg(y) and by the
definition of δǫ>2(G). Thus we get the result.
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Moreover, we can apply ∆ǫ=2(G) and ∆ǫ>2(G) in the lines 7–8 of the
inequality (2.1) to count the following relation:

ξsv(G) ≥ n1 − 2n2 +
4n2(n− 1)

∆ǫ=2(G)
− 3(n− n1 − n2)

(

1−
2n− 1

∆ǫ>2(G)

)

.

The proof is done. �

We will now try to find a graph for which the equality holds.
Notice that if n1 �= 0, then n−n1−n2 = 0 and we have the result of The-
orem 2.1 by the first inequality of Theorem 2.4, and the second inequality
of Theorem 2.4 leads to the following second extension of Theorem 2.1.

Proposition 2.5. Let G be a connected graph on n vertices with n1 �= 0.
Let ∆(G) be the maximum vertex degree in G and δ(G) be the minimum
vertex degree in G. Then

ξsv(G) ≥ 3n1 − 2n+
4(n− 1)(n− n1)

∆ǫ=2(G)
.

The equality holds for all ∆(G)-regular graphs G with the diameter 2 and
for all (δ(G), n−1)-regular graphs G, where δ(G) < n−1. In particular the
equality is satisfied for G = Kn1 + Cn−n1 with n1 ≥ 1.

Moreover, we get the following new result.

Proposition 2.6. Let n1 = 0 and let

c(G) = min{n− 1− deg(y)− |N2(y)| : y ∈ V (G)\(S1 ∪ S2)}.

Then

ξsv(G) ≥
4n2(n− 1)

n− 2
− 2n2 − 3(n− n2)

(

1−
2n− 1

∆ǫ>2(G)

)

.

Moreover,

ξsv(G) ≥
4n2(n− 1)

∆ǫ=2(G)
− 2n2 − 3(n− n2)

(

1−
2(n− 1) + c(G)

∆ǫ>2(G)

)

.

The equality holds for an infinite family of graphs with diam(G) = 3.

Proof. The first inequality holds immediately by Theorem 2.4. The second
inequality holds by applying the definition of c(G) in the lines 7–8 of the
inequality (2.1). The equality holds for G = K2t − Bt−1,t−1 = Bt−1,t−1,
where t ≥ 2 and Bt−1,t−1 is the tree (double star) of order 2t with exactly
two adjacent vertices of degree t (see Figure 1). In this case rad(G) =
2, diam(G) = 3, c(G) = 1 and |S3| = 2. Similarly the graph obtained from
K|S3|t by joining new vertices yi for 1 ≤ i ≤ |S3| with t–sets of vertices of
K|S3|t pairwise disjoint satisfies the equality. �
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Figure 1. The graph Bt−1,t−1 with t > 1.

Now we present the first extension of Theorem 2.3.

Theorem 2.7. Let G be a connected graph on n ≥ 3 vertices with minimum
degree δ = δ(G). Let M1 be the set of vertices with the minimum degree.
Then

ξsv(G) ≤ 2
n− δ

δ
W (G)−

n

(δ + 1)δ

∑

v∈V (G)\M1

D(v).

Equivalently

ξsv(G) ≤
2(n− δ − 1)

δ + 1
W (G) +

n

δ(δ + 1)

∑

v∈M1

D(v).

Proof.

ξsv(G) =
∑

v∈V (G)

ε(v)D(v)

deg(v)

≤
∑

v∈V (G)

(n− deg(v))D(v)

deg(v)

≤
∑

v∈M1

(n− δ)D(v)

δ
+

∑

v∈V (G)\M1

(n− δ − 1)D(v)

δ + 1

=
(n− δ)(δ + 1)

δ(δ + 1)

∑

v∈M1

D(v) +
(n− δ − 1)δ

(δ + 1)δ

∑

v∈V (G)\M1

D(v)
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=
nδ + n− δ2 − δ

δ(δ + 1)

∑

v∈M1

D(v) +
nδ − δ2 − δ + n

δ(δ + 1)

∑

v∈V (G)\M1

D(v)

−
n

(δ + 1)δ

∑

v∈V (G)\M1

D(v)

= 2
n− δ

δ
W (G)−

n

(δ + 1)δ

∑

v∈V (G)\M1

D(v)

=
2(n− δ − 1)

δ + 1
W (G) +

n

δ(δ + 1)

∑

v∈M1

D(v).

�

Moreover, we get the following result.

Proposition 2.8. The equality in Theorem 2.7 holds for an infinite family
of graphs.

Proof. Notice that G = 2K1 + Kn−2 has δ(G) = n − 2. Thus ξsv(G) =
4

n−2W (G)− n. So we get the upper bound. �

Now we present the next extension of Theorem 2.3.

Theorem 2.9. Let G be a connected graph on n ≥ 3 vertices with minimum
degree δ = δ(G). Let δ2, δ3 be the second (third) minimum degree, respec-
tively. Let M1 be the set of vertices with degree equal to the minimum degree
and let M2 be the set of vertices with degree equal to the second minimum
degree. Then

ξsv(G) ≤ 2
n− δ

δ
W (G) +

n(δ − δ2)

δδ2

∑

v∈M2

D(v)

+
n(δ − δ3)

δδ3

∑

v∈V (G)\(M1∪M2)

D(v).

Equivalently

ξsv(G) ≤
2(n− δ2)

δ2
W (G) +

n(δ2 − δ3)

δ2δ3

∑

v∈V (G)\(M1∪M2)

D(v)

−
n(δ − δ2)

δδ2

∑

v∈M1

D(v).
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Proof.

ξsv(G) =
∑

v∈V (G)

ε(v)D(v)

deg(v)
≤

∑

v∈V (G)

(n− deg(v))D(v)

deg(v)

≤
∑

v∈M1

(n− δ)D(v)

δ
+

∑

v∈M2

(n− δ2)D(v)

δ2

+
∑

v∈V (G)\(M1∪M2)

(n− δ3)D(v)

δ3

=
n− δ

δ

∑

v∈M1

D(v) +
n− δ2

δ2

∑

v∈M2

D(v)

+
n− δ3

δ3

∑

v∈V (G)\(M1∪M2)

D(v)

=
(n− δ)δ2δ3

δδ2δ3

∑

v∈M1

D(v) +
(n− δ2)δδ3

δδ2δ3

∑

v∈M2

D(v)

+
(n− δ3)δδ2

δδ2δ3

∑

v∈V (G)\(M1∪M2)

D(v)

≤
n− δ

δ
2W (G) +

nδ3(δ − δ2)

δδ2δ3

∑

v∈M2

D(v)

+
nδ2(δ − δ3)

δδ2δ3

∑

v∈V (G)\(M1∪M2)

D(v)

= 2
n− δ

δ
W (G) +

n(δ − δ2)

δδ2

∑

v∈M2

D(v)

+
n(δ − δ3)

δδ3

∑

v∈V (G)\(M1∪M2)

D(v)

= 2
n− δ

δ
W (G) +

n(δ − δ2)

δδ2

∑

v∈M2

D(v)

+
n(δ − δ3)

δδ3

(

2W (G)−
∑

v∈M1∪M2

D(v)

)

= W (G)

(

2(n− δ)δ3
δδ3

+
2n(δ − δ3)

δδ3

)

+
n(δ − δ2)

δδ2

∑

v∈M2

D(v)

−
n(δ − δ3)

δδ3

∑

v∈M1∪M2

D(v)

=
2(n− δ3)

δ3
W (G) +

n(δ3 − δ2)

δ2δ3

∑

v∈M2

D(v)−
n(δ − δ3)

δδ3

∑

v∈M1

D(v).

(2.2)
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Moreover, by the lines 10–11 of the formula (2.2) we get the equivalent
relation:

ξsv(G) ≤
2(n− δ2)

δ2
W (G) +

n(δ2 − δ3)

δ2δ3

∑

v∈V (G)\(M1∪M2)

D(v)

−
n(δ − δ2)

δδ2

∑

v∈M1

D(v).

�

Proposition 2.10. The equality in Theorem 2.9 holds for an infinite family
of graphs.

Proof. Notice that we get the upper bound for all graphs isomorphic to
Kn1 + 2K1. �

By Theorem 2.9 we have the following result.

Proposition 2.11. If V (G)\(M1 ∪M2) = ∅ then

ξsv(G) ≤
2(n− δ2)

δ2
W (G)−

n(δ − δ2)

δδ2

∑

v∈M1

D(v)

or equivalently

ξsv(G) ≤ 2
n− δ

δ
W (G) +

n(δ − δ2)

δδ2

∑

v∈M2

D(v).

In future study we will characterize extremal graphs with respect to the
adjacent eccentric distance sum index among all n-vertex graphs from some
families of connected graphs.
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