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Dedicated to the memory of Julius Wess (1934–2007), colleague and friend for many years.

The historical developments of conformal transformations and symmetries are sketched: Their origin from
stereographic projections of the globe, their blossoming in two dimensions within the field of analytic com-
plex functions, the generic role of transformations by reciprocal radii in dimensions higher than two and
their linearization in terms of polyspherical coordinates by Darboux, Weyl’s attempt to extend General
Relativity, the slow rise of finite dimensional conformal transformations in classical field theories and the
problem of their interpretation, then since about 1970 the rapid spread of their acceptance for asymptotic
and structural problems in quantum field theories and beyond, up to the current AdS/CFT conjecture.
The occasion for the present article: hundred years ago Bateman and Cunningham discovered the form
invariance of Maxwell’s equations for electromagnetism with respect to conformal space-time transforma-
tions.
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1 Introduction

1.1 The occasion

Hundred years ago, on September 21 of 1908, Hermann Minkowski (1864–1909) gave his famous talk on
“Space and Time” at a congress in Cologne [1] in which he proposed to unify the traditionally independent
notions of space and time in view of Einstein’s (and Lorentz’s) work to a 4-dimensional space-time with a
corresponding metric

(x, x) = (ct)2 − x2 − y2 − z2 ≡ (x0)2 − (x1)2 − (x2)2 − (x3)2, x = (x0, x1, x2, x3), (1)

to what nowadays is called “Minkowski Space” M4 .
Only a few days later, on October 9, the London Mathematical Society received a paper [2] by Harry

Bateman (1882–1946) in which he showed – among others – that the wave equation

1
c2
∂2
t f(t, �x) − Δf(t, �x) = 0, Δ ≡ ∂2

x + ∂2
y + ∂2

z , �x = (x, y, z), (2)

is invariant under the (conformal) “inversion”

R : xμ → (Rx)μ ≡ x̂μ =
xμ

(x, x)
, μ = 0, 1, 2, 3, (3)

in the following sense: If f(x) is a solution of Eq. (2), then

f̂(x) =
1

(x, x)
f(Rx), (x, x) �= 0, (4)
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is a solution of the wave equation, too. Bateman generalized an important result from 1847 by William
Thomson (Lord Kelvin) (1824–1907) (more details in Sect. 2.3 below) which said: If h(�x) is a solution of
the Laplace equation

Δh(�x) = 0, (5)

then

ĥ(�x) =
1
r
h(�x/r), r = (x2 + y2 + z2)1/2, (6)

is a solution, too. In doing so Bateman introduced w = ict and r2 = x2 + y2 + z2 + w2. In a footnote
on pp. 75–76 of his paper he pointed out that Maxwell’s equations, as formulated by H.A. Lorentz (1853–
1928), take a more symmetrical form if the variable ict is used. He does not mention Minkowski’s earlier
introduction of x4 = ict in his fundamental treatise on the electrodynamics of moving bodies [3], following
the previous work by Lorentz, Poincaré (1854–1912) and Einstein (1879–1955),nor does Bateman mention
Einstein’s work. But he discusses “hexaspherical” coordinates as introduced by Darboux (see Sect. 2.4
below).

Bateman’s paper led, after a few months, to two more by himself [4,5] and one by his colleague Ebenezer
Cunningham (1881–1977) [6] in which the form (structure) invariance of Maxwell’s electrodynamical
equations – including non-vanishing charge and current densities and even special “ponderable bodies” –
under conformal space-time transformations is established, as a generalization of the invariances previously
discussed by Lorentz, Einstein and Minkowski.

Bateman’s paper is more modern and more elegant in that he uses efficiently a precursor of differential
forms (from 1-forms up to 4-forms) for his arguments.

In both papers there is no discussion of possible connections of the newly discovered additional form
invariance of Maxwell’s equation to new conservation laws. Here the remark is important that form invari-
ance of differential equations with respect to certain transformations in general leads to new solutions (see,
e.g. Eqs. (5) and (6)), but not necessarily to new conservation laws! See Sect. 4 for more details.

Bateman also speculated [4] that the conformal transformations may be related to accelerated motions,
an issue we shall encounter again below (Sect. 5.2).

The “correlations” between the two authors of the papers [4] and [6] are not obvious, but the initiative
appears to have been on Bateman’s side: In a footnote on the first page of his paper Cunningham says:
“This paper contains in an abbreviated form the chief parts of the work contributed by the author to a
joint paper by Mr. Bateman and himself read at the meeting held on February 11th, 1909, and also the
work of the paper by the author read at the meeting held on March 11th, 1909.” And in a footnote on the
third page Cunningham remarks: “This was pointed out to me by Mr. Bateman, a conversation with whom
suggested the present investigation.” Here Cunningham is refering to invariance of the wave equation under
the transformation by reciprocal radii Bateman had investigated before [2]. In the essential part II of his
paper Cunningham first gives the transformation formulae for the electric and magnetic fields with respect
to the inversion (3) and says in a footnote on p. 89 of [6] that the corresponding formulae for the scalar and
vector potentials were suggested to him by Bateman.

Bateman does not mention a joint paper with Cunningham which, as far as I know, was never published.
He also read his paper [4] at the meeting of the Mathematical Society on March 11th. On the second page
of his article [4] he says: “I have great pleasure in thanking Mr. E. Cunningham for the stimulus which
he gave to this research by the discovery of the formulae of transformation in the case of an inversion in
the four-dimensional space.” And in his third paper [5] when he discusses transformation by reciprocal
radii Bateman says: “Cunningham [6] has shown that any electrodynamical field may be transformed into
another by means of this transformation.”

So it is not clear who of the two – after Bateman’s first paper [2] on the wave equation – had the idea
or suggested to look for conformal invariance of Maxwell’s electrodynamics, and why the initial joint
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paper was not published. Perhaps the archives of the London Mathematical Society can shed more light on
this. From the publications one may conclude that Bateman found the transformations with respect to the
inversion (3) for the potentials and Cunningham – independently – those for the fields!

Those papers by Bateman and Cunningham were the beginning of discussing and applying conformal
transformations in modern physical field theories. But it took more than 50 years till the physical meaning
of those conformal transformations became finally clarified and its general role in theoretical physics fully
established. From about 1965/70 on conformal symmetries have been creatively and successfully exploited
for many physical systems or their more or less strong idealizations. The emphasis of these notes – which
are not complete at all – will be on different stages till about 1970 of that period and they will mention
more recent developments more superficially, because there are many modern reviews on the topics of
those activities.

1.2 The issue

Conformal transformations of geometrical spaces with a metric may appear in two different ways:

1.2.1 Conformal mappings as point transformations

Let Mn, n ≥ 2, be an n-dimensional Riemannian or pseudo-Riemannian manifold with local coordinates
x = (x1, . . . , xn) and endowed with a (pseudo)-Riemannian non-degenerate metric

gx =
n∑

μ,ν=1

gμν(x) dxμ ⊗ dxν , (7)

i.e. if

a =
n∑

μ=1

aμ(x)∂μ, b =
n∑

ν=1

bν(x)∂ν , (8)

are two tangent vectors at the point x, then they have the scalar product

gx(a, b) =
n∑

μ,ν=1

gμν(x) aμ bν , (9)

and the cosine of the angle between them is given by

gx(a, b)√
gx(a, a)

√
gx(b, b)

. (10)

Let M̂n be a second corresponding manifold with local coordinates x̂μ and metric ĝx̂. Then a mapping

x ∈ G ⊂ Mn → x̂ ∈ Ĝ ⊂ M̂n (11)

is said to be conformal if

ĝx̂ = C(x) gx, C(x) �= 0,∞, (12)

where the function C(x) depends on the mapping. The last equation means that the angle between two
smooth curves which meet at x is the same as the angle between the corresponding image curves meeting
at the image point x̂. Note that the mapping (11) does not have to be defined on the whole Mn.
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Two important examples:

I. Transformation by reciprocal radii
For the inversion (3) (mapping by “reciprocal radii” of the Minkowski space into itself) we have

(x̂, ŷ) =
(x, y)

(x, x) (y, y)
, (13)

and

ĝx̂ ≡ (dx̂0)2 − (dx̂1)2 − (dx̂2)2 − (dx̂3)2 =
1

(x, x)2
gx, (14)

gx = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 .

These equations show again that the mapping (3) is not defined on the light cone (x, x) = 0. We
shall later see how this problem can be cured by adding points at infinity, i.e. by extending the domain of
definition for the mapping (3).

It will be discussed in the next Sect. that there is an important qualitative difference as to conformal
mappings of Euclidean or pseudo-Euclidean spaces R

n with a metric

(x, x) =
n∑

μ,ν=1

ημν x
μxν , ημν = ±δμν , (15)

for n = 2 and for n > 2 :
For n = 2 any holomorphic or meromorphic function

w = u+ i v = f(z), z = x+ iy (16)

provides a conformal map of regions of the complex plane:

(du)2 + (dv)2 = |f ′(z)|2 [(dx)2 + (dy)2]. (17)

Here it is assumed that f ′(z) = df/dz does not vanish at z and that the Cauchy-Riemann eqs. hold (see
Eq. (36) below). A map by such a holomorphic or meromorphic function also preserves the orientation of
the angle. On the other hand, a corresponding antiholomorphic function g(z∗), z∗ = x− iy, does preserve
angles, too, but reverses their orientations.
One here can, of course, go beyond the complex plane to Riemann surfaces with more complicated struc-
tures.

For n > 2, however, conformal mappings constitute “merely” a [(n + 1)(n + 2)/2]-dimensional Lie
transformation group which may be generated by the inversion

R : xμ → (Rx)μ ≡ x̂μ =
xμ

(x, x)
, μ = 1, . . . , n > 2, R2 = 1, (18)

and the translations

Tn(b) : xμ → x̂μ = xμ + bμ, bμ ∈ R, μ = 1, . . . , n. (19)

II. Stereographic projections
A historically very important example is the stereographic projection of the surface S2 of a sphere with
radius a in R

3 onto the plane (see Fig. 1):
Let the south pole of the sphere coincide with the origin (x, y) = (0, 0) of the plane and its north pole

with the point (x = 0, y = 0, ζ = 2a) ∈ R
3. The projection is implemented by connecting the north pole
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x, ξ

y, η

ζ

N

P̂ (x, y)

S

P (ξ, η, ζ)
β

φ

a

Fig. 1 Stereographic projection: The points P on the surface of a sphere with radius a are mapped onto points P̂ in

the plane – and vice versa – by drawing a straight line from the north pole N of the sphere through P towards P̂ . The
mapping is conformal and arbitrary circles on the sphere are mapped onto circles or straight lines in the plane.

with points P̂ (x, y) in the plane by straight lines which intersect the surface of the sphere in the points
P (ξ, η, ζ) with ξ2 + η2 + (ζ − a)2 = a2. In this way the point P (ξ, η, ζ) of the sphere is mapped into the
point P̂ (x, y) of the plane.

Analytically the mapping is given by

x =
2a ξ

2a− ζ
, y =

2a η
2a− ζ

, ξ2 + η2 + ζ2 − 2a ζ = 0, (20)

with the inverse map

ξ =
4a2 x

4a2 + x2 + y2
, η =

4a2 y

4a2 + x2 + y2
, ζ =

2a (x2 + y2)
4a2 + x2 + y2

. (21)

Note that the north pole of the sphere is mapped to “infinity” of the plane which has to added as a “point”
in order to make the mapping one-to-one!

Parametrizing the spherical surface by an azimutal angle φ (“longitude”) in its equatorial plane ζ = a
parallel to the (x, y)-plane, with the initial meridian (φ = 0) given by the plane y = η = 0, and the angle
β (“latitude”) between that plane and the position vector of the point (ξ, η, ζ), with respect to the centre of
the sphere, with β positive on the northern half and negative on the southern half. We then have

ξ = a cosφ cosβ, η = a sinφ cosβ, ζ − a = a sinβ, (22)
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and

x =
2a cosφ cosβ

1 − sinβ
, y =

2a sinφ cosβ
1 − sinβ

,
cosβ

1 − sinβ
= tan(β/2 + π/4). (23)

The last equations imply

g(x,y) = (dx)2 + (dy)2 =
4

(1 − sinβ)2
g(φ,β), g(φ,β) = a2[cos2 β (dφ)2 + (dβ)2]. (24)

Here g(φ,β) is the standard metric on a sphere of radius a. Eq. (24) shows that the stereographic projection
(23) is a conformal one, with the least distortions of lengths from around the south pole (sinβ ≥ −1).

Besides being conformal, the stereographic projection given by the Eqs. (20) and (21) has the second
important property that circles on the sphere are mapped onto the circles on the plane (where straight lines
are interpreted as circles of infinite radii) and vice versa. This may be seen as follows: Any circle on the
sphere can be generated by the intersection of the sphere with a plane

c1 ξ + c2 η + c3 ζ + c0 = 0. (25)

Inserting the relations (21) with 2a = 1 into this equation yields

(c0 + c3)(x2 + y2) + c1 x+ c2y + c0 = 0, (26)

which for c0 + c3 �= 0 describes the circle

(x+ c̃1/2)2 + (y + c̃2/2)2 = ρ2, c̃j =
cj

c0 + c3
, j = 0, 1, 2 ; ρ2 = (c̃21 + c̃22)/4 − c̃0. (27)

The coefficients cj in Eq. (25) have to be such that the plane actually intersects or touches the plane. This
means that ρ2 ≥ 0 in Eq. (27).

If c0 + c3 = 0, c0 �= 0, then the Eqs. (25) and (26) can be reduced to

ĉ1 ξ + ĉ2 η − ζ + 1 = 0 (28)

and

ĉ1 x+ ĉ2 y + 1 = 0. (29)

Here the plane (28) passes through the north pole (0, 0, 1) and the image of the associated circle on the
sphere is the straight line (29).

If c3 = c0 = 0 then the plane (25) contains a meridian and Eq. (26) becomes a straight line through the
origin.

On the other hand the inverse image of the circle

(x− α)2 + (y − β)2 = ρ2 (30)

is, according to the Eqs. (20), associated with the plane

2α ξ + 2β η + (α2 + β2 − ρ2 − 1) ζ + ρ2 − α2 − β2 = 0, (31)

where the relation ξ2 + η2 = ζ (1 − ζ) has been used.
As the stereographic projection plays a very crucial role in the long history of conformal transforma-

tions, up to the newest developments, a few historical remarks are appropriate:
The early interest in stereographic projections was strongly influenced by its applications to the con-

struction of the astrolabe – also called planisphaerium –, an important (nautical) instrument [7] which used

www.ann-phys.org c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



638 H.A. Kastrup: Advancements of conformal transformations

a stereographic projection for describing properties of the celestial (half-) sphere in a plane. It may have
been known already at the time of Hipparchos (ca. 185 – ca. 120 B.C.) [8]. It was definitely used for that
purpose by Claudius Ptolemaeus (after 80 – about 160 A.D.) [9]. Ptolemaeus knew that circles are mapped
onto circles or straight lines by that projection, but it is not clear whether he knew that any circle on the
sphere is mapped onto a circle or a straight line. That property was proven by the astronomer and engineer
Al-Farghānı̄ (who lived in Bagdad and Cairo in the first half of the 9th century) [10] and independently
briefly after 1200 by the European mathematician “Jordanus de Nemore”, the identity of which appears to
be unclear [11].

That the stereographic projection is also conformal was explicitly realized considerably later: In his
book on the “Astrolabium” from 1593 the mathematician and Jesuit Christopher Clavius (1537–1612)
showed how to determine the angle at the intersection of two great circles on the sphere by merely measur-
ing the corresponding angle of their images on the plane [12]. This is equivalent to the assertion that the
projection is conformal [13].

Then there is Thomas Harriot (1560–1621) who about the same time also showed – in unpublished and
undated notes – that the stereographic projection is conformal. Several remarkable mathematical, carto-
graphical and physical discoveries of this ingenious nautical adviser of Sir Walter Raleigh (ca. 1552–1618)
were rediscovered and published between 1950 and 1980 [14]. During his lifetime Harriot published none
of his mathematical insights and physical experiments [15]. His notes on the conformality of stereographic
projections have been dated (not conclusively) between 1594 and 1613/14 [16], the latter date appearing
more likely. So in principle Harriot could have known Clavius’ Astrolabium [17].

In 1696 Edmond Halley (1656–1742) presented a paper to the Royal Society of London in which he
proves the stereographic projection to be conformal, saying that Abraham de Moivre (1667–1754) told him
the result and that Robert Hooke (1635–1703) had presented it before to the Royal Society, but that the
present proof was his own [18].

1.2.2 Weyl’s geometrical gauge transformation

A second way of implementing a conformal transformation for a Riemannian or pseudo-Riemannian mani-
fold is the possibility of merely multiplying the metric form (7) by a non-vanishing positive smooth func-
tion ω(x) > 0:

gx → ĝx = ω(x) gx. (32)

More details for this type of conformal transformations, introduced by Hermann Weyl (1885–1955), are
discussed below (Sect. 3).

The Eqs. (12) and (32) show that the corresponding conformal mappings change the length scales of
the systems involved. As many physical systems have inherent fixed lengths (e.g. Compton wave lengths
(masses) of particles, coupling constants with non-vanishing length dimensions etc.), applying the above
conformal transformations to them in many cases cannot lead to genuine symmetry operations, like, e.g.
translations or rotations. As discussed in more detail below, these limitations are one of the reasons for the
slow advance of conformal symmetries in physics!

Here it is very important to emphasize the difference between transformations which merely change
the coordinate frame and the analytical description of a system and those mappings where the coordinate
system is kept fixed: in the former case the system under consideration, e.g. a hydrogen atom with its
discrete and continuous spectrum, remains the same, only the description changes; here one may choose
any macroscopic unit of energy or an equivalent unit of length in order to describe the system. However, in
the case of mappings one asks whether there are other systems than the given one which can be considered
as images of that initial system for the mapping under consideration. But now, in the case of dilatations,
there is no continuous set of hydrogen atoms the energy spectra of which differ from the the original one
by arbitrary scale transformations! For the existence of conservation laws the invariance with respect to
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mappings is crucial (see Sect. 4 below). These two types of transformations more recently have also been
called “passive” and “active” ones [19].

2 Conformal mappings till the end of the 19th century

2.1 Conformal mappings of 2-dimensional surfaces

With the realization that the earth is indeed a sphere and the discoveries of faraway continents the need for
maps of its surface became urgent, especially for ship navigation. Very important progress in cartography
[20] was made by Gerhardus Mercator (1512–1594), particularly with his world map from 1569 for which
he employed a conformal “cylindrical” projection [21], now named after him [22].

y

N

S

β 1
2

φ1

φ2

x = aφβ = 0

β = β0

x = 0

y(β) = a ln tan
(
β
2 + π

4

)

x = 2πa

β = β0

φ1

1̂

φ2

2̂
β → β + δβ :

y → y + a
δβ

cosβ

Fig. 2 Mercator projection: The points (longitude φ, latitude β) on the surface of a sphere with radius a are mapped
on the mantle of a cylinder which touches the equator and is then unrolled onto the plane. The circles of fixed latitude
β are mapped onto straight lines parallel to the x-axis, different meridians are mapped onto parallel lines along the
y-axis, itself parallel to the cylinder axis. The mapping is characterized by the property that an increase δβ in latitude
implies an increase δy = a δβ/ cos β on the cylinder mantle. This makes it a conformal one.

Here the meridians are projected onto parallel lines on the mantle of a cylinder which touches the
equator of the sphere and which is unrolled onto a plane afterwards (see Fig. 2): Let φ and β have the
same meaning as in example 2 of Sect. 1.2 above (longitude and latitude). If a again is the radius of the
sphere, x the coordinate around the cylinder where it touches the equator, then x = a φ . The orthogonal
y-axis on the mantle of the cylinder, parallel to its axis, meets the equator at φ = 0 = x, β = 0 = y. The
mapping of the meridians onto parallels of the y-axis on the mantle is determined by the requirement that
cosβ δy = a δβ for a small increment δβ.

Thus the Mercator map is characterized by

δx = a δφ, δy =
a

cosβ
δβ, (33)
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yielding

(dx)2 + (dy)2 =
1

cos2 β
g(φ,β), g(φ,β) = a2[cos2 β (dφ)2 + (dβ)2], (34)

which shows the mapping to be conformal, with strong length distortions near the north pole! (Integrating
the differential equation dy/dβ = 1/ cosβ gives y(β) = ln tan(β/2 + π/4) with y(β = 0) = 0.)

A first pioneering explicit mathematical “differential” analysis of Mercator’s projection, the stereo-
graphic projection and the more general problem of mapping the surface of a sphere onto a plane was pub-
lished in 1772 [23] by Johann Heinrich Lambert (1728–1777): Lambert posed the problem which “global”
projections of a spherical surface onto the plane are compatible with local (infinitesimal) requirements
like angle-preserving or area-preserving, noting that both properties cannot be realized simultaneously! He
showed that his differential conditions for angle preservation are fullfilled by Mercator’s and the stereo-
graphic projection. In addition he presented a new “conical” – also conformal – solution, still known and
used as “Lambert’s projection” [24].

The term “stereographic projection” was introduced by the Belgian Jesuit and mathematician (of Span-
ish origin) François d’Aiguillon (1567–1617) in 1613 in the sixth and last part – dealing with projections
(“Opticorum liber sextus de proiectionibus”) – of his book on optics [25] which became also well-known
for its engravings by the painter Peter Paul Rubens (1577–1640) at the beginning of each of the six parts and
on the title page [26]! When introducing the 3 types of projections he is going to discuss (orthographic,
stereographic and scenographic ones) d’Aiguillon says almost jokingly [27]: “... Second,” [projection]
“from a point of contact” [on the surface of the sphere], “ which not improperly could be called stereo-
graphic: a term that might come into use freely, as long as no better one occurs, if you, Reader, allows for
it”. The readers did allow for it!

Only three years after the publication of Lambert’s work Leonhard Euler (1707–1783) in 1775 presented
three communications to the Academy of St. Petersburg (Russia) on problems concerning (cartographical)
mappings from the surface of a sphere onto a plane, the first two being mainly mathematical. The papers
were published in 1777 [28]. Euler approached the problem Lambert had posed from a more general
point of view by looking for a larger class of solutions of the differential equations by using methodes
he had employed previously in 1769 [29]. In his “Hypothesis 2” (first communication) Euler formulated
the differential equations for the condition that small parts on the earth are mapped on similar figures
on the plane (“Qua regiones minimae in Terra per similes figuras in plano exhibentur”), i.e. the mapping
should be conformal. For obtaining the general solution of those differential equations Euler used complex
coordinates z = x + iy in the plane. This appears to be the first time that such a use of complex variables
was made [30]. Euler further observed (second communication) that the mapping

z → a z + b

c z + d
, z = x+ iy, (35)

which connects the different projections in the plane is a conformal one! Euler does not mention Lambert’s
work nor did Lambert mention Euler’s earlier paper from 1769 on the construction of a family of curves
which are orthogonal to the curves of a given family [29]. As Euler had supported a position for Lambert
in Berlin in 1764 before he – Euler – left for St. Petersburg in 1766, this mutual silence is somewhat
surprising.

Lambert mentions in his article that he informed Joseph-Louis de Lagrange (1736–1813) about the
cartographical problems he was investigating. In 1779 Lagrange, who was in Berlin since 1766 as president
of the Academy, presented two longer Memoires on the construction of geographical maps to the Berlin
Academy of Sciences [31]. Lagrange says that he wants to generalize the work of Lambert and Euler and
look for all projections which map circles on the sphere onto circles in the plane.

The more general problem of mapping a 2-dimensional (simply-connected) surface onto another one
while preserving angles locally was finally solved completely in 1822 by Carl Friedrich Gauss (1777–1855)
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in a very elegantly written paper [32] in which he showed that the general solution is given by functions
of complex numbers q + ip or q − ip. As he assumes differentiability of the functions with respect to their
complex arguments he – implicitly – assumes the validity of the Cauchy-Riemann differential Eqs. (36)!

Gauss does not use the term “conform” for the mapping in his 1822 paper, but he introduces it in a
later one from 1844 [33]. The expression “conformal projection ” appears for the first time as “proiectio
conformis” in an article written in Latin and presented in 1788 to the St. Petersburg (Russia) Academy
of Sciences by the German-born astronomer and mathematician Friedrich Theodor Schubert (1758–1825)
[34]. It was probably the authority of Gauss which finally made that term “canonical”!

The development was brought to a certain culmination by Gauss’ student Georg Friedrich Bernhard Rie-
mann (1826–1866) who in his Ph.D. Thesis [35] from 1851 emphasized the important difference between
global and local properties of 2-dimensional surfaces described by functions of complex variables and
who formulated his famous version of Gauss’ result (he quotes Gauss’ article from 1822 at the beginning
of his paper; except for a mentioning of Gauss’ paper from 1827 [39] at the end, this is the only refer-
ence Riemann gives!), namely that every simply-connected region of the complex plane can be mapped
(conformally) into the interior of the unit circle |z| < 1 by a holomorphic function [36].

After writing down the conditions (Cauchy – Riemann equations [37])

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= − ∂v

∂x
, (36)

for the uniqueness of differentiating a complex function w = u + iv = f(z = x + iy) with respect to z,
Riemann notes that they imply the second order [Laplace] equations

∂2u

∂x2
+
∂2u

∂y2
= 0,

∂2v

∂x2
+
∂2v

∂y2
= 0. (37)

Conformal mappings, of course, still play a central role for finding solutions of 2-dimensional Laplace
equations which obey given boundary conditions in a vast variety of applications [38]. This brings us –
slowly – back to the history of Eqs. (5) and (6):

2.2 On circles, spheres, straight lines and reciprocal radii

The history of conformal mappings described in the last Sect. represents the beginning of modern differen-
tial geometry – strongly induced by new cartographical challenges – which culminated in Gauss’ famous
paper from 1827 on the general theory of curved surfaces [39]. Another pillar of that development was
the influential work of the French mathematician Gaspard Monge (1746–1818), especially by his book
on the application of analysis to geometry [40]. Through his students he also influenced the subject to be
discussed now:

About the time of 1825 several of those mathematicians which were more interested in the global purely
geometrical relationships between circles and lines, spheres and planes and more complicated geometrical
objects (so–called “synthetic” or “descriptive geometry” [41, 42], as contrasted to the – more modern –
analytical geometry) discovered the mapping by reciprocal radii (then also called “inversion”):

A seemingly thorough, balanced and informative account of that period and the questions of priorities
involved was given in 1933 by Patterson [43]. He missed, however, a crucial paper from 1820 by a 22 years
old self-educated mathematician, who died only 5 years later. In view of the general scope of Patterson’s
work I can confine myself to a few additional illustrating, but crucial, remarks on the rather complicated
and bewildering beginning of the concept “transformation by reciprocal radii”:

There is the conjecture that the Swiss mathematician Jakob Steiner (1796–1863) was the first to know
the mapping around the end of 1823 or the beginning of 1824. The corresponding notes and a long
manuscript were found long after his death and not known when his collected papers where published [44].
In a first publication of notes from Steiner’s literary estate in 1913 by Bützberger [45] it was argued that
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Steiner knew the inversion at least in February 1824 and that he was the first one. In 1931 a long manuscript
by Steiner on circles and spheres from 1825/1826 was finally published [46] which also shows Steiner’s
vast knowledge of the subject.
However, the editors of that manuscript, Fueter and Gonseth, say in their introduction that in January 1824
Steiner made extensive excerpts from a long paper by the young French mathematician J.B. Durrande
(1798–1825), published in July 1820 [47]. From that they draw the totally unconvincing conlusion that
Steiner knew already what he extracted from the journal! A look at Durrande’s paper shows immediately
that he definitely deserves the credit for priority [48]! Not much is known about this self-educated math-
ematician who died at the age of 27 years: From March 1815 till October 1825 twenty eight papers by
Durrande were published in Gergonne’s Annales [49], the last one after his death [50]. In a footnote on the
title page of Durrande’s first paper Gergonne remarks that the author is a 17 years old geometer who learnt
mathematics only with the help of books [51].

Many of Durrande’s contributions present solutions of problems which had been posed in the Journal
previously, most of them by Gergonne himself. The important paper of July 1820 originated, however,
from Durrande’s own conceptions. In it he appears with the title “ professeur de mathématiques, spéciales
et de physique au collége royal de Cahors” and in his second last paper from November 1824 [52] as “
professeur de physique au collége royal de Marseille” [53]. At the end of that paper and in his very last
one, [50], Durrande again used the inversion, he had introduced before in his important paper from 1820.

The Annales de Gergonne were full of articles dealing with related geometrical problems. Steiner him-
self published 8 papers in volumes 18 (1827/28) and 19 (1828/29) of that journal.

Around 1825 the two Belgian mathematicians and friends Germinal Pierre Dandelin (1794–1847) and
Lambert Adolphe Jacques Quetelet (1796–1874) were investigating very similar problems, presenting their
results to the L’Académie Royale des Sciences et Belles-Lettres de Bruxelles [54]. At the end of a paper
by Dandelin, presented on June 4 of 1825, there is the main formula of inversion [55] (see Eq. (39) below)
and at the end of a longer paper by Quetelet [56], presented on November 5 of the same year, a 3-page note
is appended which contains – probably for the first time in “analytical” form – the transformation formula

x̂ =
r20 x

x2 + y2
, ŷ =

r20 y

x2 + y2
, (38)

for an inversion on a circle with radius r0.
The transformation (38) is also mentioned by Julius Plücker (1801–1868) in the first volume of his

textbook from 1828 [57].
Other important early contributions to the subject (mostly ignored in the literature) are those of the

Italian mathematician Giusto Bellavitis (1803–1880) in 1836 and 1838 [58].
Now back to the mathematics [59, 60]! The basic geometrical idea is the following (see Fig. 3): Given

a circle with radius r0 and origin O in the plane, draw a line from the origin to a point P outside the circle
with a distance r from the origin O away. If a point P̂ on the same line inside the circle and with the
distance r̂ form the origin obeys the relation

r r̂ = r20 , (39)

then the point P̂ is called “inverse” to P and vice versa.
The last equation obviously is a consequence of Eqs. (38). If now P traces out a curve then P̂ describes

an “inverse” curve, e.g. circles are mapped onto circles (see below). P and P̂ were also called “conjugate”.
Such points have many interesting geometrical properties, e.g. if one draws a circle through the points P
and P̂ , with its origin on the line connecting the two inverse points, then the new circle is orthogonal to the
old one! For many more interesting properties of such systems see the textbooks mentioned in [59, 60].

If

B ≡ (x− α)2 + (y − β)2 − ρ2 = x2 + y2 − 2αx− 2β y + C = 0, C = α2 + β2 − ρ2, (40)
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r/r0 = r0/r̂

A

y

x
O

P̂

P

r0

r = OP

r̂ = OP̂

r · r̂ = r20

Fig. 3 Inversion on a circle with radius
r0: A point P outside the circle with dis-
tance r from the center O is mapped onto
a point P̂ on the line OP with distance
r̂ = r2

0/r. A line from P tangent to
the circle at A generates several similar
rectangular triangles corresponding sides
of which obey r/r0 = r0/r̂. A circle
through P and P̂ with its origin on P̂P

is orthogonal to the original one.

is any circle in the plane with radius ρ, then the “inverse” circle B̂ generated by the transformation (38)
has the constants

α̂ =
r20 α

C
, β̂ =

r20 β

C
, Ĉ =

r40
C
, ρ̂2 =

r40
C2

ρ2. (41)

Eqs. (38) show that the “inverse” of the origin (x = 0, y = 0) is infinity! If a circle (40) passes through
the origin, then C = 0 and it follows from the last of the Eqs. (41) that ρ̂ = ∞, i.e. the image of a circle
passing through the origin is one with an infinite radius, that is a straight line! It follows from the Eqs. (38),
(40) and C = 0 that this image straight line obeys the equation

α x̂+ β ŷ − r20/2 = 0. (42)

On the other hand, a straight line given by

b1 x+ b2 y + g = 0, g �= 0, (43)

is mapped onto the circle

(x̂+ r20 b1/2g)
2 + (ŷ + r20 b2/2g)

2 = (r20 b1/2g)
2 + (r20 b2/2g)

2. (44)

In order to have the mapping (38) one-to-one one has to add a point at infinity (not a straight line as in
projective geometry!). The situation is completely the same as in the case of stereographic projections
discussed in example II of Sect. 1.2.1 above. Thus, the set (totality) of circles and straight lines in the plane
is mapped onto itself. In this framework points of the plane are interpreted as being given by circles with
radius 0.

Later the mathematician August Ferdinand Möbius (1790–1868) called the joint sets of circles, straight
lines and their mappings by reciprocal radii “Kreisverwandtschaften” (circle relations) [61]. Behind this
notion is an implicit characterization of group theoretical properties which were only identified explicitly
later when group theory for continuous transformation groups became established.

Analytically the “Kreisverwandtschaften” are characterized by the transformation formulae (35) (nowa-
days called “Möbius transformations”):

z → ẑ =
a z + b

c z + d
, z =

d ẑ − b

−c ẑ + a
, a d− b c �= 0, (45)
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implying

(d x̂)2 + (d ŷ)2 =
|a d− b c|2
|c z + d|4 [(dx)2 + (dy)2]. (46)

Multiplying numerators and denominators in Eq. (45) by an appropriate complex number one can normal-
ize the coefficients such that

a d− b c = 1. (47)

The last equation implies that 6 real parameters of the 4 complex numbers a, . . . , d are independent. In
group theoretical language: the transformations (45) form a 6-dimensional group.

Important special cases are the linear transformations

z → ẑ = a z + b, (48)

consisting of (2-dimensional) translations T2[b] , a (1-dimensional) rotation D1[φ] and a (1-dimensional)
scale transformation (dilatation) S1[γ] :

T2[b] : z → z+ b, b = b1 + i b2; D1[φ] : z → eiφz, φ = arg a; S1[γ] : z → eγz, eγ = |a|. (49)

Of special interest here is the discrete transformation

R̄ : z → ẑ =
r20
z

=
r20

x2 + y2
(x− i y). (50)

This is the inversion (38) followed by a reflection with respect to the x-axis. Notice that the r.h. side 1/z
is a meromorphic function on the complex plane with a pole at the point z = 0 that is mapped onto the
“point” ∞ which has to be “joined” to the complex plane.

Another analytical implementation of the “Kreisverwandtschaften” is

z → ẑ =
a z∗ + b

c z∗ + d
, a d− b c = 1, z∗ = x− i y, (51)

with an obvious corresponding expression for the relation (46).
The inversion (38) itself is given by

R : ẑ =
r20
z∗
, z∗ = x− i y. (52)

Here the orientation of angles is inverted, contrary to the transformation (50).
The combinationC2[β] = R ·T2[β] ·R, where T2[β] denotes the translations z → z+β, β = β1 + i β2,

yields

R · T2[β] · R = C2[β] : z → ẑ =
z + β|z|2

1 + 2(β1 x+ β2 y) + |β|2 |z|2 , (53)

which constitutes another 2-dimensional abelian subgroup, because R2 = 1 and T2[β] is abelian.
It is instructive to see which transformation is induced on the sphere of radius a by the inverse stereo-

graphical projection (21) when applied to the inversion (52). We can write the Eqs. (21) as

σ = ξ + i η =
4 a2 z

4 a2 + |z|2 , ζ =
2a |z|2

4a2 + |z|2 . (54)
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Taking for convenience a = 1/2 and r0 = 1, we get for the inversion (52):

σ → σ̂ =
ẑ

1 + |ẑ|2 =
z

1 + |z|2 = σ, ζ → ζ̂ =
|ẑ|2

1 + |ẑ|2 =
1

1 + |z|2 = 1 − ζ, (55)

i.e. the points (ξ, η, ζ) on the sphere are reflected on the plane ζ = 1/2. The south pole of the sphere which
corresponds to the origin (x = 0, y = 0) of the plane is mapped onto the north pole which corresponds to
the point ∞ of the plane. And vice versa.

Contrary to the non-linear transformation (52) the transformation (55) is a (inhomogeneous) linear and
continuous one for the coordinates of the sphere. We shall see below that such a linearization is possible
for all the transformation (45) or (51) by introducing appropriate homogeneous coordinates!

A few remarks on a more modern aspect: Ifm(τ), m(τ = 0) = 1 (group identity), denotes the elements
of any of the above 6 real one-parameter transformation subgroups and f(z = x + i y) a smooth function
on the complex plane, then

Ṽ f(z) = lim
τ→0

f [m(τ) z] − f(z)
τ

(56)

defines a vector field on the plane. In terms of the coordinates x and y these are for the individual groups

T2[b] : P̃x = ∂x, P̃y = ∂y; (57)

D1[φ] : L̃ = x∂y − y ∂x; (58)

S1[γ] : S̃ = x∂x + y ∂y; (59)

C2[β] : K̃x = (y2 − x2) ∂x − 2x y ∂y, K̃y = (x2 − y2) ∂y − 2x y ∂x. (60)

These vector fields form a Lie algebra which is isomorphic to the real Lie algebra of the Möbius group:

[P̃x, P̃y] = 0, (61)

[L̃, P̃x] = −P̃y, [L̃, P̃y] = P̃x; (62)

[S̃, P̃x] = −P̃x, [S̃, P̃y] = −P̃y; (63)

[S̃, L̃] = 0 ; (64)

[L̃, K̃x] = −K̃y, [L̃, K̃y] = K̃x; (65)

[S̃, K̃x] = K̃x, [S̃, K̃y] = K̃y; (66)

[P̃x, K̃x] = [P̃y, K̃y] = −2 S̃; (67)

[P̃x, K̃y] = −[P̃y, K̃x] = 2 L̃. (68)

Here we have already several of the essential structural elements of conformal groups we shall encounter
later:

1. The dilatation operator S̃ determines the dimensions of length of the operators P̃i, L̃ and K̃i, i =
x, y , namely [L−1], [L0] and [L1] as expressed by the Eqs. (63), (64) and (66).

2. The Eqs. (67) and (68) show that the Lie algebra generators L̃ and S̃ can be obtained from the com-
mutators of P̃i and K̃i, i = x, y . But we know from Eq. (53) that

K̃i = R · P̃i ·R, (69)

which means that the whole Lie algebra of the Möbius group can be generated from the translation
generators P̃i and the inversionR alone!
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3. We further have the relations

R · S̃ ·R = −S̃, R · L̃ · R = L̃. (70)

These properties indicate the powerful role of the discrete transformation R, mathematically and physi-
cally! An appropriate name for R would be “length inversion (operator)”!

Many properties of the inversion (38) for the plane were investigated for the 3-dimensional space, too,
by the authors mentioned above (Durrande, Steiner, Plücker, ..., Möbius etc.), without realizing, however,
that in 3 dimensions the transformation by reciprocal radii was essentially the only non-linear conformal
mapping, contrary to the complex plane and its extensions to Riemann surfaces with their wealth of holo-
morphic and meromorphic functions. This brings us to the next Sect. :

2.3 William Thomson, Joseph Liouville, Sophus Lie, other mathematicians
and James Clerk Maxwell

Prodded by his ambitious father, the mathematics professor James Thomson (1786–1849), in January of
1845 the young William Thomson (1824–1907) – later Baron Kelvin of Largs – spent four and a half
months in Paris in order to get acquainted, study and work with the well-known mathematicians there [62].
His best Paris contacts Thomson had with Joseph Liouville (1809–1882) whose protégé he became [63].
Back in Cambridge, in October 1845 Thomson wrote Liouville a letter in which he proposed to use the
relation (39) for a sphere of radius r0 in oder to solve certain (boundary) problems in electrostatics, refering
to discussions the two had in Paris. Excerpts from that letter were published immediately by Liouville in
the journal he edited [64]. In June and September 1846 Thomson sent two more letters excerpts of which
Liouville published in 1847 [65], directly followed by a long commentary by himself [66]. In the first of
these letters Thomson introduced the mapping

R : x → ξ =
x

x2 + y2 + z2
, y → η =

y

x2 + y2 + z2
, z → ζ =

z

x2 + y2 + z2
, (71)

and pointed out that the function ĥ(�x) = h(�x/r)/r, r = (x2 + y2 + z2)1/2 is a solution of the Laplace
equation (5), if h(�x) is a solution. In his commentary Liouville discussed in detail several properties of
the mapping (71) and gave it the name “transformation par rayons vecteurs réciproques, relativement à
l’origine O” (italics by Liouville), from which the usual expression “transformation by reciprocal radii”
derives.

Afterwards Liouville made the important discovery that the transformation (71), combined with transla-
tions, is actually the only generic conformal transformation in R

3, contrary to the situation in the plane [67]!
Liouville’s result kindled a lot of fascination among mathematicians and brought quite a number of

generalizations and new proofs:
At the end of a paper by Sophus Lie (1842–1899), presented by A. Clebsch in April 1871 to the Royal

Society of Sciences at Göttingen, Lie concluded that the orthogonal transformations and those by reciprocal
radii belong to the most general ones which leave the quadratic form

n∑

ν=1

(dxν)2 = 0 (72)

invariant [68]. He does not mention the condition n > 2 nor does he quote Liouville’s proof for n = 3.
In a long paper from October and November 1871 Lie gave a different proof for Liouville’s theorem
(which he quotes now) and points out in a footnote that the results of his paper [68] imply a corresponding
generalization for arbitrary n > 2 [69]. He provided the details of the proof for n > 2 in an article from
1886 [70] and in volume III of his “Theorie der Transformationsgruppen” [71] from 1893. In the mean-
time other proofs for the general case n > 2 had appeared: one by a German secondary school teacher, R.
Beez [72], and another one by Gaston Darboux (1842–1917) [73]. For a more modern one see [74].
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For the case n = 3 there are about a dozen new proofs of Liouville’s theorem till around 1900 [75–86].
Most important, however, for the influence of Thomson’s work on the physics community was that

James Clerk Maxwell (1831–1879) devoted a whole chapter in his “Treatise” to applications of the inver-
sion – combined with the notion of virtual electric images – in electrostatics [87]. Maxwell’s high opinion
of Thomson’s work is also evident from his review (in Nature) [88] of the reprint volume of Thomson’s
papers [65]. Maxwell says there:
“ ... Thus Thomson obtained the rigorous solution of electrical problems relating to spheres by the intro-
duction of an imaginary electrified system within the sphere. But this imaginary system itself next became
the subject of examination, as the result of the transformation of the external electrified system by recipro-
cal radii vectores. By this method, called that of electrical inversion, the solution of many new problems
was obtained by the transformation of problems already solved. ... If, however, the mathematicians were
slow in making use of the physical method of electric inversion, they were more ready to appropriate the
geometric idea of inversion by reciprocal radii vectores, which is now well known to all geometers, having
been, we suppose, discovered and re-discovered repeatedly, though, unless we are mistaken, most of these
discoveries are later than 1845, the date of Thomson’s paper. ...” [89].

2.4 Gaston Darboux and the linear action of the conformal group on “polyspherical”
coordinates

We now come to a global aspect of the action of the conformal group which plays a major role in the
modern development of its applications (see Subsects. 7.2 and 7.4 below): We have already seen that the
mapping (38) sends the origin of the plane to infinity and vice versa. Similar to what is being done in pro-
jective geometry where one adds an “imaginary” straight line at infinity one now adds a point at infinity in
order to have the mapping (38) one-to-one. Topologically this means that one makes the non-compact plane
to a compact 2-dimensional surface S2 of the sphere. This is implemented by the stereographic projection
(21). As the projection is conformal it preserves an essential part of the Euclidean metric structure of the
plane, e.g. orthogonal curves on the sphere are mapped onto orthogonal curves in the plane. In addition
the non-linear transformations (52) become linear on S2 if one introduces homogeneous coordinates in the
plane and in the associated space R

3 in which the sphere S2 is embedded, i.e. the conformal transforma-
tions act continuously on S2. This does not seem to be very exciting for the plane and the sphere S2, but
it becomes important for the Minkowski space (1) where the inversion (3) is singular on the 3-dimensional
light cone (x, x) = 0. But the essential ingredients of the idea can already be seen in the case of the plane
and the sphere S2 which also shows the close relationship between stereographic projections and mappings
be reciprocal radii!

2.4.1 Tetracyclic coordinates for the compactified plane

In a short note from 1869 Darboux pointed out [90] that one could generate a system of orthogonal curvi-
linear coordinates in the plane by projecting them stereographically from a given system on the surface of a
sphere in space. More generally, he observed that properties of an R

n−1 could be dealt with by considering
the corresponding properties on the (n− 1)-dimensional surface Sn−1 of a sphere in an R

n. He discussed
the details for n = 3, 4 in later publications, especially in his monograph of 1873 [91]. The following is a
brief summary of the main ideas, using also later textbooks on the subject [59, 60, 92, 93]:

First one introduces homogeneous coordinates on R
2 and R

3:

x = y1/k, y = y2/k, (y1, y2, k) �= (0, 0, 0); (73)

ξ = η1/κ, η = η2/κ, ζ = η3/κ, (η1, η2, η3, κ) �= (0, 0, 0, 0).

Mathematically the new homogeneous coordinate k is just a real number which – in addition – can be
given an obvious physical interpretation [94,95]: As the coordinates x and y have the dimension of length,
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one can interpret k as providing the length scale by giving it the dimension [L−1] so that the coordinates
y1 and y2 are dimensionless. For the sphere from Eq. (20) we get now

Q(�η, κ) ≡ (η1)2 + (η2)2 + (η3)2 − 2(a κ) η3 = (74)

= (η1)2 + (η2)2 − 2η3 χ ≡ Q(�η, χ) = 0,

χ = a κ− η3/2, �η = (η1, η2, η3).

Here a corresponding physical dimensional interpretation of κ is slightly more complicated as the system
has already the intrinsic fixed length a : Now – like k in the plane – the carrier of the dimension of an inverse
length is the coordinate χ from Eqs. (74). This follows immediately from the transformation formulae (20)
which may be written as

σ y1 = η1, σ y2 = η2, σ (a k) = χ, σ �= 0. (75)

Here σ is an arbitrary non-vanishing real number which drops out when the ratios in Eqs. (20) or (73) are
formed. It follows that

η3 = σ
(y1)2 + (y2)2

2a k
, a κ = σ

(
a k +

(y1)2 + (y2)2

4a k

)
. (76)

We could also start from the Eqs. (21) and get

ρ ξ = 4(a k) y1, ρ η = 4(a k) y2, ρ ζ = 2[(y1)2 + (y2)2], (77)

ρ (a κ) = 4(a k)2 + (y1)2 + (y2)2, ρ �= 0.

The two formulations coincide for ρ σ = 4(a k).
We see that we can characterize the points in the plane – including the “point” ∞ – by 3 ratios of 4

homogeneous coordinates which in addition obey the bilinear relation

Q(�η, χ) = 0. (78)

It follows from Eqs. (73) that the point ∞ lies on the projective straight line k = 0. According to Eqs. (75)
and (74) this implies η3/κ = 2a and (η1, η2) = (0, 0), i.e. the coordintes of the north pole.

The action of the different subgroups of the Möbius group as discussed in Sect. 2.2 on the homogeneous
coordinates (73) may be described as follows:

The scale transformation

S1[γ] : z → z′ = eγ z (79)

can be implemented by

τ y1 ′ = y1, τ y2 ′ = y2, τ k′ = e−γ k, (80)

where τ again is an arbitrary real number �= 0. As y1 and y2 are dimensionless and k has the dimension of
an inverse length, properties which should not be changed by the transformation, we put τ = 1 . As to such
a choice of the, in principle, arbitrary real number τ �= 0 see below. It then follows from Eqs. (75) that

χ ≡ a κ− η3/2 → χ′ = e−γ χ, (81)

i.e. the combination χ has the dimension of an inverse length. We have Q(�η ′, χ′) = Q(�η, χ) .
For the translation

T2[b1] : x→ x′ = x+ b1, y → y′ = y, (82)
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we obtain accordingly

τ y1 ′ = y1 + b1 k, τ y2 ′ = y2, τ k′ = k. (83)

Again taking τ = 1 we get

η1 → η1 ′ = η1 + (b1/a)χ, η2 → η2 ′ = η2, (84)

η3 → η3 ′ = (b1/a) η1 + η3 + (b1/a)2/2χ, χ→ χ′ = χ. (85)

This transformation also leaves the quadratic form Q(�η, χ) invariant:Q(�η ′, χ′) = Q(�η, χ) .
The translation x→ x, y → y + b2 can be treated in the same way.

For the inversion

R : x→ x′ =
r20 x

x2 + y2
, y → y′ =

r20 y

x2 + y2
, (86)

one obtains

y1 ′ = y1, y2 ′ = y2, k′ =
(y1)2 + (y2)2

r20 k
. (87)

This yields

R : η1 ′ = η1, η2 ′ = η2, y3 ′ =
r20

2 a2
χ, χ′ =

2 a2

r20
η3. (88)

We again have Q(�η ′, χ′) = Q(�η, χ). Invariance of Q under rotations in the (x, y)–plane and the corre-
sponding (ξ, η)–plane, with k, κ and ζ fixed, is obvious.

Introducing the coordinates

ξ1 = η1, ξ2 = η2, ξ3 =
1√
2
(χ+ η3), ξ0 =

1√
2
(χ− η3), (89)

implies

Q(�η, χ) = Q(ξ, ξ) = (ξ1)2 + (ξ2)2 + (ξ3)2 − (ξ0)2. (90)

Thus, we see that the 6-dimensional conformal group of the plane – Möbius group (45) with the normaliza-
tion (47) – is isomorphic to the 6-dimensional pseudo-orthogonal (“Lorentz”) group O(1, 3)/Z2 (division
by Z2 : ξ → ξ or −ξ, because the coordinates ξ are homogeneous ones). The inversionR, Eq. (86), e.g. is
implemented by the “time reversal” ξ0 → −ξ0! As ξ is equivalent to −ξ, “time reversal” here is equivalent
to “space reflection”: ξ0 → ξ0, ξj → −ξj, j = 1, 2, 3 .

The homogeneous coordinates �η, κ of Eq. (73) or any linear combination of them, e.g. (89), were called
“tetracyclic” coordinates of the points in the plane (the point ∞ included), i.e. “four-circle” coordinates
(from the Greek words “tetra” for four and “kyklos” for circle) [59, 60, 92, 93]. The geometrical back-
ground for this name is the following: We have seen above, Eq. (25), that a circle on the sphere may be
characterized by the plane passing through the circle. In homogeneous coordinates Eq. (25) becomes

c1 η
1 + c2 η

2 + c3 η
3 + c0 κ = 0. (91)

The four different planes η1 = 0 ; η2 = 0 ; η3 = 0 or κ = 0 correspond to four circles in the plane (which
may have radius ∞ , i.e. they are straight lines). On the other hand, let, in the notation of Eq. (40),

Bj ≡ (x− αj)2 + (y − βj)2 − ρ2
j = x2 + y2 − 2αj x− 2βj y + Cj = 0, j = 1, 2, 3, 4, (92)
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be four different and arbitrary circles in the plane, each of which is determined by three parameters αj , βj
and Cj or the radius ρj . Any other circle B = 0 in the plane can be characterized by the relation

B =
4∑

j=1

ηj Bj = 0, (η1, η2, η3, η4) �= (0, 0, 0, 0), (93)

which constitute 4 homogeneous equations for the 3 inhomogeneous parameters of the fifth circle. Its radius
squared ρ2 becomes proportional to a bilinear form of the homogeneous coordinates ηj . If the new circle
(93) is a point, i.e. ρ = 0 , then the ηj obey a quadratic relation like (74) or (90) (with Q(ξ, ξ) = 0 ). This
is the geometrical background for the term “tetracyclic” coordinates for points in the plane. It is a variant
of the term “pentaspherical” coordinates originally introduced by Darboux in the corresponding case of
characterizing points in 3-dimensional space in terms of five (Greek: “penta”) homogeneous coordinates
which obey a bilinear relation [96].

2.4.2 Polyspherical coordinates for the extended R
n, n ≥ 3

Let xμ, μ = 1, . . . , n be the cartesian coordinates of an R
n with the bilinear form (15). Then, without

refering to an explicit (n+ 1)-dimenional geometrical background, so-called “polyspherical” coordinates
yμ, μ = 1, . . . , n, k and q , can be introduced by

xμ = yμ/k, (y, y) − k q = 0. (94)

Here k has the dimension of an inverse length, and q that of a length.
The conformal transformations in such a R

n consists of n translations Tn[b], n (n − 1)/2 pseudo-
rotationsDn(n−1)/2[φν ], one scale transformationS1[γ], n “special conformal” transformations of the type
(53): Cn[β] = R·Tn[β]·R and discrete transformations likeR etc. Combined these make a transformation
group of dimension (n+ 1)(n+ 2)/2.

If the bilinear form (15) is a “lorentzian” one,

(x, x) = (x0)2 − (x1)2 − · · · − (xn−1)2, (95)

then the associated bilinear form (94) is

Q(y, y) = (y0)2 + (yn+1)2 − (y1)2 − · · · − (yn)2, k = yn + yn+1, q = yn − yn+1. (96)

In this case one would properly speak of “poly-hyperboloidical”, and for n = 4 of “hexa-hyperboloidical”
coordinates (“hexa”: Greek for six)!

The conformal group of the n-dimensional Minkowski space now coresponds to the groupO(2, n)/Z2 .
Its global structure and that of the manifold Q(y, y) = 0 will be discussed in Sect. 7.2 below. As already
discussed for the plane, the division by Z2 comes from the fact that one can multiply the homogeneous
coordinates yν in Eq. (96) by an arbitrary real number ρ �= 0 without affecting the coordinates xμ in
Eq. (94).

If one now wants to discuss conformally invariant or covariant differential equations (“field equations”)
of functions F (y) on the manifold Q(y, y) = 0 one has to take into account the homogeneity of the
coordinates y in Eq. (94) and the condition (y, y)− k q = 0. The work on this task was started by Darboux
in the case of potential theory [97], extended by Pockels and Bôcher [92,93], later discussed by Paul Adrien
Maurice Dirac (1902–1984) [98] and more recently by other authors, e.g. [95, 99–101]. As the subject is
more technical I refer to those papers and reviews for details.
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3 Einstein, Weyl and the origin of gauge theories

3.1 Mathematical beauty versus physical reality and the far-reaching consequences

In November 1915 Einstein had presented the final version of his relativistic theory of gravitation in the
mathematical framework of Riemannian geometry. Here the basic geometrical field quantities are the co-
efficients gμν(x), μ, ν = 0, 1, 2, 3 of the metric form (summation convention)

(ds)2 = gμν(x) dxμ ⊗ dxν . (97)

The local lenghts ds are assumed to be determined by physical measuring rods and clocks (made of atoms,
molecules etc.). A basic assumption of Riemannian geometry applied to gravity is that the physical units
defined by those instruments are locally the same everywhere and at all time, independent of the gravita-
tional fields present: we assume that hydrogen atoms etc. and their energy levels locally do not differ from
each other everywhere in our cosmos and have not changed during its history.

In 1918 Hermann Weyl proposed to go beyond this assumption in order to incorporate electromag-
netism and its charge conservation (for a more elaborate account of the following see the recent re-
views [102–105]): in Riemannian geometry parallel transport of a vector (“yardstick”) a = aμ∂μ does not
change its length when brought from the point P (x) to a neighbouring point P (x + δx). This means that
δ[gμν(x) aμaν ] = 0 (the covariant derivative of gμν vanishes, here formally characterized by δgμν = 0).

Weyl now allows for a geometrical structure in which infinitesimal parallel transport of a vector can
result in a change of length, too, which is characterized by the postulate that this change is given by

δgμν(x) = A(x) gμν(x), A(x) = Aμ(x) δxμ. (98)

For the Christoffel symbols of the first kind (which determine the parallel transport) this leads to the
modification

Γλ,μν + Γμ,λν = ∂νgλμ + gλμAν ; (99)

Γλ,μν =
1
2
(∂μgλν + ∂νgλμ − ∂λgμν) +

1
2
(gλμAν + gλν Aμ − gμν Aλ).

The relation (98) may be rephrased as follows: Let l be the “physical” length l = ds (Eq. (97)) of a vector
a = aμ∂μ at P (x) . If a is parallel transported to a neighbour point P (x+ δx) then the change of its length
l is given by

δl = l A, (100)

which vanishes in Riemannian geometry. If one parallel transports a vector of length lP1 from P1 along a
curve to P2, then integration of Eq. (100) gives the associated change

lP2 = lP1 e
∫ P2

P1
A. (101)

Here the integral is path-dependent if not all Fμν = ∂μAν − ∂νAμ vanish (Stokes’ theorem).
Multiplying the metrical coefficients gμν(x) by a scale factor ω(x) > 0 leads to the joint transforma-

tions:

gμν(x) → ω(x) gμν(x), A→ A− δω/ω = A− δ(lnω), δω = ∂μω(x) δxμ. (102)

All this strongly suggests to identify (up to a constant) the four Aμ(x) with the electromagnetic poten-
tials and the transformation (102) with a gauge transformation affecting simultaneously both, gravity and
electromagnetism. Making a special choice for ω Weyl called “Eichung” (= “gauge”). In this way the term
entered the realm of physics [106].
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On March 1, 1918, Weyl wrote a letter to Einstein announcing a forthcoming paper on the unification
of gravity and electromagnetism and asking whether the paper could be presented by Einstein to the Berlin
Academy of Sciences [107]. Einstein reacted enthusiastically on March 8 and promised to present Weyl’s
paper [108]. After receiving it he called it (on April 6) “a first rank stroke of a genius”, but that he could
not get rid of his “Massstab-Einwand” (measuring rod objection) [109], probably alluding to discussions
the two had at the end of March in Berlin during Weyl’s visit.

This was the beginning of a classical controversy over mathematical beauty versus physical reality! On
April 8 Einstein wrote “apart from its agreement with reality it is in any case a superb achievement of
thought” [110], and again on April 15: “As beautiful as your idea is, I have to admit openly that according
to my view it is impossible that the theory corresponds to nature” [111]. Einstein’s first main objection
concerned the relation (101): In the presence of electromagnetic fields Fμν two “identical” clocks could
run differently after one of them was moved around on a closed path! Einstein communicated his physical
objections in a brief appendix to Weyl’s initial paper he presented to the Academy in May 1918 [112].
The lively exchange between Einstein and Weyl continued till the end of the year, with Weyl trying hard
to persuade Einstein. To no avail: on Sept. 27 Einstein wrote: “How I think with regards to reality you
know already; nothing has changed that. I know how much easier it is to persuade people, than to find
the truth, especially for someone, who is such an unbelievable master of depiction like you.” [113]. In a
letter from Dec. 10 Weyl said, disappointed: “ So I am hemmed in between the belief in your authority
and my insight. ... I simply cannot otherwise, if I am not to walk all over my mathematical conscience”
[114]. Einstein’s answer from Dec. 16 is quite conciliatory: “I can only tell you that all I talked to, from a
mathematical point of view spoke with the highest admiration about your theory and that I, too, admire it
as an edifice of thoughts. You don’t have to fight, the least against me. There can be no question of anger
on my side: Genuine admiration but unbelief, that is my feeling towards the matter.” [115]. Einstein’s other
main objection concerned the relation (99) which determines geodetic motions: it implies that an uncharged
particle would nevertheless be influenced by an electromagnetic field!

Einstein was right as far as gravity and classical electrodynamics is concerned. But Weyl’s idea found an
unexpected rebirth and modification in the quantum theory of matter [102–105]: In 1922 Erwin Schrödinger
(1887–1961) observed – by discussing several examples – that the Bohr-Sommerfeld quantization condi-
tions are compatible with Weyl’s gauge factor (101) if one replaces the real exponent by the imaginary
one

i e

�

∫
A, A = Aμdx

μ, (103)

where the Aμ(x) are now the usual electromagnetic potentials [116]. In 1927 Fritz London (1900–1954)
reinterpreted Weyl’s theory in the framework of the new wave mechanics [117]: like Schrödinger, whom
he quotes, London replaces the real exponent in Weyl’s gauge factor (101) by the expression (103) and
assumes that a length l0 when transported along a closed curve in a nonvanishing electromagnetic field
acquires a phase change

l0 → l = l0 e
(ie/�)

∫
A, (104)

without saying why a length could become complex now. He then argues – in a way which is difficult to
follow – that

ψ(x)/l(x) = |ψ|/l0 = const., (105)

where ψ(x) is a wave function which now posesses the phase factor from Eq. (104).
In two impressive papers from 1929 [118] and 1931 [119] Weyl himself revoked his approach from 1918

and reinterpreted his gauge transformations in the new quantum mechanical framework as implemented by

ψ → ei e f/� ψ, Aμ → Aμ + ∂μf, ∂μ → ∂μ − i e

�
Aμ, f(x) = − lnω(x), (106)
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giving credit to Schrödinger and London in the second paper [119]. Especially this second paper with its
conceptually brilliant and broad analysis as to the importance of geometrical ideas in physics and math-
ematics provided the basis for the great future of gauge theories in physics and that of fiber bundles in
mathematics.

Also stimulated by Weyl’s idea, another interesting attempt to unify gravitation and electromagnetism
was that of Theodor Kaluza (1885–1954) who started from a 5–dimensional Einsteinian gravity theory
with a compactified 5th dimension [120]. As to further developments (O. Klein and others) of this approach
see [102].

3.2 Conformal geometries

Despite its (preliminary) dead end in physics, Weyl’s ideas were of considerable interest in mathemati-
cal differential geometry. Weyl discussed them in several articles [121] and especially, of course, in his
textbooks [122]. An important new notion in these geometries was that of the (conformal) weight e of
geometrical quantitiesQ(x, gμν) like tensors or tensor densities which depend on the gμν and their deriva-
tives [123]: The covariant metric tensor has the weight 1, thus

if gμν(x) → ω(x) gμν(x), then Q(x, ω gμν) = ωe(x)Q(x, gμν). (107)

Only quantities of weight e = 0 are conformal invariants.
Even Einstein contributed to this kind of geometry [124], defined by the invariance of the bilinear form

gμν(x) dxμ ⊗ dxν = 0, (108)

which also characterizes light rays and their associated causal cones. Einstein was interested in the re-
lationship between “Riemann-tensors” and “Weyl-tensors”. Most of the mathematical developments of
these conformal geometries are summarized in the second edition of a textbook by Jan Arnoldus Schouten
(1883–1971) who himself made substantial contributions to the subject [125].

For a concise summary of conformal transformations in the sense of Weyl and their role in a modern
geometrical framework of General Relativity and associated field equations see, e.g. [126].

3.3 Conformal infinities

We have seen in Sect. 2.2 that it can have advantages to map the “point” ∞ and its neighbourhoods into
a finite one – either by a reciprocal radii transformation in the plane or by a stereographic projection onto
the sphere S2 –, if one wants to investigate properties of geometrical quantities near ∞. Similarly, Weyl’s
conformal transformations (107) have been used to develop a sophisticated analysis of the asymptotic
behaviour of space-time manifolds, especially for those which are asymptotically flat [127], also possi-
bly with a change of topological properties. They even have become an important tool for the numerical
analysis of black holes physics etc. [128].

Furthermore, as the rays of electromagnetic and gravitational radiation obey the relation (108) and
as these rays form the boundaries (“light cones”) between causally connected and causally disconnected
regions, Weyl’s conformal transformations play also an important role in the causal analysis of space-time
structures [129].

4 Emmy Noether, Erich Bessel-Hagen and the (partial) conservation
of conformal currents

4.1 Bessel-Hagen’s paper from 1921 on the conformal currents in electrodynamics

I indicated already in Sect. 1.1 that the form invariance of Maxwell’s equations with respect to conformal
space-time transformations as discovered by Bateman and Cunningham does not necessarily imply new
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conservation laws. This point was clarified in 1921 in an important paper by Erich Bessel-Hagen (1898–
1946):

In July 1918 Felix Klein (1849–1925) had presented Emmy Noether’s (1882–1935) seminal paper with
her now two famous theorems on the consequences of the invariance of an action integral either under an
r-dimensional continuous (Lie) group or under an “infinite”-dimensional (gauge) group the elements of
which depend on r arbitrary functions [130, 131]. The former leads to r conservation laws (first theorem),
whereas the latter entails r identities among the Euler-Lagrange expressions for the field equations (second
theorem, e.g. the 4 Bianchi identities as a consequence of the 4 coordinate diffeomorphisms).

In the winter of 1920 Klein encouraged Bessel-Hagen to apply the first theorem to the conformal invari-
ance of Maxwell’s equations as discovered by Bateman and Cunningham.

Bessel-Hagen’s paper [132] contains a number of results which are still generic examples for mod-
ern applications of the theorems: He first generalized Noether’s results by not requiring the invariance of
Ldx1 · · · dxm inside the action integral, but by allowing for an additional total divergence ∂μbμ which
is also linear in the infinitesimal group parameters or (gauge) functions. Because of the importance of
Noether’s first theorem let me briefly summarize its content:
Suppose the differential equations for n fields ϕi(x), i = 1, . . . , n, x = (x1, . . . , xm), are obtained from
an action integral

A =
∫

G

dx1 · · · dxm L(x;ϕi, ∂μϕi). (109)

Let

xμ → x̂μ = xμ + δxμ ; ϕi(x) → ϕ̂i(x̂) = ϕi(x) + δϕi = ϕi(x) + δ̃ϕi + ∂μϕ
i δxμ, (110)

be infinitesimal transformations which imply

δA =
∫

Ĝ

dx̂1 · · · dx̂m L[x̂; ϕ̂i(x̂), ∂̂ϕ̂i(x̂)] −
∫

G

dx1 · · · dxm L[x;ϕi(x), ∂ϕi(x)]

=
∫

G

dx1 · · · dxm [Ei(ϕ) δ̃ϕi − ∂μj
μ(x; ϕ, ∂ϕ; δx, δϕ)], (111)

Ei(ϕ) ≡ ∂L

∂ϕi
− ∂μ

∂L

∂(∂μϕi)
, (112)

jμ = T μν δx
ν − ∂L

∂ϕi
δϕi + bμ(x;ϕ, ∂ϕ; δx, δϕ), T μν =

∂L

∂(∂μϕi)
∂νϕ

i − δμν L. (113)

From δA = 0 and since the region G is arbitrary we get the general variational identity

∂μj
μ = −Ei(ϕ) δ̃ϕi. (114)

If

δxμ = Xμ
ρ(x) a

ρ, δϕi = Φiρ(x, ϕ) aρ, bμ = Bμρ(x, ϕ, ∂ϕ) aρ, |aρ| � 1, ρ = 1, . . . , r, (115)

where the aρ are r independent infinitesimal group parameters, then one has r conserved currents

jμρ(x) = T μν X
ν
ρ −

∂L

∂(∂μϕi)
Φiρ +Bμρ, ρ = 1, . . . , r, (116)

i.e. we have

∂μj
μ
ρ (x) = 0, ρ = 1, . . . , r, (117)
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for solutions ϕi(x) of the field equations Ei(ϕ) = 0, i = 1, . . . , n.
As a first application Bessel-Hagen shows that such an additional term b occurs for the n-body system

in classical mechanics if one wants to derive the uniform center of mass motion from the 3-dimensional
special Galilean group �xj → �xj + �u t, j = 1, . . . , n .

In electrodynamics (4 space-time dimensions) he starts from the free Lagrangean density

L = − 1
4
FμνF

μν , Fμν = ∂μAν − ∂νAμ,
∂L

∂(∂μAν)
= −Fμν , Eν(A) = ∂μF

μν . (118)

Requiring the 1-formAμ(x)dxμ to be invariant implies

δAμ = −∂μ(δxν)Aν(x). (119)

Notice that only those δxμ and δAμ are of interest here which leave the quantityLdx0dx1dx2dx3 invariant
(up to a total divergence) with L from Eq. (118). For the (infinitesimal) gauge transformations

Aμ(x) → Aμ(x) + ∂μf(x), δAμ = ∂μf(x), |f(x)| � 1, f(x) = lnω(x), (120)

Noether’s second theorem gives the identity ∂νEν(A) = ∂ν∂μF
μν = 0 (which implies charge conserva-

tion if Eν(A) = jν(x)). The “canonical” energy-momentum tensor

T μν = −Fμκ∂νAκ +
1
4
δμνF

κλFκλ (121)

is not symmetric and not gauge invariant. Its relation to the symmetrical and gauge invariant energy-
momentum tensor Θμν is given by

T μν = Θμν − Fμκ∂κA
ν , Θμν = FμκF ν

κ +
1
4
ημνFκλFκλ, (122)

where ημν represents the Lorentz metric from Eq. (1).
Combining the variations (119) and (120) with the relation (122) here gives for the current (113) (bμ = 0)

jμ = Θμ
νδx

ν + Fμν∂ν(f −Aλδx
λ). (123)

As f(x) is an arbitrary function, Bessel-Hagen argues, we can choose the gauge

f(x) = Aν δx
ν (124)

for any given δxν , so that now

jμ = Θμ
νδx

ν , (125)

which is invariant under another transformation (120). For a gauge (124) the variation δ̃Aμ (see Eq. (110))
takes the form

δ̃Aμ = Fμνδx
ν , (126)

so that finally

∂μ(Θμ
νδx

ν) = Eμ(A)Fμνδxν . (127)

For non-vanishing charged currents jμ one has

Eν(A) = ∂μF
μν = jν , jμFμν = −Fνμjμ = −fν, (128)
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where fν is the (covariant) relativistic force density. Eq. (127) can therefore also be written as

∂μ(Θμ
νδx

ν) = −fνδxν . (129)

Now let Sμν be a symmetrical mechanical energy-momentum tensor such that

∂μS
μν = fν, Sμν = Sνμ, (130)

then Eq. (129) may be rewritten as

∂μ[(Θμ
ν + Sμν)δx

ν ] = Sμν∂μ(δx
ν ). (131)

This is an important equation from Bessel-Hagen’s paper.
As δxν = const. for tranlations and δxμ = ωμνx

ν , ωνμ = −ωμν , for homogeneous Lorentz transfor-
mations, one sees immediately that the associated currents are conserved for the full system. The situation
is more complicated for the currents associated with the scale transformations and the 4 special conformal
transformations corresponding to those in Eq. (53):

S1[γ] : xμ → x̂μ = eγ xμ, μ = 0, 1, 2, 3, (132)

δxμ = γ xμ, |γ| � 1. (133)

C4[β] : xμ → x̂μ = [xμ + (x, x)βμ]/σ(x;β), μ = 0, 1, 2, 3, (134)

σ(x;β) = 1 + 2(β, x) + (β, β) (x, x) ;

δxμ = (x, x)βμ − 2 (β, x)xμ, |βμ| � 1. (135)

From the infinitesimal scale transformation (133) one obtains

∂μs
μ(x) = Sμμ, sμ(x) = (Θμ

ν + Sμν)x
ν . (136)

And the four currents associated with the transformations (135) obey the relations

∂μk
μ
ρ(x) = 2 xρ Sμμ, kμρ(x) = (Θμ

ν + Sμν)[2 x
νxρ − (x, x)δνρ], ρ = 0, 1, 2, 3. (137)

Thus, for a vanishing electromagnetic current density jμ = 0 (Sμν = 0) the five currents (136) and (137)
are conserved, but for jμ �= 0 this is only the case if the trace Sμμ vanishes. In general this does not happen!
This was observed by Bessel-Hagen, too. Let me give two simple examples (with c = 1): For a charged
relativistic point particle with (rest) mass m one may take

Sμν(x) = m

∫ +∞

−∞
dτ żμżν δ4[x− z(τ)], (138)

where z(τ) describes the orbit of the particle in Minkowski space. Sμν(x) has the properties

∂μS
μν = m

∫ +∞

−∞
dτ z̈ν δ4[x− z(τ)] = fν(x), Sμμ = m

∫ +∞

−∞
dτ δ4[x− z(τ)]. (139)

Thus, for a non-vanishing mass the trace does not vanish and the five currents (136) and (137) are not
conserved.

For a relativistic ideal fluid with invariant energy density ε(x) and invariant pressure p(x) one has

Sμν(x) = [ε(x) + p(x)]uμ(x)uν(x) − p(x)ημν , (140)
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which has the trace

Sμμ = ε(x) − 3 p(x), (141)

which in general does not vanish either. It does so for a gas of massless particles and approximately so for
massive particles at extremely high energies.

If the vector field Aμ(x) is coupled to a (conserved) current jμ(x) then the Lagrange density

L = − 1
4
FμνF

μν − jμAμ (142)

yields the field equations ∂μFμν = jν and the canonical energy-momentum tensor is now

T μν = −Fμκ∂νAκ + δμν

(
1
4
FκλFκλ + jμAμ

)
. (143)

Its divergence is

∂μT
μ
ν = (∂νjλ)Aλ, (144)

i.e. an external current in general leads to “violation” of energy and momentum conservation for the elec-
tromagnetic subsystem. This is just a different version of Bessel-Hagen’s analysis from above.

Nevertheless, the field equations ∂μFμν = jν and the expression jμAμ dx0dx1dx2dx3 are invariant
under the transformations (133) and (135) if (see Eq. (119))

δAμ = −γ Aμ, δjμ = −3 γ jμ; (145)

δAμ = 2 (β, x)Aμ + 2[βμ(x,A) − xμ(β,A)], (146)

δjμ = 6 (β, x) jμ + 2[βμ(x, j) − xμ(β, j)],

but this does not lead to new conservation laws if the current is an external one. Only if jμ is composed of
dynamical fields, e.g. like the Dirac current jμ = ψ̄γμψ, conservation laws for the total system may exist!
(See also Sect. 6.3).

4.2 Invariances of an action integral versus invariances of associated differential equations
of motion

A simple but illustrative example for the form invariance of an equation of motion without an additional
conservation law is the following:

A year before he presented E. Noether’s paper to the Göttingen Academy Felix Klein raised another in-
teresting question concerning “dynamical” differential equations, their symmetries and conservation laws:
In 1916 Klein had asked Friedrich Engel (1861–1941), a long-time collaborator of S. Lie, to derive the
10 known classical conservation laws of the gravitational n-body problem by means of the 10-parameter
Galilei Group, using group theoretical methods applied to differential equations as developed by Lie. Engel
did this by using Hamilton’s equations and the invariance properties of the canonical 1-form pjdq

j −Hdt
[133]. Thus, he essentially already used the invariance of Ldt !
Then Klein noticed that the associated equations of motion, e.g.

m
d2�x

d t2
= −G �x

r3
, r = |�x|, (147)

are also invariant under the transformation

�x→ �x ′ = λ2 �x, t→ t′ = λ3 t, λ = const. , (148)
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and he, therefore, asked Engel in 1917 whether this could yield a new conservation law. Engel’s answer
was negative [134]. This had already been noticed in 1890 by Poincaré in his famous work on the 3-body
problem [135].

Nevertheless, such joint scale transformations of space and time coordinates like (148) may be quite
useful, as discussed by Landau and Lifshitz in their textbook on mechanics [136]. In this context they
also mention the virial theorem: If the potential V (�x) is homogeneous in �x of degree k and allows for
bounded motions such that |�x · �p| < M < ∞ , then one gets for the time averages of the kinetic energy
T = �v · �p/2 = [d(�x · �p)/dt− �x · gradV (�x)]/2 and the potential energy V :

〈T 〉 =
k E

k + 2
, 〈V 〉 =

2E
k + 2

. (149)

These relations break down for k = −2, i.e. for potentials V (�x) homogeneous of degree −2. Here genuine
scale invariance comes in (not mentioned by Landau and Lifshitz!): For such a potential the expression
Ldt = (T − V ) dt is invariant with respect to the transformation

�x→ �x ′ = λ�x, t→ t′ = λ2 t. (150)

This implies the conservation law

S = 2E t− �x · �p = const. . (151)

Thus, if E �= 0, the term �x · �p = 2Et− S cannot be bounded in the course of time.
For such a potential there is another conservation law, namely

K = 2E t2 − 2 �x · �p t+m�x 2 = const. , (152)

which, together with the constant of motion (151), determines r(t) without further integration. The quantity
K can be derived, according to Noether’s method, from the infinitesimal transformations

δ�x = 2α�x t, δt = 2α t2, |α| � 1, (153)

which leave Ldt invariant up to a total derivative term b dt, b = md(�x 2)/dt . Using Poisson brackets the
three constants of motion H = T + V, S and K form the Lie algebra of the group SO(1, 2) [137].

That n-body potentials V which are homogeneous of degree −2 with repect to their spatial coordinates
have two additional conservation laws of the type (151) and (152) was already discussed by Aurel Wint-
ner (1903–1958) in his impressive textbook [138], without, however, recognizing the group theoretical
background.

Joint scale transformations of quantities with different physical dimensions and appropriate functions
of them was in particular advocated by Lord Rayleigh (John William Strutt, 1842–1919) [139].

5 An arid period for conformal transformations from about 1921
to about 1960

From 1921 on conformal transformations and symmetries did not play a noticeable role in physics or math-
ematics. The physics community was almost completely occupied with the new quantum mechanics and
its consequences for atomic, molecular, solid state, nuclear physics etc.. In mathematics there were several
papers on the properties on conformal geometries as a consequence of Weyl’s work, mostly technically
ones (see [125] for a long list of references), but also some as to classical field equations of physics.

With regard to the finite dimensional scale and special conformal transformations there was Dirac’s
important paper from 1936 [98] and – independently – about the same time the beginning of interpreting
the special conformal ones as transformations from an inertial system to a system which moves with a
constant acceleration with respect to the inertial one, an interpretation which ended in a dead end about 25
years later and brought the group into discredit.
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5.1 Conformal invariance of classical field equations in physics

In 1934 Schouten and Haantjes discussed conformal invariance of Maxwell’s equations and of the associ-
ated continuity equations for energy and momentum in the framework of Weyl’s conformal geometry [140].

In 1935 Dirac proved invariance of Maxwell’s equations with currents under the 15-parameter confor-
mal group by rewriting them in terms of the hexaspherical coordinates y0, . . . , y5, (y0)2 +(y5)2− (y1)2−
· · · − (y4)2 = 0, discussed in Sect. 2.4 above. In addition he wrote down a spinor equation

βμγνMμνψ = m̃ ψ, Mμν = yμ∂ν − yν∂μ, μ, ν = 0, . . . , 5, (154)

where the βμ and the γν each are anticommuting 4 × 4 matrices, ψ is a 4-component spinor and the
15 operators Mμν correspond to the Lie algebra generators of the group SO(2, 4). The (dimensionless)
number m̃ cannot be interpreted as a mass (it is related to a Casimir invariant of SO(2, 4)). Dirac tried to
deduce from the spinor Eq. (154) his original one, but did not succeed. This is no surprise: Eq. (154) is
invariant under the 2-fold covering groupSU(2, 2) of the identity component of SO(2, 4) the 15 generators
of which can be expressed by the four Dirac matrices γμ, μ = 0, 1, 2, 3 and their eleven independent
products γμγν , γ5 = γ0γ1γ2γ3, γμγ5. But in order to incorporate space reflections, one has to pass to
8 × 8 matrices. The connection was later clarified by Hepner [141].

Also in 1935 Brauer and Weyl analysed spinor representations of pseudo-orthogonal groups in n di-
mensions using Clifford algebras and clarified the topological structure of these groups for real indefinite
quadratic forms [142].

Dirac’s paper prompted only a few others at that time [143–145].
In 1936 Schouten and Haantjes showed [146], in the framework of Weyl’s conformal geometry, that

in addition to Maxwell’s equations also the equations of motions (geodetic equations in the presence of
Lorentz forces) for a point particle are conformally invariant if one transforms the mass m as an inverse
length:

mc/� → ω−1/2mc/�, (155)

where ω is defined in Eq. (102). They also showed that the Dirac equation with non-vanishing mass
term is invariant in the same framework, using space-time dependent Dirac γ-matrices as introduced by
Schrödinger and Valentin Bargmann (1908–1989) in 1932 [147] without mentioning the two.

This was the first time that conformal invariance was enforced by transforming the mass parameter,
too. It was used and rediscovered frequently later on. Schouten and Haantjes did not discuss whether this
formal invariance would also imply a new conservation law as discussed by Bessel-Hagen!

In 1940 Haantjes discussed this mass transformation for the special conformal transformations (134)
applied to the relativistic Lorentz force [148]. He did the same about a year later for the usual Dirac
equation with mass term [149].

In 1940 Pauli argued that the Dirac equation as formulated for General Relativity by Schrödinger and
Bargmann could only be conformally invariant in the sense of Weyl if the mass term vanishes and added
in a footnote at the end that in any conformally invariant theory the trace of the energy momentum tensor
vanishes and that this could never happen for systems with non-vanishing masses [150].

In 1956 Mclennan discussed the conformal invariance and the associated conserved currents for free
massless wave equations with arbitrary spins [151].

5.2 The acceleration “aberration”

Immediately after the papers by Bateman and Cunningham the conformal transformations were discussed
as a coordinate change between relatively accelerated systems by Hassé [152].
Prompted by Arthur Milne’s (1896–1950) controversial “Kinematical Relativity” [153], Leigh Page (1884–
1952) in 1935 proposed a “New Relativity” [154] in which the registration of light signals should replace
Einstein’s rigid measuring rods and periodical clocks. He came to the conclusion that in such a framework
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not only reference frames which move with a constant relative velocity are equivalent, but also those which
move with a relative constant acceleration! There was an immediate reaction to Page’s papers by Howard
Percy Robertson (1903–1961) [155] who had already written critically before on Milne’s work [156].
Robertson argued that Page’s framework should be accomodated within the kinematical one of General
Relativity: He showed that the line element (Robertson-Walker)

ds2 = dτ2 − f2(τ)(dy2
1 + dy2

2 + dy2
3), (156)

where f(τ) depends on a constant acceleration between observers Page had in mind, can be transformed
into

ds2 = [(t2 − r2/c2)/t2]2 [dt2 − (dx2
1 + dx2

2 + dx2
3)/c

2]. (157)

In addition he argued that the change of coordinate systems between observers with relative constant ac-
celerations as described by Eq. (156) can be implemented by certain conformal transformations of the
Minkowski-type line element (157) which Page had essentially used.

Robertson further pointed out that the line element (156) should better be related to a de Sitter universe.
He emphasized that the line element (157), too, should be interpreted in the kinematical framework of
general relativity and not in the one of special relativity, as Page had done. At the end he also warned that
one should not identify the conformal transformations he had used in connection with Eq. (157) with the
ones Bateman and Cunningham had discussed in the framework of special relativistic electrodynamics.

Page hadn’t mentioned conformal transformations at all and Robertson didn’t mean to suggest that the
transformations his Ph.D. adviser Bateman had used in 1908/9 were to be interpreted as connecting systems
of constant relative acceleration, but the allusion got stuck and dominated the physical interpretation of the
special conformal transformations for almost thirty years.

Page’s attempt was also immediately interpreted in terms of the conformal group by Engstrom and Zorn,
but without refering to accelerations [157].

In 1940 Haantjes also proposed [148] to interpret the transformations (134) as coordinate changes
between systems of constant relative acceleration, using hyperbolic motions [158] without mentioning
them explicitly: Take β = (0, b, 0, 0) and x0 = t, x1 ≡ x, x2 = x3 = 0 . Then the spatial origin
(x̂ = 0, x̂2 = 0, x̂3 = 0) of the new system moves in the original one according to

0 = x(t) + b [t2 − x2(t)], x2 = 0, x3 = 0, (158)

where

σ(x; b) = 1 − 2b x(t) − b2[t2 − x2(t)] = 1 − b x(t) (159)

does not vanish because t2 +1/(4b2) > 0 . Haantjes does not mention Page nor Robertson. He summarizes
his interpretation again in [149].
On the other hand, the time t̂ of the moving system runs as

t̂ =
t

1 − b2 t2
(160)

at the point (x = 0, x2 = 0, x3 = 0) , i.e. it becomes singular for (b t)2 = 1 .
The situation is similarly bewildering for the corresponding motion of a point (x̂ = a �= 0, x̂2 = 0, x̂3 = 0)
in the original system: Instead of Eq. (158) we have now

b (ab+ 1)[t2 − x2(t)] + (2ab+ 1)x(t) − a = 0. (161)

As b is arbitray, we may choose a b = −1 and get from (161) that x = −a = 1/b and σ(x; b) = −b2 t2. If
a b = −1/2, then (161) takes the special form t2 − x2(t) + 1/b2 = 0 and σ(x; b) = 2(1 − b x).
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Many more such strange features may be added if one wants to keep the acceleration interpretation! The
crucial point is that the transformations (134) are those of the Minkowski space and its associated inertial
frames and that one should find an interpretation within that framework. Accelerations are – as Robertson
asserted – an element of General Relativity! We come back to this important point below.

From 1945 till 1951 there were several papers by Hill on the acceleration interpretation of the conformal
group [159] and about the same time work by Infeld and Schild on kinematical cosmological models along
the line of Robertson involving conformal transformations [160].

Then came a series of papers by Ingraham on conformal invariance of field equations, also adopting the
acceleration interpretation [161].

Bludman, in the wake of the newly discovered parity violation, discussed conformal invariance of the
2-component neutrino equation and the associated γ5-invariance of the massless Dirac equation [162], also
mentioning the acceleration interpretation.

The elaborate final attempt to establish the conformal group as connecting reference systems with con-
stant relative acceleration came from Rohrlich and collaborators [163], till Rohrlich in 1963 conceded that
the interpretation was untenable [164]!

6 The advance of conformal symmetries into relativistic
quantum field theories

6.1 Heisenberg’s (unsuccesful) non-linear spinor theory and a few unexpected consequences

Attempting to understand the mesonic air showers in cosmic rays, to find a theoretical framework for
the ongoing discoveries of new “elementary” particles, and to cure the infinities of relativistic non-linear
quantum field theories, Werner Heisenberg (1901–1976) in the 1950s proposed a non-linear spinor theory
as a possible ansatz [165]. Spinors, because one would like to generate half-integer and integer spin particle
states, non-linear, because interactions among the basic dynamical quantum fields should be taken into
account on a more fundamental level, without starting from free particle field equations and inventing
a quantum field theory for each newly discovered particle. The theory constituted a 4-fermion coupling
on the Lagrangean level which was not renormalizable according to the general wisdom. This should be
taken care of by introducing a Hilbert space with an indefinite metric (such introducing a plethora of new
problems which were among the reasons why the theoretical physics community after a while rejected the
theory). Heisenberg and collaborators associated the final version

γμ∂μψ ± l2γμγ5ψ (ψγμγ5ψ) = 0 (162)

of their basic field equation with several symmetries [166], from which I mention two which – after detours
– had a lasting influence on future quantum field theories:

In order to describe the isospin it was assumed that – in analogy to a ferromagnet – the ground state
carries an infinite isospin from which isospins of elementary particles emerge like spin waves. This appears
to be the first time that a degenerate ground state was introduced into a relativistic quantum field theory. It
was soon recognized by Nambu [167] that the analogy to superconductivity was more fruitful for particle
physics.

As spinors ψ in the free Dirac equation have the dimension of length [L−3/2] (ψ+ψ is a spatial proba-
bility density) the Eq. (162) is invariant under the scale transformation [166]

ψ(x, l) → ψ′(ρ x; ρ l) = ρ−3/2 ψ(x, l), l → l′ = ρ l, ρ = eγ . (163)

Here the length l serves as a coupling constant which is not dimensionless. So Heisenberg et al. do the same
what Schouten and Haantjes had done previously [146] with the mass parameter, namely to rescale it, too.
As this does not lead to a new conservation law the authors had to argue their way around that problem and
they related possible associated discrete quantum numbers to the conservation of lepton numbers!
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Though this attempt was not successful with respect to Eq. (163), it raised interest as to the possible
role of scale and conformal transformations in field theories and particle physics: Already early my later
teacher Fritz Bopp (1909–1987) had shown interest in them [168]. Feza Gürsey (1921–1992) discussed the
non-linear equation

γμ∂μψ + λ (ψ ψ)1/3 ψ = 0 (164)

as an alternative which is genuine scale and conformal invariant [169], though the cubic root is, of course,
a nuisance. McLennan added the more interesting example [170]

�ϕ+ λ(ϕ∗ϕ)ϕ = 0, (165)

where ϕ(x) is a complex scalar field in 4 dimensions with a dimension of lengh [L−1] and the coupling
constant λ is dimensionless.

Immediately after the paper by Heisenberg et al. with the scale transformation (163) appeared, Julius
Wess (1934–2007) analysed their interpretation of that transformation for the example of a free massive
scalar quantized field, rescaling the mass parameter, too. He found no conservation law in the massive case,
but a time dependent generator for the scale transformation of the field [171].

A year later Wess published a paper [172] in which he investigated the possible role of the confor-
mal transformations (134) in quantum field theory, too, by discussing their role for free massless scalar,
spin-one-half and electromagnetic vector fields, including the associated conserved charges and the sym-
metrization of the canonical energy-momentum tensor. He also analysed the conformal invariance of the
2-point functions. He further pointed out that the generator of scale transformations has a continuous spec-
trum and cannot provide discrete lepton quantum numbers. He finally mentioned that in the case of a
non-vanishing mass of the scalar field one can ensure invariance if one transforms the mass accordingly.
But no conservation law holds in that case.
Wess also observed that the transformations (134) can map time-like Minkowski distances into space-like
ones and vice versa, because

(x̂− ŷ, x̂− ŷ) =
1

σ(x;β)σ(y;β)
(x− y, x− y), (166)

where

σ(x;β) = 1 + 2(β, x) + (β, β) (x, x) = (β, β)
(
x+

β

(β, β)
, x+

β

(β, β)

)
. (167)

The sign of the product σ(x;β)σ(y;β) may be negative! This mix-up of the causal structure for the
Minkowski space was, of course, a severe problem [173]. Similarly the possibility that σ(x;β) from
Eq. (167) can vanish. At least locally causality is conserved because

ημνdx̂
μ ⊗ dx̂ν =

1
[σ(x;β)]2

ημνdx
μ ⊗ dxν . (168)

Wess does not say anything about possible physical or geometrical interpretations of the conformal group!

6.2 A personal interjection

In 1959 I was a graduate student in theoretical physics and had to look for a topic of my diploma thesis. Be-
ing at the University of Munich it was natural to go to Bopp, Sommerfeld’s successor, who had been work-
ing on problems in quantum mechanics and quantum field theory. He suggested a topic he was presently
working on and which had to do with the fusion of massless spin-one-half particles in an unconventional
mathematical framework I did not like. Having learned from talks in the nearby Max-Planck-Institute
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for Physics about scale transformations as treated in [166] (Heisenberg and his Institute had moved from
Göttingen to Munich the year before), and knowing about Bopp’s interest in the conformal group, I asked
him whether I could take that subject. Bopp was disappointed that I did not like his original suggestion,
but, being kind and conciliatory as usual, he agreed that I work on the conformal group!

When studying the associated literature, I got confused: whereas the interpretation of the scale transfor-
mations (dilatations) (132) wasn’t so controversial I couldn’t make sense of the acceleration interpretation
for the conformal transformations (134) (see Sect. 5.2 above)! I knew I had to find a consistent interpreta-
tion in order to think about possible physical applications.

I was brought on the right track by the observation that there was a very close relationship between
invariance or non-invariance of a system with respect to scale and conformal transformations: If the dilata-
tion current was conserved, so were the 4 conformal currents, if the dilatation current was not conserved,
then neither were the conformal ones, the divergences of the latter being proportional to the divergence
of the former one (see, e.g. Eqs. (137)), at least in the cases I knew then. A simple example is given by a
free relativistic particle [174]: It follows from the infinitesimal transformations (133) and (135) that the –
possibly – conserved associated “momenta” are given by (c = 1)

s = (x, p) = E t− �x · �p, E = (�p 2 +m2)1/2. (169)

hμ = (x, x) pμ − 2 (x, p)xμ, μ = 0, 1, 2, 3; (170)

h0 = (t2 − r2)E − 2 s t, r = |�x|; �h = (t2 − r2) �p− 2 s �x. (171)

Inserting

�x(t) = (�p/E) t+ �a (172)

into those momenta gives

s = −�a · �p+ (m2/E) t, (173)

h0 = −�a 2E − (m2/E) t2, �h = 2 (�a · �p)�a− �a 2 �p− (m2/E)[(�p/E) t2 + 2�a t], (174)

which shows that the quantities s and hμ are constants for a free relativistic particles only in the limits
m→ 0 or E → ∞ ! Both types are either conserved, or not conserved, simultaneously.

More arguments for the conceptual affinities of scale and conformal transformations came from their
group structures, especially as subgroups of the 15-dimensional full conformal group. These features may
be infered from the Lie algebra (now with hermitean generators, the Poincaré Lie algebra left out; compare
also the algebra from Eqs. (61) - (68), including the related group definitions of the operators):

[S, Mμν ] = 0, i [S, Pμ] = −Pμ, i [S, Kμ] = Kμ, μ, ν = 0, 1, 2, 3, (175)

[Kμ, Kν] = 0, (176)

i [Kμ, Pν ] = 2 (ημν S −Mμν), (177)

i [Mλμ, Kν] = (ηλν Kμ − ημν Kλ). (178)

These relations show that the transformations (132) and (134) combined form a subgroup (generated by
S and Kμ), that Kμ and Pν combined do not form a subgroup, but generate scale transformations and
homogeneous Lorentz transformations. As

Kμ = R · Pμ ·R, (179)

where R is the inversion (3), one can generate the 15-dimensional conformal group by translations and the
discrete operationR alone [94]!
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Now all different pieces of the interpretation puzzle presented by the transformations (134) fell into the
right places if one – inspired by Weyl’s conformal transformations (102) and (107) – interpreted them as
space-time dependent scale transformations. However, whereas Weyl’s factor ω(x) is arbitrary, the cor-
responding factor 1/σ2(x;β) in Eq. (168) has a special form induced by the coordinate transformations
(134). For that reason I called them “special conformal transformations” in [94], a name that has remained.

So the proposal was to interpret scale and special conformal transformations as (length) “gauge trans-
formations” of the Minkowski space [95], an interpretation which has been adopted generally by now.

Having a consistent interpretation did not immediately settle the question where those transformations
could be physically useful! A first indication came from the relations (173)–(174) which show that the very
high energy limit may be a possible realm for applications. It was helpful that – at that time – interesting
interaction terms with dimensionless coupling constants like ψγμψAμ, ψγ5ψA, ϕ4 were also scale and
conformal invariant [174]. This led to Born approximations at very high energies and very large momentum
transfers which were compatible with scale invariance [175]. However, the experimental hadronic elastic
and other “exclusive” cross sections behaved quite differently. The way out was the deliberation that in
these reactions the scale invariant short distance properties were hidden behind the strong rearrangment
effects of the long range mesonic clouds which were accompanied by the emission of a large number of
secondary particle into the final states, like the emission oft “soft” photons in the scattering of charged
particles.

A somewhat crude Bremsstrahlung model showed successfully how this mechanism could work and
how to relate scale invariance to the “inclusive” cross section (i.e. after summation over all final state
channels) in inelastic electron-nucleon scattering [176]. A very similar result was obtained by Bjorken
about the same time by impressively exploiting current algebra relations [177]. His scaling predictions
for “deep-inelastic” electron-nucleon scattering generated considerable general interest in the field [178].
Soon scale invariance at short distances found its proper place in applications of quantum field theories to
high energy problems in elementary particle physics (see below).

The situation for special conformal transformations was more difficult at that time: First, there was their
long bad reputation of being related to a somewhat obscure coordinate change with respect to accelerated
systems! I always felt the associated resistance any time I gave a talk on my early work [179]. Also, it
appeared that scale invariance was the dominating symmetry because special conformal invariance seemed
to occur in the footsteps of scale invariance. This changed drastically later, too.

6.3 Partially conserved dilatation and conformal currents, equal-time commutators
and short-distance operator-expansions

While I was in Princeton (University) in 1965/66, I was joined by the excellent student Gerhard Mack
whom I had “acquired” in 1963 as my very first diploma student in Munich. In Princeton it was not easy
to persuade Robert Dicke (1916–1997) who was in charge of admissions that Mack would be an adequate
graduate student of the physics department, but I succeeded! Around that time the work on physical con-
sequences from Murray Gell-Mann’s algebra of currents was at the forefront of activities in theoretical
particle physics [180, 181]. In discussions with John Cornwall who had invited me for a fortnight to UC
Los Angeles to talk about my work, the idea came up to incorporate broken scale and conformal invariance
into the current algebra framework. Back in Princeton I suggested to Gerhard Mack to look into the prob-
lem. This he did with highly impressive success: When we both were in Bern in 1966/67 as guests of the
Institute for Theoretical Physics (the invitation arranged by Heinrich Leutwyler), he completed his Ph.D.
thesis on the subject [182] and got the degree in Februar 1967 from the University of Bern. An extract of
the thesis was published in 1968 [183].

In the next few years the subject almost “exploded”. It is impossible to cover the different lines of
development in these brief notes and I refer to several of the numerous reviews [99, 184–202] on the field.
I here shall briefly indicate only the most salient steps till today:
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The crucial new parameter which is associated with scale (and special conformal) transformations is
the length dimension l of a physical quantity A: It is said to have the length dimension lA if it transforms
under the group (132) as [94]

S1[γ] : A→ Â = ρlA A, ρ = eγ ; (180)

or, if F (x) is a field variable,

F (x) → F̂ (x̂) = ρlF F (x), x̂ = ρ x. (181)

If A or F (x) are corresponding operators and scale invariance holds, then

ei γ S Ae−i γ S = ρlA A, ei γ S F (x) e−i γ S = ρ−lF F (ρ x), (182)

where S is the hermitean generator of the scale transformation (= dilatation). The “infinitesimal” versions
of these relations are

i [S, A] = lAA, i [S, F (x)] = (−lF + xμ∂μ)F (x). (183)

The corresponding relations for the generatorsKμ of the special conformal transformations are

i [Kμ, F (x)] = [−2 xμ(−lF + xν∂ν) + (x, x)∂μ + 2 xνΣμν ]F (x), (184)

where the Σμν are the spin representation matrices of F with respect to the Lorentz group. The “classical”
or “canonical” dimension of scalar and vector fields ϕ(x) and Aμ(x) in 4 space-time dimensions are
lϕ = lA = −1 (the classical action integral

∫
d4xL has vanishing length dimension), a Dirac spinor ψ(x)

has lψ = −3/2.
It follows from the commutation relations (175) thatMμν , Pμ andKμ have the dimensions 0, −1 and +1,
respectively. As a mass parameter m has – in natural units (see Eq. (155)) – length dimension −1, one
defines the “mass dimension” dF = −lF , in order to avoid the minus signs in case of the usual fields.

For a given scale invariant system one expects the generator S to be the space integral

S =
∫
dx1dx2dx3 s0(x) (185)

of the component s0 of the dilatation current sμ(x), where – according to Eq. (116) –

sμ(x) = T μν x
ν +

∑

i

di
∂L

∂(∂μϕi)
ϕi. (186)

Using the equations of motions E(ϕi) = 0 (Eq. (112)) and the expression (113) for the canonical energy-
momentum tensor, we get for the divergence

∂μs
μ = T μμ +

∑

i

di
∂L

∂ϕi
ϕi + di

∂L

∂(∂μϕi)
∂μϕ

i

= −4L+
∑

i

di ϕ
i ∂L

∂ϕi
+ (di + 1) ∂μϕi

∂L

∂(∂μϕi)
. (187)

For a large class of models the divergence of the special conformal currents is proportional to the divergence
(187), namely

∂μk
μ
λ(x) = 2 xλ ∂μsμ(x), λ = 0, 1, 2, 3. (188)
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For this and possible exceptions see [99, 199, 203]. Compare also Eq. (137) above.
If the divergence ∂μsμ vanishes then the generator S from Eq. (185) is – formally at least – independent

of time and it follows from the commutation relations (175) that the mass squared operator obeys

M2 = PμP
μ → M̂2 = ei γ SM2 e−iγ S = ρ−2M2, (189)

i.e. either M2 = 0 or M2 has a continuous spectrum. In general, however, the physical spectrum of M2 is
more complicated and the divergence (187) will not vanish. A very simple example is provided by a free
massive scalar field which has (ignoring problems as to the product of field operators at the same point in
the quantum version!)

L =
1
2
(∂μϕ∂μϕ−m2 ϕ2), ∂μs

μ = m2 ϕ2. (190)

(As to problems with the energy-momentum tensor for quantized scalar fields see [181,189], the references
given there and the literature quoted in Sect. 6.4 below [213].)

In such a case as (190) the generator (185) becomes time dependent: S = S(x0). Nevertheless, using
canonical equal-time commutation relations for the basic field variable and their conjugate momenta the
second of the relations (183) may still hold (formally) and can be exploited, mostly combined with the fact
that the divergence is a local field with spin 0, carrying certain internal quantum numbers [183–185, 204].
In this approach the dimensions di of the fields ϕi are considered to be the prescribed canonical ones.

Postulating the existence of equal-time commutators is seriously not tenable in the case of interacting
fields which may also acquire non-canonical dimensions. This was first clearly analyzed by Kenneth Wil-
son in the framework of his operator product expansion [205]: In quantum field theories the product of
two “operators” A(x) and B(y) is either badly defined or highly singular in the limit y → x. Refering to
experience with free fields and perturbation theory Wilson first postulated that

for y → x : A(x)B(y) �
∑

n

Cn(x− y)On(x), (191)

where the generalized functionsCn(x−y) beome singular on the light cone (x−y)2 = 0 and the operators
On(x) are local fields.

Second Wilson implemented asymptotic scale invariance by attributing (mass) dimensions dA, dB and
dn to the fields in Eq. (191). Postulating the property (182) for both sides of that (asymptotic) relation
implies

Cn[ρ (x− y)] = ρdn−dA−dB Cn(x− y), (192)

i.e. the Cn(x) are homogeneous “functions” of degree dn − dA − dB .
This approach provided an important operational framework for the concept “asymptotic scale invariance”.
It was soon applied successfully to deep inelastic lepton-hadron scattering processes, with A and B elec-
tromagnetic current operators jμ(x) of hadrons [185, 188, 206–208].

6.4 Anomalous dimensions, Callan-Symanzik equations, conformal anomalies and conformally
invariant n-point functions

Wilson had already stated that for interacting fields the dimensions dA, dB and dn need not be canonical.
The intuitive reason for this is the following: even if one starts with a (classical) massless scale invari-
ant theory in lowest order, one (always) has to break the symmetry in higher order perturbation theory
for renormalizable field theories through the introduction of regularization schemes which involve length
(mass) parameters like a cutoff, e.g. related to a mass (re)normalization point μ. This leads to anomalous
positive corrections to the canonical dimensions

d→ d+ γ(g), γ(g) ≥ 0, (193)
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where g is the physical coupling constant.
Curtis Callan and Kurt Symanzik (1923–1983) in 1970 showed (independently) how a change of the

scale parameter μ and an associated one in the coupling g affects the asymptotic behaviour of the nth
proper (1-particle irreducible) renormalized Green function in momentum space [209]. For a single scalar
field its asymptotic behaviour is governed by the partial differential (Callan-Symanzik) equation

(
μ
∂

∂μ
+ β(g)

∂

∂g
− n γ(g)

)
Γ(n)
as (p; g, μ) = 0. (194)

The function β(g) and the anomalous part γ(g) of the dimension may be calculated in perturbation theory.
This material is discussed in standard textbooks [210–212] and therefore I shall not discuss it further here.

As there is no regularization scheme which preserves scale and special conformal invariance, the quan-
tum version of the trace of the energy momentum tensors and the divergences of the dilatation and special
conformal currents in general contain an anomaly which for a number of important models is proportional
to β(g) , where β(g) is the same function as in Eq. (194) [213]. Thus, only if β(g) vanishes identically
or has a zero (fix point) at some g = g1 �= 0 can the quantum version of that field theory be dilatation
and conformally invariant. The vanishing of β(g) in all orders of perturbation theory, and perhaps beyond,
appears to happen for the N = 4 superconformal pure Yang-Mills theory (see Sect. 7.3 below).

Early it seemed, at least in Lagrangean quantum field theory [99,203], that in most cases scale invariance
entails special conformal invariance, e.g. the 2-point function

〈0|ϕ(x)ϕ(0)|0〉 = const. (x2 − i0)−d (195)

of a scale invariant system with scalar field ϕ(x) is also conformally invariant. Here the dimension d of the
scalar field in general remains to be determined by the interactions.

But then in 1970 Schreier [214], Polyakov [215] and Migdal [216] realized that conformal invariance
imposes additional restrictions on the 3-point functions, leaving only a few parameters to be determined
by the dynamics.

Migdal also proposed a self-consistent scheme (“bootstrap”) in terms of Dyson-Schwinger equations
with Bethe-Salpeter-like kernels which, in principle, would allow to find solutions for the theory. This soon
led to an impressive development in the analysis of conformally invariant 3- and 4-dimensional quantum
field theories in terms of (euclidean) n-point functions, reviews of which can be found in [192–194, 196,
197].

7 Conformal quantum field theories in 2 dimensions, global properties
of conformal transformations, supersymmetric conformally
invariant systems, and “postmodern” developments

7.1 2-dimensional conformal field theories

Polyakov’s paper [215] was a first important step for conformal invariance into the realm of statistical
physics, but progress was somewhat slow due to the fact that the additional symmetry group was just
3-dimensional (scale transformations were already established within the theory of critical points in 2nd
order phase transitions). However applications of conformal invariance again “exploded” after the seminal
paper [217] by Belavin, Polyakov and Zamolodchikov on 2-dimensional conformal invariant quantum field
theories with now “infinite-dimensional” conformal Lie algebras generated by the (Witt) operators

ln = zn+1 d

dz
, n = 0, ±1, ±2, . . . , [lm, ln] = (m− n) lm+n, (196)

if one uses complex variables, and the corresponding ones with complex conjugate variables z̄ where
l̄n = z̄n+1d/dz̄. The generators (57) - (60) form a (real) 6-dimensionsional subalgebra which generates
the group (45). Its complex basis here is l−1, l0, l1 and l̄−1, l̄0, l̄1.
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The “quantized” version of the algebra (196) generated by corresponding operators Ln, the Virasoro
algebra, contains anomalies which can be interpreted as those of the 2-dimensional energy-momentum
tensor which, being conserved and having a vanishing trace, has only 2 independent components one of
which can be (Laurent) expanded in terms of the Ln, the other one in terms of the L̄n [218].
The Virasoro algebra first played an important role for the euclidean version of the 2-dimensional bosonic
string world sheet [202,219,220]. However, with the work of Belavin et al. [217] 2-dimensional conformal
quantum field theory became a subject by its own, first, because it allowed rich new insights into the
intricate structures of such theories [198,200,202,221], and second, because it allowed for applications in
statistical physics for, e.g. phase transitions in 2-dimensional surfaces [200, 222–225].

7.2 Global properties of conformal transformations

The transformations (3) and (134) become singular on light cones. As was already known in the 19th
century, this can be taken care of geometrically in terms of the polyspherical coordinates discussed in Sect.
2.4 above which allow to extend the usual Minkowski space and have all conformal transformations act
linearly on the extension. One can even give a physical interpretation of the procedure [94,95]: Introducing
homogeneous coordinates

xμ = yμ/k, μ = 0, 1, 2, 3, (197)

one can interpret k as an initially Poincaré invariant length scale which transforms as

k → k̂ = e−γ k, (198)

k → k̂ = σ(x;β) k, (199)

with respect to the groups (132) and (134). The limit σ(x;β) → 0 then means that at the points with
the associated coordinates x the new scale k̂ becomes infinitesimally small so that the new coordinates
x̂μ become arbitrarily large whereas the dimensionless coordinates yμ stay the same [94, 95]. The scale
coordinate k̂ can also become negative now.

In order to complete the picture, one introduces the dependent coordinate

q = (x, x) k, or Q(y; q, k) ≡ (y, y) − q k = 0, (200)

where q has the dimension of length, transforms as

q → q̂ = eγ q (201)

under dilatations and remains invariant under special conformal transformations. So we have now

C4[β] : ŷμ = yμ + βμ q, (202)

k̂ = 2 (β, y) + k + (β, β) q,

q̂ = q.

These transformations leave the quadratic form Q(y; q, k) itself invariant, not only the equation Q = 0.
The same holds for the translations T4[a] : xμ → xμ + aμ which act on the new coordinates as

T4[a] : ŷμ = yμ + aμ k, (203)

k̂ = k,

q̂ = 2 (β, y) + (β, β) k + q.
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It is important to keep in mind that a given 6-tuple (y0, y1, y2, y3, k, q), with Q(y; k, q) = 0, is only one
representative of an equivalence class of such 6-tuples which can differ by an arbitrary real multiplicative
number τ �= 0 and still describe the same point in the 4-dimensional physical space:

(y0, y1, y2, y3, k, q) ∼= τ (y0, y1, y2, y3, k, q), τ �= 0. (204)

As k is a Lorentz scalar, the quadratic form (y, y) is – like (x, x) – invariant under the homogenous Lorentz
groupO(1, 3). So the 15-parameter conformal groupC15 of the Minkowski spaceM4 leaves the quadratic
form Q(y; k, q) invariant. Writing

k = y4 + y5, q = y4 − y5, (205)

Q(y, y) ≡ (y0)2 + (y5)2 − (y1)2 − (y2)2 − (y3)2 − (y4)2 (206)

= yT · η · y = ηijy
i yj ,

one sees how the group C15 has to be related to the group O(2, 4) . Because of the equivalence relation
(204) one has

C15
∼= O(2, 4)/Z2(6), Z2(6) : y → y, and y → −y. (207)

Z2(6) is the center of the identity component SO↑(2, 4) of O(2, 4) to which C4[β] and S1[γ] belong, too.
Like O(1, 3) the group O(2, 4) – and therefore C15, too – consists of 4 disjoint pieces: If w ∈ O(2, 4)

is the transformation matrix defined by

yi → ŷi = wij y
j , i = 0, . . . , 5, wT · η · w = η, (208)

then the pieces are characterized by [142]

detw = ±1, ε05(w) ≡ sign(w0
0w

5
5 − w0

5w
5
0) = ±1, (209)

the identity component SO↑(2, 4) being given by detw = 1, ε05(w) = 1 . For, e.g. the inversion (3) we
have

R : k → q, q → k, or y0 → y0, · · · , y4 → y4, y5 → −y5; detw = −1, ε05(w) = −1. (210)

For these and other details I refer to the literature [198, 226–229].
Taking the equivalence relation (204) into account, one can expressQ(y, y) = 0 as

(y0)2 + (y5)2 = (y1)2 + (y2)2 + (y3)2 + (y4)2 = 1, (211)

and one sees that the extended Minkowski space on which the group C15 acts continuously is compact and
topologically given by

M4
c � (S1 × S3)/Z2(6), (212)

which essentially says that time is compactified to S1 and space to S3 . So time becomes periodic! Now one
needs at least four coordinate neighbourhoods (“charts”) in order to cover the manifold (212) [226, 227].
This can be related to the fact that the maximally compact subgroup of the identity component of O(2, 4)
is SO(2) × SO(4) .

In order to get rid of the periodical time one has to pass to the universal covering space

M4
c → M̃4 � R × S3. (213)
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If M̃4 is parametrized as

M̃4 = {(τ, �e); τ ∈ R, �e = (e1, e2, e3, e4) ∈ S3, �e 2 = 1}, (214)

then that coordinate chart for M4
c which describes the relations (211) for k = y0 + y5 > 0 , namely M4,

may be given by

y0 = sin τ, y5 = cos τ, τ ∈ (−π, +π), �y = �e, e4 + cos τ > 0. (215)

leading to the Minkowski space coordinates

x0 =
sin τ

e4 + cos τ
, xj =

ej

e4 + cos τ
, j = 1, 2, 3, (216)

from which it follows that

ημν dx
μ ⊗ dxν =

1
(e4 + cos τ)2

(dτ ⊗ dτ −
4∑

i=1

dei ⊗ dei), �e · d�e = 0, (217)

or more generally – according to Eqs. (197), (205) and (206) –

ημν dx
μ ⊗ dxν =

1
k2

(ηij dyi ⊗ dyj), yjdy
j = 0. (218)

Global structures associated with conformal point transformations were first analyzed by Kuiper [230].
Very important in this context is the question of possible causal structures on those manifolds, i.e.

whether one can give a conformally invariant meaning to time-like, space-like and light-like. We know
already that such a global causal structure cannot exist on M4 (Eq. (166)), but that a local one is possible
(Eqs. (168) and (218)). This generalizes to the compact manifold M4

c [226].
However, the universal covering M̃4 does allow for a global conformally invariant causal structure with

respect to the universal covering group ˜SO↑(2, 4) , namely a point (τ2, �e2) ∈ M̃4 is time-like later than
(τ1, �e1) if

τ2 − τ1 > Arccos(�e1 · �e2), (219)

where y = Arccos(x) means the principal value y ∈ [0, π]. More in the literature [198, 226–229, 231].
That the universal covering space (214) allows for a conformally invariant structure was first observed by
Segal [231].

Now the groupO(2, 4) is also the invariance group (“group of motions”) of the anti-de Sitter space

AdS5 : Q(u, u) = (u0)2 + (u5)2 − (u1)2 − (u2)2 − (u3)2 − (u4)2 = a2, (220)

which has the topological structure S1 ×R
4 and is, therefore, multiply connected, too. It has the universal

covering R × R
4 or R × S4 if one compactifies the “spatial” part [232].

In the following sense the Minkowski space (216) may be interpreted as part of the boundary of the
space (220) [241, 249]: Introducing the coordinates

u0 = (a2 + λ2)1/2 sin τ, u5 = (a2 + λ2)1/2 cos τ, �u = λ�e, λ > 0, �e ∈ S3, (221)

the ratios

ξ0 =
u0

u4 + u5
, ξj =

uj

u4 + u5
, j = 1, 2, 3, (222)
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approach the limits (216) if λ→ ∞ . Such limits may be taken for other charts of the compact space (212),
too.

This property is at the heart of tremendous activities in a part of the mathematical physics community
during the last decade (see the last Sect. below).

As the group O(2, 4) is infinitely connected (because it contains the compact subgroup SO(2) ∼= S1)
it has also infinitely many covering groups, the double covering SU(2, 2) being one of the more impor-
tant ones. The theory of irreducible representations of O(2, 4) and its covering groups also belongs to its
global aspects. I here mention only a few of the relevant references on the discussions of those irreducible
representations [233].

7.3 Supersymmetry and conformal invariance

An essential key to the compatibility of conformal invariance and supersymmetries is the generalization of
the Coleman-Mandula theorem [234] by Haag, Łopuszánski and Sohnius [235]: Coleman and Mandula had
settled a long dispute about the possible non-trivial “fusion” of space-time (Poincaré) and internal symme-
tries. From reasonable assumptions they deduced that one can only have a non-trivial S-matrix, if Poincaré
and internal symmetry group “decouple”, i.e. form merely a direct product. One of their postulates was
the existence of a finite mass gap, thus excluding conformal invariance. Soon afterward supersymmetries
were discovered [236–241] the fermionic generators of which had non-trivial commutators with those of
the Poincaré group. Haag et al. not only generalized Coleman’s and Mandula’s results in the massive case
by including supersymmetric charges, but they also discussed the case of massless particles and found a
unique structure: now the fermionic supercharges can generate the 15-dimensional Lie algebra of the con-
formal group and internal unitary symmetries U(N ), N = 1, 2, . . . , 8 . For their result the inclusion of
the generators Kμ of the special conformal transformations was essential.

One very important feature of supersymmetries is that they reduce the number of divergences for the
conventional quantum field theories, making the usual associated renormalization procedures at least par-
tially superfluous (so-called “non-renormalization theorems”) [236–240]. Of special interest here are the
N = 4 superconformal quantum Yang-Mills theories in 4 space-time dimensions : they are finite, their
β-function (see Sect. 6.4 above) vanishes [241–244] and, therefore, the trace of their energy-momentum
tensor, too, thus implying scale and conformal invariance on the quantum level! The Lorentz spin content
of this system of massless fields is: 1 (Yang-Mills) vector field with two helicities and an SU(N) gauge
group, 4 spin 1/2 fields with two helicities each and 6 scalar fields.

Though this model is as similar to physical realities as an ideal mathematical sphere is similar to the real
earth with its mountains, oceans, forests, towns etc., it is nevertheless a striking and interesting idealization!

7.4 “Postmodern” developments

7.4.1 AdS/CFT correspondence

The last 10 years have seen thousands (!) of papers which are centered around a conjecture by Malda-
cena [245] related to the limit λ → ∞ of Eq. (222) above, namely that the 4-dimensional conformally
compactified Minkowski space (or its universal covering) is the boundary of the 5-dimensional anti-de
Sitter space AdS5 (or its universal covering correspondingly). The conjecture is that the superconformal
N = 4, SU(N) Yang-Mills theory on Minkowski space “corresponds” (at least in the limit N → ∞) to
a (weakly coupled) supergravity theory on AdS5 accompanied by a Kaluza-Klein factor S5 , both factors
being related to a superstring in 10 dimensions of type II B (closed strings with massless right and left
moving spinors having the same chirality) by some kind of low energy limit.

The conjecture was rephrased by Witten [246] in proposing that the correlation (Schwinger) functions of
the superconformal Yang-Mills theory may be obtained as asymptotic (boundary) limits of 5-dimenional
supergravity on AdS5 plus Kaluza-Klein modes related to the compact S5, by means of the associated
generating partition functions for the supergravity and the gauge theory, respectively. The dimensions of
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operators in the superconformal gauge theory could be determined from masses in the AdS5 supergravity
theory (for vanishing masses those dimensions become “canonical”). An important point is that strongly
coupled Yang-Mills theories correspond to weakly coupled supergravity, thus allowing – in principle – to
calculate strong coupling effects in the gauge sector by perturbation theory in the corresponding supergrav-
ity sector.

The hypothesis has caused a lot of excitement, with (partial) confirmations for special cases or models
and also by using the conjecture as a working hypothesis for the analysis of certain problems, e.g. strong-
coupling problems in gauge theories.

I am unable to do justice to the many works and people working in the field and I refer to reviews for
further insights [247].

The conjecture as phrased by Witten suggests the question whether such or a similar correspondence
can perhaps be achieved without refering to superstrings. This question was investigated with some success
by Rehren in the framework of algebraic quantum field theory [248]. A recent summary of results can be
found in the Thesis [249].

7.4.2 “Unparticles”

Physical systems with a discrete mass spectrum like the standard model of elementary particles cannot
be scale and conformally invariant. Last year Georgi suggested that nevertheless conformally covariant
operators with definite (dynamical) scale dimension dU from an independent conformally invariant field
theory might couple to standard model operators: At suffiently high energies this could lead to a “non-
standard” loss of energy and momentum in the form of “unparticles” in very high energy reactions of
standard model particles [250]. Though still extremely speculative this might lead to another interesting
application of conformal symmetries, at least theoretically!
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Norm. Sup. (Ser. 3) 6, 9–102 (1889); available from NUMDAM: http://www.numdam.org/.

[80] Tait presented 3 papers on related problems to the Royal Society of Edinburgh, all in his beloved language of
quaternions, the first one in 1872, the second one in 1877 and the third one, in which he recognizes the work
of Liouville, in 1892. They are reprinted in his scientific papers: P. G. Tait, On orthogonal isothermal surfaces
I; in Scientific Papers I (At the University Press, Cambridge, 1898) paper XXV (pp. 176–193). Note on vector
conditions of integrability; in Scientific Papers I, paper XLIV (pp. 352–356). Note on the division of space
into infinitesimal cubes; Scientific Papers II (appeared 1900), paper CV (pp. 329–332); texts available from
Gallica: http://gallica.bnf.fr/.
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Sciences 69, 392–394 (1869); available from Gallica: http://gallica.bnf.fr/.

[91] G. Darboux, Sur une classe remarquable de courbes et de surfaces algébriques et sur la théorie des
imaginaires (Gauthier-Villars, Paris, 1873); available from Gallica: http://gallica.bnf.fr/. Second print-
ing in 1896 by A. Hermann, Paris; available from Cornell Univ. Library Historical Math Monographs:
http://dlxs2.library.cornell.edu/m/math/.
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[116] E. Schrödinger, Über eine bemerkenswerte Eigenschaft der Quantenbahnen eines einzelnen Elektrons;

Zeitschr. Physik 12, 13–23 (1922); partial English tranlation in [102], pp. 87–93.
[117] F. London, Quantenmechanische Deutung der Theorie von Weyl; Zeitschr. Physik 42, 375–389 (1927). English

translation in [102], pp. 94–106.
[118] H. Weyl, Elektron und Gravitation. I.; Zeitschr. Physik 56, 330–352 (1929); reprinted in HWGA III, paper 85,

pp. 245–267. English Translation in [102], pp. 121–144.
[119] H. Weyl, Geometrie und Physik; Die Naturwiss. 19, 49–58 (1931); reprinted in HWGA III, paper 93, pp.

336–345.
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[132] E. Bessel-Hagen, Über die Erhaltungssätze der Elektrodynamik; Mathem. Ann. 84, 258–276 (1921); available
from GDZ: http://gdz.sub.uni-goettingen.de/.
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