
On the Afline Connections 
that  Give Rise  to a Given Curvature (*). 

Do~rNzc G. B. ~EDELEN (Bethlehem, Pennsylvania)  

Summary. - A problem o/ both theoretical and practical importance is that o] characterizing the 
collection o] all affine connections that gives rise to a given curvature structure on a subset 
o] a differentiable mani]otd o] ]inite dimension. This problem is solved in closed ]orm in 
Section three. We also show that the eardinalily o/ the collection o] all distinct connections 
that give the same curvature is that o/ the continuum, and that the connections o] any two 
curvature structures can be brought into a 1-to-1 correspondence. 

1. - C ~ - m o d u l e s  o f  an t i exac t  differential  forms .  

Le t  U be an open region of an n-dimensional  differentiable manifold t h a t  is 
starlike with respect  to  one of its points Po c U. B y  this, we mean  t h a t  U can b e  
covered wi th  a coordinate  pa tch  wi th  specific coordinate functions (x~) such tha t  P .  
has coordinates (Xo) and, for any  point  P e U with coordinates (x~), the  set of points 
with coordinates (x~ ~- ~(x ~ -- xo) ) belong to U for all 2 E [0, 1]. All geometr ic  object  
fields on U are assumed to be evaluated  in te rms of the  specific coordinate functions(x ~) 
re la t ive  to which U is starlike. 

The graded associative algebra of exter ior  forms on U is denoted  b y  A(U):  

A°(U)  denotes the  class of C ~ functions on U and A~(U) denotes the  C~-module of 
differential  forms of degree k on U. The exter ior  p roduc t  and the  exter ior  deriva- 
t ive are denoted  by  A and d, respect ively,  while J is used to denote  the  operat ion 
of inner  mult ipl icat ion as defined in reference [1]. 

We define a vec tor  field X ( x  ~) on U in the  prefer red  coordinate sys tem (x ~) b y  

(1.1) x ( x  ~) = (x~ - g )  ~ / J ,  

and note  tha t  

(1.s) x ( . ;  + ;~(~ - x~)) = ~ x ( ~  ~) 

for all ~ e [ 0 , 1 ] .  Define the  homotopy  operator  H on A'°(U), k = O, ..., n, in the  

(*) Entra~a in Reduzione il 2 dicembre 1976. 
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standard way by 

(1.3) 

1 

( ~ ) ( x ~ )  = f x (x~) _~ 
0 

~(x; + 2(x ~ -  x~))~-~d~. 

Although some of the properties of H given in the following Lemma are trivial con- 
sequences of the others in the hst, they are given explicitly in order to simplify 
proofs later on. 

L ~ : ~ A  1.1. - The operator H ha the /ollowing properties: 

H~: H maps A~(U) i~to A~-~(U), k>l~ and commutates with addition and multipli- 
cation by vonstants~ 

H~: d H  + H d  = identity /or k > l ,  (Hd/)(x ~) -- /(x~) = /(x ~) /or k = O, 

H~: ( / / / /~ ) (x~)  = O, ( / /~)(~o)  = O, 

Hd: H d H  = H, grid = d, 

H~: ~ d ~ d  = Hd, d / I d a / =  dH, (dH)(Hd) = 0, (Hd)(dH) = 0, 

H~: X(x~).A (Ho))(x~) = 0, H X _ ]  = 0. 

PlcooF.- Property H~ follows directly from the definition of H, while H2 is simply 
the standard result that  is used in establishing the Poincar4 lemma. SinceX(x~) = 0 
from (1.1), (1.3) yields (Hco)(xo)= 0. When use is made of (1.2), (1.3) gives 

1 1 

0 0  

----0 

and hence H3 is established. Properties H4 follow directly by allowing H and d to 
act on dH ~- H d  = ident i ty  and using Ha; i.e. H = H(identity) = H ( d H  ~ Hd) = 
= H d H - ~  H H d  = HdH.  Allowing H and d to act on properties H~ established 
properties H~. Properties H6 are established in exactly the same way as that  used 
to establish ( H H e o ) =  0; i.e., (1.2) can be used to obtain a factor of the form 
X ( x  ~,) ..1 {X(x~)_] ()} under the integral sign, which, of course, v~anishes. 

Property H~ allows us to make the following definitions. 

DEntITIOn. (dHo))(x ~) = co~(x ~) is the exact part of (o e A~(U). 

DEFInITIOn. (Hdo))(x ~) = w~(x ~) is the antiexact part of a)eA~(U)  for k > l .  
Since no elements of A°(U) is exact, we make the following agreement. 

A ~ l ~ W ~ .  - An element of A°(U) is its own antiexact part. 
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Le t  the  set A~(U), k = 0, ..., n be defined b y  

(1.¢) 
A°(U) , k = 0 

= eA (V)IX J = 0 ,  w(x~) = 0}, ~ />1.  

D]~FIt~ITION. - The  elements  of A~(U) are refer red  to  as antiexaet differential forms 
of degree k. 

The  reason for this definit ion is t h a t  dH + Hd = iden t i ty  for  forms of posit ive 
degree while eve ry  dHw is exact  and  every  Hdw belongs to  A~(U) for  w e A~(U); 
t h a t  is, eve ry  differential  form of posi t ive degree is the  sum of an exact  form and  
an an t iexac t  form. The  impor tance  of ant iexact  forms is a direct  consequence of 
the  results established in the  following Lemma.  

I J E ~ a  1.2. - Antiexavt ]orms possess the ]ollowing properties: 

Az: A~(U) c k e r ( H ) ,  

A2: w ~  A~(U), y e  W(U) implies w A y e  A~+~(U), 

A,: A~(U) is a C~-module over A °, 

A~: H is the inverse o] d on A~(U) for ~ >1. 

P]~ooF. - I f  co e A~(U), t hen  X(x ~) _J o~(x ~) = 0 and hence 

1 

Ho~ = f X (x ~) _1 
0 

w(x  + z -i = 

1 

f l x(x  j + = ~ ÷ x~)) ~k-1 d~t 0 

0 

Thus, A~ is established. Clearly, A~ holds for elements  of A°(U) = A°(U) and hence 
it sufficies to establish A~ for k > l .  Under  the  hypotheses  of A~, we know tha t  

wAysA~+~(U) and (eoAy)(xo) = 0 since the  first factor  bJ vanishes at  (xo) because k > l .  
Fur the r ,  X _ ]  (wAy) ---- ( X _ ] w ) A y  + (--1)~coA(X_Jy)  = 0 since X _ l w  = 0, 
X . J ~  = 0 b y  hypothesis .  Thus,  X _ l  (wAy) = 0, (wAy)(xo) = 0 and hence 
wAFE A~+~(U); A~ is established. A3 t h e n  follows direct ly  f rom A~ since the  set 
Ak(U) is closed unde r  addi t ion and also under  (exterior) mult ipl icat ion b y  all e lements  
of A°(U)=Ao(U) .  P r o p e r t y  H2 gives~ for weAk(U) ,  k > l ,  w = d H w  ÷ H d ~ .  
However ,  A1 shows t h a t  Hw = 0 for ~oeA~(U), so t h a t  we have  w = H&o, 
and  As is established. 

RnMA~K. -- For  the  case k = 0, p ro p e r t y  H2 gives ](x~)= ](x~)+ (Hdl)(x~). 
Accordingly,  the  opera tor  H can be  used to inver t  the  operator  d on A~(U) for all 
values  of k. 

The  following results are s t ra ightforward consequences of the  propert ies  //1 
through H6 and A1 through As, so we simply s ta te  t h e m wi thout  proof. 



210 DOMINIC G. B. EDELEN: On the a]fine connections, etc. 

L E p t A  1.3. - I f  e) e Ak(U), k > l  satisfies X A 09 = O, X _ I  de) = 0, then co = O. 

L E ~  1.4. - A n y  ~o e A~(U), k > l ,  has the unique representation o = d[~l + #~ 

under the conditions # ~  A~-I(U), l*2 ~ A~(U) • I f  these conditions are satisfied, then 
/~ ---- H(dw) is unique, while #1 = H(w) is unique ]or k > l  and ~ul = H(~o) @ constant 

/or k = 1. 

2 .  - A f f i n e  c o n n e c t i o n s  a n d  c u r v a t u r e s .  

Let  r denote the n-by-n matrix of affme connection 1-forms ((F~)) = ((y~dx~)) 
and let O denote the n-by-n matr ix  of curvature 2-forms of the connection r .  Thus, 
r and O are related by the second half of Cartan's structure equations 

(2.1) d r  = r A r  + O,  

where the matrix exterior product rAr  is defined by 

The following results were first obtained by representing each differential form 
by dHeo + Hdo~ and using the fact tha t  H is the inverse of d on A~(U) in order to 
integrate the resulting equations that  obtain from (2.1). The following method of 
proof is significantly simpler than such a procedure. We make the following agree- 

ment  in order to simplify the notation. 

AGlC]~S~E~ 2.1. - If  each of the elements of an n-by-n matrix ~b of differential 
forms of fixed degree belongs to a collection K(U) on the set U, then we shall simply 
write Q ~ K(U). Thus, the assumption that  each of the entries of r is an element 

of AI(U) is simply writ ten r ~ A~(U). 

LE)iMA 2.1. -- .Let A E A°(U) be nonsingular and let O e AI(U).  The connection 

(2.2) r = (dA + AO)A  -~ 

has the curvature 

(2.3) 0 = A ( d O  - O A O ) A  - t  . 

P~ooF. - The result is clear with A = E = identi ty matrix. For A V: E, (2.3) is 

easily established by  direct substitution of (2.2) into (2.1). 

L E p t A  2.2. - .Le t  r e AI(U)  be given,. There exists a nonsingular A e A°(U) and 

a O~ AI(U) such that (2.2) holds. 



Do)1I~IC G. B. EDELE~: On the amine eo~,neetions, etc. 211 

1)I¢OOF. - Since (2.2) gives 

(2.2a) r A  = aA + AO 

i t  is sufficient to  establish the  existence of a nonsingular mat r ix  A e A°(U) and a 
Oe A~(U) such t ha t  (2.2a) holds. Since 0 e  Ax(U), AOe A~(U) f rom the  module 
p rope r ty  of A~(U), and hence  A0 e ker (H)  b y  A~. Applying H to bo th  sides of (2.2a) 
gives H(rA) = H(dA). However ,  A e A°(U) = A°(U) and hence (HdA)(x~) = 
-~ A(x ~) --A(~o). We thus  have  the  following linear integrul equat ion for the  de- 
t e rmina t ion  of A i 

(2.4) A(~ ~) = A(xT,) + (HrA)(z~). 

Since all quanti t ies  are assumed to be C ~ geometr ic  object  fields, s tandard  existence 
theorems show tha t  (2.4) possesses a nonsingular  solution on some open set iV t h a t  
contains the  point  (x~) provided  % = det(A(x~)) ~a 0. I f  we set a($ ~) = det(A(x~)) 
then ,  a t  all points of IV, (2.4) yields d a = a t r ( d A A - ~ ) = a t r ( d H ( r A ) A - ~ ) ,  
where t r  denotes  the  t race.  However ,  dHto = t o -  Hd¢o by  Hs, so tha t  we have  

da = a t r  ( r -  Hd(rA)A-~) and hence In [a I -- In lao[ = t r / / ( r -  H d ( r A ) A  -~) = 
= tr  H(r) because Hd(rA)A-~ e ker  (H). Accordingly, a(x~) = ao exp [tr  H(r)] and 
we conclude tha t  A(x~) is nonsingular  th roughout  U if A is nonsingular at  the  point  
(Xo). Since dA is the  exact  par t  of r a ,  the  unique decomposit ion given by  L e m m a  1.4 
and (2.3) show tha t  A0 = / / d ( r A )  is the  an t iexac t  pa,rt of r A .  Thus,  

( 2 . 5 )  o = A-IHa(rA)  

is an t iexac t  f rom the  module p rope r ty  of Ak(U), and the  result  is established. 
Now tha t  we have  established tha t  every  mat r ix  r of affine connect ionhas  the  

form (2.2) for 0 e AI(U), it  follows f rom L e m m a  2.1 tha t  every  mat r ix  O of curva- 
tu re  forms has the  s t ruc ture  given by  (2.3). This establishes the  following corollary 
on not ing  t ha t  H(~)  e At(U) for eve ry  ~t e As(U). 

Col~oLLA~¥ 2.1. - Every matrix O o] curvature ]orms on U can be written as 

(2.6) 0 = A ( d t t ( ~ )  - -  t t ( ~ ) A t t ( ~ ) ) A  -1  

/or some A e Ao(u) = Ao(U) ang some ~te As(U). 

Multiplica~tion of (2.6) by  A -1 on the  lef t  and A on the  r ight  yields A-IOA = 
= dH(~t)--H(~)AH(~t). Thus,  since H(~)AH(~)e  As(U) b y  As, allowing H to 
act  on bo th  sides of this equat ion give H(A- IOA)=  H d H ( ~ ) =  H(bt). Thus,  if 
we define 0~e  AI(U) for given O by  0a = H(A-IOA), we arr ive at  the  following 
result .  
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(2.7) 

where 

(2.8) 

L ] ~ A  2.3. - Every matrix 0 of curvature forms on U can be written as 

0 = A ( a O ~  - -  0~A0~)  A -1 

Oa = H(A-IOA)  

and a matrix of connection forms that gives rise to 0 is given by 

(2.9) r a  -~ (dA ~- A0a)A -1 . 

3. - The connect ive  support o f  a g iven  matr ix  o f  c u r v a ~ r e  forms.  

L e t  C(O; U) deno te  the  collection of all  mat r ices  of connect ion forms  t h a t  give 

rise to the  same  m a t r i x  0 of cu rva tu re  forms  on the  s tar l ike region U. 

D ~ I T I O ~  3.1. - The  collection C(O; U) is the  connective support of O. 
The  resul ts  ob ta ined  in the  previous two sections prov ide  the  informat ion  whereby  

a charac ter iza t ion  of C(O; U) can be  obta ined.  

THEO~E~ 3.1. -- Every member of the connective support of a given matrix 0 of 
curvature forms is given by 

(3.1) rB : (dB ~- BO~)B -1 , 08 : H ( B - I O B )  

for some nonsingular B e A°(U). 

P~ooF.  - I f  rB e c ( o ;  u)  t h e n  rn  satisfies 

(3.2) din  = m a r ,  + 0 

and,  b y  exter ior  different ia t ion of (3.2), we obta in  the  iden t i ty  

(3.3) aO = r ~ A o  - o A r ~ .  

W e  now use L e m m a  2.2 to  infer  the  exis tence  of a B e  A°(U) and  a ~ A~(U) 

such t h a t  

(3.4) Pn = (dB -~ B~t)B -1 , 

in which case, L e m m a  2.1 gives the  cu rva tu re  

(3.5) On = B ( d ~ -  ~ A ~ ) B  -1 . 
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The theorem will thus be established upon showing that  0~ = 0. Define the quan- 
t i ty  0Be AI(U) by 

(3.6) 0B : H(B-IOB). 

Exterior differentiation of (3.6) and use of dH ~ Hd-~  identity yields 

(3.7) d0B ~--- B - l O B  - -  Hal(B-lOB). 

However, Hal(B-lOB) : t t (B - IdOB- -  B-IdBAB-~OB q- B-IOBAB-~dB),  so that  
the use of the identity (3.3) together with (3.4) shows that  

(3.8) Hal(B-lOB) = H(I~AB-IOB-  B-~0BAtL). 

Since ~ A~(U), it follows from H2 that  H(~AB-~OB)==H(~AdH(B-IOB)q-  
-b b~AHd(B-IOB)) = H(~AdH(B-~OB)) = H(IzAd08), where the last equality is ob- 
tained by use of (3.6). Accordingly, (3.8) yields Hd(B-~OB) = H(~Ad08 -- dOBA~), 
and (3.7) yields the identity 

(3.9) 0 = B(dO, + H(t~Ad0B- dOB/\is.)) B -~ . 

Thus, (3.5) and (3.9) give 0 : 08 if a,nd only if 

(3.1o) dos 4- ~ ( ~ A d 0 ~  -- d08A~) = d~ -- ~ A ~  

holds. Allowing H to act on both sides of this equality, and noting that  I~AI~ E 
A2(U) by A~, it follows from H3, A1 and A4 that  

08 = HdOB : Hdp~ = [z. 

In this case (3.10) is identically satisfied because 

H(I~Ad0~ -- d0BAIL) : H(I~Adt~ -- dt~/\t~) : -- Hd(t~At~) : -- I~AI~, 

~nd the theorem is established. 

Clearly, Theorem 3.1 establishes a 1-to-1 correspondence between the collection 
of all nonsingular B ~ Ao(U) and the elements of C(O; U). The caxdinahty of C(O; U) 
is thus easily estabhshed once the distinct elements of C(O; U) have been deter- 
mined. To this end, we need the following temma. 

L ~ A  3.1. - I] r.~ and rB are two elements o] C(O; U) that correspond to the 
two nonsingular elements A and B of A°(U), then r~ : r~ i] and only i] d(AB -~) : O. 
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P~ooF.  - B y  hypothesis ,  

(3.11) 

(3.12) 

ra  . -  (dA + AOA.)A -~ , O~ : H ( A - ~ O A ) ,  

rB = (dB + BOB) B -~ , OB = H ( B - I O B ) ,  

and hence there  exists a nonsingular C ~ A°(U) such tha t  A : BC.  When this is 
subs t i tu ted  into (3.11) and  (3.12) is used to el iminate the  result ing dB~ we obtain 

(3.13) r~ : r .  + B(dC + C G -  GC)C-~B -~. 

Thus,  rA = r~  if and only if 

(3.14) dC : O~C-- COa. 

However ,  since C e  A°(U), C = C ( x ~ ) + H d C  by  H~, ~nd hence (3.14) and the  
module  p r o p e r t y  of A~(U) gives C = C(xo). W e  thus  obta in  

(3.~5) dC : d ( A B  -1) : 0 . 

However ,  with C : Co : C(xo), (3.14) becomes 

0 : O~Co -- CoO~ : OBCo -- CoH(A-~OA) : OBCo- CoH(Co~B-~OBC)  : 

: OBCo - -  H ( B - I O B ) C o  : O~Co - -  O~Co 

since H commutes  with mul t iphcat ion  by  constants  b y  H1. 
Clearly, d ( A B  -~) = O defines an equivalence relat ion on the  collection of all 

nonsingulur matrices belonging to A°(U), and IJemm~ 3.1 thus yields the  following 

result .  

T~on.n~1 3.2. - The distinct elements o] the connective support of a given matrix 0 
o] curvature forms can be placed in a 1-to-1 correspondence with the equivalence classes 
o] all nonsingular n-by-n matrices o] elements o] A°(U) under the equivalence relation 

d ( A B  -~) = O. The eardinality o] the distinct elements o I C(0; U) is thus that o I the 

continuum. 

C0~0LLA~Y 3.1. - The elements of C(01; U) can, be placed in a 14o-1 correspondence 

with the elements of C(02; U) ]or any two matrices 01 and 02 o] curvature ]orms on U. 

P~ooF.  - For  each nonsingular  B c A°(U), we have  

rl~ = (dB q- BO1B)B -1 , 

P2B : (dB + BO2B)B -~, 

01B = H(B- IO1B)  , 

02B = H(B- IO2B)  , 

f rom (3.1) and  the  resul t  follows. 
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The proof of Theorem 3.1 established the identf ty  

0 = B(dOB-- O~AO~)B -~, O~ -~ H ( B - I O B )  

for any  curvature  form 0 and  any  nonsingular B ~ A°(U). Thus~ if we take  B = E, 
we obtain the  following result. 

Tm~O~E~ 3.3. - Every matrix 0 o I curvature lorms is uniquely characterized by a 
corresponding e ~ H(O) ~ AI(U) through 

(3.16) 0 = dO --  OAO 

and hence the collection o] all matrices o] curvature 1orms on U can be placed in a 
1-to-1 correspondence with all distinct n-by-n matrices o I elements o I AI(U). The car- 
dinality of the collection o I all matrices o1 curvature 1orms on U is thus that o I the con- 
tinuum. 
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