On the Affine Connections
that Give Rise to a Given Curvature (*).

Douinic G. B. EDELEN (Bethlehem, Penngylvania)

Summary. ~ A problem of both theoretical and practical imporiance is that of characterizing the
collection of oll affine connections thal gives rise to a given curvalure struciure on o subset
of a differentiable manifold of finite dimension. This problem is solved in closed form in
Section three. We also show that the cardinality of the collection of all distinct conmections
that give the same curvature is that of the continuum, and that the commections of any two
curvature structures can be brought info a 1-lo-1 correspondence.

1. - C*-modules of antiexact differential forms.

Let U be an open region of an n-dimensional differentiable manifold that is
starlike with respect to one of its points P,c U. By this, we mean that U can be’
covered with a coordinate pateh with specific coordinate functions (#*) such that P,
has coordinates (#7) and, for any point P € U with coordinates (2), the set of points
with coordinates (z -+ A(»* — 7)) belong to U for all 2 &[0,1]. All geometric object
fields on U are assumed to be evaluated in terms of the specific coordinate functions(a*)
relative to which U is starlike.

The graded associative algebra of exterior forms on U is denoted by A(U):
A%U) denotes the class of 0 functions on U and A*(U) denotes the O°-module of
differential forms of degree k on U. The exterior product and the exterior deriva-

tive are denoted by A and d, respectively, while _| is used to denote the operation
of inner multiplication as defined in reference [1].

We define a vector field X(2*) on U in the preferred coordinate system (#*) by

(1.1) X(@*) = (& — af) 8]0’ ,

and note that
(1.2) X (o + Aa* — 2) = AX (")

for all 2€[0,1]. Define the homotopy operator H on A*T), k = 0, <.y, in the

{*) Entrata in Redazione il 2 dicembre 1976.
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standard way by

(1.3) (Ha)@*) =fX (@) 1 e} + Ao* — af)) A-dA.

Although some of the properties of H given in the following Lemma are trivial con-
sequences of the others in the list, they are given explicitly in order to simplify
proofs later on.

LevMA 1.1. — The operator H ha the following properties:

H,: H maps AXU) into /YUY, k>1, and commutates with addition and multipli-
cation by constants,

H,: dH 4 Hd = identity for k=1, (Hdf)(@") — flzg) = fl&") for &k = 0,
H,: (HHw)#*) =0, (Hw)(®,) = 0,
H,: HiH = H, dHd = d,
Hy: HdHd = Hd, dHdH = dH, (dH)(Hd) = 0, (Hd)(dH) = 0,
Hy: X(z%) 1 (Ho)(#*) =0, HX _| = 0.
PrOOF. — Property H, follows directly from the definition of H, while I, is simply

the standard result that is used in establishing the Poincaré lemma. Since X (xj)= 0
from (1.1), (1.3) yields (Hw)(x,) = 0. When use is made of (1.2), (1.3) gives

11
HHo = [X(@) 1 {(1X @) 0@ + e — o} 22 dhdp = 0
00

and hence H, is established. Properties H, follow directly by allowing H and d to

act on dH - Hd = identity and using H,; i.e. H = H(identity) = H(dH 4 Hd) =

— HdH + HHd = HdH. Allowing H and d to act on properties H, established

properties H,. Properties H; are established in exactly the same way as that used

to establish (HHw) = 0; d.e., (1.2) can be used to obtain a factor of the form

X(z*) 1 {X(2*) 1 ()} under the integral sign, which, of course, vanishes.
Property H, allows us to make the following definitions.

DEFINITION. (dHw)(@*) = w.(#*) is the exact part of we A*(U).

DEFINITION. (Hdw)(@*) = w.(@*) is the antievact part of we ANU) for k>1.
Since no elements of A%U) is exact, we make the following agreement.

AGREEMENT. — An element of A%U) is its own antiexact part.



Dominic G. B. EDELEN: On the affine connections, ete. 209

Let the set A*U), k= 0,...,n be defined by

ATy, k=0

(1.4) #4(T) ={ wed(U)Xlo=0, o@)=0, I>1,

DEFINITION. — The elements of A*(U) are referred to as antiewact differential forms
of degree %.

The reason for this definition is that dH -+ Hd = identity for forms of positive
degree while every dHw is exact and every Hdw belongs to A*U) for we AXU);
that is, every differential form of positive degree is the sum of an exaet form and
an antiexact form. The importance of antiexact forms is a direct consequence of
the results established in the following Lemma.

LEMMA 1.2. — Antiexact forms possess the following properties:
Ay AT Cker(H),
Ay: we A U), ye AYU) implies wAy e A*+YT),
Ay AXU) is a C*-module over A°,
A,: H is the inverse of d on A*U) for y>1.

Proor. — If we A4(U), then X(z*) _§w(x*) = 0 and hence
1
Ho =fX(w°‘)J o(zy + A@*— ) ¥ 1di =
0 1
1
:fz X (2§ 4+ Mag— ™) 1 w(@f + Ma"—af) A¥1di = 0.
0

Thus, 4, is established. Clearly, 4, holds for elements of A%U) = A°(U) and hence
it sufficies to establish A, for k>1. Under the hypotheses of A4,, we know that
o A\yeA(TU) and (wAy)(ag) = 0 since the first factor » vanishes at (af) because k> 1.
Further, X _|({wAy) = (X Jo)\y + (—1}oA(X _Jy) = 0 since X _jow =0,
X _1y=0 by hypothesis. Thus, X _[(wAy)=0, (0Ay)@}) =0 and hence
wly e A U); A, is established. A4; then follows directly from A, since the set
A*(U) is closed under addition and also under (exterior) multiplication by all elements
of ANU) = A%U). Property H, gives, for we AYU), k>1, w = dHw + Hdw.
However, A, shows that Hw =0 for we A¥U), so that we have o = Hdw,
and 4, is established.

REMARK. — For the case k=0, property H, gives f(z*) = f(af) -+ (Hdf)(ax*).
Accordingly, the operator H can be used to invert the operator d on AU for all
values of k.

The following results are straightforward consequences of the properties H,
through H; and A, through 4,, so we simply state them without proof.
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LEMMA 1.3. — If w e A¥(U), k>1 satisfies X 1w =0, X _|dow =0, then o = 0.

LEMMA 1.4, — Any o e A¥(U), k>1, has the unique representation o = du; -+ us
under the conditions p, € AYTU), u,€ AU). If these conditions are satisfied, then
Uy = H(dw) is unique, while y, = H(w) is wnique for k>1 and p, = H(w) + constant
for k=1.

2, — Affine connections and curvatures.

Let I' denote the n-by-n matrix of affine connection 1-forms (1)) = ((§, ds"))
and let © denote the n-by-n matrix of eurvature 2-forms of the connection I'. Thus,
I' and © are related by the second half of Cartan’s structure equations

(2.1) al =TAT + 0,
where the matrix exterior product AT is defined by
TAT = ((DIATT))

The following results were first obtained by representing each differential form
by dHw -+ Hdw and using the fact that H is the inverse of d on A*(U) in order to
integrate the resulting equations that obtain from (2.1). The following method of
proof is significantly simpler than such a procedure. We make the following agree-
ment in order to simplify the notation.

AGREEMENT 2.1. — If each of the elements of an n-by-n matrix ¢ of differential
forms of fixed degree belongs to a collection K(U) on the set U/, then we shall simply
write Y € K(U). Thus, the assumption that each of the entries of I' is an element
of AYU) is simply written I'e AYU).

LEMMA 2.1. — Let A€ ANU) be nonsingular and let 8 e AY(U). The connection
(2.2) T'=(d4 4 A46)4
has the curvature
(2.8) 0= A(d0 —0A8) 41,

PrOOF. — The result is clear with 4 = E = identity matrix. For 4 E, (2.3) is
easily established by direct substitution of (2.2) into (2.1).

LEMMA 2.2. — Let T'e AYU) be given. There emists a nonsingular A e A°(U) and
a 6 AYT) such that (2.2) holds.
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Proor. — Since (2.2) gives
(2.2a) T4 =d4 | A6

it is sufficient to establish the existence of a nonsingular matrix 4 e A%U) and a
6 c AYU) such that (2.2¢) holds. Since 8¢ AYU), 480 AYU) from the module
property of A*(T), and hence 40 e ker(H) by 4,. Applying H to both sides of (2.24)
gives H(TA)= H(d4). However, Aec A(U) = AYU) and hence (HdA)x*) =
= A(z") — A{x]). We thus have the following linear integral equation for the de-
termination of A:

(2.4) A(@") = Alag) + (HLA) ™) .

Since all quantities are assumed to be C° geometric object fields, standard existence
theorems show that (2.4) possesses a nonsingular solution on some open set N that
contains the point (af) provided a, = det(A(m}’,‘)) 0. If we set a(w~) = det(A(z))
then, at all points of N, (2.4) yields da = atr(d4 A™!) = o tr (dH(T'4) A7),
where tr denotes the trace. However, dHw == w — Hdw by H,, so that we have
da = atr (I'— Hd(I'4)A™)) and hence In|a|— In|ay| == tr H(I' — HYTA)A4A?) =
= tr H(T') because Hd(I'4)A ' eker (H). Accordingly, a(#*) = a,exptr H(T')] and
we conclude that A(z*) is nonsingular throughout U if 4 is nonsingular at the point
(#5). Since d4 is the exact part of I'4, the unique decomposition given by Lemma 1.4
and (2.3) show that 49 = Hd(T'4) is the antiexact part of T4. Thus,

2.5) 0 = A1HA(TA)

is antiexact from the module property of A*(U), and the result is established.

Now that we have established that every matrix I' of affine connectionhas the
form (2.2) for 8 € AY(U), it follows from Lemma 2.1 that every matrix @ of curva-
ture forms has the structure given by (2.3). This establishes the following corollary
on noting that H(w)e AY(U) for every we AU).

CoROLLARY 2.1. — Every matriz © of curvature forms on U ean be written as
(2.6) 0 = A(dH(p) — H(p)AH(w) A

for some A A(U) = AU) and some g A*U).

Multiplication of (2.6) by 4! on the left and 4 on the right yields 4164 =
= dH(p) — H)AH(@). Thus, since H(p)AH(p)e A U) by A4,, allowing H to
act on both sides of this equation give H(A47104) = HdH(p)= H(p). Thus, if

we define 8, € AY(U) for given ©® by 0, = H(4'04), we arrive at the following
result.
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LEMMA 2.3. —~ Hvery matric @ of curvature forms on U can be writien as

(2.7) 0= A(d0‘4—~04/\04) At
where
{2.8) 0, = H(A0A)

and a matriz of connection forms that gives rise to © is given by

(2.9) PA == (dA + ASA)A'-I .

3. — The connective support of a given matrix of curvature forms.

Let 0{@; U) denote the collection of all matrices of connection forms that give
rise to the same matrix © of curvature forms on the starlike region U.

DEFINITION 3.1. — The collection C(@; U) is the connective support of O.
The results obtained in the previous two sections provide the information whereby
a characterization of 0(@; U) can be obtained.

THEOREM 3.1. — Every member of the connective support of a given matriz @ of
curvature forms is given by

3.1) I': = (dB -+ B0;)B, 6;=H(B'0B)
for some nonsingular B e A°(U).

Proor. — If Ty e C(0O; U) then I'p satisfies
(3.2) aly = TuA\T: + O
and, by exterior differentiation of (3.2), we obtain the identity
3.3 dO = I;N\N®@ —OAT;.

We now use Lemma 2.2 to infer the existence of a Be A%U) and a pe AYU)
such that

(3.4) T;= (dB 4 Bp)B,
in which cage, Lemma 2.1 gives the curvature

(3.5) 0, = B(du — pAp)B.
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The theorem will thus be established upon showing that @, == @, Define the quan-
tity 0, AY(U) by

(3.6) 0, = H(B0B).
Exterior differentiation of (3.6) and use of dH + Hd = identity yields
(3.7) d8, = B'0@B — Hd(B'0B).

However, Hd(B~'0B) = H(B~1d0B — B-*dBAB-0B + B-'O0BAB-1dB), so that
the use of the identity (3.3) together with (3.4) shows that

(3.8) Hi(BOB) = HwABOB — BOBAp).

Since pe AYU), it follows from H, that H(wAB-OB)= H(pAdH(B-'©B) 1
+ pAHA(B*OB)) = H(pA\dH(B-'©B)) = H(p./\d0;), where the last equality is ob-
tained by use of (3.6). Accordingly, (3.8) yields Hd(B~-'®@B) = H(pA\d0; — dOsAp.),
and (3.7) yields the identity

(3.9) © = B(d0; + H(pAdB; — dB:\p)) B,

Thus, (3.5) and (3.9) give @ = @, if and only if

(3.10) d85 + H(pNd0; — d0;Ap) = dp — pAW

holds. Allowing H to act on both sides of this equality, and noting that pApe
e A¥U) by A4,, it follows from H,, A, and A, that

93=HdGB=Hdp:=pa'
In this case (3.10) is identically satisfied because
H(uAdOs; — dbsAp) = H(pAdw — dpAp) = — HARAR) = — pAWR,

and the theorem is established.

Clearly, Theorem 3.1 establishes a 1-to-1 correspondence between the collection
of all nonsingular B € A%U) and the elements of C(@; U). The cardinality of 0(@; U)
is thus easily established once the distinet elements of ((@®; U) have been deter-
mined. To this end, we need the following lemma.

LeMmA 3.1. - If Ty and T are two elements of C(@; U) that correspond to the
two nonsingular elements A and B of A(U), then T'y = T'y if and only if d(AB-1) =0.
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Proor. ~ By hypothesis,
(3.11) T,= (d4d + 46,)4, 0,=H(47184),
(3. 12) rB _— (dB + BGE) B——l, BB == H(B_IGB) 3

and hence there exists a nonsingular C e A%(U) such that 4 = BC. When thisis
substituted into (3.11) and (3.12) is used to eliminate the resulting dB, we obtain

(3.13) 4 == I‘B + B(dc + COA - 6BC)C—1B-1.

Thus, I'y = Iy if and only if
(3.14) ac = 0,C — C9,.

However, since Ce ANU), C = C(z;) + HAC by H,, and hence (3.14) and the
module property of AYTU) gives € = C(a]). We thus obtain

(3.15) dC = d(AB-1) = 0.

However, with € = C; = C(g), (3.14) becomes

0=20,C,—C,0,=0,C,— C,H(A0A4) = 0,C,— C,H(C;'B~'6BC) =
— QBCO — H(B_leB) Co = GBCO o BBCO

since H commutes with multiplieation by constants by H,.

Clearly, d(4B-') = 0 defines an equivalence relation on the collection of all
nonsingular matrices belonging to 4% U), and Lemma 3.1 thus yields the following
result.

THREOREM 3.2, — The distinct elements of the connective support of a given matriz ©
of curvature forms can be placed in a 1-to-1 correspondence with the equivalence classes
of all nonsingular n-by-n matrices of elements of ANU) under the equivalence relation
d(AB-) = 0. The cardinality of the distinct elements of C(@; U) is thus that of the
CORHNUUM.

COROLLARY 3.1. — The elements of 0(©,; U) can be placed in a 1-to-1 correspondence
with the elements of C(@,; U) for any two matrices @, and O, of curvature forms on U.

Proor. — For each nonsingular B e AXU), we have

I"IB == (dB + BelB) B_l, 013 —— H(B~101B) s
T,, — (dB + B6y) B, 0, = H(B0,B),

from (3.1) and the result follows.
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The proof of Theorem 3.1 established the identity
@ e B(deB - BB/\GB)B—17 eB = H(B_IGB)

for any curvature form @ and any nonsingular B e A%(U). Thus, if we take B = E,
we obtain the following result.

TurorEM 3.3. — Hvery matric @ of curvature forms is uniquely characierized by a
corresponding 0 = H(O) e AY(U) through

(3.16) 0=d0—06)0
and hence the collection of all matrices of curvalure forms on U cam be placed in a
1-to-1 correspondence with all distinet n-by-n matrices of elements of A U). The car-

dinality of the collection of all matrices of curvature forms on U is thus that of the con-
tinuum.
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