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Abstract 

 

In this thesis, we investigated the instability of two-dimensional wave-fields and its 

concurrent evolution in time by means of the Alber equation for narrow-banded random 

surface-waves in deep water subject to inhomogeneous disturbances. A linear partial 

differential equation (PDE) is obtained after applying inhomogeneous disturbances to 

the Alber equation and based on the solution of this PDE, the instability of the ocean 

wave surface is studied by given a spectrum. The study is started from symmetric 

spectra with variable spectral width in directions perpendicular and parallel to the 

carrier wave, namely, a very simple structure of the square spectrum and the rectangular 

spectrum, and a popular Lorentz spectrum and then continued for realistic asymmetric 

JONSWAP spectrum of ocean waves with variable directional spreading and steepness. 

For the symmetric spectra, it is found that the instability is independent of the spectral 

width which is perpendicular to the carrier waves while for JONSWAP spectrum, it is 

found that instability depends on the directional spreading and parameters α  and γ  of 

the JONSWAP spectrum. α  and γ  are the energy scale and the peak-enhancement 

factor, respectively, and both influence the mean steepness of waves with such a 

spectrum, although in different ways. Specifically, if the instability stops due to the 

directional spreading, an increased value of steepness by increasing α  or γ  can 

reactivate it. A criterion for the instability is suggested as a dimensionless “width 

parameter”, Π . For the unstable conditions, long-time evolution is simulated by 

integrating the Alber equation numerically. Recurrent evolution which is a stochastic 

counterpart of the Fermi–Pasta–Ulam recurrence obtained for the cubic Schrödinger 

equation is obtained. This recurrence enables us to study the probability of freak waves 

and the results are compared to the values given by the Rayleigh distribution that was 

obtained for the linear waves as well as to the Forristall distribution based on the 

second-order theory. Interestingly, it is found that stability/instability transition, the 

most unstable mode, recurrence duration and freak wave probability all depend solely 

on the dimensionless “width parameter”, Π . 

  

Keywords: modulational instability, long-time evolution, probability of freak waves, 

inhomogeneous disturbances, nonlinear waves.  
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Chapter 1 

Introduction 

1 Introduction 

1.1 Background  

Air travel is the fastest growing mode of transportation in the world today (Ruffles, 

2001). However, it is inevitable that in terms of shipping cost, e.g. per tonne mile, ships 

are two orders of magnitude more efficient than the air freight (Faulkner, 2002, Toffoli 

et al., 2003). It is therefore necessary to provide safe navigation and to prevent accidents 

leading to increased risk of life, property and environment (Toffoli et al., 2003). In order 

to guarantee maritime safety, accurate information of wave height for the safety of 

shipping or operational transportation is necessary. In addition, wave height information 

is important for the design of marine and coastal structures, oceanographic applications 

and naval architectures. One of the most important issues in this regard is related to 

extreme wave events during storms. These extreme events are dangerous for the vessels 

around the oceans (see e.g. Toffoli et al., 2003, 2005).  

Although the forecasts are accurate, the abnormal waves often known as freak or rogue 

waves cannot be predicted even with the modern wave forecasting. This is because the 

modern forecasting systems only determine the evolution of the spectrum, but they do 

not provide any information on the instantaneous position of the water surface (e.g. 

Janssen and Bidlot, 2009). There is no standard definition for these very exceptional 

waves. Most commonly, freak waves are defined as waves with a very unusual height 

appearing on the sea surface for a short period of time (see e.g. Lawton, 2001). Kharif 

and Pelinovsky (2003) argued that the freak waves are waves which are too high, too 

asymmetric and too steep. The most popular definition, however, is the comparison to 

the significant wave height. According to such definition, freak waves are those whose 

heights exceed the significant wave height more than two times, or sometimes more 

specifically 2.2 times (see e.g. Kharif and Pelinovsky, 2003, Janssen, 2003). It is 

believed that more than 200 ship accidents over the past two decades, including the loss 
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of super tankers and container ships exceeding 200 meters in length, have been caused 

mostly by rogue waves (ABC Science online, 2004).  

There have been numerous observations of freak waves not only in the deep water but 

also on the shallow water or even at the coastline; see for example, Kharif and 

Pelinovsky (2003), Didenkulova et al. (2006), Dysthe et al. (2008) and Nikolkina and 

Didenkulova (2011). Recently, Nikolkina and Didenkulova (2012) provided a catalogue 

of the freak waves reported in media from 2006 to 2010 where 106 data were collected. 

They concluded that 78 out of 106 events are true freak waves while the rest are 

possible freak waves. As a special event, the accident of the cruise ship “Louis 

Majesty” was analysed by Cavaleri et al. (2012).  

Therefore, based on the above facts, it is important to study the freak waves to save 

vessels as well as lives. However, since the main cause of these very exceptional waves 

is still unknown, it will be studied based on the some mechanisms that are responsible 

for their generation.  

Generally, there are three mechanisms responsible for the formation of these very 

exceptionally waves (see, for example, Onorato et al., 2002, Kharif and Pelinovsky, 

2003). Firstly, White and Fornberg (1998) argued that the presence of strong currents 

can be one of such mechanisms. This argument is supported by the work of Onorato et 

al. (2011) through numerical simulations based on the modified nonlinear Schrödinger 

equation derived by Hjelmervik and Trulsen (2009) that accounts for the current, and by 

the experiments in wave flume done by Toffoli et al. (2011). Another mechanism that is 

responsible for the formation of freak waves is suggested by Pelinovsky et al. (2000). 

Using analytical and numerical solution of Korteweg–de Vries equation for the shallow 

water with an initial condition corresponding to the excepted freak wave, they found 

that freak waves are almost linear waves. Thus, it can be concluded that the second 

mechanism responsible for the generation of freak waves is the simple linear 

superposition of the waves. A third mechanism of the freak wave generation is 

modulational instability (Trulsen and Dysthe, 1997, Onorato et al., 2002). This last 

mechanism has been shown experimentally (see e.g. Onorato et al., 2009a, 2009b, 

Babanin et al., 2010, 2011a, 2011b), theoretically (see e.g. Tracy and Chen, 1988) and 

numerically (see e.g. Onorato et al., 2003, Toffoli et al., 2010b). Babanin et al. (2011b) 
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argued that in deep water modulational instability is the more likely cause of extreme 

waves, including rogue events, than the linear superposition. 

In practical sense, a major issue is the dynamics of modulational instability in 

directional wave fields. While such instability in one-dimensional cases is well 

established and described (most often by means of nonlinear Schrödinger Equation, e.g. 

Janssen, 1981, Tracy and Chen, 1988, Onorato et al., 2003, Kharif and Pelinovsky, 

2003, Kharif et al., 2010), it has been argued that is impaired or may be even suppressed 

in real directional seas (Babanin et al., 2010, 2011a, 2011b). Onorato et al. (2009a, 

2009b) conducted studies of such two-dimensional cases. Their analyses were based on 

varying the degree of the directional distributions while keeping the steepness of the 

spectrum constant. Babanin et al. (2010, 2011b), however, argued that modulational 

instability does not only depend on the directional spreading but it also depends on 

steepness. They showed that if wave fields stabilize due to the broader directional 

spreading, an increase of the steepness could reactivate the instability.  

Modulational instability in inhomogeneous wave fields will be addressed in this thesis 

by means of the two-dimensional Alber equation (Alber, 1978), which is a stochastic 

version of the cubic Schrödinger equation. Recently, Stiassnie et al. (2008) studied the 

instability of narrow spectra homogeneous seas and its subsequent evolution in time, 

subject to inhomogeneous disturbances by means of the one-dimensional Alber 

equation. They discovered the recurrent solution, which is the stochastic counterpart of 

the Fermi–Pasta–Ulam recurrence obtained for the cubic Schrödinger equation, in the 

area of instability. Moreover, Regev et al. (2008) used the work of Stiassnie et al. 

(2008) to study the probability of  freak waves occurrence initialised by Gaussian 

spectra. Therefore, extending the work of Stiassnie et al. (2008) and Regev et al. (2008) 

from one spatial dimension to two spatial dimensions will be the main contributions of 

the present work. This will include a study of waves with realistic sea states 

characterized by the JONSWAP (Joint North Sea Wave Project) spectrum (Hasselmann 

et al., 1973), with and without directional distributions. 
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1.2 Objectives  

Three main objectives have been set in this thesis which will be addressed by means of 

the two-spatial-dimensions of the Alber equation subject to inhomogeneous 

disturbances. The specific objectives are to: 

a. Determine the unstable condition based first on simple square spectra and 

rectangular spectra, then continued on the basis of more general Lorentz spectra 

and finally of realistic ocean wave JONSWAP spectra; 

b. Simulate the long-time evolution of wave fields for the unstable conditions 

obtained in Part (a), including JONSWAP spectrum with and without a 

directional distribution; 

c. Determine probability of occurrence of freak waves for both unidirectional and 

directional sea states. 

 

1.3 Outline of the thesis 

In this thesis, Chapter 2 is the literature survey. It includes previous findings based on 

the cubic Schrödinger equation, on the Alber equation and on the Kinetic equation, 

modulational instability in one and two spatial dimensions, and long-time evolution. 

Because of the particular topic, this thesis gives derivation of the Alber equation and 

describes wave height distributions including statistics of linear waves and nonlinear 

waves. The latter is based on the second- and third-order theories. 

In Chapter 3, the linear instability of two-dimensional wave fields is investigated by 

means of the Alber equation for narrow-banded random surface waves in deep water 

subject to inhomogeneous disturbances. In this Chapter, instability of the ocean surface 

waves will be studied for a given spectrum and the most unstable mode and its growth 

rate will be determined. We start from a simple structure of the spectrum, that is square 

spectrum and rectangular spectrum, then continue with Lorentz spectrum. Finally, 

instability of realistic ocean wave JONSWAP spectrum is investigated for three 

different cases, the so called “Lorentzian” spectrum, i.e. the symmetric version of the 

JONSWAP, unidirectional JONSWAP spectrum and JONSWAP spectra with 

directional distributions.  
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Based on the instability conditions obtained in Chapter 3, the long-time evolution in two 

spatial dimensions will be shown in Chapter 4. In this regard, the Alber equation will be 

integrated numerically. To this end, a finite difference scheme is established and the 

boundary conditions as well as the initial conditions are determined. Derivation of the 

invariants of motion for the two-dimensional Alber equation as a quality control of the 

numerical solution is also given in this Chapter. Details of the derivation of invariants of 

motion are deferred to Appendix A.  

Applications of the new results to the statistics of freak waves in both unidirectional and 

directional sea states are given in Chapter 5. These include comparisons to the Rayleigh 

distribution which was obtained for linear waves as well as to the Forristall distribution 

based on the second-order theory. Probability of freak waves is determined for both 

unidirectional JONSWAP spectra with variables energy scale and the peak enhancement 

factor and for JONSWAP spectra with various degrees of directional distribution. 

Finally, conclusions and discussions of the results are summarised in Chapter 6. 
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Chapter 2 

Literature review 

2 Literature review 

2.1 Introduction 

The nonlinear evolution in time t  and space 1 2( , )x x=x  of ocean-wave fields is usually 

described by equations for the free-surface elevation ( , )tη x  or related quantities, such 

as an amplitude spectrum given by its x  to k  Fourier transform. For deep water, two 

frequently mentioned deterministic equations are: Zakharov equation for broad-

amplitude spectra and the cubic Schrödinger equation for narrow spectra (see Zakharov 

1968). The cubic Schrödinger equation is given by: 

2 2
25

03 2 2
0 1 0 1 2

1 1 1
i 2

2 4 2

A g A g A A
gk A A

t k x k x x

� �� �∂ ∂ ∂ ∂
+ − − =� �� �� � � �∂ ∂ ∂ ∂� � � �

 (2.1) 

where ( , )A tx  is the complex amplitude envelope, centered around the carrier wave-

number 0 0( ,0),k=k  and related to the free-surface elevation ( , )tη x  by 

0 1 02 ( , ) ( , ) exp[i( )] *.t A t k x gk tη = − +x x  (2.2) 

In the above and elsewhere in this thesis, g  is the acceleration due to gravity and * 

stands for the complex conjugate. It is generally assumed that (2.1) and (2.2) also 

describe the evolution when ( , )A tx  and ( , )tη x  are random functions.  

Longuet-Higgins (1976) and Alber (1978) have used (2.1) as their starting point for the 

formulation of two rather different stochastic evolution equations. Longuet-Higgins 

assumed that the wave-field is a homogeneous and nearly Gaussian random process; 

whereas Alber enabled the random process to be inhomogeneous, but required 

Gaussianity (see next section for details derivation of Alber’s work). To somewhat 

clarify the above terminology we define the two-point space correlation function 



7  

( ) ( )*1 1
2 2

( , ) =,t A ,t A ,tρ + −x r x r x r  (2.3) 

where  denotes the ensemble average and r  is the spacing. We further mention a 

fourth order average which appears during the derivations: 

2 * *1 1 1
2 2 2

2 * *1 1 1
2 2 2

( , ) = ( ) ( ) ( )

( ) ( ) ( ) .

f ,t A + ,t A + ,t A ,t

A ,t A ,t A + ,t

− −

− −

x r x r x r x r

x r x r x r
 (2.4) 

One should note that: (i) for a homogeneous process  

( , )h h tρ ρ= r  (2.5) 

is independent of ;x  and (ii) that for a nearly Gaussian process (2.4) reduces to  

1 1
2 2

( , ) = 2 ( , ) ( ) ( ) ( )f t t t t c tρ ρ ρ� �+ − − +	 
0, 0,x r, x r, x r, x r, x,r,  (2.6) 

where ( , )c tx r,  is the fourth order cumulant assumed to be small under the assumption 

of weak non-Gaussianity or zero under the assumption of strict Gaussianity. It is also 

important to mention that for a homogeneous process (2.6) becomes 

( ) = ( )h hf t c tr, r,  (2.7) 

which has to be estimated by using sixth order averages and a closure given by the 

assumption of vanishing sixth order cumulants. We summarise the four possibilities in 

the following Table 2.1. 

Table 2.1: Various models for random ocean wave fields. 

                   Homogeneous  

Gaussian 
Yes No 

Yes Pierson (1955) Alber (1978) 

No Longuet-Higgins (1976) Crawford et al. (1980) 
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From Table 2.1, it is clear that Crawford et al. (1980) provide the more general option, 

but their result is so cumbersome that it has never been used so far. Pierson’s (1955) 

model turns out to be stationary as well and disregards the contribution of nonlinear 

interactions altogether.  

Longuet-Higgins (1976) result is actually the narrow-band limit of the Hasselmann 

(1962) kinetic equation. The kinetic equation has been the most frequently used 

stochastic model so far but its time scale is proportional to 4ε − , where ε  is a typical 

small wave steepness (see also Janssen (2003) the non-resonant kinetic equation and 

Annenkov & Shrira (2006) for the extended kinetic equation). These equations were 

derived for homogeneous wave fields where the key step in the derivation is the 

assumption that the phases of the components are close to each other in wavenumber 

space and remain uncorrelated to the lowest order (Stiassnie et al. 2008).  

Alber (1978) has used his equation to study the instability of a homogeneous wave-field 

to inhomogeneous disturbances. Alber’s findings are actually the stochastic counterpart 

of the well-known deterministic Benjamin–Feir instability, which is obtained for the 

cubic Schrödinger equation. The growth rates of the inhomogeneous instabilities are 

proportional to 2ε , reflecting the fact that the time scale of Alber equation is 

proportional to 2ε − . Although Alber does not state it explicitly, the choice of his initial 

small inhomogeneous disturbances discloses a certain correlation between their phases 

and those of the homogeneous base state. 

From the cubic Schrödinger equation, it is known that the Benjamin–Feir instability 

does not lead to a permanent end state, but to an unsteady series of modulation and 

demodulation cycles, called the Fermi–Pasta–Ulam recurrence phenomenon (see Yuen 

& Ferguson Jr 1978a,b, Janssen 1981 or Stiassnie & Kroszynski 1982). Stiassnie et al. 

(2008) solved the Alber equation in one spatial dimension numerically and showed that 

a stochastic parallel to the Fermi-Pasta-Ulam recurrence exists. Their initial 

homogeneous wave fields have simple one-dimensional spectra of three different types: 

Square, Lorentz and Gaussian. This stochastic recurrence enabled them to study the 

probability of waves that are twice or three times higher than the significant wave height 

and which are usually called freak waves (see Kharif and Pelinovsky 2003; Onorato et 

al. 2004; Mori et al. 2007). This classification is related to the work of Longuet–Higgins 

(1952) who showed that the wave heights in a wave field with a narrow spectrum, 
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within the theory of linear waves, are Rayleigh distributed. From the Rayleigh 

distribution one can calculate that the probabilities for waves that are twice or three 

times higher than the significant wave height are 43 10−× and 810− , respectively. The 

latter is such an extremely rare event that it would require an unrealistic long period of 

approximately 30 years to encounter such an exceptional freak wave (Regev et al. , 

2008). Moreover, Regev et al. (2008) used the one-dimensional Alber equation to study 

the probability of freak waves initialized by a Gaussian spectrum. 

The aforementioned findings are limited to unidirectional wave fields. Real sea states, 

however, are characterized by wave components propagating along different directions. 

Numerical (e.g. Onorato et al. 2002; Socquet-Juglard et al. 2005; Gramstad and Trulsen 

2007; Eliasson and Shukla 2010) and experimental (Onorato et al. 2009b; Waseda et al. 

2009) studies have revealed that wave directional spreading reduces the effect of 

instability and concurrently reduces the probability of freak waves occurrence. 

Although for one-dimensional wave trains qualitative features of this instability are 

well-established (Babanin et al., 2010, 2011a), for the directional wave fields 

quantitative guidance exists, but is much less certain (Babanin 2011, 2011b). 

Based on the Alber equation, the present work shows that more realistic JONSWAP 

spectra of ocean waves with directional distributions can actually reproduce a stochastic 

recurrence which is parallel to Fermi-Pasta-Ulam recurrence and the conditions for its 

occurrence are also specified. The periodicity of the stochastic properties in space, and 

their recurring structure in time, render the calculation of extreme conditions such as the 

occurrence of freak wave straightforward, by taking one recurrence cycle to establish 

the probability density function (pdf) and then calculating the probability of the freak 

waves. 

 

2.2 Derivation of the Alber equation 

2.2.1 The Davey – Stewartson equations 

Davey and Stewartson (1974) used the multiple scales method to derive the two coupled 

nonlinear partial differential equation which describe the evolution of a three-

dimensional wave-packet of the wavenumber k on finite depth water. These results are 

known as the Davey-Stewartson equations.  
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Alber (1978) used these equations as a starting point to derive a new equation based on 

the two-point correlation function. He normalized the wave height so that his equation 

for the wave height was different from the Davey – Stewartson equations. His wave 

height ���� �� �� of a weakly nonlinear progressive wave, above its undisturbed water 

level is written in the form 

 ����� �� �� 	 
���� � ������������� � �� ��� (2.8) 

where �� 	 ���� which is the carrier frequency, � 	 
�� � � ���,  	 
�, �� � stands 

for complex conjugate, x and y are physical variables and � 	 
!� where � is time. ���� � ��" is the complex envelope of the narrow-banded sea, with carrier wavenumber #$ 	 ���� %�, carrier wavelength �&'�� and carrier period �&'��. X is the direction of 

the carrier group velocity � � and the carrier dispersion relation for wave of depth h is 

given by the linear relation as follows: 

 ��! 	 ���() ""*+,-,"( 	 ./0+���1�� (2.9) 

The group velocity is obtained by taking the first derivative of the dispersion relation 

with respect to the carrier wavenumber and it can be written as 

� � 	 �2���� 	 ���� 3( � ��1�4 � (!5� 
Following Davey and Stewartson (1974), one will obtain the following pair of 

evolutionary equations for the complex amplitude""���� � ��. 
 6 7�7� � 8 7!�7�! � 9 7!�7! 	 :;�;!� � :<�=� (2.10) 

 8< 7!=7�! � 9< 7!=7! 	 >< 7!;=;!7! � (2.11) 

where 

8 	 4��22���� 	 � �?��(�� @3( � ��1�4 � (!�5! � A��!1!(!�4 � (!�B C %� 
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: 	 ����!4D(E FG � 4%(! � G(E
� �(!�1 � � �! HA�I! � A�I� ��4 � (!� � �1�4 � (!�!JK� 

9 	 �2������� 	 � ���� L %�"
�I 	 ���� �"
:< 	 ��EH��I � � ��4 � (!�J� � � 
8< 	 �1 � � �! M %; 9< 	 �1, 

>< 	 �!1� �A��( N��I � � ��4 � (!��1 � � �! O� 
For deep water waves, ��1 approaches infinity and as a consequence ( approaches 1 as ( 	 ./0+"���1� and then the above coefficients can be written as  

8 	 �4?P ���Q� 
9 	 4AR�'��Q� 

:S T : 	 4�R���U� 
(2.12) 

 

2.2.2 The Alber equation 

When A is a random function of X and Y and assuming that the Davey – Stewartson 

equations which are equations (2.10) and (2.11) describe the evolution of the wave train 

for the complex amplitude  ��V� ��, the equation for slow variation of the two-point 

space correlation function will be derived as follows. 

The two-point space correlation function is defined as  

W�VX� VY� �� 	 Z��VX� ���[�VY� ��\� (2.13) 
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where the superscript * denotes the complex conjugates and the angle brackets denote 

an ensemble average.  

In order to obtain the equation for the two-point correlation function, W� from the 

envelope amplitude equation (2.10), Alber adopted Wigner’s method (Weigner, 1932) 

as follows where equation (2.10) at point VX 	 ��<� <� is written as: 

6 7��VX�7� � 8 7!��VX�7�<! � 9 7!��VX�7<! 	 :;��VX�;!��VX� � :<��VX�=�VX�� 
Multiplying this equation by �[�VY�, gives 

6 7��VX�7� �[�VY� � 8 7!��VX�7�<! �[�VY� � 9 7!��VX�7<! �[�VY� 
	 :;��VX�;!��VX��[�VY� � :<��VX��[�VY�=�VX�� (2.14) 

Furthermore, equation (2.10) for �[�VY� can be written as 

6 7�[�VY�7� � 8 7!�[�VY�7�!! � 9 7!�[�VY�7!! 	 :;�[�VY�;!�[�VY� � :<�[�VY�=�VY�� 
Multiplying this equation by ��VX� yields, 

6 7�[�VY�7� ��VX� � 8 7!�[�VY�7�!! ��VX� � 9 7!�[�VY�7!! ��VX� 
	 :;�[�VY�;!�[�VY���VX� � :<�[�VY���VX�=�VY�� (2.15) 

Taking the ensemble averages of equation (2.14) and equation (2.15), one can get the 

following: 

6 77� Z��VX��[�VY�\ � 8 F 7!7�<! � 7!7�!!K Z��VX��[�VY�\
� 9 F 7!7<! � 7!7!!K Z��VX��[�VY�\� :<Z��VX��[�VY�\@=�VX� � =�VY�B� :@Z��VX��[�VX���VX��[�VY�\ � Z��VY��[�VY���VX��[�VY�\B	 %� 

(2.16) 
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Making use of equation (2.13), equation (2.16) can be rewritten as: 

6 7W7� � 8 F7!W7�<! � 7!W7�!!K � 9 F7!W7<! � 7!W7!!K � :<W@=�VX� � =�VY�B� :@Z��VX��[�VX���VX��[�VY�\� Z��VY��[�VY���VX��[�VY�\B 	 %� (2.17) 

Replacing the derivatives with respect to �<, �!, < and  ! by the derivatives with 

respect to the average coordinates 

 � 	 <!��< � �!�) " 	 <!�< � !� (2.18) 

and with respect to the spatial separation coordinates 

 ]< 	 ��< � �!�)"]! 	 �< � !�� (2.19) 

From equation (2.18) and equation (2.19), one can easily obtain the following identities 

�< 	 � � <!]<) ""�! 	 � � <!]<) ""< 	  � <!]!) ""! 	  � <!]! 

which gives 

V< 	 ^� � <!]<�  � <!]!_ 	 `V � 4�ab )""""V! 	 ^� � <!]<�  � <!]!_ 	 `V � 4�ab� 
Moreover, based on equation (2.18) and equation (2.19) , we can get the following first 

partial derivative with respect to �<, that is  

7W7�< 	 Wcd 	 Wc�cd � Wc�]<�cd 
and its second partial derivative is 

7!W7�<! 	 eWc�cd � Wc�]<�cdfcd 

which yields 

7!W7�<! 	 Wcc�cd! � �Wcgd�]��cd�cd � Wc�cdcd � Wgdgd�]<�cd! � Wgd�]<�cdcd � 
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Making use of equation (2.18) and equation (2.19), one can easily simplify the second 

partial derivative with respect to �< as follows: 

7!W7�<! 	 4AWcc � Wcgd � Wgdgd � 
Similarly, the second partial derivative with respect to �! is 

7!W7�!! 	 4AWcc � Wcgd � Wgdgd � 
From these second order partial derivative with respect to �< and �!, it can be shown 

that 

7!W7�<! � 7!W7�!! 	 � 7!W7�7]<� 
Similar calculations can be applied for < and ! so that we obtain  

7!W7<! � 7!W7!! 	 � 7!W77]!� 
Substituting these identities into equation (2.16) yields 

6 7W7� � �8 7!W7�7]< � �9 7!W77]! � :<W ^= hV � <!ai � = hV � <!ai_� :@Z��VX��[�VX���VX��[�VY�\� Z��VY��[�VY���VX��[�VY�\B 	 %� (2.20)  

Since this second order correlation of the evolutionary equation involves fourth order 

correlation terms, there are two assumptions that have to be made namely ��V� ��"corresponds initially to a Gaussian random process and the evolving random 

statistical amplitude field retains the same Gaussian statistical properties. The advantage 

of these assumptions is that the fourth-order cumulant vanishes and then one can write 

the fourth order correlation in terms of the products of pairs of second order correlation, 

i.e: 

Z��VX��[�VX���VX��[�VY�\ 	 �Z��VX��[�VY�\Z��VX��[�VX�\ 	 �Wj!kkk�VX� 
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where""j!kkk is the ensemble averaged mean square amplitude equivalent to 

Z��VX��[�VX�\ 	 ��!kkk� 
Similarly, it can be shown that 

Z��VY��[�VY���VX��[�VY�\ 	 �Z��VX��[�VY�\Z��VY��[�VY�\ 	 �Wj!kkk�VY�� 
Moreover, the terms involving ensemble averages of the form Z��VX���VX�\ in the 

cumulant expansion vanish because of the required invariance of such a correlation to 

the addition of a random constant to the phases. 

Therefore, under Gaussian closure approximation, (2.20) can be written as 

6 7W7� � �8 7!W7�7]< � �9 7!W77]! � :<W ^= hV � <!ai � = hV � <!ai_
� �:W ^j!kkk hV � <!ai � j!kkk hV � <!ai_ 	 %� (2.21)  

where  j!kkk�V� 	 WeV � dla�V � dla� �fman$� 
Equation (2.21) is nowadays known as the Alber equation with stretched/slow variables. 

 

2.3 Modulational instability in one spatial dimension  

The stability/instability of finite amplitude gravity waves on deep water has been a 

matter of interest for many researchers. As Dysthe (1979) pointed out that a lot of 

attention has been drawn to the instability of the wave train upon the modulational 

perturbation. The first indication of modulational instability for weakly nonlinear waves 

on deep water was observed by Lighthill (1965) who used the theory of Whitham 

(1965) and studied the evolution of weakly nonlinear waves on deep water (Yuen and 

Lake, 1980). He examined two sets of the initial condition namely a wave packet with a 

Gaussian envelope and a slightly modulated Stokes wavetrain. 

Furthermore, Benjamin and Feir (1967) used the Euler equation to investigate 

theoretically the stability of period wavetrains under small disturbance in the form of a 

pair of side-band modes. They found that a uniform wavetrain is unstable under 

perturbations in the interval 
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% o p o �q���!j�� 
where j� is the wave amplitude, �� is the peak wavenumber and p is the wavenumber 

of the disturbance. The maximum instability occurs when p 	 p�rs��, where  

p�rs�� 	 ���!j�� 
and the maximum growth rate etu�v�rs���f is  

tu�v�rs��� 	 4�����!j�!� 
where �� is the angular frequency of the uniform wavetrains. For details of derivation, 

one can refer to Mei et al. (2005, page, 761 - 763) (see also: Yuen and Lake, 1980). 

Another derivation which is based on the Zakharov equation, one can refer to the work 

of Mei et al. (2005, page 866 - 868). One should note that the instability of nonlinear 

waves in the general form was studied by Zakharov (1966) but it was written in Russian 

version and then it was translated into English by R.T. Beyer one year later which was 

in 1967. In addition, Benjamin and Feir (1967) conducted experimental observations 

based on their prediction and found that both theoretical investigations and experimental 

observations are in fairly good agreement. This result is now known as the Benjamin-

Feir instability.  

Recently, Janssen (2003) introduced the so-called Benjamin Feir Index (BFI) which is 

the ratio of steepness, 
, to the bandwidth of the spectrum and it can be written as 

wxy 	 
z�'�� 

where z� and �� are the bandwidth and the peak in the frequency spectrum, 

respectively. Since BFI is usually normalized, however, a random wave train is unstable 

if BFI > 1. Moreover, one should note that the ratio in Janssen’s BFI used to be called 

an “Ursell number” by Onorato et al. (2001). As reported by Onorato et al. (2001), if the 

Ursell number is really small compared to one, then the waves are essentially linear. 

However, when the Ursell number is greater or equal to one, then the dynamics 

becomes nonlinear (see also Osborne and Petti, 1994 for full review of the Ursel 

number).  
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Mei et al. (2005) reported that the instability of gravity waves in infinitely deep water 

has been studied in several ways during the last few decades. Longuet-Higgins (1978a, 

1978b) studied the instability numerically where the disturbance collinear with the 

fundamental wave and for both the perturbation which is less or equal to the primary 

wave (superharmonics) and the perturbation which greater than the primary wave 

(subharmonics). 

The application of nonlinear Schrödinger equation is the most successful and elegant 

approach to study the modulational perturbation for small amplitudes (Dysthe, 1979). 

This nonlinear Schrödinger equation was derived by Zakharov (1968) by allowing the 

finite amplitude wavetrain to be subjected to modulational perturbation in two spatial 

dimensions both parallel and perpendicular to the direction of the wavetrain. Later, the 

extension to waves on the finite depth was done by Davey and Stewartson (1974) which 

is now known as the Davey and Stewartson equation. Based on the Davey and 

Stewartson equation, Alber (1978) and Alber and Saffman (1978) derived the equation 

describing the evolution of the random wavetrain albeit for the narrow spectra and 

studied the effect of randomness on the stability properties of a two-dimensional 

nonlinear wavetrain. This equation is actually the stochastic counterpart of the well-

known cubic Schrödinger equation. Recently, based on the one spatial dimension of 

Alber equation, Stiassnie et al. (2008) studied the linear instability of narrow spectra 

homogeneous seas, namely square spectra, Lorentz spectra and Gaussian spectra, and its 

subsequent evolution in time, subject to inhomogeneous disturbances where according 

to the kinetic equation no spectral evolution is expected. In the region of instability, 

recurrent evolution which is the stochastic counterpart of the Fermi–Pasta–Ulam 

recurrence obtained for the cubic Schrödinger equation was discovered. Regev et al. 

(2008), then, used the results of Stiassnie et al. (2008) to study the probability of 

occurrence of freak waves. Moreover, they found the simple relation between the 

Janssen’s Benjamin Feir Index (Janssen, 2003) as given by 

wxy 	 4{|q� (2.22) 

where {|  is the dimensionless spectral width with {| 	 {'
��. 
 and �� are the 

steepness and the carrier wave, respectively.  
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Here, the marginal instability line is determined by a new parameter, }<, for 

unidirectional JONSWAP spectra and details are presented in Chapter 3. 

 

2.4 Modulational instability in two spatial dimensions 

All aforementioned facts are limited to the unidirectional wave fields which sometimes 

correspond to the long crested wave fields. The real sea states, however, are 

characterized by wave components propagating along different directions (directional 

distributions) which sometimes correspond to the short crested wave fields.  

Directional wave fields can be conveniently represented by one-dimensional spectrum, 

e.g. ~��� which is a frequency spectrum, multiplied by a directional spreading, ���� ��, 
which can be written as follows (Babanin and Soloviev, 1987, 1998b): 

���� �� 	 ~������� �� (2.23) 

where � and � are the frequency and the angle of the directional distribution with 

respect to the main propagation of the waves, respectively. Moreover, the directional 

spreading must satisfy the following condition 

����� ���
�� �� 	 4� (2.24) 

Following Babanin and Soloviev (1998b), the directional spreading can be written as 

���� �� 	 ��������� ��� (2.25) 

Substituting (2.25) into (2.24) gives 

������< 	 ����� ���
�� �� (2.26) 

where �� is the inverse normalized directional spectral width and ���� �� is the 

normalized directional spectrum: 

���� �rs�� 	 4� 
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where �rs� is the maximum value in the dominant direction in which the waves were 

travelling.  

The higher values of �� correspond to narrower directional distributions. �� is a 

convenient property to use as a proxy of the directional spread because there is an 

extensive parameterisation available for its dependences (Babanin and Soloviev, 1987, 

1998b) and it is unambiguously analytically connected with other existing directional-

spread characteristics used in literature, even for bi-modal directional spectra. For 

example, for the normalised spectrum ���� �� 	 ��������� � �rs�� where ;�; C &'�, 

this analytical connection is: 

�� 	 ��4 � %����q&��%�� � %����� (2.27) 

where � is the degree of directional spreading. For other options of �� and ���� �� one 

can refer to the work of Babanin and Soloviev (1998b).  

There have been numerous attempts to investigate the role of modulational instability in 

two spatial dimensions numerically and experimentally. Onorato et al. (2009a, 2009b), 

for example, observed the modulational instability in the two dimensional wave basin in 

Marintek, Norway, which is one of the largest tank in the world. They found that 

modulational instability leads to a significantly large number of extreme waves when 

the spreading coefficient � of the directional spreading is greater than 24 (�� 	 4�G���. 
A completely different experiment conducted by Waseda et al. (2009) at Tokyo 

University, Japan, found a similar result where the modulational instability is still active 

when the degree of the directional spreading is greater than 10 (�� 	 4��GA�. Note that 

in both experiments carried out by Onorato et al. (2009a, 2009b) and Waseda et al. 

(2009), the wave makers were prescribed by JONSWAP spectra with different peak 

enhancement factors and energy scales. Onorato et al. (2009a, 2009b) used the peak 

enhancement, � 	 D, and the energy scale, � 	 %�%4D, of the JONSWAP spectrum 

while the peak enhancement and the energy scale of the JONSWAP spectrum used by 

Waseda et al. (2009) were � 	 � and � 	 %�%%A, respectively. From numerical 

investigations, for instance, Eliasson and Shukla (2010) derived a nonlinear wave-

kinetic equation for gravity waves in 2+2 dimensions (two spatial dimensions and two 

velocity dimensions) and carried out numerical simulations to study the stability and 
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nonlinear spatiotemporal evolution of narrow-banded waves. Their modelling results 

agreed well with the experiments conducted by Onorato et al. (2009a, 2009b). Thus, 

both experimental and theoretical results concluded that the modulational instability 

process, which is one of the main mechanisms of extreme waves formation in deep 

water, random, long-crested (or unidirectional) waves, seem to be quenched when short-

crested waves are considered.  

Babanin et al. (2010, 2011b), however, argued that, for a given bandwidth, directional 

spreading is not the only property of surface wave fields to influence the modulational 

instability. They have shown experimentally that if the directional spreading becomes 

too broad and wave field stabilizes, the increase of steepness can re-activate the 

instability. They suggested a Direction Modulational Index �����, analogous to the 

Benjamin-Feir Index in the wavenumber domain, which identifies the limits in 

directional wave fields: 

��� 	 �� � 
 (2.28) 

where ε is the wave steepness and �� is the normalization factor of the directional 

spreading as defined by Babanin and Soloviev (1998b). Babanin et al. (2011b), 

investigated the modulational instability in a two-dimensional wave basin for quasi-

monochromatic wave trains with different steepness/directional-width combinations and 

found that the limit of the direction modulational index is ��� � %�4?. Note that the 

steepness calculated in Babanin et al. (2011b) is higher by the factor of q� compared to 

the steepness calculated in this research. It was concluded that such a limit corresponds 

to realistic directional conditions in Babanin and Soloviev (1998b) for oceanic waves 

and therefore supports the existence of modulational instability in the field. 

For more realistic ocean wave spectra (i.e. JONSWAP spectra) as a special case where 

they assumed that the energy scale of the JONSWAP spectrum is constant, Babanin et 

al. (2010) defined the direction modulational index as 

��� 	 ���� (2.29) 

where � is the peak enhancement factor of the JONSWAP spectrum. Furthermore, in 

relation to the wave development �<�'�I where �<� is the wind speed measured at a 
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height of 10 meters and �I is the phase speed, they used the equation (19) of Babanin 

and Soloviev (1998b), that is 

�� 	 4�4� ��<��I �
���U � ��&��<" (2.30) 

and equation (44) of Babanin and Soloviev (1998a), which is  

�� 	 4�4%P�<��I  (2.31) 

to define the following direction modulational index  

��� 	 4��� � 4�4�& P�<��I  (2.32) 

which is a weak function of the wind forcing, and its value at the spectral peak varies 

from 1.40 to 1.79 for �<�'�I in the range from 0.89 to 10 where �<�'�I 	 %�?G 

signifies full development (Babanin et al., 2010). 

One should also note that another version of the Benjamin Feir Index which includes 

the directional effect has been introduced by Mori et al. (2011) which is given in the 

following: 

wxy!� 	 
R��! � �!��!�  
(2.33) 

where 
, �� and �� are the steepness, frequency bandwidth and directional bandwidth, 

respectively, while �! is a constant.  

In this research, however, we will introduce a new parameter, }!, to determine the 

marginal instability criteria based on JONSWAP spectra with directional distributions. 

This parameter is a further development of “directional BFI” introduced earlier by 

Babanin et al. (2010). It has already been extensively used for investigations of 

modulational instability in directional wave fields, tested and even quantified 

experimentally as one can find in Babanin (2011) and Babanin et al. (2011b). 
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Another advantage of using }! is due to the fact that the directional property �� 

employed by }! formulation is a robust characteristic of wave directional spectrum well 

established experimentally and in the field observations. Comprehensive 

parameterisations for this property are available through the wave spectrum and at all 

stages of wave development (Babanin and Soloviev, 1987, 1998b) in the same terms as 

parameterisations for JONSWAP. Therefore, at any stage, }! can be expressed through 

both observations-based one-dimensional wave spectra and directional wave spectra. 

The details of this result are presented and discussed in Chapter 3. 

 

2.5 Long-time evolution of an unstable water-wave train 

It is well-known that the existence of steady, continuous, progressive wave trains of 

finite amplitude, the permanent form of which results from the balance between 

dispersion and nonlinear effect (see Hasimoto and Ono, 1972, Stiassnie and Kroszynski, 

1982, for review) is one of the remarkable properties of weakly nonlinear dispersive 

system. In relation to the gravity water waves at uniform depth, the search for precise 

forms of such wave trains has been the subject of many researchers since the classical 

work of Stokes (1847). The discovery of the modulational instability of such wave 

trains in fluid mechanics has been predicted by Lighthill (1965), Whitham (1965) and 

Benjamin and Feir (1967). Now the question is what will happen for unstable condition 

at very long time? 

In the presence of dissipation, Janssen (1981) argued that limited cycle behaviour seems 

likely to occur because the tendency toward a new equilibrium is accompanied by an 

increase in the entropy of the system. Moreover, recent results show that if the 

dissipation is taken into account, the modulational instability can be stabilized and in 

the wavenumber space, the area of instability shrinks as time increases (Segur et al., 

2005). This conclusion is also confirmed by Wu et al. (2006) by conducting fully 

nonlinear simulations. Besides that, Kharif et al. (2010) revisited analytically the work 

of Segur et al. (2005) by taking into account both dissipation and wind input. They 

found that in the presence of dissipation, carrier waves of given wavenumber may suffer 

modulational instability when the friction velocity is larger than a threshold value. On 

the other hand, for a given friction velocity, they found that only carrier waves whose 

numbers are less than a threshold value are unstable, otherwise dissipation prevents 
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instability developing over time. Recently, Onorato and Proment (2012) studied the 

effect of wind and dissipation on the nonlinear stage of the modulational instability and 

found that an initial stable wave packet could become unstable because of wind and the 

initial unstable wave packet could be stabilized by dissipation.  

In the absence of dissipation, however, it is not obvious that limit cycle behaviour 

occurs (Janssen, 1981). This indicates that there is no permanent end state, but an 

unsteady series of modulation and demodulation cycles known as Fermi-Pasta-Ulam 

recurrence phenomenon (Stiassnie and Kroszynski, 1982, Stiassnie et al., 2008).  

Yuen and Ferguson (1978b) showed from the numerical solution the influence of initial 

condition on the long-time evolution based on one spatial dimensional nonlinear 

Schrödinger equation (see also Yuen and Lake, 1980). From their numerical 

experiments, they demonstrated that long-time evolution of an unstable wave train is 

governed by unstable mode and their harmonics contained in the initial condition. They 

also found that the stable harmonics receive energy but they never become the dominant 

mode at any stage of the evolution. As shown in the previous section, the uniform wave 

train is unstable under the perturbation in the interval 

% o p o �q���!j�� 
where p is the wavenumber of the disturbance, �� is the carrier wave and j� is the wave 

amplitude. 

For long-time evolution, Yuen and Ferguson Jr (1978b) found that the initial conditions 

through the instability results seem to determine simple recurrence and complex 

recurrence. In particular, they found that if the initial perturbation wavenumber lies 

within the range 

q���!j� o p o �q���!j�� 
then the evolution will yield a simple recurrence whereas when the values of initial 

perturbation wavenumber are in the range 

% o p o q���!j�� 
then complex recurrence will be yielded from the evolution. As illustrations, they have 

simulated several cases where different numbers of harmonics fall within the unstable 
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region as shown in the following Figure 2.1. The vertical axis represents the normalized 

growth rate, while the horizontal axis reveals the wavenumber of the disturbances 

divided by ���!j�. The results from their numerical simulations are shown in Figure 2.2. 

It is clearly seen from Figure 2.2 that Case 1a and Case 1 give a simple recurrence 

solution. This is because the double value of the wavenumber, i.e. �p where p is the 

wavenumber of the disturbance is outside the instability region. On the other hand, 

Cases 2, 3, 4 and 5 give complex recurrence solution since n times the wavenumber of 

the disturbance falls into the instability region for any integer � M �. 

 

 

Figure 2.1: Instability growth rate of a uniform wave train subject to two-dimensional 

perturbations. The labels indicate the number of unstable harmonics (including the fundamental 

perturbation, which is denoted by �), (Yuen and Lake, 1982, Fig. 11). 

 

For two spatial dimensions of the nonlinear Schrödinger equation, Yuen and Ferguson 

Jr (1978a) also found that the long-time evolution exhibits the Fermi-Pasta-Ulan 

recurrence phenomenon. They had simulated a wide range of initial conditions and 

found that the initial condition is reconstructed or almost reconstructed. Moreover, 

Martin and Yuen (1980a) observed that for the two-dimensional nonlinear Schrödinger 

equation where the instability region is infinity in extent, they found that the energy 

initially contained in low modes can leak to unstable higher harmonic in a quasi-

recurring fashion. The instability area is shown in the following Figure 2.3 where p and � are the wavenumber of the disturbance. 
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Figure 2.2: Time evolution of unstable uniform wave trains subject to perturbations specified in 

Figure 2.1. The case numbers correspond to the encircled numbers in Figure 2.1. Note that the 

maximum number of prominent peaks appearing in time for each case is equal to the case 

number as predicted by the relationship (Yuen and Lake, 1982, Fig. 12). 

 

Figure 2.3: Region of instability of a uniform solution to infinitesimal disturbance with wave 

vector ( , ).p q  The line within the instability region denotes the locus of maximum instability 

(Martin and Yuen, 1980a, Fig. 1).  



26  

All of the aforementioned findings are based on the well-known nonlinear Schrödinger 

equation. The stochastic version of the nonlinear Schrödinger equation has been derived 

by Alber (1978) and Alber and Saffman (1978) which is normally known as the Alber 

equation. Janssen (1983) was the first one who studied the long-time behaviour of a 

random inhomogeneous field on weakly nonlinear surface gravity waves based on the 

one spatial dimension of the Alber equation. He particularly studied the long-time 

evolution near the threshold of instability by means of a multiple-time scale technique 

and found two interesting cases. His first finding is for small but finite bandwidth where 

the amplitude of the unstable modulation shows overshoot followed by oscillation 

around its time-asymptotic value. This oscillation is damped owing the phase mixing 

except in the limit of vanishing bandwidth because there is a perfect recurrence. 

Another finding is that for large bandwidth the damping due to phase mixing becomes 

overwhelming so that no overshoot is found. Janssen’s findings are summarized in the 

following Figure 2.4, where W is the two-point correlation function, ( is the spectral 

width and �< is the timescale. 

 

Figure 2.4: Long-time behaviour of the random version of the Benjamin-Feir instability. Shown 

are the cases of a uniform wavetrain ( 0),σ =  a narrow spectrum ( )Oσ = ∆  and a broad 

spectrum (1),Oσ =  (Janssen, 1983, Fig. 3). 

 

Recently, Stiassnie et al. (2008) studied the linear stability of narrow spectra 

homogeneous seas and its subsequent evolution in time subject to inhomogeneous 

disturbance by means of one spatial dimension of the Alber equation. In order to study 

the long-time evolution, they solved the Alber equation numerically. To this end, a 

finite different scheme has been established and boundary conditions as well as initial 

conditions have been determined. They discovered the recurrence solution in the area of 
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the instability by choosing the most unstable mode. The isolines of the dimensionless 

growth rate ��� of three different spectra namely square spectrum, Lorentz spectrum and 

Gaussian spectrum as shown in the following Figure 2.5. The vertical axis represents 

dimensionless spectral width, {|  and the horizontal axis represents the dimensionless 

wavenumber of the disturbance, �|.  

 

Figure 2.5: Isolines of the non-dimensional growth-rate, ,iΩ�  for three spectra: (a) square 

spectrum; (b) Lorentz spectrum; (c) Gaussian spectrum. Dots refer to the cases where they 

studied long-time evolution (Stiassnie et al., 2008, Fig. 2). 
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Furthermore, the influence of the shape of the initial spectra and the inhomogeneous 

disturbances were investigated. As an example, Figure 2.6 shows the long-time 

evolution of WS�%�%� � �'WS¡�%� for three different initial homogeneous spectra.  

 

Figure 2.6: The values of (0,0, ) / (0)hρ τ ρ� ��  as a function of time for three different initial 

spectra: , square (A1); ��� , Gaussian (A3); , Lorentz (A2). A1, A2 and A3 refer to 

Figure 2.5 (Stiassnie et al., 2008, Fig. 11). 

 

Using a Lorentz spectrum, Stiassnie et al. (2008) also recovered Janssen’s results, who 

studied the long-time evolution based on the one-dimensional Alber equation near the 

threshold of the instability, as shown in the following Figure 2.7 and Figure 2.8. As seen 

from Figure 2.7, ¢< is on the marginal instability line, ¢! lies on the stable area and ¢Q is 

in the area of instability where the vertical axis represents the dimensionless spectral 

width, {| , and the horizontal axis represents the dimensionless wavenumber of the 

disturbance, �|. The results from their numerical simulation are shown in Figure 2.8 

where the points on the stable area and on the marginal instability line give an initial 

small overshoot followed by an oscillation around its time-asymptotic value. On the 

other hand, the point in the unstable area but very close to the marginal instability line 

gives recurring solution with a rather long recurrence-period (the period is approaching 

infinity as they approach the marginal stability line from below).  

One should note, however, that Stiassnie et al. (2008) results are very different from the 

results for homogeneous seas (Alber, 1978). This is because, in Stiassnie et al. (2008), 

the initial disturbance spectra are profoundly inhomogeneous through their phase 
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relation to the homogeneous spectrum. This is in contrast with the Alber’s work where 

all initial phases are independently and randomly chosen. 

 

Figure 2.7: Three cases near the marginal-stability curve (Stiassnie et al., 2008, Fig. 15). 

 

Figure 2.8: The values of (0,0, ) / (0)hρ τ ρ� ��  as a function of time for three cases near the 

threshold of instability. , P1; , P2; ��� , P3. P1, P2 and P3 refer to Figure 2.7 

(Stiassnie et al., 2008, Fig. 14). 

 

Here, we extend the method used by Stiassnie et al. (2008) to study the two spatial 

dimensions of the Alber equation and obtain the stochastic recurrence parallel to the 

well-known Fermi-Pasta-Ulam recurrence obtained from the nonlinear Schrödinger 

equation. In particular, we used the most realistic ocean wave JONSWAP spectra with 

and without directional spreading which can be found in Chapter 4.  
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2.6 Ocean wave statistics 

2.6.1 Wave height distributions 

Longuet-Higgins (1952) showed that if the wave spectrum is narrow banded and the 

phases of the Fourier components are uniformly distributed, the probability distributions 

of linear wave crests and troughs are Rayleigh distributed: 

¢e£ M £¤f 	 ��h ¥¥¦§¨il (2.34) 

where £ is the wave height, £gr© 	 ���ª� is the root mean square wave height and ª� is the variance of the wave spectrum. 

In the ocean, however, waves tend to behave differently than predicted by linear theory 

(Toffoli et al., 2009). Forristall (2000), for example, analysed about 116 hours of 

hurricane wave data from the Gulf of Mexico and concluded that the Rayleigh 

distribution substantially over predicted the heights of the highest waves in a record. 

Moreover, real wave crests are actually higher and sharper while the wave troughs are 

shallower and flatter compared to the Gaussian process (Ochi, 2005, and the references 

therein). As a result, the statistical distribution of crests and troughs deviates from the 

Rayleigh distribution (Toffoli et al., 2008).  

In order to improve the linear model, Longuet-Higgins (1963) derived the second order 

theory for deep water using the Gram-Charlier series. The extension of this model to 

arbitrary water depths was done by Sharma and Dean (1981). Thus the latter model is 

able to capture the effect of wave steepness, water depths and directional spreading with 

no approximation other than the truncation of the small amplitude expansion to the 

second order (Toffoli et al., 2006). The extended second order theory done by Sharma 

and Dean (1981) are reproduced here as also reported by Forristall (2000). Let the first-

order water surface be given by 

«�<� 	¬j� ����� � ® � ��� � ¯��°
�n< � (2.35) 

where � is time; ® is the position vector in the plane; ��, ¯� and � are, respectively, 

the radian frequency, phase and vector wavenumber of Fourier wave component �; and 
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j� is its amplitude. The frequencies and wavenumbers are related by the linear 

dispersion equation 

��! 	 �;�; ./0+�;�;��,  (2.36)  

where � is the acceleration due to gravity and �"is the water depth. The second-order 

correction to the wave surface given by Sharma and Dean (1981) is then 

«�!� 	 4A¬¬j�j±H�� ���e²� � ²±f � �³ ���e²� � ²±fJ°
±n<

°
�n< � (2.37)  

where �� 	 ´��±� � e� � ± � µ�µ±f¶eµ�µ±f�<'! � eµ� � µ±f� 
�³ 	 ´��±³ � e� � ± � µ�µ±f¶eµ�µ±f�<'! � eµ� � µ±f� 
��±� 	 e�µ� � �µ±fH�µ±���! � µ�!� � �µ�e�±! � µ±!fJe�µ� ��µ±f! � ��±� ./0+��±��

� �e�µ� � �µ±f!e� � ± � µ�µ±fe�µ� � �µ±f! � ��±� ./0+��±�� � 
��±³ 	 e�µ� � �µ±fH�µ�e�±! � µ±!f � �µ±���! � µ�!�Je�µ� ��µ±f! � ��±³ ./0+��±³�

� �e�µ� � �µ±f!e� � ± � µ�µ±fe�µ� � �µ±f! � ��±³ ./0+��±³� � 
��±� 	 m� � ±m� 
��±³ 	 m� � ±m� 
µ� 	 ��!'�� 

²� 	 � � ® � ��� � ¯�� 
Note that when the water depth approaches infinity, then the term ./0+�;�;�� 
approaches 1 which is related to the deep water. As a result, equation (2.37) falls into 
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the results of Longuet-Higgins (1963). Detailed derivations can also be found in some 

other literatures such as Toffoli et al. (2007). 

Based on the Longuet-Higgins (1963) approach, a number of second order probability 

distributions have been proposed by some researchers. Tayfun (1980), for example, 

used the second order theory of Longuet-Higgins (1963) to produce the crest and height 

distributions from the stokes model. Similarly, Prevosto et al. (2000) derived nonlinear 

short term probability distribution from a narrow band second order model.  

Forristall (2000) used the same technique used by Prevosto (1998) who calculated the 

skewness of the surface elevation and the most probable crest heights for many 

combinations of spectral shapes and water depths and extended the work by comparing 

the results to several sets of field measurements. Also, he fits the Weibull distribution, 

which is a general form of the Rayleigh distribution, to second-order simulations with a 

wide variety of wave steepness and Ursell number and applied it to arbitrary water 

depths. In order to carry out the parameterization of the simulations, he involved two 

steps of fittings. In the first step, he fits the simulations to the Weibull distribution 

which is in the form 

¢�«· L «� 	 ,¸¹ F�º «�£©»¼K� (2.38) 

where « is the water surface, «· is the crest height and £© is the significant wave height. 

Then, he found simple expressions for the Weibull parameters � and ½ as functions of 

the water depth and wave spectrum. These expressions are based on parameters that 

characterize the degree of nonlinearity of the waves, that is, the wave steepness and 

Ursell number. He found that basing the wave steepness on the mean wave period, 

rather than the peak period, produced good fits for spectra with the same peak period 

but different peak enhancement factors. The steepness parameter used in the fits is  

~< 	 �&£©�¾<! �" (2.39) 

where � is the acceleration due to gravity and ¾< is the mean wave period calculated 

from the ratio of the first two moments of the wave spectrum, i.e. ¾< 	 ª�'ª<. Let 
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~��� be the frequency spectrum, then its variance is evaluated as ª� 	 ¿~��� �� and 

the first moment is ª< 	 ¿�~��� �� (Holthuijsen, 2007). 

The standard parameter for characterizing the effect of water depth on nonlinearity of 

waves is the Ursell number. The Ursell number based on the significant wave height 

and mean period is 

�g 	 £©�<!�Q� (2.40) 

where �< is the wavenumber for a frequency of 4'¾< and � is the water depth. 

As a special case, i.e. the Rayleigh distribution, he found � 	 4'q? and ½ 	 � which 

are calculated at zero steepness and Ursell number. The fits for the unidirectional wave 

simulations are 

�< 	 %����D � %��?G�~< � %�4%D%�g � (2.41) 

½< 	 � � ��4�G�~< � %�%GD?�g!� (2.42) 

and the fits for the directional waves simulations are 

�! 	 %����D � %���D?~< � %�%?%%�g � (2.43) 

½! 	 � � 4��G4�~< � %���%��g � %��A?�g!� (2.44) 

Now, since the wave height, £, is approximately twice the water surface, i.e. £ � �«, 

equation (2.38) can be rewritten as 

¢e£ L £¤f 	 ,¸¹ À�� £¤��£©�
¼Á� (2.45) 

Moreover, as one can show from the Rayleigh distribution that £© 	 q�£gr©, the 

parameterization of Weibull distribution as given in equation (2.45) can be rewritten as 

¢e£ L £¤f 	 ,¸¹ À�� £¤�q��£gr©�
¼Á � (2.46) 
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Using � 	 4'q? and ½ 	 �, equation (2.46) falls to equation (2.34). Also, it is clearly 

seen from equation (2.40) that for deep water (i.e. � approaches infinity), the Ursell 

number is zero, i.e. �g 	 %. As a result, equations (2.41) to (2.44) can be reduced to the 

following. For the unidirectional sea simulations, the values of parameters are 

�< 	 %����D � %��?G�~<� (2.47) 

½< 	 � � ��4�G�~<� (2.48) 

and for the directional sea simulations, the values of parameters are 

�! 	 %����D � %���D?~<� (2.49) 

½! 	 � � 4��G4�~<� (2.50) 

As can be seen from equations (2.47) to (2.50), the Forristall distribution entirely 

depends on the steepness ~<. Nevertheless, Forristall has shown a good agreement 

between his second-order theory and the results from the measurements. 

In addition, Toffoli et al. (2007) used the second order finite depth wave theory to 

investigate the statistical properties of the surface elevation and wave crests in 

directional sea states. They also compared the experimental data with the results from 

the numerical simulations and concluded that the second order theory describes the 

statistical properties of the field data very accurately as long as the nonlinearity is small. 

Their conclusion is supported by field data measurements obtained from the Lake 

George, Australia with finite depth water. 

Although both aforementioned facts showed good agreement between the second order 

theory and the measurements of crest amplitude, some other researchers such as Bitner-

Gregersen and Magnusson (2004) and Petrova et al. (2006) showed a large deviation 

from the second-order theory, particularly, in the extreme tail of the distributions. 

Bitner-Gregersen and Magnusson (2004) analysed the data for unidirectional waves 

obtained from North seas and the data obtained from the second-order time domain 

simulations. They showed that the freak waves observed at Draupner could not 

adequately be accounted for by the second order theory. Moreover, based on their 

simulations, they concluded that the spectral shapes do influence their results. In 
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addition, Petrova et al. (2006) analysed a set of data collected during the storm in the 

north sea and they particularly refer to the Forristall model (Forristall, 2000). They 

found that although the model is found to be generally adequate for sea states with less 

severe conditions, the largest crest in the highest sea states especially those with 

abnormal waves are permanently underestimated. They also pointed out the drawback 

of the Forristall distribution which does not consider the variation in the directional 

spreading on the crest height statistics even though they admit that the Forristall model 

is simple.  

In addition, Janssen (2009) reported that second-order approximation can provide an 

accurate estimate of skewness but it is not in principle adequate to describe the whole 

probability density function. Besides that, the second order theory only includes effects 

related to bound waves, while the nonlinear dynamics of free waves is neglected 

(Toffoli et al., 2010b). 

At cubic order, Zakharov (1968) derived the well-known nonlinear Schrödinger 

equation and studied the instability of quasi-periodic deep-water wavetrains due to 

modulational perturbation. As reported by Toffoli et al. (2010b), this nonlinear 

Schrödinger equation can be derived from the Euler equation by assuming that potential 

flow of free-surface waves is weakly nonlinear, which means the wave steepness 
 	 �j Â 4 for wavenumber k and wave amplitude a, and have narrow bandwidth. A 

modification of the nonlinear Schrödinger equation was derived by Dysthe (1979) on 

the basis of a systematics asymptotic procedure by taking into account the fourth order 

in wave steepness and bandwidth. This equation is normally known as Dysthe equation. 

Due to the narrow bandwidth constraint, the application of the nonlinear Schrödinger 

equation for ocean wave field is limited. To overcome this problem, Trulsen and Dysthe 

(1996) extended the Dysthe equation which allows slightly broader bandwidths by 

adding higher order dispersive terms. 

The nonlinear Schrödinger equation and its extensions have received considerable 

attention by wave communities primarily due to their simplicity and inexpensive 

computation (Toffoli et al., 2010b). Zakharov and Shabat (1972), for example, solved 

the nonlinear Schrödinger equation analytically using the inverse scattering transform. 

Recently, there have been numerous numerical models based on the nonlinear 

Schrödinger equation to investigate ocean wave statistics which requires the calculation 
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of many realization of a random sea surface (see, for example, Onorato et al., 2001, 

Onorato et al., 2002, Socquet-Juglard et al., 2005, Gramstad and Trulsen, 2007, Toffoli 

et al., 2010b). 

The stochastic version of the nonlinear Schrödinger equation was derived by Alber 

(Alber, 1978, Alber and Saffman, 1978) as shown in the previous section which is now 

known as the Alber equation. Recently, Stiassnie et al. (2008) solved the one spatial 

dimension of the Alber equation and discovered the long-time recurrent evolution in the 

area of instability. This behaviour is a stochastic counterpart of the well-known Fermi-

Pasta-Ulam recurrent phenomenon (Fermi et al., 1965) obtained from the cubic 

Schrödinger equation (revisit the previous section for details of this recurrent 

phenomenon).  

Based on the recurrent solution of the Alber equation, Regev et al. (2008) studied the 

probability of freak waves in an inhomogeneous ocean by integrating the Alber 

equation subjected to inhomogeneous disturbances. They showed that bound waves due 

to quadratic interaction between short waves and swell may act as an inhomogeneous 

disturbance in the form that is required for instability in the Alber equation. Practically, 

they used one typical cycle of the recurrence obtained from the Alber equation 

initialized by Gaussian spectra to establish the probability density function. 

Furthermore, they calculated the probability of wave height in a straightforward 

manner. They concluded that there is a strong effect of the spectral width W, which 

together with the sea wave number and the sea amplitude sets the growth rate, and can 

also be related to the Benjamin Feir Index (BFI). They also found that there is a weaker 

effect of the swell amplitude, which affects the size of the small inhomogeneous 

disturbance. 

In this research, we follow a similar method used by Stiassnie et al. (2008) and Regev et 

al. (2008) but we extended the work to two spatial dimensions in order to study the 

probability of wave height and in particular to study the probability occurrence of freak 

waves in the ocean. Moreover, the more realistic ocean wave JONSWAP spectra with 

and without directional spreading are used. The details of the application to the statistics 

of freak waves in unidirectional and directional sea states can be found in Chapter 5.  
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2.6.2 Significant wave height 

The concept of the significant (characteristics) wave height was developed during the 

World War II as part of a project to forecast ocean wave heights and periods (Stewart, 

2008). Moreover, as reported by Wiegel (1964) that work at the Scripps Institution of 

Oceanography (1944) concluded that 

. . .wave height estimated by observers corresponds to the average of the highest 20 to 40 per 

cent of waves. . .Originally, the term significant wave height was attached to the average of 

these observations, the highest 30 per cent of the waves, but has evolved to become the average 

of the highest one-third of the waves but has evolved to become the average of the highest ��dÃ 
per cent (designated by HS or H1/3).  

In practice, significant wave height is defined as the average of the one-third highest 

observed or measured wave heights. For example, if one is measuring the wave height 

in several minutes, then pick out say 150 wave crests and record their heights. In order 

to calculate the significant wave height, sorting the values from the highest to the 

lowest. Pick the 50 (one-third of 150) largest waves and calculate the average of the 50 

waves. This will give the significant wave height (HS or H1/3) of the wave records. 

This definition, however, is rarely used. Instead, the significant wave height is 

commonly evaluated by using a variance which is computed from a spectrum or by 

applying the statistical inference theory (see Ochi, 2005, for review). The principle 

evaluation of the significant wave height based on the Rayleigh distribution by 

assuming that wave spectrum is narrow banded. Therefore, one can write the Rayleigh 

distribution as follows: 

p�£� 	 £Aª� �� ¥lÄr� """""""") ""% C £ o Å 

where H is the wave height, ª� is the variance of the spectrum or zero moment. The 

variance of the spectrum is equal to the area under the curve of the spectrum and 

therefore it is calculated using the following formula: 

ª� 	 �~��� �� 

where ~��� is the wave number spectrum. 
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Following a method used by Ochi (2005), let £[ be the lower limit of the highest one-

third of the probability density function. Moreover, since the significant wave height is 

related to the highest one-third wave heights, one can write the probability of exceeding £[ is 1/3 as 

¢e£¤ M £[f 	 � £Aª� �� ¥lÄr�
Æ

¥[ �£ 	 4�� 
Solving this integral for £[ yields 

£[ 	 �?"ª� Ç0 � � �?��??G"ª�� (2.51) 

Evaluating the expected value of H which is the moment about the origin gives 

� £p�£�Æ
¥[ �£ 	 � £!Aª� �� ¥lÄr�

Æ
¥[ �£ 

	 £[��¥[lÄr� � ��&ª� ���&ª� ,-È �£[q�A�ª��� 
Hence, the expected value of H can be written as 

� £p�£�Æ
¥[ �£ 	 £[��¥[lÄr� � ��&ª� N4 � ,-È �£[q�A�ª��O� (2.52) 

Note that ,-È��� is an error function and is defined as 

,-È��� 	 �q&����l��
�
� � 

For a special case, when £[ 	 %, then ,-È�%� 	 %. As a consequence, equation (2.52) 

gives the mean value of the wave height based on the Rayleigh distribution that is 

£É 	 ��&ª�� 
as also obtained by Young (1999) and Holthuijsen (2007) directly from the Rayleigh 

distribution. 
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Moreover, equation (2.52) is equal to one-third of the significant wave height which can 

be written as 

£[��¥[lÄr� � ��&ª� N4 � ,-È �£[q�A�ª��O 	 £©�  (2.53) 

where £© is the significant wave height. From equations (2.51) and (2.52), the 

significant wave height can be rewritten as 

£© 	 � À�?"ª� Ç0 �"����Ä"r� ÊË Q�lÄr� � ��&ª� N4 � ,-È �e�?"ª� Ç0 �fq�A�ª� �OÁ� 
After some simplifications of the simple algebra, this equation can be rewritten as 

£© 	 �?"ª� Ç0 � "� ���&ª�H4 � ,-ÈeqÇ0 �fJ� (2.54) 

Furthermore, one can rewrite this equation as follows 

£© 	 A�%%A��"ª� "� A�"ª�. (2.55) 

Thus, the significant wave height is equal to four times the square root of the area under 

the spectral function with the narrow-band random process assumption (see also 

Holthuijsen, 2007, for another review). This significant wave height can be illustrated in 

the following  

 

Figure 2.9: The significant wave height in the Rayleigh probability density function 

(Holthuijsen, 2007, Fig. 4.9). 
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One interesting point with regards to the above method of calculating significant wave 

height is the fact that the formula shown in equation (2.54) can be generalized to 

evaluate the average of the highest 1/n observation, denoted by £<'�, for Rayleigh 

distribution, that is 

£<'� 	 �?"ª� Ç0 � "� ���&ª�H4 � ,-ÈeqÇ0 �fJ� (2.56) 

As a special case, choosing � 	 4, will give the mean value of wave heights, £É 	��&ª�, as shown before. This is because Ç0 4 	 % and ,-È�%� 	 %. Moreover, for � 	 � then equation (2.56) falls into equation (2.54). Similarly, for large value of n, ,-È��� approaches 1. As a result, the second term of equation (2.56) vanishes 

automatically and therefore, equation (2.56) can be rewritten as 

£<'� 	 �?"ª� Ç0 �" (2.57) 

which falls into the result of Ochi (2005) (his equation (3.81)). 
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Chapter 3 

Linear stability analysis in two spatial dimensions 

3 Linear stability analysis in two spatial dimensions 

3.1 Introduction 

Linear stability of narrow spectra homogeneous seas for two spatial dimensions is 

studied in this Chapter. This analysis subjects to inhomogeneous disturbances. A 

spectrum is called to be narrow if most of the wave energy is concentrated in the 

vicinity of the carrier waves. Moreover, a wave field is called homogeneous if two-point 

correlation only depends on the spacing and is independent of the position/location. A 

two-point correlation function ( , , )c tx r  is defined as (Stiassnie et al., 2008) 

1 1
2 2

( , , ) ( , ) ( , ) ,c t t tη η≡ + −x r x r x r  

where r  is the spacing and angle brackets  denote ensemble average which is 

defined as an average taken over randomly chosen initial phases allocated to the various 

modes of a continuous spectrum. Note that 0η = , which is the free surface elevation.  

In this Chapter, we start from the Alber equation on the waves in infinity depth to show 

the correlation function for a homogeneous sea. It is found that the correlation function 

for a homogeneous sea is a function of on the spacing r  only and is independent of the 

position. The advantage of this situation enables us to treat the inhomogeneous sea 

where the correlation function does not only depend on the spacing r  but also depends 

on the position/location. Furthermore, the correlation function is assumed to be a 

summation of the correlation function for homogeneous sea and small inhomogeneous 

disturbance. This small inhomogeneous disturbance is indicated by a small 

dimensionless inhomogeneity parameter with assumption that � 	 Ì�4�. This leads to a 

linear first-order partial differential equation which has a straightforward solution. 

When the spacing is set to be zero, this solution produces the dispersion relation for the 

disturbance. In order to determine the condition for instability and the actual growth 
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rate, the spectrum must be specified. Therefore, a number of spectra have been chosen. 

We start from spectra with very simple structure, namely a square spectrum and a 

rectangular spectrum which is a general case of the square spectrum. Then, we continue 

with a popular Lorentz spectrum that has been used by some other researchers such as 

Crawford et al. (1980) to study the instability of homogeneous wave-fields to 

inhomogeneous disturbances. We will use two-dimensional versions of these spectra 

while for one spatial dimension one can refer to the paper of Stiassnie et al. (2008). 

Furthermore, a more realistic ocean-wave JONSWAP spectrum (Hasselmann et al. 

1973) with and without directional distributions are also studied. Finally, the spectral 

interpretation of the inhomogeneous disturbances is derived. Interrelation between a 

homogeneous spectrum and the homogeneous correlation function, as well as the 

interrelation between the spectrum and the decay rate, are shown. Finally, the 

calculation of the free surface elevation is also included. 

3.2 The Alber equation in waves of infinite depth 

The Alber equation (Alber, 1978) is designed to study the inhomogeneous random wave 

fields with arbitrary water depth albeit with narrow spectrum. Therefore, one can 

simplify it to study the evolution of the wave train on the infinitely deep water by 

neglecting the mean flow field, i.e. = 	 %� in equation (2.21). Moreover, changing the 

stretched/ slow variable used by Alber to the physical variables and following the 

definition of the two-point space correlation function in Stiassnie et al. (2008), the two 

spatial dimensions of the Alber equation for narrow-banded random surface waves, in 

waves of infinite depth, and in two spatial dimensions can be expressed as 

Í Î7W7� � 4�P��� 7W7�Ï � 4AP ���Q � 7!W7�7]< � � 7!W7�7]!�
	 R���UW�®� Ð� �� ^W h® � ÐY � $� �i � W�® � ÐY � $� ��_ 

(3.1) 

where W�®� Ð� �� is the two-point space correlation function and it is defined as: 

W�®� Ð� �� 	 Z� h® � <!Ð� �i �[ h® � <!Ð� �i\� (3.2) 

The angle brackets Z \ denote the ensemble average, the asterisk stands for the 

complex conjugate, ® 	 ��� �� are the horizontal coordinates, Ð 	 �]<� ]!� are spacing 



43  

and t is time. ��®� �� in (3.2) is the complex envelope of the narrow-banded sea, with 

carrier wave number $ 	 ���� %� related to the free surface elevation «�®� �� through  

�«�®� �� 	 ��®� ���Ñ��������� � �� ��� (3.3) 

where �� 	 ���� is the frequency of the carrier waves and g is the acceleration due to 

gravity. 

3.3 Correlation function for homogeneous seas 

Following Landsberg (1955, p.126) [see also Kinsman 1965] a homogeneous random 

ocean surface in two spatial dimensions is given by: 

�«�®� �� 	 �Ñ��������� � �Ñ@��$��®���Ò�����³���B�~���Æ
�Æ � �� ��� (3.4) 

where �� 	 ��;;,  	 ��<� �!� and $ 	 ���� %�, ��� is a random phase with 

uniform distribution in @�Ó� ÓB Ô @�Ó� ÓB and ~�� is the energy spectrum. The 

amplitude can be obtained by comparing (3.3) and (3.4), that is 

��®� �� 	 � �Ñ@��$��®���Ò�����³���B�~����

�Æ � (3.5) 

Substituting equation (3.5) into equation (3.2) yields, W�®� Ð� ��
	 � � Z�Ñ^�X�$��h®³Ð!i�e�Òd���f�³�d�X�_��Ñ^�Y�$��h®�Ð!i�e�Òl���f�³�l�Y�_\Æ

�Æ
Æ

�ÆÔ�~�<�~�!��<�! 

(3.6) 

where ��d 	 ��;X; and ��l 	 ��;Y;. From this equation, we have the sum � 	 �<�X� � �!�Y�, which by itself is a random phase. Note that Z�Ñ�\ 	 % unless for � 	 %. For the latter to happen we need �<�X� 	 �!�Y�. Therefore, the only terms 

remaining after the averaging are those for which < 	 !, 

W�®� Ð� �� 	 � � h�Ñ^�X�$��h®³Ð!i��X�$��h®�Ð!i�e�Òd���f�³e�Òd���f�_i ~�<��<Æ
�Æ

Æ
�Æ � 
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As a result, this equation can be simplified as 

W¡�Ð� 	 ¿ ~���Ñ��$��Ð�Æ�Æ . (3.7) 

As seen from equation (3.7), the correlation function of a homogeneous sea, W¡, does 

not depend on the position ® but only depends on spacing Ð which is very consistent 

with the result one-dimensional case as shown in Stiassnie et al. (2008). Note that 

equation (3.7) is the trivial solution of the equation (3.1). This situation enables us to 

study the inhomogeneous seas which are the main consideration of this research.  

3.4 Instability of inhomogeneous disturbances 

In order to study the inhomogeneous sea, let us consider a solution to the equation (3.1) 

in the form 

W�®� Ð� �� 	 W¡�Ð� � �W<�®� Ð� �� (3.8) 

where""W¡�Ð� is a homogeneous part which depends only on spacing Ð, W<�®� Ð� �� is an 

inhomogeneous disturbance and � is the dimensionless inhomogeneity parameter with 

assumption that � 	 Ì�4�. Substituting equation (3.8) into equation (3.1) and neglecting 

terms of order �! gives  

Í Î7W<7� � 4�P��� 7W<7� Ï � 4AP ���Q 7!W<7�7]< � 4�P ���Q 7!W<7�7]!
	 R���UW¡�Ð� ºW< h® � <!Ð� $� �i � W< h® � <!Ð� $� �i»� 

(3.9) 

Also, assuming a disturbance as 

W<�®� Ð� �� 	 µ�Ð� N�ÑºI�³ÕÖ�I!R  ������» �[O (3.10) 

where"µ�$� is real but it should not be equal to zero and µ�Å� is zero, p and � are 

wavenumbers of the disturbance which are parallel and perpendicular to the carrier 

wave, respectively, � is its frequency and the asterisk, again, stands for complex 

conjugate. � in general is a complex number where a positive imaginary part �Ñ 
corresponds to unstable growth and the real part �× corresponds to the oscillation. 

Now, substituting equation (3.10) into equation (3.9) by using the following identities 
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7W<7� 	 �Í�µ�Ð��ÑºI�³ÕÖ�I!R  ����Ø�» � Ípµ�Ð�� P��� �ÑºI�³ÕÖ�I!R  ����Ø�»� 
7W<7� 	 Ípµ�Ð��ÑºI�³ÕÖ�I!R  ����Ø�»� 
7!W<7�7]< 	 pÍ 7µ�Ð�7]< �ÑºI�³ÕÖ�I!R  ����Ø�»� 
7!W<7�7]! 	 �Í 7µ�Ð�7]! �ÑºI�³ÕÖ�I!R  ����Ø�»� 
W< h® � <!Ð� $� �i 	 "µ�$��ÑºI�³ÕÖ�I!R  ����Ø�»�ÑhI!gd³Õ!gli� 

and 

W< h® � <!Ð� $� �i 	 ""µ�$��ÑºI�³ÕÖ�I!R  ����Ø�»��ÑhI!gd³Õ!gli� 
yields 

�µ�Ð� � Íp 4AP ���Q 7µ�Ð�7]< � Í ��P ���Q 7µ�Ð�7]!
	 R���UW¡�Ð�µ�$� h�ÑhI!gd³Õ!gli � ��ÑhI!gd³Õ!glii� 

(3.11) 

Multiplying equation (3.11) by  
EÑI R��Ã   gives 

7µ�Ð�7]< � ��p 7µ�Ð�7]! � AÍ�p P��Q"� µ�Ð�
	 AÍ��Ep W¡�Ð�µ�$� h�ÑhI!gd³Õ!gli � ��ÑhI!gd³Õ!glii� 

(3.12) 

Letting  

² 	 EÑØI R��Ã"   and "Ù�Ð� 	 EÑ��ÚI W¡�Ð�µ�$� h�ÑhÛlgd³Ülgli � ��ÑhÛlgd³Ülglii 

then equation (3.12) becomes a linear first order partial differential equation for µ�Ð�  
7µ�Ð�7]< � ��p 7µ�Ð�7]! � ²µ�Ð� 	 Ù�Ð�� (3.13) 
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In order to solve this partial differential equation, the method used in Strikwerda (1989) 

will be followed by changing the variables from �]<� ]!� to ��� ½� where � and ½ are 

defined as 

� 	 ]<�"""½ 	 ]! � ��p ]<� 
We define  

µ���� ½� 	 µ�]<� ]!�� 
where ��� ½� and �]<� ]!� are related by the preceding relation. Taking the first order 

partial derivative with respect to � gives  

7µ�7� 	 7µ7]< 7]<7� � 7µ7]! 7]!7� � 
and then equation (3.13) can then be rewritten as 

7µ�7� 	 7µ7]< � ��p 7µ7]! 	 �²µ � Ù º�� ½ � ��p �»� 
Therefore, the first order partial differential equation becomes a first order ordinary 

differential equation that can be written as  

7µ�7� � ²µ� 	 Ù º�� ½ � ��p �»� 
Using the method of integrating factor, one can easily get the solution of this ordinary 

differential equation, which is given by 

µ���� ½� 	 ��¿ Ý�Þ2ßà á� Ù º�2� ½ � ��p �â»Þ
Æ �¿ Ý��ßãà ��âä� 

Now, assuming that µ��Å� 	 %, above equation can be written as 

µ���� ½� 	 ��ÞÝ á� Ù º�2� ½ � ��p �â»Þ
Æ �ÝÞ2��âä� 

Returning to the original variables, the solution of equation (3.13) is given by 
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µ�]<� ]!� 	 ��Ýgd å� Ù æ]<2� ]! � ��p �]< � ]<2�çgd
Æ �Ýgdã�]<2è� (3.14) 

Moreover, as we have  

Ù æ]<2� ]! � ��p �]< � ]<2�ç
	 AÍ��Ep W¡ æ]<2� ]! � ��p �]< � ]<2�çµ�$�Î�ÑæI!gdã³Õ!�gl³!ÕI egd�gdãf�ç

� ��ÑæI!gdã³Õ!�gl³!ÕI egd�gdãf�çÏ� 
equation (3.14) can then be rewritten as  

µ�]<� ]!� 	 ��Ýgdp AÍ��Eµ�$�å� W¡ æ]<2� ]! � ��p �]< � ]<2�çÎ�ÑæI!gdã³Õ!�gl³!ÕI egd�gdãf�çgd
Æ

� ��ÑæI!gdã³Õ!�gl³!ÕI egd�gdãf�çÏ�Ýgdã�]<2è� 
Taking "Ð 	 $, gives 

µ�$� 	 AÍ��Ep µ�$�å�W¡ º]<2� � ��p ]<2»æ�Ñ�I!gdã�Õ!h!ÕI gdãi� � ��Ñ�I!gdã�Õ!h!ÕI gdãi�ç�
Æ �²gdã�]<2è� 

Dividing both sides of this equation by µ�$� yields 

4 	 AÍ��Ep å�W¡ º]<2� � ��p ]<2» æ�Ñ�I!gdã�Õ!h!ÕI gdãi� � ��Ñ�I!gdã�Õ!h!ÕI gdãi�ç�
Æ �Ýgdã�]<2è� 

Furthermore, substituting W¡ h]<2� � !ÕI ]<2i into this equation where  

W¡ º]<2� � ��p ]<2» 	 � ~���Ñ���d����gdã��lh!ÕI gdãi��Æ
�Æ  

yields, 



48  

4 	 AÍ��Ep åé �~���Ñ���d����gdã��lh!ÕI gdãi� æ�Ñ�I!gdã�Õ!h!ÕI gdãi��
Æ

Æ
�Æ

� ��Ñ�I!gdã�Õ!h!ÕI gdãi�ç�Ýgdã �]<2��<��!è� 
Simplifying this equation gives, 

4 	 AÍ��Ep åé �~�� ê�áÑæ��d�����!ÕI �l³I!�ÕlI ç³Ýägdã�
Æ

Æ
�Æ

� �áÑæ��d�����!ÕI �l�I!³ÕlI ç³Ýägdãë �]<2��<��!è� 
Integrating this result with respect to ]<2 by noting that µ�3²5 o %, further gives 

4 	 AÍ��Ep ìíî
íïé

ðññ
ñò 4
Í ���< � ��� � ��p �! � p� � �!p � � ²

Æ
�Æ

� 4
Í ���< � ��� � ��p �! � p� � �!p � � ²óôô

ôõ ~�� ��<��!öí÷
íø

 

(3.15) 

and after simplification, this equation can be rewritten as 

4 	 A��Ep ìíî
íïé ºp � ��!p » ~����<��!

NÍ ���< � ��� � ��p �!� � ²O! � ùp� � �!p ú!
�

�Æ öí÷
íø� (3.16) 

Multiplying both numerator and denominator of the equation (3.16) by p, leads to 

4 	 A��E�p! � ��!� ìî
ïé ~��"��<��!3Í�p��< � ��� � ���!� � p²5! � ùp! � ��!� ú!

Æ
�Æ ö÷

ø� (3.17) 

which is the main result of this section. This solution is the dispersion relation for the 

disturbance and hence, for given p, � and ~��, � can be calculated to determine the 
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condition for instability and the actual growth rate. This solution also agrees with 

Alber’s result, which was obtained with a different approach. This agreement will be 

shown in the following. As we know, the correlation function "W can be defined as 

follows 

W��Ð� 	 � x����Ñ�Ð�Æ
�Æ  

and making use of equation (3.7) gives 

~� � $� 	 x���� 
Letting  

û 	 pü � �ý 
where p and q are the wavenumber of the disturbance as given in equation (3.17), one 

will have the following equalities: 

x� h � û�i 	 ~ h � $ � û�i 	 ~ h�< � �� � p� � �! � ��i� 
x� h � û�i 	 ~ h � $ � û�i 	 ~ h�< � �� � p� � �! � ��i� 

(3.18) 

As a result, equation (3.15) can be written as 

4 	 AÍ��Ep ìíî
íïé

ðññ
ñò ~ h�< � �� � p� � �! � ��iÍ �h�< � p�i � ��p h�! � ��i � p� � �!p � � ²

Æ
�Æ

� ~ h�< � �� � p� � �! � ��iÍ �h�< � p�i � ��p h�! � ��i � p� � �!p � � ²óôô
ôõ ��<��!öí÷

íø� 
(3.19) 

Simplifying equation (3.19) gives  
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4 	 AÍ��Ep þé � ~ h�< � �� � p� � �! � ��iÍ º�< � p� � ��p �! � �!p � p� � �!p » � ²
Æ

�Æ
� ~ h�< � �� � p� � �! � ��iÍ º�< � p� � ��p �! � �!p � p� � �!p » � ²���<��!� 

and then it becomes 

4 	 AÍ��Ep þé �~ h�< � �� � p� � �! � ��iÍ h�< � ��p �!i � ² � ~ h�< � �� � p� � �! � ��iÍ h�< � ��p �!i � ² �Æ
�Æ ��<��!�� 

Making use of the above equalities as given in the equation (3.18) yields, 

4 	 AÍ��Ep þé �x� h � û�i � x� h � û�iÍ h�< � ��p �!i � ² �Æ
�Æ ��<��!�� (3.20) 

Substituting the value of "² 	 EÑØI R��Ã" , equation (3.20) becomes 

4 	 �AÍ��Ep
ìí
î
íïé

ðñ
ññ
ñò x� h � û�i � x� h � û�i
Í h�< � ��p �!i � AÍ�p P��Q"� óô

ôô
ôõÆ

�Æ ��<��!
öí
÷
íø

 (3.21) 

and after simplification, equation (3.21) can be rewritten as 

4 	 �A��E��åéê x� h � û�i � x� h � û�i�<p�� � ���!�� � A����Q"ë
Æ

�Æ ��<��!è� 
Moreover, changing the coefficient of � to be 1 gives 

4 	 �A��E��A���Q" ìî
ïéðñ

ñòx� h � û�i � x� h � û�i�<pA R ���Q" � ��!� R ���Q" ��óô
ôõÆ

�Æ ��<��!ö÷
ø� (3.22) 

Also, since we have 8 	 � <Ä��'��Q and 9 	 <E��'��Q, equation (3.22) now becomes 
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4 	 �R���U éêx� h � û�i � x� h � û�i� � �8�<p � �9��! ëÆ
�Æ ��<��!� (3.23) 

Therefore, since we have : 	 <!R���U, equation (3.23) can be simplified as 

4 � �: éêx� h � û�i � x� h � û�i� � �8�<p � �9��! ë�

�Æ ��<��! 	 % (3.24) 

which is Alber’s result for infinitely deep water in his paper (Alber, 1978, eqs (4.10), p. 

534). For any further progress with the equation (3.17), ~�� needs to be specified. Note 

that ~�� is a homogeneous spectrum. Moreover, the spectrum has to be a narrow 

spectrum that is most of the wave energy is concentrated in the vicinity of the carrier 

wave and it can be written as �{ Â �� where { and �� are the spectral width and the 

peak of wavenumber spectrum, respectively. This is because, as has been mentioned in 

Chapter 2, the Alber equation was derived from the cubic Schrödinger equation.  

 

3.4.1  Square spectrum and its growth rate 

In the following, a special spectral shape that will be considered is a square spectrum. 

Following Stiassnie et al. (2008), a square spectrum for two spatial dimensions can be 

defined as 

~�� 	 ��) """""�� �{ o �< o �� �{)""�{ o �! o { (3.25) 

where { is the spectral width in directions parallel and perpendicular to the carrier-

wave where in this case are chosen to be the same, �� is the carrier wave, �� is the 

energy spectrum, �< is the wavenumber in direction parallel to the carrier wave and �! 

is the wavenumber in direction perpendicular to carrier-wave. This spectrum is plotted 

in Figure 3.1. 

In order to determine the actual growth rate, the point of maximum growth rate and the 

condition for instability of this square spectrum, equation (3.25) is substituted into 

equation (3.17) and then integrating with respect to  yields the growth rate of unstable 

disturbance which can only be given in the implicit form: 
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Figure 3.1: Square spectrum. 

 

4 	 ?��E��p Fp{�� 3/-�./0+�¾<�5 �{3/-�./0+�¾!�5 � p²�� 3/-�./0�¾Q�5
� p! � ��!?� 3Ç0�¾E�5K (3.26) 

where 

¾< 	 4D�{�A�E � A�!p! � Ap!²! � pE � 4D{!�! � Ap!{!��p! � ��!�¾<<¾<! � ¾<Q � 
¾<< 	 �p! � ��!�! � p!���Í{ � �²�! � 4D�!{!� 
¾<! 	 p!��Í{ � �²�! � 4D�!{! � �p! � ��!�!� 
¾<Q 	 DA�!{!�p! � ��!�!� 

¾! 	 ?p{�p! � ��!��pE � A�!p! � Ap!²! � 4D�!{! � A{!p! � A�E�¾!<¾!! � ¾!Q � 
¾!< 	 �p! � ��!�! � p!��Í{ � �²�! � 4D�!{!� 
¾!! 	 �p! � ��!�! � p!���Í{ � �²�! � 4D�!{!� 
¾!Q 	 �AÍp{ � Ap²��p! � ��!���AÍp{ � Ap²��p! � ��!�� 

¾Q 	 4�?�{!p!�p! � ��!�²¾Q<¾Q! � ¾QQ � 
¾Q< 	 p!��Í{ � �²�! � 4D�!{! � �p! � ��!�!� 
¾Q! 	 �p! � ��!�! � p!���Í{ � �²�! � 4D�!{!� 
¾QQ 	 �DA�!{!�p! � ��!�!� 
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and 

¾E 	 ¾E<¾E!� 
¾E< 	 �p! � ��!�! � A3Í�p{ � ��{� � p²5!�p! � ��!�! � A3Í�p{ � ��{� � p²5!� 
¾E! 	 �p! � ��!�! � A3Í��p{ � ��{� � p²5!�p! � ��!�! � A3Í��p{ � ��{� � p²5!� 

Since ² 	 ²× � Í²�, where ²× and ²� are real part and imaginary part of ², 

respectively, and this spectrum is a symmetric spectrum, one can show that the real part 

of the growth rate, ��, vanishes and therefore the following real part of ² is obtained 

²× 	 �A�Ñp P��Q"� � 
where �Ñ is the imaginary part of the growth rate. Furthermore, substituting this result to 

equation (3.26), defining the small steepness parameter 


 	 �?��{�� 

and the non-dimensional variables 

��Ñ 	 �Ñ
!���% ) ""¢� 	 p
�% ) ""=� 	 �
�% ) """"{| 	 {
�% ) 
equation (3.26) becomes  

4 	 4¢�{| ! F¢�{|�=� H/-�./0+e¾�<fJ �{| H/-�./0+e¾�!fJ� ��| Í=� H/-�./0e¾�QfJ� ¢�! � �=�!?=� HÇ0e¾�EfJK 
and therefore it can be written in dimensionless form as 

¢�{|�=� H/-�./0+e¾�<fJ �{| H/-�./0+e¾�!fJ � ���Ñ=� H/-�./0e¾�QfJ
� ¢�! � �=�!?=� HÇ0e¾�EfJ 	 ¢�{| ! 

(3.27) 

where 

¾�< 	 4D=�{| e¢�E � A¢�!=�! � A=�E � A{| !¢�! � DA��Ñ! � 4D=�!{| !fe¢�! � �=�!f¾�<< � ¾�<! � 
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¾�<< 	 e�4�=�E � �4�¢�!=�! � �4�{| !¢�! � �%A?=�!{| ! � 4�?¢�E � A%GD��Ñ!f��Ñ!� A4D¢�!=�E{| ! � 4�?{| E¢�!=�!� ¾�<! 	 ¢�Ä � 4D=�Ä � �A¢�E=�E � ?¢��=�! � ?¢��{| ! � ��¢�!=�� � �?A=��{| !
� ��D=�E{| E � 4�?¢�E=�!{| ! � 4D{| E¢�E� 

¾�! 	 ?¢�{| e¢�! � �=�!fe¢�E � A¢�!=�! � A=�E � A¢�!{| ! � DA��Ñ! � 4D=�!{| !f¾�!< � ¾�!! � 
¾�!< 	 e�4�¢�!{| !��%A?=�!{| ! � �4�¢�!=�! � A%GD��Ñ! � 4�?¢�E � �4�=�Ef��Ñ!� ¾�!! 	 ¢�Ä � 4�?¢�E=�!{| ! � ��A¢�!=�E{| ! � �A¢��{| ! � 4�?¢�!{| E=�!� 4D¢�E{| E � 4�?=��{| ! � ��D=�E{| E � ?¢��=�! � �A¢�E=�E� ��¢�!=�� � 4D=�Ä� 

¾�Q 	 ��4�=�{| !¢�e¢�! � �=�!f��Ñ¾�Q< � ¾�Q! � 
¾�Q< 	 e�%A?=�!{| ! � 4�?¢�E � �4�¢�!=�! � �4�=�E � �4�{| !¢�! � A%GD��Ñ!f��Ñ!� ��¢�!=�� � 4�?=��{| !� ¾�Q! 	 ¢�Ä � 4D=�Ä � ?¢��=�! � ��D=�E{| E � GD¢�!=�E{| ! � 4�?{| E¢�!=�!� ?¢��{| ! � 4D{| E¢�E � �A¢�E=�E� 

¾�E 	 ¾�E< � ¾�E! � ¾�EQ¾�EE � ¾�EU � ¾�E�� ¾�E< 	 ¢�Ä � 4�?¢�Q{| E=� � �4�¢�{| E=�Q � ��¢�U{| !=� � 4�?¢�Q{| !=�Q� 4�?¢�{| !=�U � �%A?��Ñ!¢�{| !=�� ¾�E! 	 �4�=�E��Ñ! � 4�?¢�E��Ñ! � 4D=�Ä � 4D{| E¢�E � GD¢�!=�E{| !
� �%A?��Ñ!=�!{| ! � �4�{| !¢�!��Ñ!� ¾�EQ 	 �?A{| E¢�!=�! � ��D=�E{| E � ��¢�!=�� � �4�¢�!=�!��Ñ! � ?¢��{| !
� 4�?=��{| ! � ?¢��=�! � �A¢�E=�E � A%GD��ÑE� ¾�EE 	 ¢�Ä � 4�?¢�Q{| E=� � �4�¢�{| E=�Q � ��¢�U{| !=� � 4�?¢�Q{| !=�Q� 4�?¢�{| !=�U � �%A?��Ñ!¢�{| !=�� 

¾�EU 	 �4�=�E��Ñ! � 4�?¢�E��Ñ! � 4D=�Ä � 4D{| E¢�E � GD¢�!=�E{| !
� �%A?��Ñ!=�!{| ! � �4�{| !¢�!��Ñ!� 

and 
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¾�E� 	 �?A{| E¢�!=�! � ��D=�E{| E � ��¢�!=�� � �4�¢�!=�!��Ñ! � ?¢��{| !
� 4�?=��{| ! � ?¢��=�! � �A¢�E=�E � A%GD��ÑE� 

Since the growth rate of the disturbance is in the implicit form, a graphical method will 

be used to determine the maximum growth rate and point of maximum growth rate of 

the disturbance by plotting a stability diagram based on the equation (3.27). However, 

plotting the stability diagram based on the equation directly in the ¢� � =�  plane, one 

may get an overlap figure which can lead to very messy results. This is because the 

power of polynomial ¢� and =�  are of the order of five which may have five different 

roots. Therefore, in order to avoid this situation, the term /-�./0e¾�Qf in the equation 

(3.27) has to be expanded in the following form where the power of polynomial ¢� and =�  are of the order of two: 

/-�./0 ���4�=�{| !¢�e¢�! � �=�!f��Ñ¾�Q< � ¾�Q! �
	 /-�./0 ���=�! � ¢�! � �¢�{| � A=�{|?"��Ñ �
� /-�./0 ��=�! � ¢�! � �¢�{| � A=�{|?"��Ñ �
� /-�./0 ��=�! � ¢�! � �¢�{| � A=�{|?"��Ñ �
� /-�./0 ���=�! � ¢�! � �¢�{| � A=�{|?"��Ñ � 

where "¾�Q< � ¾�Q! as given before. As seen from the expanded term /-�./0e¾�Qf, the 

power of ¢� and =�  are quadratic which indicates that they have maximum number of real 

roots are two. 

Moreover, due to the singularity at {| 	 %, equation (3.27) cannot be used to determine 

the condition for instability and its actual growth rate for this case. Therefore, in order 

to deal with this problem of vanishing spectral width which corresponds to the 

deterministic problem for which the well-known Benjamin-Feir instability is discovered 

(Benjamin and Feir, 1967), the spectrum is defined as follows: 

~�� 	 A{!�����< � ���"���!� 
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where ���< � ��� and ���!� are delta functions in directions parallel and perpendicular 

to the carrier wave respectively.  

Substituting this spectrum into equation (3.17) gives, 

4 	 A��E�p! � ��!� ìî
ïé A{!�����< � ���"���!���<��!@Í�p��< � ��� � ���!� � p²B! � `p! � ��!� b!

Æ
�Æ ö÷

ø� 
Solving the double integral in the curly brackets by using the properties of the delta 

function, which are as follows 

� ���!����!���!Æ
�Æ 	 ��%� 

� ���< � ������<���<Æ
�Æ 	 ������ 

 yields  

4 	 4D��E�p! � ��!�{!�� ìî
ï 4
�p²�! � ºp! � ��!� »!ö÷

ø� 
Moreover, substituting ²× 	 � EØ�I R��Ã"  into this equation leads to the following relation 

between �Ñ and �p� ��  

4 	 4D��E�p! � ��!�{!��
ìíí
î
ííï 4
ÎAvÑP��Q"� Ï

! � ºp! � ��!� »!öíí
÷
ííø� (3.28) 

Furthermore, switching to non-dimensional form, equation (3.28) can be rewritten as 

��Ñ! 	 e¢�! � �=�!f h? � e¢�! � �=�!fiDA � (3.29) 
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The dimensionless maximum growth rate is achieved when the dimensionless 

wavenumbers of the disturbance satisfy the relation 

¢�! � �=�! 	 A� 
Thus, values of the dimensionless growth rate ��Ñ at =� 	 % reach a maximum ��Ñ 	 %�� 

at ¢� 	 �, and have ��Ñ 	 % at ¢� 	 �q�" and ¢� 	 %. Figure 3.2 gives five solid isolines 

for square spectrum, for which ��Ñ 	 %� %�%�� %��� %���" and ��Ñ 	 %�A� with different 

values of spectral width, i.e. {| 	 %�%� 4�% and ��%. The isoline in which ��Ñ 	 % 

represents the marginal stability line of the spectrum. Moreover, Figure 3.2a was plotted 

based on the equation (3.29) while Figure 3.2b and Figure 3.2c were plotted based on 

the equation (3.27). As can be seen from Figure 3.2, the area of instability shrinks or 

even disappears and the maximum growth rate decreases by increasing spectral width. 

Similarly, the point of maximum growth rate with respect to ¢� moves away from the 

point of maximum of the vanishing spectral width, i.e. ¢� 	 � when the value of the 

spectral width is increased. This point of maximum growth rate is normally called the 

most unstable mode of the disturbance. For example, the dimensionless spectral width {| 	 4 reaches the point of maximum growth rate at ¢� 	 �����. Similarly, the 

dimensionless spectral width {| 	 ��% reaches the point maximum growth rate at ¢� 	 ��G?�. In addition, the dimensionless spectral widths {| 	 4�% and {| 	 ��% reach 

the dimensionless maximum growth rate ��Ñ 	 %�A%�D and ��Ñ 	 %�%���, respectively. 

The square in each figure indicates the footprint of a quarter of the initial spectrum as in 

equation (3.25). The relationship between the dimensionless spectral width and the 

dimensionless growth rate are shown in Figure 3.3 for the case where the dimensionless 

wavenumber of the disturbance perpendicular to the carrier wave is zero, i.e. =� 	 %. 

The number on the line represents the value of the dimensionless spectral width with 

0.25 increments. It shows that by increasing the spectral width, the maximum growth 

rate decreases. In addition, it is clearly shown that when the dimensionless spectral 

width is greater than 2.75, the dimensionless maximum growth rate becomes zero which 

means that the wave field is stable. Particularly, when the dimensionless spectral width 

for this spectrum is greater than 2.75, then the spectrum is stable to inhomogeneous 

disturbance. This result appears to be similar to the criterion for Benjamin- Feir 

instability (Benjamin and Feir, 1967).  
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Figure 3.2: Stability diagrams for square spectra, giving the dimensionless growth rate, 
i ,Ω�  of 

the inhomogeneous disturbances. The number on the line represents the dimensionless growth 

rate and the square in each figure indicates the footprint of a quarter of the initial spectrum 

while P�  and Q�  are the dimensionless wavenumbers of the disturbances and W�  is the 

dimensionless spectral width. (a) 0,W =�  (b) 1,W =�  (c) 2.W =�  
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Figure 3.3: Relation between the dimensionless growth rate, 
i ,Ω�  and the dimensionless 

spectral width, ,W�  in which the wavenumber of the disturbance which is perpendicular to the 

carrier wave, ,Q�  is zero. The horizontal line represents the dimensionless wavenumber of the 

disturbance which is parallel to the carrier wave, the vertical line reveals the dimensionless 

growth rate and the number on the line represents the dimensionless spectral width with 0.25 

increments.  

 

Since, for this case, the spectral width in directions parallel and perpendicular to the 

carrier wave were chosen to be the same as shown in Figure 3.2, it is difficult to 

determine which spectral width has a significant effect on shrinking the region of 

instability. Therefore, in the next section, we will consider a more general case, i.e. a 

rectangular spectrum. 

3.4.2 Rectangular spectrum and its growth rate 

In this section, a more general case of the square spectrum where the spectral width in 

directions parallel and perpendicular to carrier wave are chosen to be different is 

considered. Hence, this spectrum is called a rectangular spectrum. The instability and 

the actual growth rate including the maximum growth rate and the most unstable mode 

of the disturbance for this spectrum will be determined. In particular, using this 

spectrum, one can see the influence of the different spectral widths on the instability and 

the maximum growth rate. Extending the definition of the square spectrum, a 

rectangular spectrum is defined as 

~�� 	 ��) """""�� �{< o �< o �� �{<) ""�{! o �! o {! (3.30) 
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where {< and {! are spectral width in directions parallel and perpendicular to the 

carrier wave, respectively and other variables are the same as defined in the previous 

section. 

Furthermore, following a similar procedure to that used to determine the growth rate of 

the unstable disturbance of a square spectrum, using the small steepness, 
, given by 

relation 

A{<{!�� 	 º 
��»! '��" 
and defining non-dimensional variables  

��Ñ 	 �Ñe
!���%f ) ""¢� 	 p
�% ) ""=� 	 �
�% ) """{|< 	 {<
�% ) ""{|! 	 {!
�% )" 
one ends up with the following dimensionless equation to determine the actual growth 

rate of a rectangular spectrum which is, again, can only be given in the implicit form, 

that is 

?{|<{|!¢�=� 	 �=�!��< � �!� � �¢�{|<�w< � w!� � 4D��Ñ	<
� A=�{|!��< � �!� � ¢�!�
< � 
!��� (3.31) 

where 

�< 	 Ç0 he�4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!f'e4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!fi � 
�! 	 Ç0 he�4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!f'e4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!fi� 
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w< 	 Ç0 he4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|< � ?¢�!=�{|!� ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!f'e�4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!fi� 
w! 	 Ç0 he�4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!f'e4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!fi� 
	< 	 /-�./0 ��¢�{|< � ¢�! � �=�! � A=�{|!?��Ñ � � /-�./0 ���¢�{|< � ¢�! � �=�! � A=�{|!?��Ñ �

� /-�./0 ��¢�{|< � ¢�! � �=�! � A=�{|!?��Ñ �
� /-�./0 ���¢�{|< � ¢�! � �=�! � A=�{|!?��Ñ �� 

�< 	 Ç0 he4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|< � ?¢�!=�{|!� ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!f'e4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!fi� 
�! 	 Ç0 he�4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!f'e�4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!fi� 

< 	 Ç0 he4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|< � ?¢�!=�{|!� ?¢�=�!{|< � ""4D=�Q{|! � 4D=�!{|!!f'e�4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � ""4D=�Q{|! � 4D=�!{|!!fi� 
and  
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! 	 Ç0 he4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|< � ?¢�!=�{|!� ?¢�=�!{|< � ""4D=�Q{|! � 4D=�!{|!!f'e�4D¢�=�{|<{|! � DA��Ñ! � A¢�!=�! � A¢�!{|<! � ¢�E � A=�E � A¢�Q{|<� ?¢�!=�{|! � ?¢�=�!{|< � 4D=�Q{|! � 4D=�!{|!!fi� 
In order to confirm the special case of this problem which is for one-dimensional case, 

it is not possible to substitute {|! 	 % into equation (3.31) directly due to the singularity 

reason. Therefore, the spectral width and the wavenumber of the disturbance in 

direction perpendicular to the carrier wave are set to be equal squared root of the 

steepness, i.e. {|! 	 =� 	 q
, and are substituted into equation (3.31). The result is 

developed into Taylor series in 
 while keeping the leading order terms of order 
 yields  

{|<¢� 	 Ç0eDA��Ñ! � A¢�!{|<! � ¢�E � A¢�Q{|<f � Ç0eDA��Ñ! � A¢�!{|<! � ¢�E � A¢�Q{|<f� 
Simplifying this equation gives 

��Ñ 	 ¢�A P¢�{|< ��.+ �{|<¢�� � � ¢�!A �{|<!� (3.32) 

This result is the same as the result obtained by Stiassnie et al. (2008, eq. 2.27). Based 

on the equation (3.32) we obtain Figure 3.4 and Figure 3.5 which show the relation 

between dimensionless maximum growth rate, ��Ñ�rs��, and the dimensionless spectral 

width which is parallel to the carrier wave, {|<� (Figure 3.4) and the values of the most 

unstable mode ¢��rs�� for which the maximum growth rate is obtained (Figure 3.5).  

 

Figure 3.4: Maximum values of the dimensionless growth rate, 
( )

i ,maxΩ�  as a function of 

dimensionless spectral width in direction parallel to the carrier wave, 
1 ,W�  for one-dimensional 

spectrum. 
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As seen from Figure 3.4, the dimensionless growth rate of the disturbance reaches the 

highest maximum value when the dimensionless spectral width in direction parallel to 

the carrier wave is zero, {|< 	 %. Moreover, increasing the spectral width will decrease 

the maximum growth rate and finally the growth rate becomes zero when the 

dimensionless spectral width is greater than 2.75, i.e. {|< L ����. It is also important to 

show the values of most unstable mode ¢��rs�� in which the maximum growth rate 

obtained. This information is concluded in Figure 3.5 where the maximum growth rate 

reaches the highest value at ¢��rs�� 	 � and the value of ¢��rs�� will increase as the 

maximum growth rate decreases. 

 

 

Figure 3.5: Values of the dimensionless most unstable mode, ( )
,

max
P�  for which the 

dimensionless maximum growth rate, ( )

i ,maxΩ�  is obtained for one-dimensional spectrum. 

 

Another way to confirm our results as shown in the equation (3.31) is to reproduce the 

one-dimensional case as in the paper of Stiassnie et al. (2008) which is shown in their 

Figure 2a. To this end, the spectral width which is perpendicular to the carrier wave is 

set to approach zero, i.e. {|! � % and the results are shown in Figure 3.6 which is 

exactly the same as the results obtained by Stiassnie et al. (2008). Note that the red line 

represents the marginal instability line, where the dimensionless growth rate is equal to 

zero and the number on each line represents the dimensionless growth rate of the 

instability with increment 0.05. The horizontal line reveals the dimensionless 

wavenumber of the disturbance and the vertical line indicates the dimensionless spectral 

width which is parallel to the carrier wave. 
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Figure 3.6: Isolines for the special case of a rectangular spectrum where horizontal line reveals 

the dimensionless wavenumber of the disturbance and vertical line indicates the dimensionless 

spectral width which is parallel to the carrier wave. The value on each line represents the 

dimensionless growth rate. 

 

Now, for this rectangular spectrum, two types of spectra have been chosen, namely 

elongated spectrum and stretched spectrum. The relation between the spectral widths in 

direction parallel and perpendicular to the carrier wave is given by  

{|! 	 {|<'�"/0�"{|! 	 �{|< 

respectively. The footprints of these spectra are shown in Figure 3.7. However, in order 

to present the instability area, only a quarter of the footprint of the spectrum will be 

shown. 

 

Figure 3.7: The footprints of the elongated spectrum (a) and the stretched spectrum (b). 
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growth rate, ��Ñ, and the geometric average of the dimensionless spectral widths where 

the wavenumber of the disturbance in direction perpendicular to the carrier wave, =� , is 

zero is shown in Figure 3.8. Note that the geometric averages is calculated by taking the 

square root of the product of {|< and {|!. As seen from the figure, the dimensionless 

growth rate is zero, which means the wave field is stable, when the geometric average 

of {|< and {|! is greater than 4���. Unlike elongated spectra, the growth rate of the 

stretched spectrum decreases slowly by increasing the spectral width as shown in Figure 

3.9. Moreover, the point of maximum growth rate with respect to ¢� axis increases 

slowly starting from ¢��rs�"� 	 � which is the most unstable mode for the vanishing 

spectral width. For example, when choosing {|< 	 �'q�% and "{|! 	 4'q�% which 

gives the geometric average of {|< and {|!, equal 0.5, i.e. �{|<{|! 	 %��, this spectrum 

reaches the point of maximum at ¢��rs�"� 	 ��%4A. Similarly, the spectrum whose 

spectral width {|< 	 A'q�% and {|! 	 �%'q�%, where �{|<{|! 	 �, reaches the 

maximum at ¢��rs�"� 	 ��4��. Furthermore, when the geometric average of {|< and {|! 

is greater than D��, the maximum growth rate of this spectrum becomes zero which 

means the spectrum is stable to inhomogeneous disturbance. Note that for the special 

case where {|< 	 {|! 	 %, the result of a rectangular spectrum is the same as the results 

obtained from the square spectrum as shown in Figure 3.2a. Moreover, this special case 

is also similar to the result of Martin and Yuen (1980a). Furthermore, the stability 

diagrams for {|< L % and {|! L % are shown in Figure 3.10 and Figure 3.11. As can be 

seen from both figures, all spectra have a similar behaviour to the square spectra where 

an increase value of the spectral width, the area of instability shrinks. In terms of 

stability, the elongated spectra reach the stable condition quickly while the stretched 

spectra reach the stable condition slowly. In addition, as shown in Figure 3.10 the 

maximum growth rate decreases rapidly when the spectral width increases. When 

choosing {|< 	 �%'q�% and {|! 	 A'q�%, for example, the area of instability 

disappeared. The dimensionless maximum growth rate of the disturbance of Figure 

3.10a and Figure 3.10b are ��Ñ 	 %���A� and ��Ñ 	 %�%��, respectively while Figure 

3.10c shows that the spectrum is stable to inhomogeneous disturbance. These maximum 

growth rates occur at the dimensionless wavenumber of the disturbance, which is 

parallel to the carrier wave, at ¢��rs�"� 	 �.329 and ¢��rs�"� 	 A�A�?, respectively.  
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Figure 3.8: Relation between dimensionless growth rate, 
i ,Ω�  and the dimensionless 

wavenumber of the disturbance which is parallel to the carrier-wave. The number on the line 

represents the dimensionless geometric average of the spectral widths, 
1 2 ,W W� �  for elongated 

spectra in which the wavenumber of the disturbance which is perpendicular to the carrier wave, 

,Q�  is zero. 

 

Moreover, similar to the instability diagrams of the square spectrum, the rectangular 

shape in each figure on both Figure 3.10 and Figure 3.11 represents a footprint of a 

quarter of the initial spectrum. Also, from all three cases of spectra, we can conclude 

that by increasing spectral width, the area of instability shrinks and the maximum 

growth rate decreases. In addition, when the spectral width reaches a certain value, then 

the spectrum becomes stable to inhomogeneous disturbances. 

 

 

Figure 3.9: Relation between dimensionless growth rate, i ,Ω�  and the dimensionless 

wavenumber of the disturbance which is parallel to the carrier wave. The number on the line 

represents the dimensionless geometric average of the spectral widths, 
1 2 ,W W� �  for stretched 

spectra in which the wavenumber of the disturbance which is perpendicular to the carrier wave, 

,Q�  is zero.  
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In all of the previous cases that have been simulated, both spectral widths, in directions 

parallel and perpendicular to the carrier wave were changed simultaneously for the 

rectangular spectrum. In Figure 3.12, however, we keep the spectral width in the 

direction parallel to the carrier wave constant and we change the spectral width which is 

perpendicular to the carrier wave. Interestingly, all three cases give the same maximum 

growth rate and the point of maximum growth rate. This indicates that the maximum 

growth rate occurs at =� 	 %. Moreover, the point of maximum growth rate and the 

maximum growth rate depend only on the spectral width in direction parallel to the 

carrier wave. In other words, this means the maximum growth rate is independent of the 

spectral width in direction perpendicular to the carrier wave as shown in Figure 3.12 

and is a function of {|< only. In addition, all of the cases in Figure 3.12 reach the 

maximum growth rate at ��Ñ�rs�� 	 %�A%�D. This conclusion is interesting as well as 

challenging. This is because based on some experiments in the wave flumes and 

numerical simulations, the instability does depend on the spectral width in direction 

perpendicular to carry wave albeit with different spectra (see: e.g. Onorato et al. 

(2009a,b), Toffoli (2010) and Babanin et al. (2011)). However, since the equation for 

the growth rate of the disturbance is rather cumbersome, it is difficult to show the 

independence of the spectral width in direction perpendicular to the carrier wave and 

will be left to the next section. 

3.4.3 Lorentz spectrum and its growth rate 

Another spectrum for which will be going to study its instability and determine its 

growth rate, including the maximum growth rate and the most unstable mode, is called a 

Lorentz spectrum. The similarity of this spectrum with the previous cases is that all of 

them are symmetric spectra. Therefore, with the Alber equation, one can show that the 

imaginary part of the dispersion relation will vanish. The advantage of this property is 

that one can only solve the real part of the dispersion relation to determine its growth 

rate and the area of instability. This is particularly useful when the dispersion relation 

cannot be solved analytically.  

A two-dimensional Lorentz spectrum is defined as (see: Crawford et al. (1980)) 

~�� 	 {<{!j�!�&!@��< � ���! �{<!B@�!! �{!!B (3.33)  
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Figure 3.10: Stability diagrams for elongated spectra, giving the dimensionless growth rate, 

i ,Ω�  of the inhomogeneous disturbances. The number on the line represents the dimensionless 

growth rate and the rectangular in each figure indicates the footprint of a quarter of the initial 

spectrum while P�  and Q�  are the dimensionless wavenumbers of the disturbances and 
1W�  and 

2W�  are the dimensionless spectral widths. (a) 
1 25 / 20 , 1 / 20;W W= =� �  (b) 

1 10 / 20 ,W =�  

2 2 / 20;W =�  (c) 
1 220 / 20 , 4 / 20.W W= =� �  
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Figure 3.11: Stability diagrams for stretched spectra, giving the dimensionless growth rate, 
i ,Ω�  

of the inhomogeneous disturbances. The number on the line represents the dimensionless 

growth rate and the rectangular in each figure indicates the footprint of a quarter of the initial 

spectrum while P�  and Q�  are the dimensionless wavenumbers of the disturbances and 
1W�  and 

2W�  are the dimensionless spectral widths. (a) 
1 21 / 20 , 5 / 20;W W= =� �  (b) 

1 2 / 20 ,W =�  

2 10 / 20;W =�  (c) 
1 24 / 20 , 20 / 20.W W= =� �  
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Figure 3.12: Stability diagrams for rectangular spectra, giving the dimensionless growth rate, 

i ,Ω�  of the inhomogeneous disturbances. The number on the line represents the dimensionless 

growth rate and the rectangular/square in each figure indicates the footprint of a quarter of the 

initial spectrum while P�  and Q�  are the dimensionless wavenumbers of the disturbances and 

1W�  and 
2W�  are the dimensionless spectral widths. (a) 

1 21, 1;W W= =� �  (b) 
1 21, 1 / 5;W W= =� �       

(c) 
1 21, 5.W W= =� �  
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where j� is wave amplitude and "j�!'� is the energy density; {< and {! are measures 

of the spectral width in directions parallel and perpendicular to the carrier wave, 

respectively and other variables are the same as mentioned in the previous section. This 

spectrum is plotted in the following Figure 3.13 where part (a) shows the spectrum in 

three-dimensional space while part (b) shows its isolines. It is clearly seen from the 

figure that the spectrum is symmetric. 

 

Figure 3.13: A two-dimensional Lorentz spectrum (a) and its isolines (b). 

 

In order to determine the actual growth rate including the maximum growth rate and the 

most unstable mode, the spectrum in equation (3.33) is substituted to the dispersion 

relation of the disturbance in equation (3.17). However, for simplicity, a Lorentz 

spectrum as in (3.33) is substituted into (3.15) instead of substituting it into (3.17), 

where ² 	 EÑØI R��Ã" � gives 

4 	 A��E{<{!j�!�&! þé � 4p��< � ��� � ���! � p!� � �! � A���!��
�

�Æ

� 4p��< � ��� � ���! � p!� � �! � A���!�� � F ��<��!3��< � ���! �{<!53�!! �{!!5K�� 
(3.34) 

In order to solve this integral, the method used by Crawford et al. (1980) which is 

actually the application of the residue theorem that can be found in any complex 
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analysis books will be followed. Firstly, we integrate the terms in curly brackets of 

(3.34) with respect to �< that is 

� � 4p��< � ��� � ���! � p!� � �! � A���!��
�

�Æ
� 4p��< � ��� � ���! � p!� � �! � A���!�� � F 43��< � ���! �{<!53�!! �{!!5K ��<� 

(3.35)  

This integral has one pole in the upper half plane at "�< 	 �� � Í{< and three poles in 

the lower half plane, namely at �< 	"�� � Í{<� �< 	 <I h���! � Il! � �! � EØ��l�� i � �� 

and �< 	 <I h���! � Il! � �! � EØ��l�� i � ��. Integrating over the standard contour in the 

upper half plane, equation (3.35) can be deduced to be [see Zuevsky (2008)] 

�&Í�Í{<@�!! �{!!B þ� 4Íp{< � ���! � p!� � �! � A���!��
� 4Íp{< � ���! � p!� � �! � A���!�� ��� 

Substituting this result into (3.34) leads to  

4 	 ���E{!j�!& þ � � 4Íp{< � ���! � p!� � �! � A���!��
Æ

�Æ
� 4Íp{< � ���! � p!� � �! � A���!�� � ��!@�!! �{!!B�� 

(3.36)  

Following a procedure similar to the integration of (3.35) over �<, the integral equation 

in (3.36) has one pole in the lower half plane, i.e. at "�! 	 �Í{! and three poles in the 

upper half plane, namely at �! 	 Í{!� �! 	 <!Õ hÍp{< � p!'� � �! � EØ��l�� i and 
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�! 	 <!Õ hÍp{< � Il! � �! � EØ��l�� i. Integrating over the standard contour in the lower 

half plane, equation (3.36) can be written as 

4 	 ���Ej�! � 4Íp{< � �Í�{! � p!� � �! � A���!�� � 4Íp{< � �Í�{! � p!� � �! � A���!�� �� 
Simplifying this equation yields, 

���Ej�!�p! � ��!� 	 �p!� � �!�! � �Íp{< � �Í�{! � A���!�� �!� 
Rearranging this result and making A���!'�� the subject leads to 

A���!�� 	 �P�p!� � �!�! � A��Ej�! �p!� � �!� � Íp{< � �Í�{!� 
In order to get the imaginary parts of � to be positive, the values under the square root 

of the above equation must be negative and then it can be rewritten as 

A���!�� 	 �ÍP�p!� � �!�æA��Ej�! � �p!� � �!�ç � Íp{< � �Í�{!� 
It is clearly that the sign of the square root must be positive. Hence, 

A���!�� 	 ÍP�p!� � �!�æA��Ej�! � �p!� � �!�ç � Íp{< � �Í�{!� 
Thus, the real part is zero, that is � 	 % and the imaginary part is given by: 

�Ñ 	 ��A��!P�p!� � �!�æA��Ej�! � �p!� � �!�ç � p{< � ��{!� 
Therefore, the growth rate of unstable disturbances, where �� 	 ���% can be rewritten 

as 

�Ñ 	 ����� åPF4A º p��»! � 4�º ���»!K F�j�!��! � 4Aº p��»! � 4�º ���»!K �{<p���! �{!���! è� (3.37) 
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Defining non-dimensional variables  

��Ñ 	 �Ñ'e
!���%f)""¢� 	 p'
�%) ""=� 	 �'
�%) """"{|< 	 {<'
�%) """""{|! 	 {!'
�%) 
and the steepness 


 	 j���� 
the dimensionless growth-rate of unstable disturbances is given by 

��Ñ 	 4�åPF¢�!A � =�!� K F� � ¢�!A � =�!� K �{|<¢�!� �{|!=�!è� (3.38) 

The one-dimensional counterpart of (3.33) is  

~<��� 	 {<j�!�&@��< � ���! �{<!B (3.39) 

and the growth rate of unstable disturbances is given by 

�Ñ�<� 	 pAP��� åP�j�!��! � 4Aº p��»! �{<��è� (3.40) 

Turning to the dimensionless form, equation (3.40) can be rewritten as 

��Ñ�<� 	 ¢�A åPF� � ¢�!A K �{|<è� (3.41) 

From equation (3.41) and the condition of instability ��Ñ�<� L %, one can see that 

equation (3.39) is stable for any ¢� if  
{|< L q�� (3.42) 

In order to determine the point of maximum growth rate, one can take the first order 

derivative with respect to ¢� of equation (3.41), and then solve it for ¢� yields, 

¢�<�rs�"� 	 PA �{|<!� �{|<� R4D �{|<! (3.43) 

and the maximum growth rate itself is  
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��Ñ�<��rs�"� 	 ¢�<�rs�"�A åPÀ� � �¢�<�rs�"��!A Á �{|<è� 
For the two-dimensional Lorentz spectrum in (3.33), taking the first partial derivative of 

equation (3.38) with respect to ¢� and =�  respectively leads to the following relation, 

¢�{|! � =�{|< 	 %� 
Since ¢�� =��{|< and {|! are all taken to be positive, there is no maximum within the 

domain of instability. Thus, the largest value of ��Ñ is located on the boundaries from 

which the only possible choice is =� 	 %, since ��Ñ 	 % otherwise. Substituting =� 	 % 

into equation (3.38) yields equation (3.41) and the accompanying condition (3.42) 

which is independent of {|!. 

Therefore, the most unstable mode is 

h¢�!�rs�"�� =�!�rs�"�i 	 h¢�<�rs�"�� %i 

and its maximum growth rate is 

��Ñ�rs�"� 	 ��Ñ�<��rs�"�� 
As an illustration, Figure 3.14 shows three different spectra where spectral width in the 

direction parallel to the carrier wave is kept constant, e.g. {|< 	 %���, while the spectral 

width which is perpendicular to the carrier wave is varied, namely, {|! 	 %�%�� %���� 
and 4���. As can be seen from the figure, the maximum growth rate of the three 

different spectra is ��Ñ�rs�"� 	 %���G4� and the point of maximum growth rate is at ¢��rs�� 	 4�?D�� which are all the same. Moreover, based on Figure 3.14, one can see 

that the role of spectral width which is perpendicular to the carrier wave is only to 

shrink the area of the instability. Moreover, the independence of the spectral width in 

direction perpendicular to the carrier wave is proven here analytically. Therefore, based 

on these three spectra, namely, a square spectrum, a rectangular spectrum and a Lorentz 

spectrum, it can be concluded that the maximum growth rate and the most unstable 

mode are independent of spectral width which is perpendicular to the carrier wave. 

However, the reconciliation with the experiments is still unanswered yet and it will be 
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considered in the next section by using a more realistic ocean wave JONSWAP (JOint 

North Sea WAve Project) spectrum (Hasselman, 1973). 

 

 

 

Figure 3.14: Stability diagrams for Lorentz spectra, giving the dimensionless growth rate, 
i ,Ω�  

of the inhomogeneous disturbances. The number on the line represents the dimensionless 

growth rate while P�  and Q�  are the dimensionless wavenumbers of the disturbances and 
1W�  

and 
2W�  are the dimensionless spectral widths. (a) 

1 20.25, 0.25;W W= =� �  (b) 
1 0.25,W =�  

2 0.05;W =�  (c) 
1 20.25, 1.25.W W= =� �   
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3.4.4 JONSWAP spectrum and its growth rate 

All of the spectra that have been studied so far are not the realistic ocean wave spectra. 

As a result, it is difficult to compare the conclusion from the previous sections to the 

experimental results which used a more realistic ocean wave spectrum. Therefore, in 

this section, instability of a more realistic ocean spectrum will be studied. This type of 

parametric spectra were first introduced by Pierson-Moskowitz (1964) with assumption 

that if the wind blew steadily for a long time over a large area, the waves would come 

into equilibrium with the wind. This was the concept of a fully developed sea. However, 

Hasselmann et al. (1973) found that the wave spectrum is hardly ever fully developed. It 

continues to develop through non-linear wave-wave interactions even for very long 

times and distances (Stewart, 2008). This conclusion was originally made after 

analysing data collected during the Joint North Sea Wave Observation Project which 

produced a parameterization now known as JONSWAP spectrum.  

In order to study conditions of the instability including the actual maximum growth rate 

and the point of maximum growth rate of the instability, there are three different cases 

to be considered. Firstly, a similar method used by Janssen (1985), Onorato et al. (2003) 

and Fedele (2004) will be followed where a JONSWAP spectrum will be only expanded 

around its peak. The result of this approximation falls to the Lorentzian spectrum which 

is a symmetric spectrum and then it will be called a Lorentzian spectrum. The advantage 

of using this approximation enables us to solve equation (3.17) analytically. Secondly, 

the instability condition based on the unidirectional JONSWAP spectrum will be 

determined. However, since using this type of spectrum equation (3.17) cannot be 

integrated analytically it will be solved numerically. A general method will be designed 

to deal with this problem including its verification. Finally, the instability based on a 

JONSWAP spectrum with directional distribution will be studied. Solving this case 

numerically is very high computational cost for the dispersion relation of the 

disturbance as given in equation (3.17). To overcome this issue, it is assumed that the 

maximum growth rate occurs at � 	 % which is the wavenumber of the disturbance 

perpendicular to carrier wave. This assumption will reduce the required computational 

resources significantly for the numerical simulations. 



78  

3.4.4.1 Lorentzian spectrum 

In this section, a unidirectional JONSWAP spectrum (Hasselmann et al., 1973) as a 

function of the wavenumber will be written as 

x��� 	 ���Q ���Q��
l!�l����F dl�lÒ�eqÒ��Ò�flK

 (3.44) 

where � is a peak-enhancement factor, ( is a peak-width parameter, � is the energy 

scale or Philips parameter and �� is the peak wavenumber. Note that this spectrum is 

slightly different from the original JONSWAP spectrum. The different is the term 

,¸¹ h�Q��l!�l i where in the original JONSWAP spectrum this term is ,¸¹ h�U��lE�l i. The 

comparison of these two spectra is shown in Figure 3.15 where black line represents the 

original JONSWAP spectrum while the red line represents the JONSWAP spectrum as 

shown in equation (3.44). Both cases are for � 	 %�%4D, "� 	 4%, �� 	 4 and ( 	 %�%?�  
 

 

Figure 3.15: Comparison between the original JONSWAP spectrum (black line) and the 

JONSWAP spectrum (red line) as given in equation (3.44). 

 

The reason to choose this kind of spectrum is because it enables us to approximate the 

spectrum around its peak to obtain the symmetric spectrum. Then, previously method 

applied for Lorentz spectrum which is also a symmetric spectrum can be employed here. 

Following Janssen (1985) and Onorato et al. (2003), the spectrum x���, which is 

presented in equation (3.44), is expanded around its peak by second order Taylor 

expansion and it leads to,  
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x��� 	 ���Q!"����Q � Î����Q!"����U � ���Q!� Ç0 �4D��U"(! Ï�� � ���!� 
After simplification, this equation can be rewritten as 

x��� 	 ���Q!"����Q N4 � ��A(! � Ç0 �?��!"(! � �� � ���!O� 
The terms in the curly brackets of the right hand side of above equation can be 

approximated as follows 

4 � ��A(! � Ç0 �?��!"(! � �� � ���! � 44 � º�A(! � Ç0 �?�I!"(! » �� � ���!� 
Hence, the unidirectional JONSWAP spectrum can be rewritten as 

x��� 	 ���Q!"����Q ìî
ï ?��!"(!�A(! � Ç0 �?��!"(!�A(! � Ç0 � � �� � ���!ö÷

ø� (3.45) 

Let j 	 Ä��l"�l!E�l³ÊË� and � 	 Þ��Ãl"�!��Ã , then equation (3.45) can be simplified as 

x��� 	 j"�j � �� � ���!� (3.46) 

Thus, this spectrum becomes a Lorentzian spectrum which is a symmetric spectrum and 

is similar to one obtained by Onorato et al. (2003). The comparison of this spectrum 

with the JONSWAP spectrum as presented in equation (3.44) is shown in Figure 3.16 

by taking � 	 %�%4D, "� 	 4%, �� 	 4 and ( 	 %�%?� The blue line represents the 

Lorentzian spectrum and the red line represents the JONSWAP spectrum. 

Moreover, one-dimensional case of the equation (3.17) falls to the equation (2.17) of 

Stiassnie et al. (2008), that is, 

4 	 A��E å � x�����3Í�� � ��� � ²5! � p!A
�

�Æ è� (3.47) 
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Figure 3.16: A Lorentzian spectrum (blue line) as in the equation (3.46) and the JONSWAP 

spectrum (red line) as given in equation (3.44). 

 

Substituting equation (3.46) into equation (3.47) and using ² 	 EÑØI R��Ã" , where, as has 

been mentioned before, � is the frequency of the disturbance and its positive values of 

the imaginary part, �Ñ L %� are related to the instability yields the growth rate of the 

disturbance 

�Ñ 	 pAP ���Q åPA&���Eqj � p!A � qjè� (3.48) 

The point of maximum growth rate is obtained by taking the first partial derivative of 

equation (3.48) with respect to p and after standard algebra the following equation is 

obtained 

p�rs�� 	 4�P��&���Eqj � �j � �Rj! � ��&�jQ!��E� 
Therefore, the maximum growth rate is 

�Ñ�rs�� 	 p�rs��A P ���Q åPA&���Eqj � �p�rs���!A � qjè� 
In Figure 3.17, the marginal instability in which maximum growth rate approaches zero, �Ñ T %, is shown. In order to obtain such marginal instability, one will consider 

equation (3.48) in which �Ñ approaches zero and find that there are three possible values 
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of p namely p 	 % and p 	 ��RA&���Eqj � j. Taking p L %"will give the same result 

for p o % while for p 	 %�"the solution is trivial. Therefore, an explicit equation for � 

which leads to a marginal stability condition as a function of � is given by 

� 	 q�"("�Q!&"�"��A(! � Ç0���� 
In Figure 3.17, solution is shown for ( 	 %�%?. 

 

 

Figure 3.17: Instability diagram in the α γ−  plane of the Lorentzian spectrum. α  is the 

Philips parameter and γ  is the peak enhancement factor. The red line represents the marginal 

instability. 

 

Figure 3.17 is similar to the Figure 1 of Onorato et al. (2003) which was obtained from 

the nonlinear Schrödinger equation where the spectra with higher values of � and � are 

more likely to show the modulational instability. Moreover, as has been shown in 

Babanin et al. (2010, 2011b), steepness plays an important role in the instability. Hence, 

since the steepness of a JONSWAP spectrum depends on the parameters, � and �, in the 

following, the relations of these three parameters will be investigated. To be consistent 

with the previous cases, namely a square spectrum, a rectangular spectrum and the 

Lorentz spectrum, the steepness of any spectrum, x���, is calculated using the 

following formula 


 	 ����ª�,  where  ª� 	 ¿ x�����Æ�Æ � 
Thus, the steepness of this Lorentzian spectrum is given by 
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 	 q�� &q�"�"�"(�Q!"��A(! � Ç0���� 
Dividing both sides of this equation by � Ô � and then substituting the equation for � as 

a marginal instability condition on the right hand side gives 


� Ô � 	 &q��Q! � 4� 
Therefore, the instability/stability areas based on the Lorentzian spectrum are clearly 

seen in Figure 3.17. Choosing any combinations of � and � in the instability regime, 

one can easily calculate the actual growth rate including the maximum growth rate as 

well as the point of maximum growth rate using equation (3.48). The advantage of this 

Lorentzian spectrum enables us to study the instability for the dispersion relation as 

given in equation (3.17) analytically and helps to study the JONSWAP spectrum which 

is asymmetric spectrum. Therefore, in the next section, the instability and stability 

conditions of the original asymmetric JONSWAP spectrum will be studied. 

3.4.4.2 Unidirectional JONSWAP spectrum 

Following Holthuijsen (2007, p.160), a unidirectional JONSWAP spectrum as a 

function of frequency is defined as 

���� 	 ��!��&�E�U ��UE h��� iÚ��
�dl�l��l������l

 (3.49) 

where �� is the peak frequency. Using the dispersion relation on the deep water that is �! 	 �� and ���� 	 ���� ����, the unidirectional JONSWAP spectrum as a function of 

frequency can be transformed into the wave number, k, yielding 

���� 	 ���Q ���U��
lE�l����F dl�lÒ�eqÒ��Ò�flK

 (3.50) 

where �� is the peak wavenumber. For the total energy density of any spectrum, the 

following relations are chosen (Dysthe et al., 2003, Stiassnie et al., 2008) 

j�!� � �
'���!� � � ���� ��� 
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Moreover, the one-dimensional counterpart of the equation (3.17) where ² 	 EÑØI R��Ã"  

can be written in the form of integral equation as follows: 

4 	 A��Ep! � ���<���<pEA � Fp��< � ��� � A��!v����K
!

Æ
�Æ � 

(3.51) 

In order to determine the maximum growth rate and the point of maximum growth of 

the spectrum, equation (3.50) is substituted into equation (3.51). However, since the 

integral in equation (3.51) cannot be solved analytically for asymmetric spectrum such 

as a JONSWAP spectrum, it is necessary to seek an approximate solution. To this end, 

the original spectrum ���� will be replaced by a sum of weighted Dirac-delta functions 

as follows: 

���� 	 ¬ ����� � ����§��
�§��

 

where �� 	 �z�� �� 	 �����z� and � 	 4���� � �� 
Substituting this equation into equation (3.51) gives 

4 	 A��Ep! ¬ ��pEA � Fp��� � ��� � A��!v����K
!

�§��
�§��

� 
Note that all of the quantities in this equation have numerical values, and that only � is 

unknown. Besides that, using Matlab, this equation can be reduced into a polynomial 

equation of order � 	 ���rs� � �r�� � 4�, that is 

¬j��� 
�n� 	 % 

where j� is a constant. However, the highest order algebraic equation that can be used 

is up to � 	 �%, due to the limitation of the Matlab to solve the polynomial for these 

cases. Note that the convergence of this numerical solution has been checked by taking � 	 �%� A%� �%� D% and 70. Furthermore, seeking the root for � with the largest 

imaginary contribution will give the maximum growth rate of the given spectrum. From 
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this, it is also straightforward to get the point of maximum growth. The validity of this 

rather “general-method” is firstly demonstrated by using one-dimensional Lorentz 

spectrum as given by Stiassnie et al. (2008) and then using a two-dimensional Lorentz 

spectrum as in Section 3.4.3. The reason to choose these spectra is because both spectra 

have analytical solutions to compare with. Stiassnie et al. (2008) defined a one-

dimensional Lorentz spectrum as 

���� 	 %�%G{j�!A@�� � ���! � %�%�{!B 
where { is the spectral width and j�!'� is the energy density. The growth rate of this 

spectrum in the non-dimensional form is given by (see equation (2.28) of Stiassnie et al. 

(2008)) 

��� 	 ¢�A ÎP� � ¢�!A � q%�%�{|Ï 

where "��Ñ 	 �Ñ'e
!���%f)""¢� 	 p'
�%) """"{| 	 !'
�%. 
In order to apply the “general method” to the Lorentz spectrum, the following 

procedures will be carried out. As known, the limit of � is along real number, but for the 

numerical reasons, it has to be truncated. Therefore, let �r�� and �rs� be the lower 

limit and the upper limit of �, respectively, then z� is defined as 

z� 	 �rs� � �r��"� " 
and thus, 

�� 	 ������z�� 	 � %�%G{j�!A@��� � ���! � %�%�{!B� º�rs� � �r��"� » 

where 

�� 	 �r�� � º�rs� � �r��"� » º� � 4�» � � 	 4�����" � ��" 
The point of maximum growth rate as well as the maximum growth rate obtained from 

the “general-method” are shown in Figure 3.18 and marked by dots, while the analytical 
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solutions are given by the solid line. As seen from the figure, the results obtained from 

the “general method” and from the analytical solution are hardly distinguished. 

Moreover, the results are given in the dimensionless variables. 

 

 

 

Figure 3.18: Validation of the “general-method” • • • • , against the analytical solution 

, for a one-dimensional Lorentz spectrum. (a) most unstable mode, (b) its growth rate.  

 

For a two-dimensional Lorentz spectrum, the following procedure will be carried out. 

As has been shown analytically, the maximum growth rate occurs at the wavenumber of 

the disturbance which is perpendicular to the carrier wave, i.e. � 	 % and therefore only 

one spatial dimension of the disturbance will be considered. However, the spectrum will 

be kept two-dimensional. Therefore, the dispersion relation of the disturbance for this 

particular case is defined as 

4 	 A��Ep! � ���<���<pEA � Fp��< � ��� � A��!v����K
!

Æ
�Æ  
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���<� 	 � ~��<� �!���!Æ
�Æ � 

Now, as given in the equation (3.33), two-dimensional Lorentz spectrum can be 

rewritten as 

~��<� �!� 	 {<{!j�!�&!@��< � ���! �{<!B@�!! �{!!B� 
Hence, one can easily obtain the following spectrum 

���<� 	 {<j�!�&@��< � ���! �{<!B� 
Following a similar method in applying the “general method” to the one-dimensional 

Lorentz spectrum, the maximum growth rate and the point of maximum growth rate for 

a two-dimensional Lorentz spectrum are shown in the following figures where the 

results from the general method are marked by dots while the results from the analytical 

solution are shown by a solid line. 

 

 

 

Figure 3.19: Validation of the “general-method” • • • • , against the analytical solution 

, for a two-dimensional Lorentz spectrum. (a) most unstable mode, (b) its growth rate.  
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As we can see from these simulations, the results based on the “general method” 

(marked by dots) are not significantly different from the results obtained from the 

analytical solution which is represented by the solid line. Therefore, it is reasonable to 

apply this method for any spectrum including an asymmetric spectrum. In order to 

apply the “general method” to determine the maximum growth rate and the point of 

maximum growth rate for a unidirectional JONSWAP spectrum as in the equation 

(3.50) the following procedures will be carried out. 

Let us consider the JONSWAP spectrum as two parts, namely for % o � o �� as the 

first part and �� o � o Å as the second part. Hence, the first part, z� and �� are given 

by  

z� 	 ���� � 
and  

�� 	 ���� º� � 4�» � � 	 4���� � �� 
and therefore, �� can be written as 

�� 	 º���� » æ ����Q ���
U��lE�#l����F dl�lÒ�e�Ò#��Ò�flKç� 

For the second part, the value of k is up to infinity. However, again, for the numerical 

purposes it will be truncated at � 	 �rs�. Thus, following a similar procedure to that 

used for the first part of the spectrum, z� is defined as 

z� 	 ���rs� � ����  

while �� is given by  

�� 	 �� � ���rs� � ���� �º� � ��» � 4��� 
Thus, �� can also be written as 

�� 	 ����rs� � ���� �æ ����Q ���
U��lE�#l����F dl�lÒ�e�Ò#��Ò�flKç� 

Now, the question that needs to be answered is how to choose the values of the energy 

scale, �, and the peak enhancement factor, �, of a JONSWAP spectrum so that the 

modulational instability occurs. In order to answer this question, the result obtained 
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based on the Lorentzian spectrum will be used. As has been shown in Subsection 

3.4.4.1, the marginal instability line of the Lorentzian spectrum satisfies the condition 
� Ô � 	 4� 
This condition enables us to find the relation between �� � and 
. Moreover, calculating 

steepness from the equation (3.50) gives 
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For 0
1, 0.08k σ= = , and taking the values of k from 0.1 to 4, the above equation can be 

rewritten as 
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one will then get the following equation 
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(3.52) 

 

Moreover, using the marginal instability condition obtained from the Lorentzian 

spectrum, that is /α ε γ= , gives the final equation as 

( )
.

f γ
ε

γ
=

 

Furthermore, plotting this equation as well as the isolines of the equation (3.52) yields 

the results as shown in Figure 3.20. 

Therefore, Figure 3.20 enables us to localize the instability/stability area in order to 

determine the values of α and � of a JONSWAP spectrum. Choosing the values of α  

and � in the instability area, taking �� 	 4 which is a peak wavenumber and applying 

the “general method”, one will get the maximum growth rate and the most unstable 

mode as summarized in Table 3.1 where � is the wave steepness, p<�rs��
 is the 
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wavenumber of the most unstable mode and �<�rs��
 is the maximum growth rate. Note 

that, in applying the “general method”, the acceleration due to the gravity is taken to be 

1 for simplicity, i.e, � 	 4. The range of α  which is the energy scale were taken from 

some authors such as Babanin and Soloviev (1998a) and Onorato et al. (2009a, 2009b). 

 

Figure 3.20: Instability diagram in the ε γ−  plane of the unidirectional JONSWAP spectrum. 

Solid line represents the steepness as a function of γ  which is the marginal instability line and 

dashed lines represent the values of different α . 

 

Table 3.1: Results for unidirectional JONSWAP spectra where ε  is the steepness, ( )

1

max
p  is the 

wavenumber of the most unstable mode and ( )

1

maxΩ  is the maximum growth rate. α  and γ  are 

the Philips parameter and peak enhancement factor, respectively. 

 

α � p<�rs��
 �<�rs��

 � 

0.016 10 0.1886 0.0021379098 0.125779445 

0.02 10 0.2241 0.0035098887 0.140625695 

0.025 10 0.2641 0.0053465805 0.157224306 

0.03 10 0.2971 0.0072657537 0.172230598 

0.016 13 0.2311 0.0038441075 0.13779321 

0.02 13 0.2721 0.0057026371 0.154057492 

0.025 13 0.3061 0.0081193006 0.172241513 

0.03 13 0.3501 0.0106057991 0.188681124 

0.0081 17 0.1621 0.0015892432 0.108026501 

0.016 17 0.2721 0.0060827217 0.151826573 

0.02 17 0.3151 0.0085229135 0.169747269 

0.025 17 0.3601 0.0116491023 0.189783217 

0.03 17 0.3901 0.0148376920 0.207897098 

0.0081 20 0.1921 0.0023880541 0.114756297 

0.016 20 0.2961 0.0077131614 0.16128501 

0.02 20 0.3421 0.0105633553 0.180322124 

0.025 20 0.3801 0.0141926891 0.201606263 

0.03 20 0.4291 0.0178793148 0.220848596 
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Note that p<�rs�"�
 and �<�rs��" in Table 3.1 are in dimensional form which can be 

transformed into the dimensionless form using the following relations 

¢�<�rs�� 	 p<�rs��
�� ""/0�"""��<�rs�� 	 �<�rs��
!����"� 
However, since �� 	 4 and � 	 4 have been using in this simulation, the previous 

relations then becomes  

¢�<�rs�� 	 p<�rs��
 ""/0�"""��<�rs�� 	 �<�rs��
! "� 
Therefore, the results for  p<�rs�"� and �<�rs��" in Table 3.1 can be transformed into the 

dimensionless form as shown in Table 3.2.  

Table 3.2: Results for unidirectional JONSWAP spectra where ε  is the steepness, ( )

1

max
P�  is the 

dimensionless wavenumber of the most unstable mode and ( )

1

maxΩ�  is the dimensionless 

maximum growth rate. α  and γ  are the Philips parameter and peak enhancement factor, 

respectively. 

 

α � � ¢�<�rs�� ��<�rs�� 
0.016 10 0.125779445 1.49945 0.135135678 

0.02 10 0.140625695 1.59359 0.177485954 

0.025 10 0.157224306 1.67977 0.216290147 

0.03 10 0.172230598 1.72501 0.244940190 

0.016 13 0.13779321 1.67715 0.202460308 

0.02 13 0.154057492 1.76622 0.240275829 

0.025 13 0.172241513 1.77716 0.273679935 

0.03 13 0.188681124 1.85551 0.297910965 

0.0081 17 0.108026501 1.50056 0.136185148 

0.016 17 0.151826573 1.79218 0.263877504 

0.02 17 0.169747269 1.85629 0.295789320 

0.025 17 0.189783217 1.89743 0.323427432 

0.03 17 0.207897098 1.87641 0.343296599 

0.0081 20 0.114756297 1.67398 0.181338958 

0.016 20 0.16128501 1.83588 0.296513456 

0.02 20 0.180322124 1.89716 0.324865701 

0.025 20 0.201606263 1.88536 0.349185862 

0.03 20 0.220848596 1.94296 0.366573938 

 

As we know, the steepness of wave fields described by the JONSWAP spectrum 

depends on the peak enhancement coefficient, �, and Philips parameter, �. This means, 
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when the value of � or � increases, then the steepness will increase as well. As can be 

seen from Table 3.2, an increase in the value of steepness is accompanied by an increase 

in the value of the maximum growth rate. These results are in qualitative agreement 

with the experimental data (Babanin et al., 2011b) as well as with the numerical 

simulation (Eliasson and Shukla, 2010). In addition, the narrower the spectrum, the 

point of maximum growth rate converges to the dimensionless wavenumber of the 

perturbation which is parallel to the carrier wave, ¢�<�rs�� 	 �. This is also consistent 

with the results in Stiassnie et al. (2008) in which the maximum growth rate occurs at ¢�<�rs�� 	 � for vanishing spectral width. 

In order to present these results in another way, dimensional analysis approach is 

performed. Let �<�rs�� be the growth-rate of the most unstable disturbance which 

depends on the physical quantities namely; the acceleration due to the gravity, �, the 

total energy, j�!'�, the peak wavenumber, ��, and the spectral width, {, which is 

defined as the quotient of the total energy to the spectral peak ��. In particular, for a 

unidirectional JONSWAP spectrum, �� 	 ����<�!U'���Q and { 	 j�!��Q'�����<�!U�. 
Thus, there must exist a function  

� æ�<�rs��� �� j�!� � ��� j�!��Q'�����<�!U�ç 	 %� 
Using �� and � as fundamental quantities and applying Buckingham $Í theorem 

(Buckingham, 1914) assures the existence of the function 

�<h�<�rs��'����� 
!� 
!'��i 	 % 

where 
 	 j��� 	 Ì�4� is typical wave-steepness. Without loss of generality, �< can be 

replaced by 

�! æ �<�rs��
!���� � 
�� � 
ç 	 %� 
In this equation, �<�rs��'e
!����f and 
'���� are both usually of %�4�, whereas 
 is Ì�4�, so that approximately 
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�<�rs��
!���� 	 �Q º 
��»� (3.53) 

As seen from (3.53), �<�rs��'�
!����� which is the dimensionless maximum growth 

rate is a function of 
'���� which is called the dimensionless “width parameter”,  

}< 	 
��� (3.54)  

for unidirectional JONSWAP spectrum. Note that }< is the dimensionless scaled width 

in the peak direction. Moreover, this dimensionless analysis was inspired by the 

Benjamin Feir Index (BFI) as introduced by Onorato et al. (2001) and Janssen (2003). 

Therefore, it has to be mentioned that this dimensionless width parameter shows the 

detailed meaning of the ratio of wave steepness to wave bandwidth in the spectral 

context. Note that Π1
 is related to BFI, but it is not another form of BFI. The latter had 

been introduced for quasi-monochromatic wave trains, being ratio of steepness to 

bandwidth, which are unambiguous properties in such trains. They are not 

unambiguous for wave fields with continuous spectrum. In a JONSWAP spectrum, 

both � and � are connected with both steepness and bandwidth. Moreover, neither of 

them is constant in evolving wave spectra and, even on average, any change to � is 

accompanied by a change to � (e.g. Babanin and Soloviev 1998a; Onorato et al. 2003). 

For spectrum of ocean waves, e.g. JONSWAP spectrum as the most popular 

parameterization, same steepness can be achieved either by varying � and keeping � 

constant, or vice versa. This same steepness, therefore, has different implications for the 

spectral bandwidth and for modulational instability. If we increase �, then to keep the 

steepness constant we should decrease �. This means that spectra become broader and 

this leads to corresponding implications for the instability of nonlinear groups – i.e. the 

growth rates of most unstable modes are expected to decrease or even be suppressed. If 

we increase �, then to keep the steepness constant we should decrease �. Such 

combination will instigate rapid narrowing of the spectral bandwidth of dominant 

waves, which we expect to be associated with their instability, and which is the most 

important outcome in practical sense, e.g. for wave breaking or freak wave probability. 

Thus, separation of the relative contributions of � and � into the total steepness and the 

characteristic bandwidth of waves with continuous spectrum identify important physical 
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differences between wave fields with full spectrum and quasi-monochromatic wave 

trains. It does not deny the previous analogies in terms of BFI, but expands them and is 

an important new contribution of this research. 

The results in Table 3.2, ¢�<�rs�� and ��<�rs�� are plotted as a function of dimensionless 

“width-parameter”,}<, obtained from the unidirectional JONSWAP spectrum using a 

“general method” (marked by dots), as well as the best linear fit for ¢�<�rs�� and ��<�rs��. 
 

 

 

Figure 3.21: Results of linear stability analysis for unidirectional JONSWAP spectra as a 

function of the “width-parameter” 
1.Π  (a) most unstable mode, (b) its growth rate. 

 

The equations for the straight lines in Figure 3.21 are 

(max)
1 12.313 0.976 ,P = − Π�  (3.55) 

(max)
11 0.572 0.557 .Ω = − Π�  (3.56) 
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From the second equation, it is clearly seen that unidirectional JONSWAP spectra are 

stable to inhomogeneous disturbance when 1 1Π ≥  as for this condition the maximum 

growth rate (max)
1Ω�  is negative. 

3.4.4.3 JONSWAP spectrum with a directional distribution 

Directional wave fields can be conveniently represented by a unidirectional JONSWAP 

spectrum as in the equation (3.50) multiplied by the directional spreading (see Komen et 

al., 1994, Babanin and Soloviev, 1998b, Young, 1999, Holthuijsen, 2007) that is 

~��� �� 	 �������� 
where"���� as in equation (3.50) and the directional spreading must satisfy the 

following condition 

����� �� 	 4� 
In this thesis, the directional spreading used is as 

���� 	 �� ���Ë & ) """""""� Ó� C & C Ó�� 
where n is the degree of the directional distribution and  

�� 	 4q& � h4 �
��i� h4 � �� i (3.57)  

which is a normalization factor. Let us transform the polar coordinate into the Cartesian 

coordinate, that is into �< and �! plane, by using the following relations: 

�< 	 � ��� �� 
�! 	 � �Í0 � �" 

gives 

� 	 R�<! � �!!�"""""� 	 /-�./0 º�!�<» "/0�"Í.�"'/��(Í/0"") 	 4��<! � �!!� 



95  

Substituting �"/0�""� into ~��� �� and multiplying it by its Jacobian gives a JONSWAP 

spectrum with directional distribution as a function of wave numbers �< and �! as 

follows: 

~�� 	 �"� h4 � ��i�<��q& h��<! � �!!iE³� � h4 � �� i ���
U��lEe�dl³�llf���

�
ðññ
ññò dl�l*+

,�RÒdl-ÒllÒ� �d
./
0
l

óôô
ôôõ

 
(3.58) 

where 

% o �< o ��""""""" � � o �! o �� 
Substituting equation (3.58) into equation (3.17) will give a very complex integral 

which cannot be solved even numerically due to the very expensive numerical 

computations. Therefore, a simplified problem is considered. To this end, as has been 

mentioned before, it is assumed that the maximum growth rate occurs at � 	 %. This 

assumption will reduce the required computational resources significantly. As a result, 

only one-dimensional case of the disturbance is considered but the spectrum will be 

kept two-dimensional. Moreover, JONSWAP spectrum with the directional distribution 

is integrated with respect to �! to obtain a spectrum""���<� which is identical to a 

unidirectional JONSWAP spectrum. Thus, the dispersion relation for the disturbance of 

the simplified two-dimensional Alber equation is given by 

4 	 A��Ep! � ���<���<pEA � Fp��< � ��� � A��!v����K
!

Æ
�Æ  

where 

���<� 	 � ~��<� �!���!Æ
�Æ � 

Now, following a similar procedure to that used for the unidirectional JONSWAP 

spectrum in choosing the values of the energy scale, �, and the peak enhancement, �, 

for JONSWAP spectrum with directional distribution, we have to choose the values of 

the degrees of the directional spreading. Applying a “general method” by taking � 	 D?�"gives the results as summarized in Table 3.3 where � and � are the energy scale 
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and the peak enhancement factor of JONSWAP spectrum, respectively, while n, �� and 
 are degree of the directional distribution, normalization factor of the directional 

distributions and wave steepness. ¢�!�rs�� and ��!�rs�"� are dimensionless wavenumber of 

the most unstable mode and the maximum growth rate, respectively. As can be seen 

from Table 3.3, the directional spreading influences the maximum growth rate.  

Table 3.3: The results for the JONSWAP spectra with directional distributions where γ  is the 

peak enhancement factor, α  is the energy scale, n is the degree of directional energy 

distribution, 
dA  is the normalization factor of the directional spreading, ε  is the wave 

steepness, (max)

2P�  is the dimensionless wavenumber of the most unstable mode and (max)

2Ω�  is the 

dimensionless maximum growth rate. 

 

γ  α  n  d
A  ε  

(max)

2P�  
(max)

2Ω�  

10 0.016 10 1.293449 0.125779445 1.49945009 0.103061156 

10 0.016 24 1.9748 0.125779445 1.44777233 0.129749152 

10 0.016 50 2.83508 0.125779445 1.49945009 0.135296362 

10 0.016 90 3.79522 0.125779445 1.49945009 0.136053185 

10 0.02 5 0.9375 0.140625695 1.394482002 0.104022026 

10 0.02 10 1.293449 0.140625695 1.543814598 0.149014376 

10 0.02 24 1.9748 0.140625695 1.593592129 0.17364694 

10 0.02 50 2.83508 0.140625695 1.593592129 0.17820623 

10 0.02 90 3.79522 0.140625695 1.593592129 0.178574921 

10 0.025 3 0.75 0.157224306 1.374469414 0.105382144 

10 0.025 5 0.9375 0.157224306 1.527117568 0.149706074 

10 0.025 10 1.293449 0.157224306 1.628883003 0.192063491 

10 0.025 24 1.9748 0.157224306 1.679765721 0.213532238 

10 0.025 50 2.83508 0.157224306 1.679765721 0.217140195 

10 0.025 90 3.79522 0.157224306 1.679765721 0.217334517 

10 0.03 3 0.75 0.172230598 1.515990787 0.141451084 

10 0.03 5 0.9375 0.172230598 1.620501833 0.185175889 

10 0.03 10 1.293449 0.172230598 1.725012879 0.224421404 

10 0.03 24 1.9748 0.172230598 1.725012879 0.242974363 

10 0.03 50 2.83508 0.172230598 1.725012879 0.245857355 

10 0.03 90 3.79522 0.172230598 1.725012879 0.245932363 

13 0.016 5 0.9375 0.13779321 1.473947809 0.122675204 

13 0.016 10 1.293449 0.13779321 1.626350093 0.171097024 

13 0.016 24 1.9748 0.13779321 1.677150855 0.19784429 

13 0.016 50 2.83508 0.13779321 1.677150855 0.202964984 

13 0.016 90 3.79522 0.13779321 1.677150855 0.203471936 

13 0.02 3 0.75 0.154057492 1.454651746 0.121223442 

13 0.02 5 0.9375 0.154057492 1.610437742 0.168516896 

13 0.02 10 1.293449 0.154057492 1.714295074 0.213779789 
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13 0.02 24 1.9748 0.154057492 1.766223739 0.236854369 

13 0.02 50 2.83508 0.154057492 1.766223739 0.24093222 

13 0.02 90 3.79522 0.154057492 1.766223739 0.241244783 

13 0.025 3 0.75 0.172241513 1.568146935 0.165307239 

13 0.025 5 0.9375 0.172241513 1.724903571 0.211060497 

13 0.025 10 1.293449 0.172241513 1.777155783 0.251982095 

13 0.025 24 1.9748 0.172241513 1.777155783 0.271277643 

13 0.025 50 2.83508 0.172241513 1.777155783 0.274395901 

13 0.025 90 3.79522 0.172241513 1.777155783 0.274562236 

13 0.03 3 0.75 0.188681124 1.643513639 0.199740427 

13 0.03 5 0.9375 0.188681124 1.749512584 0.243120036 

13 0.03 10 1.293449 0.188681124 1.802512057 0.279810707 

13 0.03 24 1.9748 0.188681124 1.855511529 0.296272944 

13 0.03 50 2.83508 0.188681124 1.855511529 0.298712484 

13 0.03 90 3.79522 0.188681124 1.855511529 0.298761072 

17 0.0081 24 1.9748 0.108026501 1.528328687 0.131260356 

17 0.0081 50 2.83508 0.108026501 1.528328687 0.13835607 

17 0.0081 90 3.79522 0.108026501 1.528328687 0.138430626 

17 0.016 3 0.75 0.151826573 1.4760262 0.137748952 

17 0.016 5 0.9375 0.151826573 1.634101295 0.187548983 

17 0.016 10 1.293449 0.151826573 1.739484692 0.235219736 

17 0.016 24 1.9748 0.151826573 1.79217639 0.259840652 

17 0.016 50 2.83508 0.151826573 1.79217639 0.264297149 

17 0.016 90 3.79522 0.151826573 1.79217639 0.264732563 

17 0.02 3 0.75 0.169747269 1.644209071 0.181488893 

17 0.02 5 0.9375 0.169747269 1.750249068 0.229418607 

17 0.02 10 1.293449 0.169747269 1.803269067 0.272246699 

17 0.02 24 1.9748 0.169747269 1.856289066 0.292879086 

17 0.02 50 2.83508 0.169747269 1.856289066 0.296333676 

17 0.02 90 3.79522 0.169747269 1.856289066 0.296593436 

17 0.025 3 0.75 0.189783217 1.739352962 0.22263848 

17 0.025 5 0.9375 0.189783217 1.792044661 0.26706741 

17 0.025 10 1.293449 0.189783217 1.844736359 0.304563255 

17 0.025 24 1.9748 0.189783217 1.897428057 0.3214471 

17 0.025 50 2.83508 0.189783217 1.897428057 0.324042943 

17 0.025 90 3.79522 0.189783217 1.897428057 0.324168136 

17 0.03 3 0.75 0.207897098 1.780207633 0.253931571 

17 0.03 5 0.9375 0.207897098 1.876409073 0.294738049 

17 0.03 10 1.293449 0.207897098 1.876409073 0.327792124 

17 0.03 24 1.9748 0.207897098 1.876409073 0.341862087 

17 0.03 50 2.83508 0.207897098 1.876409073 0.343906513 

17 0.03 90 3.79522 0.207897098 1.876409073 0.343965016 

20 0.0081 10 1.293449 0.114756297 1.621697505 0.13852836 

20 0.0081 24 1.9748 0.114756297 1.621697505 0.173147318 

20 0.0081 50 2.83508 0.114756297 1.673982217 0.180909058 
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20 0.0081 90 3.79522 0.114756297 1.673982217 0.182136873 

20 0.016 3 0.75 0.16128501 1.587872297 0.173962811 

20 0.016 5 0.9375 0.16128501 1.736677198 0.224068648 

20 0.016 10 1.293449 0.16128501 1.835880466 0.27009808 

20 0.016 24 1.9748 0.16128501 1.835880466 0.292855631 

20 0.016 50 2.83508 0.16128501 1.835880466 0.296878536 

20 0.016 90 3.79522 0.16128501 1.835880466 0.297270163 

20 0.02 3 0.75 0.180322124 1.69751772 0.215784496 

20 0.02 5 0.9375 0.180322124 1.797339082 0.262747368 

20 0.02 10 1.293449 0.180322124 1.897160445 0.303315854 

20 0.02 24 1.9748 0.180322124 1.897160445 0.322256043 

20 0.02 50 2.83508 0.180322124 1.897160445 0.325341374 

20 0.02 90 3.79522 0.180322124 1.897160445 0.325572844 

20 0.025 3 0.75 0.201606263 1.786154828 0.254450447 

20 0.025 5 0.9375 0.201606263 1.885358095 0.2970917 

20 0.025 10 1.293449 0.201606263 1.885358095 0.332130697 

20 0.025 24 1.9748 0.201606263 1.934959729 0.347385797 

20 0.025 50 2.83508 0.201606263 1.885358095 0.34968603 

20 0.025 90 3.79522 0.201606263 1.885358095 0.349814646 

20 0.03 3 0.75 0.220848596 1.843344298 0.283419003 

20 0.03 5 0.9375 0.220848596 1.893152176 0.322165487 

20 0.03 10 1.293449 0.220848596 1.942960054 0.352626277 

20 0.03 24 1.9748 0.220848596 1.942960054 0.365338154 

20 0.03 50 2.83508 0.220848596 1.942960054 0.36712232 

20 0.03 90 3.79522 0.220848596 1.942960054 0.367165831 

 

Moreover, following a similar procedure to that outlined in the one-dimensional case, it 

is concluded that (max) (max)
02 2 /P p kε=�  and 

(max) (max) 2
02 2 / gkεΩ = Ω�  are functions of a 

slightly corrected dimensionless “width-parameter”, 

2 ,
dA

ε β
αγ ε

Π = +   with  1β � . (3.59)  

Note that /ε αγ  and 1/ dAε  are the dimensionless scaled widths in the peak direction 

and the transverse direction, respectively. The transverse scaled width 1 / ( )dAε  arises 

naturally when the energy 2
0 / 2a  is divided by the spectral peak 

1.25 3
0 0/ (2 )ds A e kαγ −=  as well as by the spectral width 2 3 1.25

0 0 / ( )W a k eαγ −=  and 

finally scaled by ε . Figure 3.22 gives (max)
2P�  and (max)

2Ω�  as a function of 2Π  for all 

different combinations of , ,ε α γ  and n  (marked by dots) obtained from Table 3.2 and 
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Table 3.3, as well as the best linear fit for (max)
2P�  and (max)

2Ω�  which gave 0.0256β = . }! is a convenient measure to use due to the fact that the directional property �� 

employed by }! formulation, as well as the parameters of JONSWAP spectrum, are 

characteristics of wave directional spectrum well established experimentally and in the 

field observations. Comprehensive parameterizations for this property are available for 

the wave spectrum and at all stages of wave development (Babanin and Soloviev, 1987; 

1998b), and therefore at any stage }! can be expressed through both observations-

based one-dimensional wave spectra and directional wave spectra. 

 

 

Figure 3.22: Results of linear stability analysis for the JONSWAP spectra with directional 

distributions as a function of the “width-parameter” 
2 .Π  (a) most unstable mode, (b) its growth 

rate. 

 

The equations for the straight lines in Figure 3.22 are 
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(max)
22 0.571 0.516 .Ω = − Π�  (3.61) 

It becomes clear from the last equation that JONSWAP spectra with directional 

distributions are stable to inhomogeneous disturbance when 2 1.1Π ≥  as for this 

condition (max)
2Ω�  is negative. 

3.5 Interpretation of the initial disturbances 

In this section, spectral interpretation of the inhomogeneous disturbance will be derived. 

In the first part, it will be shown that the correlation function of a homogeneous sea and 

the homogeneous spectrum are a Fourier transform pair. Moreover, the connection 

between the initial disturbance and the surface elevation will be derived in the second 

part. Note that for one-dimensional problem, one can refer to the work of Stiassnie et al. 

(2008) in which the following derivations were based on. 

3.5.1 Spectral interpretation of the initial conditions 

As given in the equation (3.10), there are no limitations for decay rate µ�Ð� except that µ�$� 1 % are real and µ�Å� 	 % for each axis. Following a similar way to equation 

(3.8), the influence of the small initial disturbance on the homogeneous spectrum can be 

written as 

~�®� � 	 ~¡�� � �"~<�®� �� (3.62) 

Starting from equation (3.6); an interpretation for ~<�®� � can be obtained by replacing ~��with ~�®� � which is 

W�®� Ð� .� 	 � �Ñ��$��ÐR~ h� ® � <!Ð� �i ~ h� ® � <!Ð� �i "�Æ
�Æ � (3.63) 

Using equation (3.62), the spectrum can be written as 

~ h� ® � <!Ð� �i 	 ~¡�� �� � �"~< h� ® � <!Ð� �i� 
~ h� ® � <!Ð� �i 	 ~¡�� �� � �"~< h� ® � <!Ð� �i� 

Substituting these results into the equation (3.63) and omitting terms of order �! yields, 
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R~ h� ® � <!Ð� �i ~ h� ® � <!Ð� �i
	 R~¡!�� �� � �"~¡�� �� º~< h� ® � <!Ð� �i � ~< h� ® � <!Ð� �i»� 

Approximating the values under the square root on the right hand side, above equation 

can be rewritten as  

R~ h� ® � <!Ð� �i ~ h� ® � <!Ð� �i
	 ~¡�� �� � �� º~< h� ® � <!Ð� �i � ~< h� ® � <!Ð� �i» � %��!�� 

Moreover, substituting this result into equation (3.63) yields, 

W�®� Ð� �� 	 � �Ñ��$��Ð æ~¡�� ��Æ
�Æ
� �� º~< h� ® � <!Ð� �i � ~< h� ® � <!Ð� �i»ç �� 

(3.64) 

Also, from equation (3.10), the disturbance at � 	 % becomes 

W<�®� Ð� 	 µ�Ð�e�Ñ�I�³ÕÖ� � ��Ñ�I�³ÕÖ�f�"
For simplicity, let 2 	 �p� �� be the wavenumber vector of the disturbance, then the 

disturbance becomes 

W<�®� Ð� 	 µ�Ð�e�Ñ�2�®� � ��Ñ�2�®�f� 
As �Ñ�2�®� 	 ����2 � ®� � Í"�Í0�2 � ®�, above inhomogeneous disturbances can be 

rewritten as 

W<�®� Ð� 	 �µ�Ð� ����2 � ®�� (3.65) 

Similarly, assuming the spectral disturbance at � 	 % as 

~<�®� � 	 �~�� ����2 � ®�� (3.66) 

Equation (3.64) at � 	 % will give 

W�®� Ð� 	 � �Ñ��$��Ð æ~¡�� � �� º~< h� ® � <!Ði � ~< h� ® � <!Ði»ç �Æ
�Æ � 
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Making use of equation (3.8) at � 	 % gives 

W�®� Ð� 	 W¡�Ð� � �"W<�®� Ð�� 
Hence, from these previous consecutive two equations, one obtains  

W¡�Ð� 	 � ~¡���Ñ��$��Ð"�Æ
�Æ  

and 

W<�®� Ð� 	 4� � º~< h� ® � <!Ði � ~< h� ® � <!Ði» �Ñ��$��Ð�Æ
�Æ � (3.67) 

Making use of equation (3.66), one will obtain, 

~< h� ® � <!Ði 	 �~�� h����2 � ®� ��� h<!2 � Ði � �Í0�2 � ®� �Í0 h<!2 � Ðii 

and 

~< h� ® � <!Ði 	 �~�� h����2 � ®� ��� h<!2 � Ði � �Í0�2 � ®� �Í0 h<!2 � Ðii� 
As a result, equation (3.67) becomes 

W<�®� Ð� 	 � �~�� ����2 � ®� ��� h<!2 � Ði �Ñ��$��Ð�Æ
�Æ � 

From this equation and equation (3.65), one will also get 

�µ�Ð� 	 � � ~�� ��� h<!2 � Ði �Ñ��$��Ð�Æ
�Æ � 

Since  ���� h<! 2 � Ði 	 �Ñ2�Ð'! � ��Ñ2�Ð'!, above equation can be rewritten as 

�µ�Ð� 	 � ~��e�Ñ��$³2'!��Ð � �Ñ��$�2'!��Ðf�Æ
�Æ � (3.68) 

Taking the Ð"to define 3 Fourier transform of (3.68) yields, 
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� � µ�Ð���Ñ3�Ð"�ÐÆ
�Æ 	 � � ~�� h�Ñh�$³2!�3i�Ð � �Ñh�$�2!�3i�Ði "�Ð�Æ

�Æ
Æ

�Æ � (3.69) 

Integrating the right hand side with respect to Ð by using the following delta function 

property (Champeney, 1973), 

� � ~����Ñ��$��Ð"�Ð�Æ
�Æ

Æ
�Æ 	 ��&�! � ~���� � $��Æ

�Æ 	 ��&�!~�$� 
yields, 

� � ~�� h�Ñh�$³2!�3i�Ð � �Ñh�$�2!�3i�Ði "�Ð�Æ
�Æ

Æ
�Æ

	 ��&�! �~ h$ � 2� � 3i � ~ h$ � 2� � 3i�� 
Therefore, equation (3.69) becomes 

4�&! � µ�Ð���Ñ3�Ð"�ÐÆ
�Æ 	 ~ h$ � 2� � 3i � ~ h$ � 2� � 3i� 

Let "3 	  � $, then above equation becomes 

4�&! � µ�Ð���Ñ��$��Ð"�ÐÆ
�Æ 	 ~ h � 2�i � ~ h � 2�i� 

Furthermore, applying Taylor series for the right hand side of the previous equation and 

neglecting the second order of 2 gives, 

~ h � 2�i � ~ h � 2�i 	 �"~��� 
Thus, the equation for ~�� can be written as  

~�� 	 4��&�! �µ�Ð���Ñ��$��Ð�Ð�

�� � (3.70) 

Equations (3.62), (3.66) and (3.70) give the initial spectrum. 
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One has to note that the similarities between the pair eW¡�Ð�� ~¡��f and the pair eµ�Ð�� ~��f are demonstrated by their interrelations as shown in the following 

W¡�Ð� 	 � ~¡���Ñ��$��Ð��

�Æ � (3.71) 

~¡�� 	 4��&�! �W¡�Ð���Ñ��$��Ð�Ð�

�Æ � (3.72) 

µ�� 	 � ~���Ñ��$��Ð�Æ
�Æ � (3.73) 

~�� 	 4��&�! � µ�Ð���Ñ��$��Ð�ÐÆ
�Æ � (3.74) 

 

3.5.2 Connection to the initial surface elevation 

It is important to show the connection of the initial disturbance to the initial surface 

elevation. Therefore, in this subsection, calculation of the initial surface elevation, «, 

will be derived. Starting from the equation (3.4) which is evaluated at � 	 % yields, 

�«�®� 	 � �Ñ��®³�����~�� ®��Æ
�Æ � "�� �� (3.75) 

Moreover, from equation (3.62) and (3.66), one will get 

~�®� � 	 ~¡�� � ��"~�� ����2 � ®� 
and then,  

�~�®� � 	 �~¡�� � ��"~�� ����2 � ®�� 
Substituting this result into (3.75) gives 

�«�®� 	 � �Ñ��®³������~¡�� � ��"~�� ����2 � ®��q�Æ
�Æ "� �� �� 
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Furthermore, approximating the value under the square root, yields, 

��~¡�� � ��"~�� ����2 � ®�� 	 �~¡�� � ����2 � ®�P�!~!��~¡�� � 
As a result, the surface elevation can be written as 

�«�®� 	 � �Ñ��®³���� Î�~¡�� � ����2 � ®�P�!~!��~¡�� Ïq�
Æ

�Æ "� �� �� 
For convenient, this equation can be rewritten as 

�«�®� 	 � �Ñ��®³�����~¡���Æ
�Æ � ����2 � ®� � �Ñ��®³����P�!~!��~¡�� �Æ

�Æ "
� �� �� (3.76) 

This result shows that the phases ��� of the inhomogeneous disturbance are not free, 

and are related to the phases of the homogeneous spectrum. In addition, since ����2 �®� 	 ��Ñ2�® � ��Ñ2�®�'�, equation (3.76) can be rewritten as 

�«�®� 	 � Î�Ñe�®³���f�~¡�� � 4� �Ñe�®³2�®³���fP�!~!��~¡��
Æ

�Æ
� 4� �Ñe��®�2�®³����fP�!~!��~¡�� Ïq�"� �� �� 

(3.77) 

A shift of integration variables in the last two terms on the right-hand side gives 

�«�®� 	 � Î�Ñ��®³�����~¡�� � 4� �Ñ��®³���2��P�!~!� � 2�~¡� � 2�
Æ

�Æ
� 4� �Ñe��®³��³2��fP�!~!� � 2�~¡� � 2� Ïq�"� �� �� 

(3.78) 

where 4 	 �p� ��. 
Finally, from equation (3.78) one can see that the phases of the right and left 

disturbances are identical to those of the homogeneous spectrum, which are random. 
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For one-dimensional case, one can refer to Figure 4 of Stiassnie et al. (2008) as shown 

in Figure 3.23. 

 

Figure 3.23: Schematic description of the main homogeneous spectrum and the inhomogeneous 

disturbances (see Fig. 4 of Stiassnie et al. (2008)). 

 

3.6 Concluding remarks 

Linear stability analysis of narrow spectra homogeneous seas for two spatial dimensions 

subject to inhomogeneous disturbances by means of the Alber equation is studied in this 

Chapter. The actual growth rate and the point of maximum growth rate of both 

symmetric and asymmetric spectra were studied. The symmetric spectra are square 

spectra, rectangular spectra and Lorentz spectra as well as the Lorentzian spectra which 

was obtained by approximating a JONSWAP spectrum, while the asymmetric spectra 

are the well-known JONSWAP spectra with and without directional distributions. 

The key parameters for symmetric spectra are the spectral width in directions parallel 

and perpendicular to the carrier wave. It is found numerically from square spectra and 

rectangular spectra and analytically from the Lorentz spectra that the maximum growth 

rate is independent of the spectral width which is perpendicular to carrier wave. Besides 

that, it was also shown that the role of the spectral width in direction perpendicular to 

the carrier wave is to shrink the area of instability.  

For JONSWAP spectrum, which is asymmetric spectrum, the key parameters are the 

energy scale, �, and the peak enhancement factor, �, for unidirectional spectrum and 

also the degree of the directional distributions for directional wave spectrum. Since 

these spectra are asymmetric and cannot be integrated analytically, it is necessary to 
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seek an approximate solution. To this end, a “general method” has been established by 

replacing the original spectrum by a sum of weighted Dirac-delta functions. Seeking the 

root of �, which is the frequency of the disturbance, with the largest imaginary 

contribution will give the maximum growth rate of the given spectrum. Based on this 

result, one can also get the point of maximum growth rate. The validity of this method 

is demonstrated by using a Lorentz spectrum that can be solved analytically. 

For unidirectional JONSWAP spectra, it is found that increasing the energy scale while 

keeping the peak enhancement factor constant will increase the maximum growth rate. 

Similarly, keeping the energy scale constant and increasing the peak enhancement factor 

will increase the maximum growth rate. For JONSWAP spectrum with directional 

distributions, the degree of the directional spreading in an additional parameter to the 

unidirectional spectrum. It is found that increasing the directionality of the spectrum 

will decrease the maximum growth rate or even stop the instability. This conclusion 

agrees with the measurements in the tanks which are in the literature.  

Furthermore, the instability criterion for JONSWAP spectra with and without 

directional spreading was introduced. The criterion is determined by a dimensionless 

“width parameter”, }<, for unidirectional JONSWAP spectrum and a slightly corrected 

dimensionless “width parameter”, }!, for JONSWAP spectrum with directional 

distributions. Specifically, a unidirectional JONSWAP spectrum is unstable to 

inhomogeneous disturbance if 

}< 	 
�� o 4� 
where 
 is the typical wave steepness.  

Similarly, a JONSWAP spectrum with directional distributions is unstable to 

inhomogeneous disturbance if 

}! 	 
�� � %�%��D
�� o 4�4� 
where �� is the normalization factor of the directional distribution.  

It appears that the conclusion from two-dimensional Lorentz spectra is different from 

the conclusion obtained based on JONSWAP spectra with directional distributions in 
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terms of dependency on the transverse width of the spectrum. However, one can easily 

compare these spectra, namely Lorentz spectra and JONSWAP spectra by maintaining 

that both spectra have the same total energy and momentum. One will find that 

changing the power of the directional distribution of JONSWAP spectra will not only 

change the spectral width which is perpendicular to the carrier wave of the Lorentz 

spectra but also the spectral width which is parallel to the carrier wave. 

Finally, the spectral interpretation of the inhomogeneous disturbance was derived and 

the intercorrelation between the homogeneous spectrum and homogeneous correlation 

function were shown. Moreover, the connection to the initial surface elevations was also 

derived. 
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Chapter 4 

Long-time evolution in two spatial dimensions 

4 Long-time evolution in two spatial dimensions 

4.1 Introduction 

It is known from the cubic Schrödinger equation that Benjamin–Feir instability in one 

dimensional solution does not lead to a permanent end state, but to an unsteady series of 

modulation and demodulation cycles, called the Fermi–Pasta–Ulam recurrence 

phenomenon (Fermi et al., 1965). This interesting behaviour has been shown 

experimentally, numerically and analytically. Lake et al. (1977), for example, 

demonstrated in their wave-flume experiments how the modulation periodically 

increases and decreases at some stages of the evolution. They also have confirmed their 

experimental results by a numerical simulation using the nonlinear Schrödinger 

equation derived by Hasimoto and Ono (1972) for the water of finite depth. Another 

experiment investigating this recurrent behaviour was done by Tulin and Waseda 

(1999).  

Based on the numerical solutions of one-dimensional nonlinear Schrödinger equation, 

Yuen and Ferguson (1978b), showed a simple relationship between the Benjamin–Feir 

instability and the long-time evolution of the unstable solution of nonlinear Schrödinger 

equation. In particular, they studied the influence of the initial condition on the long-

time evolution, and defined two types of recurrence, namely, simple recurrence and 

complex recurrence. They explained that modulations with the perturbation 

wavenumber z in the range q�j� C zo �q�j� give a simple recurrence because all the 

higher harmonics of the prescribed modulation are stable while modulations with the 

perturbation wavenumber z in the range % C zo q�j� give a complex recurrence 

because at least one higher harmonic of the prescribed mode lies in the unstable region. 

In order to confirm the numerical results obtained by Yuen and Ferguson (1978b), 

Rowlands (1980) attempted to estimate the period of the evolution based on Yuen and 

Ferguson (1978b) numerical simulation analytically. He found that the time evolution is 
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periodic for the case of simple recurrence. Working independently, Janssen (1981) 

studied the long-time behaviour of the modulational instability near the instability 

threshold by means of the multiple time scaled method. He found that a weakly unstable 

modulation of a uniform wave train exhibits the Fermi-Pasta-Ulam recurrence 

phenomenon. Both authors studied the long-time evolution for the wavenumber of the 

disturbance z limited to very near z	 �q�j�. Pointing out this limitation, Infeld (1981) 

removed this restriction made by two previous authors and, then, gave a more general 

calculation where the wavenumber of the disturbance is not restricted to very near �q�j�. As a results, he obtained a quantitative theory of the Fermi-Pasta-Ulam 

recurrence for the nonlinear Schrödinger equation, at least for q�j� C zo �q�j�. 

Another numerical solution that shows the long-time evolution from nonlinear 

Schrödinger equation was done by Martin and Yuen (1980b) who show the spreading 

energy during the evolution are computed. Moreover, the more general study of long-

time evolution of an unstable water-wave train based on cubic Schrödinger equation 

theoretically albeit for simplified system was done by Stiassnie and Kroszynski (1982).  

For two spatial dimensions of the nonlinear Schrödinger equation, Yuen and Ferguson 

(1978a) investigated influence of the initial condition on the long-time evolution in two 

spatial dimensions of the nonlinear Schrödinger equation and also found that such 

evolution exhibits the Fermi-Pasta-Ulam recurrence phenomenon. Moreover, based on 

the works of Yuen and Ferguson (1978a, 1978b), Martin and Yuen (1980a) found the 

energy leakage from lower mode to unstable higher harmonics in a quasi-recurring 

manner.  

A stochastic generalization of cubic Schrödinger equation was designed by Alber 

(1978) which is now known as the Alber equation. His finding is, therefore, the 

stochastic counterpart of the well-known deterministic Benjamin-Feir instability 

obtained for cubic Schrödinger equation. Since this equation cannot be solved 

analytically (at least up to this stage), in order to study a stochastic parallel to Fermi-

Pasta-Ulam recurrence phenomenon, a numerical method will be used. Specifically, the 

Alber equation will be integrated numerically. 

The only known attempt to obtain subsequent evolution for the solution of the one 

dimensional Alber equation is that of Janssen (1983). He used an asymptotic method to 

solve the problem near the threshold of instability and obtained a solution which is 
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characterized by an initial small overshoot followed by an oscillation around its time 

asymptotic value. Recently, Stiassnie et al. (2008) also used one-dimensional Alber 

equation to study the linear instability of narrow-spectra homogeneous seas and its 

subsequent evolution in time, subject to inhomogeneous disturbances. They found that 

in the region of instability, recurrent evolution, which is the stochastic counterpart of the 

Fermi–Pasta–Ulam recurrence obtained for the cubic Schrödinger equation, occurs. 

Their initial homogeneous wave fields have simple one-dimensional spectra of three 

different types, namely, square, Lorentz and Gaussian. 

These two aforementioned findings are limited to unidirectional wave fields. Real sea 

states, however, are characterized by wave components propagating along different 

directions. Numerical simulations (e.g. Onorato et al. 2002, Socquet-Juglard et al. 2005, 

Gramstad and Trulsen 2007, Eliasson and Shukla 2010) have revealed that wave 

directional spreading reduces the effect of instability. Furthermore, Onorato et al. 

(2009a, 2009b) and Waseda et al. (2009) performed two independent experimental 

investigations, in order to study statistical properties of surface elevations for different 

degrees of directional energy spreading. The experimental facilities used had different 

sizes and they were equipped with different wave makers. Nevertheless, they reported 

consistent results and claimed that the modulational instability process, which is one of 

the main mechanisms of formation of extreme and breaking waves in deep-water, 

random, long-crested waves, seems to be quenched when directional waves are 

considered. Babanin et al. (2010, 2011b), however, argued that, for a given bandwidth, 

directional spreading is not the only property of surface wave fields to influence the 

modulational instability. If the directional spreading becomes too broad and wave field 

stabilizes, increase of the steepness can re-activate the instability. Although some 

experimental estimations have been made (Babanin et al., 2010, 2011a), it is not yet 

clear what is the role of wave instability in the evolution of directional wave fields 

(Babanin, 2011, 2011b) . 

Therefore, extending the work of Stiassnie et al. (2008), we will be working with 

realistic asymmetric JONSWAP spectra of ocean waves, for both unidirectional waves 

and JONSWAP spectra with directional distributions. We will show that they can 

reproduce a stochastic recurrence which is parallel to Fermi-Pasta-Ulam recurrence in 

the unstable conditions. These unstable conditions will occur (see previous Chapter) 
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when the dimensionless “width parameter”, }< o 4 for unidirectional JONSWAP 

spectra and }! o 4�4, for JONSWAP spectra with directional distributions.  

4.2 Numerical solution of the Alber equation 

There are several methods to solve partial differential equations numerically such as 

finite difference method (FDM), boundary element method (BEM) and finite element 

method (FEM). However, in order to solve the Alber equation, a finite difference 

method will be used because of its simplicity. We start from the non-dimensional Alber 

equation, then a simplified problem will be considered due to the high computational 

cost. Note that the Alber equation consists of five parameters that require huge 

computer memory and long computational time. Therefore, we consider a simplification 

by reducing the equation to four parameters. As a result, this can reduce computing 

resources significantly. Based on the simplified equation, a numerical scheme is 

derived. Furthermore, the initial conditions and the boundary conditions are also 

determined.  

4.2.1 Non-dimensional Alber equation 

It is convenient to change the two-spatial-dimensions Alber equation on the infinitely 

deep water from the dimensional form as in the equation (3.1) to non-dimensional 

variables using the following relations 

WS 	 ��!
! W)""�S 	 
�� �� � <!P  ���� )"�S 	 
���)"] < 	 
��]<") """] ! 	 
��]!) �  	 
!�����"� 
which yields 

Í 7WS7�  "� �8 7!WS7�S7] < � �9 7!WS7�S7] ! � �:WS ºWS h®S � <!ÐS� $� � i � WS h®S � <!ÐS� $� � i» 	 % (4.1) 

where  8 	 � <Ä ) """"9 	 <E ) """: 	 <!. 
In order to study the long-time evolution which is a stochastic counterpart of the Fermi–

Pasta–Ulam recurrence obtained for the cubic Schrödinger equation, the Alber equation 

will be integrated numerically. To this end, a two-dimensional perturbation and a two-
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dimensional spectrum are required. However, since the equation includes five-

dimensional space, it will be computationally expensive even for a supercomputer. 

Therefore, a simplified case will be considered where only a two-dimensional spectrum 

and one-dimensional perturbation will be used. This is based on the assumption made 

and supported in Chapter 3 that the most unstable mode occurs at � 	 % which is the 

wavenumber of the disturbance in direction perpendicular to the carrier wave. As a 

result, the third term of the equation (4.1) vanishes automatically and, therefore, the 

dimensionless Alber equation can be rewritten as follows: 

Í 7WS7�  "� �8 7!WS7�S7] < � �:WS ºWS h�S � <!] <� $� � i � WS h�S � <!] <� $� � i» 	 % (4.2) 

where WS is the dimensionless two-point correlation function which depends on four 

dimensionless variables namely �S, ] <, ] ! and � . In order to solve this equation 

numerically, the following procedures will be carried out. 

4.2.2 Numerical scheme 

In order to solve equation (4.2) numerically, a finite difference method will be used 

where the dimensionless time derivative is approximated by a forward difference, that 

is, 

º7WS7� »���±����� 	 WS���±����³<� � WS���±�����z�  � 
This approximation has the accuracy %�z� �. The dimensionless spatial derivatives in �S 
and ] < are approximated by central differences with accuracy %�z�S!� z] <!� giving 

� 7!WS7�S7] <����±����� 	 WS��³<�±³<����� � WS���<�±³<����� � eWS��³<�±�<����� � WS���<�±�<�����fAz�Sz] < � 
�WS��S� ] <� ] !� � �����±����� 	 WS���±������ 

and 

ºWS h�S � <!] <� %�%� � i»���±����� 	 WS���5z¦6dlz�6 �������� 
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Index n belongs to points along the �S axis, �S 	 �z�S� � 	 %�4���" �7 and N+1 is the 

number of points along this axis. Index 8 represents points along the ] < axis, ] < 	8z] <� 8 	 %�4���" � �< and �< � 4 is the number of points along the ] < axis. Similarly, 

index � represents points along the ] ! axis, ] ! 	 �z] !) "� 	 %�4���" � �!, �! � 4 is the 

number of points along the ] ! axis, and � represents time steps by �  	 �z� � where � 	 %�4���" � ¾� z� � z�S� z] < and z] ! are the differential steps in time direction and the 

space directions respectively.  

Substituting all above approximations into equation (4.2) gives, 

Í ºWS���±����³<� � WS���±�����z�  »
� �8Az�Sz] < hWS��³<�±³<����� � WS���<�±³<������ eWS��³<�±�<����� � WS���<�±�<�����fi
� �:WS���±����� ºWS��³5z¦6dlz�6 ������� � WS���5z¦6dlz�6 �������» 	 %� 

(4.3) 

After simplification, the numerical time-stepping scheme is formulated as follows: 

WS���±����³<� 	 WS���±�����
� Í8z� �z�Sz] < hWS��³<�±³<����� � WS���<�±³<������ eWS��³<�±�<����� � WS���<�±�<�����fi
� �Íz� :WS���±����� ºWS��³5z¦6dlz�6 ������� � WS���5z¦6dlz�6 �������»� 

(4.4) 

The following values for differential steps were taken after several attempts. For the 

unidirectional JONSWAP spectra as a special case, the differential steps are: z�S 	&'4%%, z] < 	 &'AA and z�  	 � Ô 4%�U while for the JONSWAP spectra with different 

degrees of the directional spreading the differential steps are: z�S 	 &'��, z] < 	 &'��, z] ! 	 &'�� and z�  	 A Ô 4%�U. Taking smaller values will not give a significant 

effect. In addition, the size of the domain along �S axis is �S 9 �%��&'¢��rs��� where ¢��rs�� is the dimensionless wavenumber of the disturbance which is parallel to the 

carrier wave and is the point of maximum growth rate. The size of the dimensions of ] < 

and ] ! will be determined later. In general the schematic description of the domain for 
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one dimensional case is shown in the following Figure 4.1 which is the same as given in 

the Figure 5 of Stiassnie et al. (2008). For given value of ¢�, we can obtain the values of �S��� and �] <���� straightforward, respectively. However, the schematic description of 

the domain for two-dimensional cases cannot be shown as it contains more than three 

variables. Furthermore, the boundary conditions will be determined in the following 

sections. 

 

 

Figure 4.1: Schematic description of the numerical domain for one-dimensional case (see Fig. 5 

of Stiassnie et al., 2008). 

 

4.2.3 Periodicity in x�   

We limit the discussion to periodic solution in �S so that on the boundaries �S 	 "�S���, WS�°�±����� 	 WS���±�����. Moreover, the last term on the right hand side of equation (4.4) 

depends on the values of WS at �S 	 � � ±zg d'�!z�S�  which can be larger than �S��� 	 7z�S. 
In this condition, the periodicity, again, is used, that is WS��S � ��&� ÐS� :S� 	 WS��S� ÐS� :S� 
where � 	 4������. This equation can be rewritten as WS��³Õ°�±����� 	 WS���±�����. Similarly, 

the values of WS along ÐS 	 $, depend on points outside the domain % C ] < C�] <����) "% C ] ! C �] !����. In particular, the second term on the right hand side of 

equation (4.4) depends on WS��³<��<�����. In order to deal with this problems, the 

definition of WS which is the two-point correlation function in equation (3.2) will be used, 

that is WS��S� �ÐS� :S� 	 WS[��S� ÐS� :S�. Therefore, the values of WS along ÐS 	 $, can be 

calculated from the conditions WS��³<��<����� 	 WS��³<�<�����[  where asterisk stands for the 

complex conjugate. 

(r̃1)end = M1.∆r̃1

x̃end = N.∆x̃ = 2π/P̃

r̃1

x̃

0

τ̃
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4.2.4 Condition at large r�   

Another condition that has to be defined for the numerical scheme is the condition at 

large ÐS. Following a procedure similar to Stiassnie et al. (2008), the boundary condition 

for large ÐS will be derived as follows. We start from equation (3.63) and approximate ~�� �� by a two-dimensional rectangular spectrum in ��< � ��� 9 ��{��{g� and �! 9 ��{�{� where {� and {g are the spectral width on the left hand side and on the 

right hand side of ��, which is the carrier, respectively, whilst { is the spectral width in 

direction perpendicular to the carrier wave, that is, 

W��� Ð� :� 	 � �Ñ��$��Ð"R~ h� � � <!"]X� :i ~ h� � � <!]X� :i "�Æ
�Æ � (4.5) 

Since a two-dimensional rectangular spectrum is independent of , equation (4.5) can 

be rewritten as 

W��� Ð� :� 	 R~ h� � � <!"]X� :i ~ h� � � <!"]X� :i � �Ñ��$��Ð""�Æ
�Æ � (4.6) 

Calculating the integrals yields,  

� �Ñ��$��Ð""�Æ
�Æ 	 � � �Ñ@��d����gd³�lglB��³;¦

���;#
��<��!;

�;
	 Î � �Ñ�lgl��!;

�; ÏÎ � �Ñ��d����gd��<��³;¦
���;#

Ï 

and then finally gives, 

� �Ñ��$��Ð""�Æ
�Æ 	 � 4]<]! e�Ñ;gl � ��Ñ;glfe�Ñgd;¦ � ��Ñgd;#f� (4.7) 

Using the fact that �Ñ;gl � ��Ñ;gl 	 �Í �Í0�{]!�, equation (4.7) can be rewritten as 

� �Ñ��$��Ð""�Æ
�Æ 	 �� �Í0�{]!�]! ���Ñgd;¦ � ��Ñgd;#Í]< �� (4.8) 

Substituting equation (4.8) into equation (4.6), gives 
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W��� Ð� :� 	 �R~ h� � � <!"]X� :i ~ h� � � <!"]X� :i F�Í0�{]!�]! K F�Ñgd;¦ � ��Ñgd;#Í]< K� (4.9) 

For Ð 	 $, equation (4.9) becomes 

W��� $� :� 	 �~�� �� :� � ÇÍugdT� �Ñgd;¦ � ��Ñgd;#Í]< �� ÇÍuglT� �Í0�{]!�]! �� 
Moreover, since  

ÇÍugdT� �Ñgd;¦ � ��Ñgd;#Í]< 	 {� �{g""/0�" ÇÍuglT� �Í0�{]!�]! 	 {� 
equation (4.9) can then be rewritten as  

W��� $� :� 	 �~�� �� :��{� �{g�{� 
Solving this equation for ~�� �� :� yields, 

~�� �� :� 	 W��� $� :���{� �{g�{� 
Furthermore, making use of this result, equation (4.9) finally becomes 

W��� Ð� :� 	 RW h� � <!"]X� $� :i W h� � <!"]X� $� :i F�Í0�{]!�{]! K F�Ñgd;¦ � ��Ñgd;#Í�{� �{g�]< K� (4.10) 

Switching to non-dimensional quantities where 

] < 	 
��]<") """] ! 	 
��]!) "{| 	 {
�� ) "{|� 	 {�
�� ) "{|g 	 {g
��� (4.11) 

gives,  

WS��S� ÐS� :S� 	 RWS h�S � <!"] X� $� :Si WS h�S � <!"] X� $� :Si ��Í0e{| ] !f{| ] ! ���Ñg d;|¦ � ��Ñg d;| #Íe{|� �{|gf] < � (4.12) 

which is the boundary condition used at larger ] < or ] !. 

In order to determine the values of {| , {|� and {|g, one needs to compare the rectangular 

spectrum with the JONSWAP spectrum in a way that maintains the total energy and 

momentum. Such comparison is shown below. As given in Chapter 3, for one-

dimensional problem, the unidirectional JONSWAP spectrum, ~��<�, and the 

rectangular spectrum, ~g�·��<�, as a function of the wavenumber can be written as  
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~��<� 	 ���<Q ���
U��lE�dl����F dl�lÒ�e�Òd��Ò�flK " (4.13) 

and  

~g�·��<� 	 ��"") """"""�� �{� o �< o �� �{g 

respectively, where �� is the energy spectrum. 

Now, for unidirectional JONSWAP spectrum, since the limit of �< is from 0 to infinity, 

it will be divided into two components, namely, from �< 	 % to �< 	 �� as the first 

component and from �< 	 �� to �< 	 Å as the second component. However, for the 

numerical purposes, the upper limit of �< has to be truncated. Hence, the total energy 

and the momentum of the unidirectional JONSWAP spectrum for the first component 

are respectively  

ª�� 	 � ~��<���<��
� �"""""""""""/0�"""""""""""ª<� 	 � ��< � ���~��<���<��

�  (4.14) 

while for the rectangular spectrum we have  

ª�� 	 ��{��"""""""""""/0�"""""""""""ª<� 	 � ��{�!� � (4.15) 

Hence, from (4.15), the spectral width on the left hand side of the carrier-wave, ��, is 

given by 

{� 	 ��ª<�ª��  (4.16)  

and the energy spectrum is defined as  

""""""�� 	 ª��{� � 
Also, from the second component of a unidirectional JONSWAP spectrum we have 

ª�g 	 � ~��<���<Æ
��

 

and for the rectangular spectrum  
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ª�g 	 � ����³;¦
��

��< 	 ��{g � 
Therefore, one can easily get the spectral width on the right hand side as follows 

{g 	 ª�g"�� � (4.17)  

Using equation (4.11), above variables (equations (4.16) and (4.17)) can be transformed 

to non-dimensional variables.  

For the two-dimensional case, we assume JONSWAP spectrum with a directional 

distribution as a function of wavenumber, ~��<� �!�, as symmetric in �!. Therefore, the 

spectrum can then be written as 

~<��<� 	 �� ~��<� �!�Æ
� ��! 

and the location of the peak of the ~<��<� is ��.  

Following a similar procedure to that used for one-dimensional case, the total energy 

and the momentum of JONSWAP spectrum with directional distribution of the first 

component are given by 

ª�� 	 � ~<��<���
� ��<"""""""/0�""""""ª<� 	 � ��< � ���~<��<���

� ��<� 
respectively, while a two-dimensional rectangular spectrum gives 

ª�� 	 � � � ����!��<;
�

��
���;#

	 ���{�{" 
and 

""ª<� 	 � � ���< � �������!��<;
�

��
���;#

	 ���{{�!�""" 
Thus, one can get the spectral width on the left hand side of the carrier wave as 
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{� 	 ��ª<�ª��  (4.18)  

and the relation as follows 

��{ 	 ª���{� � 
Moreover, for the second component of the JONSWAP spectrum with a directional 

distribution, the total energy is defined as 

ª�g 	 � ~<��<�Æ
��

��< 

while the second component of the two-dimensional rectangular spectrum is given by 

ª�g 	 � � � ����!��<;
�

��³;¦
��

	 ���{g{� 
Thus, the spectral width on the right hand side of the carrier wave leads to 

{g 	 ª�g���{� (4.19)  

Also, defining  

~!��!� 	 � ~��<� �!�Æ
� ��<� 

the wave momentum for JONSWAP spectrum with directional spreading and for two-

dimensional rectangular spectrum are defined as 

ª< 	 � �!~!��!�Æ
� ��! 

and  

ª< 	 ���{� �{g�{!� � 
respectively. Therefore, spectral width of the two-dimensional rectangular spectrum in 

direction perpendicular to the carrier wave is given by 
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{ 	 �ª<��{�{g �{��� (4.20)  

Again, using equation (4.11), spectral widths of the rectangular spectra can be switched 

to non-dimensional forms. 

Furthermore, as seen from equation (4.4), this problem contains four indexes, namely �� 8� � and � where each of them represents a spatial dimension and thus the equation 

leads to a four-dimensional space. Therefore, it requires a huge computer memory and 

long computational time. Thus, a parallel programming solution is necessary. To this 

end, we use OpenMP (Open Multi-Processing) which allows us to spread the jobs over 

the processors in one node. For more details of this type of parallel programming 

including its advantages and disadvantages, one can refer to parallel programming 

books such as Chandra (2001) or refer to the openMP website (www.openMP.org). For 

the one-dimensional problem, one will solve the Alber equation only in a three-

dimensional space ��S� ] <� � � as variables �S and ] ! in (4.1) vanish automatically, which 

reduces the required computation resources significantly. For example, taking � 	%�%4D, � 	 4% and ( 	 %�%?, for unidirectional JONSWAP spectrum, it requires "7 	 4A%, �< 	 G�� and about 4�D%%�%%% time steps to obtain a recurrence solution. 

Moreover, it needs more than 8 megabytes of computer memory. Using 8 processors in 

one node of the supercomputer, it takes a few hours for a computer to complete the job. 

Note that OpenMP does not work over the nodes of supercomputer. Therefore, with this 

type of parallel programming, only one node will be used. However, for the simplified 

two-dimensional case, one has to solve the Alber equation in a four-dimensional domain ��S� ] <� ] !� � � as in the equation (4.2) since variable �S in (4.1) vanishes automatically, 

which requires substantial computing resources. Taking � 	 %�%4D, � 	 4% and ( 	 %�%?, for JONSWAP spectrum with the degree of directional spreading � 	 �%, for 

instance, it requires "7 	 4%%, �< 	 DG%, �! 	 �%% and about 4�G%?�%%% time steps to 

obtain a recurrence solution. Moreover, it needs about 1.12 gigabytes of computer 

memory. Furthermore, using 16 processors in one node of the supercomputer, it needs 

more than two weeks to complete one job. Note that one node of the supercomputer 

contains either 8 processors or 16 processors. In this research, a node with 8 processors 

has been used for unidirectional JONSWAP spectra while a node with 16 processors has 

been used for JONSWAP spectra with directional distribution. 
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4.3 Stochastic recurrence 

In order to apply the numerical scheme, as given in the equation (4.4), to study the long-

time evolution and the stochastic recurrence, which is parallel to the Fermi-Pasta-Ulam 

recurrence obtained from the cubic Schrödinger equation, the initial values have to be 

given. Therefore, in the following subsections, the initial condition will be derived then 

following by the derivation of the invariants of motion as a quality control of the 

numerical solution. Furthermore, the justification for truncating the ÐS-axis will be 

determined and then finally, the stochastic recurrence for JONSWAP spectrum with and 

without directional distributions will be simulated.  

4.3.1 Description of the initial conditions 

The initial conditions of the numerical scheme as in the equation (4.4) are determined 

by equation (3.7) and equation (3.9) in Chapter 3 and there are some degrees of 

freedom, namely, the value of the inhomogeneous disturbance wavenumber ¢� 	 p'
��, 

the inhomogeneous parameter δ and the decay µ��] <�. In this research, we take � 	 %�4 

which is the typical order of wave steepness 
, µ��] <� 	 WS¡�] <� 	 ��!W¡�]<�'
! as in the 

equation (3.6) in Chapter 3 and ¢� is chosen from the most unstable mode which is ¢��rs��. Note that for some different choices of ¢� 	 p'
��, one can refer to the work of 

Stiassnie et al. (2008). In addition, in order to obtain WS¡�] <� 	 ��!W¡�]<�'
!, one has to 

define a spectrum and for this special case unidirectional JONSWAP spectrum as a 

function of wavenumber as in equation (4.13) will be used. However, since equation 

(3.7) cannot be integrated analytically for unidirectional JONSWAP spectrum, again, 

the spectrum will be replaced by a sum of weighted Dirac-delta functions. Moreover, as 

shown in Chapter 3, unidirectional JONSWAP spectrum is unstable for the 

dimensionless “width-parameter” }< o 4. Therefore, values of � and � such that the 

unstable condition is satisfied, will be chosen. To this end, the initial spectra (4.13) 

where � 	 �%, ( 	 %�%?, with various values of � 	 %�%4� %�%4D� %�%�� %�%�� and %�%� 

and � 	 4%, ( 	 %�%?, with � 	 %�%4D� %�%�� %�%�� and %�%� will be taken. Summary 

of these values is given in the following Table 4.1. One should note that the steepness is 

calculated as 
 	 ����ª�, where �� is the peak wavenumber and ª� is the total 

energy of the spectrum. The dimensionless “width parameter” is calculated as }< 	
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'���� and the most unstable mode is determined by ¢�<�rs�� 	 ���4� � %�G�D}< while 

the actual point of maximum growth rate can be found in Table 3.1 or Table 3.2 in 

Chapter 3. Moreover, the spectral widths of the rectangular spectrum, which are {|� and {|g, were calculated based on the equation (4.16) and (4.17), respectively. 

Table 4.1: Values of parameters of initial conditions for unidirectional JONSWAP spectrum. 

Case α  γ  ε  1Π  ( )
1

max
P�  lW�  rW�  

A 0.01 20 0.13 0.65 1.68 1.53 1.79 

B 0.016 20 0.16 0.50 1.83 1.21 1.43 

C 0.02 20 0.18 0.45 1.87 1.08 1.28 

D 0.025 20 0.20 0.40 1.92 0.97 1.13 

E 0.03 20 0.22 0.37 1.95 0.88 1.04 

B1 0.016 10 0.13 0.81 1.52 1.88 2.16 

B2 0.02 10 0.14 0.70 1.63 1.63 2.08 

B3 0.025 10 0.16 0.64 1.69 1.46 1.86 

B4 0.03 10 0.18 0.60 1.73 1.33 1.70 

 

Details of the spectra are shown in Figure 4.2 and Figure 4.3. Note that all of these 

cases have the same peak wavenumber of JONSWAP spectra, that is �� 	 4. As seen 

from the figures, the higher is the value of the energy scale, �, the higher is the energy 

of the spectrum.  

 

 

Figure 4.2: The energy spectrum for the peak enhancement factor 20γ =  with different values 

of the energy scale .α  
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For JONSWAP spectrum with directional distributions, the initial condition is 

determined by following a similar procedure in order to determine the initial condition 

of the unidirectional JONSWAP spectrum. Again, in this case � 	 %�4 and µ��ÐS� 	WS¡�ÐS� are taken. 

 

 

Figure 4.3: The energy spectrum for the peak enhancement factor 10γ =  with different values 

of the energy scale .α  

 

It is important to mention that the initial inhomogeneous disturbances that are used in 

this research were taken to depend on the homogeneous spectra themselves. Note that 

the influence of different choices of disturbances is demonstrated in Stiassnie et al. 

(2008), Regev et al. (2008) and more recently in Eliasson and Shukla (2010). Now, 

recall the initial homogeneous distribution (W¡) as given by 

W¡�Ð� : 	 %� 	 � ~���Ñ��$��Ð""�Æ
�Æ  (4.21) 

where  

~�� 	 �"� h4 � ��i"�<��q& h��<! � �!!iE³� � h4 � �� i ���
U��lEe�dl³�llf���

�
ðññ
ññò dl�l*+

,�RÒdl-ÒllÒ� �d
./
0
l

óôô
ôôõ

 
(4.22)  

for " % o �< o ��""""""" � � o �! o �� 
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Again, since equation (4.21) cannot be integrated analytically, this equation will be 

integrated numerically by using Dirac–delta functions, and therefore the initial 

condition is given by 

W��� Ð� %� 	 W¡�Ð�@4 � � ����p��B 
where � 	 Ì�4� is the dimensionless inhomogeneity parameter and p is the 

wavenumber of the disturbance in direction parallel to the carrier waves. In this study, 

the wavenumber of the disturbance is chosen from the most unstable mode. Turning to 

the dimensionless parameters gives 

WS��S� ÐS� %� 	 WS¡�ÐS�@4 � � ����¢��S�B� 
As we know, a unidirectional JONSWAP spectrum depends on two parameters � and � 

while a JONSWAP spectrum with a directional distribution is a function of three 

parameters �, � and n. In order to study the influence of the directional spreading for 

long-time evolution, the unidirectional JONSWAP spectrum parameters � 	 4%, � 	 %�%4D with various values of the degree of the directional energy distributions, 

namely, � 	 G%� �%� 4% and � 	 �; which are from fairly narrow to very broad 

directional distribution were chosen. The energy directional distribution as a function of 

angle � for different values of the parameter n is shown in Figure 4.4. As seen, the 

higher is the degree of the directional spreading, the narrower is the directional 

distribution.  

 

 

Figure 4.4: Energy directional spreading as a function of angle θ  for different values of the 

parameter n. 
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4.3.2 Invariants of motion 

There are several ways to clarify the results based on such numerical method. In this 

section, the invariants of motion as a quality control for our numerical results will be 

used. Following Janssen (1983), the solution of our problem has to satisfy certain 

conservation laws. He specifies the first three of the invariants which are the same as 

mentioned in Janssen (2003). Moreover, as mentioned in Stiassnie et al. (2008), the 

integrability of the Alber equation could mean existence of the more than three 

invariants. All the previous invariants, however, are for one-dimensional case, and the 

invariants for two-dimensional case are not yet available. Therefore, in the Appendix A 

the invariants for two-spatial-dimensions Alber equation were derived namely the wave 

action, wave momentum and the energy of the system. Note that the following 

invariants are for simplified problem where the variable � has been eliminated. 

Moreover, in order to calculate these following invariants numerically, the fifth order 

Taylor expansion has been used. 

The first invariant which is related to the wave action is obtained by evaluating the 

dimensional Alber equation at Ð 	 $, then integrating it with respect to � and using the 

periodicity properties, and yields  

y< 	 � W��� $� ��!�I
� ��� (4.23) 

For all study cases in this research, the first invariant, y<, did not change at all times 

from its value at � 	 % throughout the calculations. 

The second invariant which is related to the wave momentum consists of two 

components namely the invariant which depends on the values along ]< and the 

invariant which depends on the values along ]!. The first component of this invariant is 

defined by differentiating the dimensional Alber equation with respect to ]<, then 

evaluating it at Ð 	 $ and integrating with respect to � as well as using the periodicity 

properties. It gives  

y!< 	 � 7W��� $� ��7]<
!�I
� ���"" (4.24) 
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Following the similar procedure to determine the first component of the second 

invariant, we obtain  

y!! 	 � 7W��� $� ��7]!
!�I
� ���"" (4.25) 

For the first component of the second invariant, one can easily show that its value at � 	 % is imaginary. Moreover, it is found that the relative deviation of the imaginary 

part of y!< from its value at � 	 % at all times did not exceed 1.0% for the unidirectional 

JONSWAP spectra and did not exceed 1.5% for the JONSWAP spectrum with 

directional distributions. Moreover, for the second component of the second invariant 

for the JONSWAP spectrum with directional spreading, y!! 	 %, since W�� 	 %� is real 

and symmetric in ]!. Thus, we cannot compare running values of y!! to the initial value.  

The third invariant which is interpreted as the energy of the system, is much more 

complicated as it depends on the values at Ð 	 $, the values along ]< and the values 

along ]!. To obtain an explicit formula for this invariant, we first take the second partial 

derivative of the dimensional Alber equation with respect to ]< and also with respect to ]!. After that, evaluating them at Ð 	 $ and integrating with respect to � will give the 

following invariant 

yQ 	 � W!��� $� ��!�I
� �� � 4A��E� 7!W��� $� � �7]<!

!�I
� ��� (4.26) 

It is found that relative deviation of yQ at all times from its value at � 	 % did not exceed 

1.0% for the unidirectional JONSWAP spectra throughout all calculated evolutions and 

did not exceed 1.1% for the JONSWAP spectra with different degrees of the directional 

energy distribution. 

4.3.3 Justification for truncating the r� -axis 

As has been shown in section 3.5.1 of Chapter 3, the values of spacing ÐS are from 

negative infinity to infinity, or all real numbers. However, using the symmetrical 

properties, the values of ÐS can be taken from zero to infinity. Moreover, for the 

numerical purposes, ÐS has to be truncated. However, it has to be truncated correctly. 

Here, we will show a reasonable way to truncate the ÐS domain. In this regards, the 
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unidirectional JONSWAP spectrum with � 	 %�%4D� � 	 4% and ( 	 %�%? were 

chosen. Furthermore, applying the procedure of section 4.2.4, we can obtain the spectral 

width on the left hand side and the right hand side of the rectangular spectrum which are {|� 	 4�?? (see equation (4.16)) and {|g 	 ��4D (see equation (4.17)), respectively. 

Moreover, applying the formula for the dimensionless “width parameter” gives }< 	%�?4 which is less than 1 (see equation (3.54)). This means that the chosen 

unidirectional JONSWAP spectrum falls into the unstable conditions. Based on the 

linear stability analysis, the growth rate of the instability is shown in Figure 4.5 and as 

we can see, the maximum growth rate occurs at ¢��rs�� 	 4���. However, for ¢� L ��4, 

the line is not smooth enough and therefore, it has to be refined. 

 

 

Figure 4.5: Non-dimensional growth rate, ,iΩ�  for 0.016,α =  10γ =  and 0.08σ =  where the 

horizontal axis represents the dimensionless wavenumber of the disturbance in direction parallel 

to the carrier wave. 

 

In order to justify the truncation of the ] < axis, the influence of the extent of the ] < 

domain has been checked. To this end, there are several values that were tested, namely, �] <���� 	 4%�S���, 4��S���, �%�S��� and �%�S���. The dimensionless maximum 

correlation function evaluated at ] < 	 %, is shown in Figure 4.6. All four cases are not 

distinguishable. Therefore, the justification for the influence of the extent of the ] < 

domain cannot be made based on these results. However, using the invariants of motion, 

the influence of the extent of the ] < domain can be justified except for the first invariant 

which is related to the wave action. This is because, the relative deviation of the first 

invariant at all times from its values at �  	 % for all cases do not change throughout the 

calculated evolutions. 
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Comparing the second invariant for all the cases shows the justification for the extent of 

the ] < domain as shown in Figure 4.7 and Figure 4.8 for real part of y! and its imaginary 

part, respectively. As seen from these figures, all studied cases overlap from the 

beginning until about �  	 AA. After that, the results for �] <���� 	 4%�S��� deviates 

significantly from others and reaches the maximum deviation at about �  	 ��. On the 

other hand, the second invariant for the case �] <���� 	 4��S��� overlaps with the cases �] <���� 	 �%�S��� and �] <���� 	 �%�S��� until �  	 �� and then deviated slightly. The 

last two cases overlap throughout the calculation time. 

 

 

Figure 4.6: The influence of the extent of the 
1r�  domain on the maximum value of ρ�  at 

1 0r =�  

as a function of non-dimensional time ,τ�  for 
1( ) 10 ,end endr x=� �  

1( ) 15 ,end endr x=� �  
1( ) 20end endr x=� �  

and 
1( ) 30 .end endr x=� �  These calculations are for a homogeneous unidirectional JONSWAP 

spectrum and an inhomogeneous unidirectional JONSWAP disturbance with 0.016, 10,α γ= =  
( )

1 1.52, 0.1.max
P δ= =�   

 

Based on the second invariant, we may say that taking �] <���� 	 4%�S��� is not 

sufficient for the truncation of the ] < axis. In order to strengthen our decision, it is 

important to check the results of the third invariant. Therefore, comparing the third 

invariant with different formulation will give different relative deviations from its value 

at �  	 % as shown in Figure 4.9. Generally speaking, the behaviour of the third invariant 

is similar to the second invariant. 

For all cases, the relative deviation of yQ from its value at �  	 % over the computational 

period is summarized in Table 4.2. As seen, the case �] <���� 	 4%�S��� gives the 

highest deviation of the third invariant while other cases have the same result. 
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Figure 4.7: The influence of the extent of the 
1r�  domain on the real part of the second invariant 

2I  as a function of non-dimensional time .τ�  These cases are the same as in Figure 4.6. 

 

 

Figure 4.8: The influence of the extent of the 
1r�  domain on the imaginary part of the second 

invariant 
2I  as a function of non-dimensional time .τ�  These cases are the same as in Figure 

4.6. 

 

 

Figure 4.9: The influence of the extent of the 
1r�  domain of the third invariant 

3I  as a function of 

non-dimensional time .τ�  These cases are the same as in Figure 4.6. 
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Table 4.2: Comparison for the maximum deviation of 
3I  (in percents) from its value at 0τ =�  

for all four cases throughout the calculated evolutions. 

 

Cases Maximum deviation (%) �] <���� 	 4%�S��� 1.9295 �] <���� 	 4��S��� 0.7788 �] <���� 	 �%�S��� 0.7788 �] <���� 	 �%�S��� 0.7788 

 

Based on the above comparison, it can be concluded that taking �] <���� L "4��S��� will 

not give a significant effect in our computations. Therefore, all of the simulations 

presented in the sequel are with �] <���� 	 "4��S��� for unidirectional JONSWAP 

spectrum and �] <���� 	 "4��S��� and �] !���� 	 "4��S��� for JONSWAP spectrum with 

directional distributions. 

4.3.4 Recurrence for unidirectional JONSWAP spectrum  

Recurrent results for five different unidirectional JONSWAP spectra with � 	 �% are 

shown in Figure 4.10. Note that WSrs��] < 	 %� signifies the maximum values of ��!W�]< 	 %�'
! within the interval �S 9 �%� �&'¢�<�rs���. Here it is plotted as a function 

of �  	 e
!����f�. The various parameters, as well as the main features of the 

evolution are summarized in Table 4.3 where ¢�<�rs�� and ��<�rs�� were calculated using 

equations (3.55) and (3.56), respectively, in Chapter 3 while peak enhancements of the 

recurrence were calculated by taking the maximum value of WSrs��] < 	 %� divided by WS¡�%�. 
It is clear that the decrease in the “width-parameter” }< is accompanied by an increase 

in the peak enhancement of the recurrence and a decrease in the numerical recurrence 

duration. In addition, the higher is the value of the energy scale � while keeping the 

peak enhancement factor � constant, the higher is its maximum growth rate. From all 

five cases, case E has the highest maximum growth rate while case A has the lowest 

maximum growth rate. This can be seen in Figure 4.10 where case E has the highest 

maximum correlation function evaluated at ] < 	 % as opposed to the case A. A more 

general picture of the values of WS��S� %� � � is given in Figure 4.11 where countour plot 
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are shown. As can be seen from the figure, the maximum correlation function evaluated 

at ] < 	 % are at �S 	 % and �S 	 �&'¢�<�rs�"�. 
 

 

Figure 4.10: Recurrence solutions for unidirectional JONSWAP spectra with 20;γ =  A, ; 

B, ; C, ; D, ; E,  (see Table 4.3). 

 

In addition, the energy is distributed from a nearly even distribution at �  	 % to the case 

where most of the energy is concentrated at the end of the region and then back to 

(almost) the initial distribution of WS after one recurrence cycle for all cases. This is 

similar to Figure 8 in Stiassnie et al. (2008). Interestingly, as one can see from Figure 

4.11, for the case where � 	 �% and � 	 %�%4D, which is case B, the maximum growth 

rate is the same as in the case C of Regev et al. (2008) whose result was obtained from a 

Gaussian spectrum with the influence of swell. This indicates that the shape of the 

spectrum does not necessary influence the results of the long-time evolution. 

Changing the peak enhancement factor of the unidirectional JONSWAP spectrum from � 	 �% to � 	 4% and following a similar procedure, while keeping the same energy 

scale for four cases, also exhibits the stochastic recurrence as shown in Figure 4.12. All 

of the features of Figure 4.12 are similar to Figure 4.10 and are also summarized in 

Table 4.3. For instance, the decrease in the “width-parameter” }< is accompanied by an 

increase in the peak enhancement and a decrease in the numerical recurrence duration. 
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Table 4.3: Spectral parameters and evolution features for unidirectional JONSWAP spectra. 

Case α  γ  ε  1Π  ( )
1

max
P�  ( )

12 /
maxπ Ω�  

Numerical 

recurrence 

time 

Peak 

enhancement 

A 0.01 20 0.13 0.65 1.68 30 27 2.3 

B 0.016 20 0.16 0.50 1.83 21 22 3.0 

C 0.02 20 0.18 0.45 1.87 20 20 3.2 

D 0.025 20 0.20 0.40 1.92 18 19 3.5 

E 0.03 20 0.22 0.37 1.95 17 18 3.6 

B1 0.016 10 0.13 0.81 1.52 47 37 1.8 

B2 0.02 10 0.14 0.70 1.63 37 33 2.0 

B3 0.025 10 0.16 0.64 1.69 30 28 2.3 

B4 0.03 10 0.18 0.60 1.73 26 26 2.6 

 

 

 

Figure 4.11: Isolines of ( ,0, ) / (0)hxρ τ ρ� �� � . Each case refers to Table 4.3 for 20.γ =  

0.60.8
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Moreover, identical dimensionless “width-parameter” }< gives the same maximum 

growth, the same point of maximum, as well as the same peak enhancement of the 

recurrence. Furthermore, contour plots of WS��S� %� � � are given in Figure 4.13. Again, it is 

clearly seen that the maximum values are at �S 	 % and �S 	 �&'¢�<�rs�� which is similar 

to Figure 4.11. In addition, looking at the case A  from Figure 4.11 and case wQ in 

Figure 4.13, one can see that they are almost the same. This is apparently because both 

cases have almost the same value of the dimensionless “width-parameter”, }<, even 

though the spectra are not the same. 

 

Figure 4.12: Recurrence solutions for unidirectional JONSWAP spectra with 10;γ =  
4 ,B  

; 
3 ,B  ; 

2 ,B  ; 
1,B   (see Table 4.3). 

 

 

Figure 4.13: Isolines of  ( ,0, ) / (0).hxρ τ ρ� �� �  Each case refers to Table 4.3 for 10.γ =  

0 11 22 33 44 55 66 77
0.4

0.8

1.2

1.6

τ̃

ρ̃ m
a
x
(r̃

1
=

0)

 

 

1.0

1.0

0.75

1.25

1.25

B1

0 9 18 27 36
0

1

2

3

4

1.0

1.0

0.75

1.25

1.25

B2

0 8 16 24 32
0

1

2

3

4

τ̃

x̃

1.0

1.0

0.8 0.6

1.2

1.2

B3

0 7 14 21 28
0

0.9

1.8

2.7

3.6

0.8 0.6

1.0

1.0

1.2

1.2

B4

0 5 10 15 20 25
0

0.9

1.8

2.7

3.6



135  

As aforementioned, Janssen (1983) used an asymptotic method to solve the Alber 

equation near the threshold of instability and obtained a solution which is characterized 

by an initial small overshoot followed by an oscillation around its time-asymptotic 

value. Stiassnie et al. (2008) recovered Janssen’s results at the threshold of the 

instability using an initial Lorentz spectrum with a small inhomogeneous square 

disturbance. In Figure 4.14, results from the numerical simulations at the threshold of 

the instability for the case of an initial unidirectional JONSWAP spectrum with a small 

inhomogeneous unidirectional JONSWAP disturbance are presented.  

 

 

Figure 4.14: Values of ( ,0, ) / (0)max hxρ τ ρ� �� �  as a function of non-dimensional time, ,τ�  for three 

cases near the threshold of instability for 10,γ =  0.08,σ =  0.1;δ =  
1,P  ; 

2 ,P  ; 
3 ,P  

. 

 

It shows the behaviour of such numerical solution, with the initial homogeneous 

spectrum and an inhomogeneous disturbance are both unidirectional JONSWAP spectra 

for � 	 4%, ( 	 %�%? and � 	 %�4 with three different values of the energy scale � 	 %�%%��"�¢<�� %�%%G"�¢!� and %�%44"�¢Q�� These cases correspond to the value of }< 	 4�4, 4�% and %�G. As seen from Figure 4.14, case ¢< which is outside the instability 

criterion does not exhibit recurrence behaviour at all, while case ¢! which is on the 

marginal instability criterion almost shows a recurrent behaviour with an extremely long 

period. These are in contrast with the case ¢Q which is inside the instability criterion. 

The latter case exhibits the recurrent behaviour but with very long period. In addition, 

this figure is also similar to Figure 14 in Stiassnie et al. (2008). These three cases are 

further investigated in Figure 4.15. Here, the marginal instability line is plotted based on 

the equation (3.52) in Chapter 3. 

0 10 20 30 40 50 60 70
1

1.1

1.2

1.3

1.4

τ̃

ρ̃ m
a
x
(x̃

,0
,τ̃

)/
ρ̃ h

(0
)



136  

 

Figure 4.15: α  versus ,γ  three cases near the marginal stability where red line represents the 

marginal-instability line. 

 

Furthermore, Yuen and Ferguson Jr (1978b) investigated the long-time evolution of the 

unstable solution based on the nonlinear Schrödinger equation. They defined two types 

of the recurrence namely simple recurrence and complex recurrence. Recently, Stiassnie 

et al. (2008) used a Gaussian spectrum to investigate these types of recurrence based on 

the one-dimensional Alber equation and also found the two aforementioned types of 

recurrence. In the following, these types of recurrence are shown using a more realistic 

ocean wave JONSWAP spectrum. Four difference cases for simple and complex 

recurrence are shown in Figure 4.16 for � 	 %�%4D� � 	 4%" and ( 	 %�%? as given in 

Figure 4.5.  

 

 

Figure 4.16: 
iΩ�  versus ,P�  four cases of simple and complex recurrence, 

1 ( 0.795),A P =�  

2 ( 0.954),A P =�  
3 ( 1.113)A P =�  and 

4 ( 1.272).A P =�  All other parameters are the same as in 

Figure 4.5. 
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Figure 4.17: Values of ( 0)max rρ =� �  as a function of non-dimensional time, ,τ�  for three cases in 

the complex recurrence and one case in the simple recurrence. 
1,A  , 

2 ,A  , 
3,A  

, 
4 ,A  . 

1 2 3, ,A A A  and 
4A  as shown in Figure 4.16. 

 

The results from the numerical solution of the four study cases are shown in Figure 

4.17. In this figure, cases �<, �! and �Q are very different from �E which exhibits the 

recurrence. As was demonstrated in Stiassnie et al. (2008) using a Gaussian spectrum, 

the reason for the cases �<, �! and �Q not showing full recurrence is because the double 

harmonic, �¢�, in each of this cases is still inside the instability area. Using the 

terminology of previous authors, the first three cases are called complex recurrence 

while the case �E is simple recurrence.  

As has been mentioned in the introduction, the real sea states are not unidirectional but 

are characterized by wave components propagating along different directions 

(directional distribution). Therefore, in the following section, these kinds of waves will 

be studied by including different directional distributions. 

4.3.5 Recurrence for JONSWAP spectrum with directional 

distribution 

In this section, we will be showing that whenever the dimensionless “width-parameter” }! o 4�4 (see equation (3.59) in Chapter 3), the Alber equation yields recurring 

solutions. Note, however, for practical purposes, that the results for unidirectional 

waves with an initial unidirectional JONSWAP spectrum as given in (4.13) with � 	 �%� 
 	 %�4�"�� 	 %�%4� and �� 	 4 are identical to those of a JONSWAP 
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spectrum with a directional distribution as given in equation (4.22) with the same values 

of parameters � and �, and the degree of the directional spreading � 	 G%. The 

dimensionless maximum correlation functions for unidirectional JONSWAP spectrum 

evaluated at ] < 	 % (WSrs��] < 	 %�� and for the JONSWAP spectrum with directional 

distribution � 	 G% evaluated at ÐS 	 $ (WSrs��ÐS 	 $�� are shown in Figure 4.18. As one 

can see, they are hardly distinguished. 

In order to show the influence of the directional spreading on the long-time evolution, 

we use the initial spectra as in equation (4.22) which share the same values of � 	 4%� 
 	 %�4�D and "� 	 %�%4D. The spectra only differ by their angular spread, having � 	 �� 4% and �% which range from very broad (small n) to fairly narrow (large n) 

directional spreading, and thus the normalization factor as given in the equation (3.57) 

of Chapter 3 yields �� 	 %�DA� 4��G and ��?A, respectively. These conditions are 

summarized in Table 4.4 where the dimensionless spectral widths of the rectangular 

spectrum that are used for large ÐS are also included. Moreover, their dimensionless 

“width-parameters”, as given in the section 3.4.4.3 of Chapter 3 with ½ 	 %�%��D are }! 	 4�44� %�G� and %�?D, respectively. The isolines of these three spectra are shown in 

Figure 4.19, Figure 4.20 and Figure 4.21. The spectral widths of the two-dimensional 

rectangular spectrum, {|�, {|g and {| , that will be used for the condition at large ÐS are 

calculated based on the equations (4.18), (4.19) and (4.20). Moreover, the “width 

parameter”, }!, is calculated by 
'���� � ½'�
��� (see Chapter 3 for more details). 

 

 

Figure 4.18: Comparison between the solution for unidirectional JONSWAP spectrum , 

and JONSWAP spectrum with degree of directional distribution 90,n =  . Both spectra 

have the same 20γ =  and 0.13 ( 0.01).ε α= =  

0 5 10 15 20 25 30 35 40 45 50 55
0

0.25

0.5

0.75

1

1.25

1.5

τ̃

ρ̃
m

a
x
(r̃

=
0)

 

 



139  

Table 4.4: Spectral parameters for JONSWAP spectra with directional distribution, with 10,γ =  

0.016.α =  n is the degree of the directional distribution and 
dA  is the normalization factor 

(equation (3.57)), ( )

2 ,max
P�  ,W�  

lW�  and 
rW�  are dimensionless wavenumber of the disturbance 

which is the point of maximum growth rate and dimensionless spectral widths of the rectangular 

spectra, respectively. 

 

Case n  dA  2Π  ¢�!�rs�"� {|  {|� {|g 

A1 50 2.84 0.86 1.501 1.843 1.913 1.961 

A2 10 1.29 0.95 1.427 3.838 2.213 1.625 

A3 2 0.64 1.11 1.28
♣

 6.949 3.756 1.276 

Note: ♣ indicates the stable condition. 

 

 

Figure 4.19: Isolines for JONSWAP spectrum with 10,γ =  0.016,α =  0.08,σ =  2n =  and 

0 1.k =  
1k  and 

2k  are the wavenumbers in direction perpendicular and parallel to the carrier 

wave, respectively.  

 

 

Figure 4.20: Isolines for JONSWAP spectrum with 10,γ =  0.016,α =  0.08,σ =  10n =  and 

0 1.k =  
1k  and 

2k  are the wavenumbers in direction perpendicular and parallel to the carrier 

wave, respectively.  
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Figure 4.21: Isolines for JONSWAP spectrum with 10,γ =  0.016,α =  0.08,σ =  50n =  and 

0 1.k =  
1k  and 

2k  are the wavenumbers in direction perpendicular and parallel to the carrier 

wave, respectively. 

 

In addition, it is also important to show the initial homogeneous correlation function of 

these cases, i.e. at �  	 % (Figure 4.22 and Figure 4.23). As an example, the degree of the 

directional distribution � 	 �% has been chosen. Substituting � 	 �% into equation 

(4.22) and then solving the integral as given in (4.21) by using a sum of weighted Dirac-

delta functions gives the initial homogeneous correlation function. However, since this 

function depends on two variables, namely, ] < and ] !, there are at least three 

possibilities for solution such as along ] < at ] ! 	 %, along ] ! at ] < 	 % and along ] < and ] !. Note that the blue line and the red line respresent the real part and the imaginary part 

of the homogeneous correlation function, respectively. As seen, Figure 4.22 shows the 

homogeneous correlation function along ] < at ] ! 	 %. Similarly, Figure 4.23 reveals the 

homogenous correlation function along ] ! at ] < 	 %. Futhermore, the homogeneous 

correlation function along ] < and along ] ! is shown in Figure 4.24. One can actually see 

from these initial conditions that it is reasonable to take µ��ÐS� 	 WS¡�ÐS� as the properties 

of µ��ÐS� are satisfied by the behaviour of WS¡�ÐS� (see Chapter 3 for these properties). 

It is clearly seen from Figure 4.23 that the imaginary part of the homogeneous 

correlations function is zero as expected. This is because the spectrum is symmetric 

with respect to ] !. This is in contrast with the imaginary part of the homogeneous 

correlation function as shown in Figure 4.22 which is not zero. This is, again as 

expected, because the spectrum is not symmetric with respect to �< for the case. In 

addition, these initial homogeneous correlation functions are very consistent with the 
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definition of the correlation function where the larger the spacing, the smaller its 

correlation function. 

 

 

Figure 4.22: The initial homogeneous correlation function with respect to 
1 .r�  The red line 

represents the imaginary part and the blue line represents the real part.  

 

 

Figure 4.23: The initial homogeneous correlation function with respect to 
2 .r�  The red line 

represents the imaginary part and the blue line represents the real part.  

 

Further results are shown in Figure 4.25 for WSrs��ÐS 	 $�, which signifies the maximum 

values of ��!W�Ð 	 $�'
! within the interval �S 9 �%��&'¢�!�rs�"��, as a function of � 	 
!������ It clearly demonstrates the recurrent nature of the solution for the degrees 

of the directional spreading � 	 4% and � 	 �% which is from fairly broad directional 

spreading to fairly narrow directional spreading. 
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Figure 4.24: Three-dimensional image of the real part of the initial homogeneous correlation 

function. 

 

This is in sharp contrast to the solution for � 	 � which is for a very broad directional 

spread and has no recurrence. Note that case �Q is stable (see equation (3.61)) and 

therefore the chosen disturbance ¢�!�rs�� does not have any particular physical meaning. 

Note that the increase of the peak value and the shortening of the recurrence duration 

are the result of the decrease in }! (see Table 4.5). A more general picture of the WS��S� $� � � values is given in Figure 4.26. In the figure, the values were shifted along the �S axis so that the dimensionless maximum correlation function evaluated at ÐS 	 $ are at �S 	 % and �S 	 �&'¢�!�rs�"�. The curves were also slightly smoothed. 

 

Figure 4.25: The influence of the directional spreading on the variation of the maximum value 

of ρ�  at ,=r 0� as a function of non-dimensional time, τ� . 
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Features of the long-time evolution for JONSWAP spectra with directional distributions 

are summarised in Table 4.5. As seen from Table 4.5, the narrower is the directional 

distribution, the smaller the value of }!, i.e. the more unstable the wave trains are. 

Looking at Table 4.4 and Table 4.5, one can see that the discrepancy between the 

numerical recurrence time and �&'��!�rs�� increases with the increase of }!� 
Table 4.5: Spectral parameters and evolution features for JONSWAP spectra with three 

different degrees of the directional distributions, n, and 10,γ =  0.016.α =  
dA  is the 

normalization factor of the directional spreading. 

 

Case n �� }!� ¢�!�rs�� �&'��!�rs�� Numerical 

recurrence 

time 

Peak 

enhancement 

A1 50 2.84 0.86 1.53 49 37 1.77 

A2 10 1.29 0.95 1.43 73 44 1.52 

A3 2 0.64 1.11 1.28
♣

 -- -- -- 

Note: ♣ indicates the stable condition.  

 

Figure 4.26: Isolines of ( , , ) / ( ).hxρ τ ρ0 0� �� �  Each case refers to Figure 4.25. 
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4.4 Concluding remarks  

A stochastic recurrence for waves with continuous spectrum, which is parallel to the 

well-known Fermi-Pasta-Ulam recurrence for monochromatic wave trains in the 

unstable condition initialized by realistic ocean JONSWAP spectra with and without 

directional distribution, is shown in this Chapter. For unidirectional JONSWAP spectra, 

whenever the dimensionless “width parameter”, }< o 4, the Alber equation yields 

recurring solutions. It is found that the decrease in the “width parameter” is 

accompanied by an increase in the peak enhancement of the recurrence and a decrease 

in the numerical recurrence duration. Moreover, the narrower the spectrum, the higher 

the maximum correlation function evaluated at spacing equal to zero. At the threshold 

of instability, long-time evolutions are simulated and the previous results in the 

literature are recovered. It is found that in the stable condition, no recurrence occurs as 

well as at the marginal instability line. In the unstable condition, but close to the 

marginal instability line, the recurrence period is very long.  

For JONSWAP spectra with directional distributions, whenever the slightly corrected 

dimensionless “width parameter”, }! o 4�4, the Alber equation produces recurrence 

solution. It is found that decreasing the degree of the directional spreading will decrease 

the peak enhancement of the recurrent solution and for a certain limit of the directional 

spread, the recurrence solution stops. This is one of the most important results in this 

research. 

In order to have a quality control of the numerical simulation, the first three invariants 

for two-dimensional Alber equation were derived which is also a new outcome of this 

research. The first invariant is related to the wave action, the second invariant to the 

wave momentum and the third invariant to the energy of the system. The deviations of 

the invariants throughout the simulation did not exceed 1.0% for unidirectional 

JONSWAP spectra and did not exceed 1.5% for the JONSWAP spectra with directional 

distributions.  

Furthermore, the question of possible manifestation of such inhomogeneous 

disturbances in nature has to be answered. One positive answer for this question is this 

behaviour can be used to study the development of freak waves. Therefore, in the next 

Chapter of this thesis, we will be showing the application of these new results to the 

statistics of freak waves.  
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Chapter 5 

Application to the statistics of freak waves in 

directional sea states 

5 Application to the statistics of freak waves in directional sea states 

5.1 Introduction 

Janssen and Alpers (2006) argued that with modern wave forecasting systems it is not 

possible to predict individual wave events. The reason for this problem is because 

modern wave forecasting systems only determine the evolution of the ocean wave 

spectrum but they do not provide information on the phases of the waves. On the other 

hand, ships or vessels, oil rigs, etc. have not been designed to withstand these 

exceptional high surface waves (see also: Janssen and Bidlot, 2009). Therefore, it is 

important to predict the probability of occurrence of freak waves. As has been 

mentioned in Chapter 1, there is no standard definition of a freak wave. However, the 

most popular definition is based on the significant wave height where freak waves or 

rogue waves are defined as waves whose heights are more than twice the significant 

wave height, e.g. from 2.0 to 2.2 times the significant wave height (Dean, 1990, Kharif 

and Pelinovsky, 2003, Janssen, 2003). So, if the significant wave height is 2 meters, 

then all waves whose heights exceeding 4 meters should be categorized as freak waves 

or rogue waves (see also: Chalikov, 2009). In addition, a wave whose height exceeded 

the significant wave height more than three times is called an exceptionally high freak 

wave. Note, however, that there is a limit of waves steepness beyond where the waves 

will break (Babanin et al., 2010, Toffoli et al., 2010a). Based on the known physical 

mechanisms, as shown in Chapter 1, which responsible for the formation of freak 

waves, up to this days, it is impossible to predict the occurrence of the freak waves 

unless by means of the statistics. 

Based on the theory of linear waves, Longuet-Higgins (1952) showed that the 

probability distribution of wave heights is given by the Rayleigh distribution if the wave 
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spectrum contains a single narrow band of frequencies and if the wave energy is being 

received from a large number of different sources whose phases are random. From this 

distribution, it is a straightforward calculation to obtain the probability of waves whose 

heights are higher than twice or three times the significant wave heights which are � Ô 4%�E and 4%�Ä, respectively. For a typical sea wave period of 10 seconds, a wave 

whose height is higher than two times the significant wave height should appear once 

among about 3333 waves. Moreover, based on this probability, for waves with period of 

10 seconds one should meet this kind of a freak wave every 9 to 10 hours. Similarly, a 

wave whose height is higher than three times the significant wave height may occur 

once in 31 years as also reported by Regev et al. (2008). This is provided that the storm 

is stationary and continues for 31 years. It is hard to believe that this very unrealistic 

event can happen in the real ocean. First, storms do not last that long and second, the 

wave will break for this very unlikely wave height (Babanin et al., 2010). It is evident 

that such very exceptional wave height does occur in the real sea. As reported by 

Didenkulova et al. (2006), for example, a freak wave which occurred on 14 February 

2005 has damaged the cruiser “Grand Voyager”. It was reported that the estimation of 

freak wave height was 14 metres, while the maximum significant wave height 

estimation was 2.4 metres. This clearly shows that the freak wave height was about 5.8 

times the significant wave height. Similarly, cruiser “Norwegian Dawn” accident on 16 

February 2005 was hit by a freak wave whose height was approximately 21 metres 

while the significant wave height at the time was about 4 metres. This, again, indicates 

that wave whose height is greater than three times the significant wave height may 

occur in the real ocean. 

As have been mentioned in Chapter 1, one of the several mechanisms that can be 

responsible for the generation of freak waves is the modulational instability such as the 

well-known Benjamin-Feir instability (Zakharov 1966; Benjamin and Feir, 1967, 

McLean et al., 1981). Moreover, Zakharov et al. (2010) argued that freak waves appear 

inevitably as a result of nonlinear evolution of modulation instability not only for 

monochromatic Stokes waves, but also for stochastic spectra with a narrow enough 

spectral band (see also Zakharov and Shamin (2010)). Classical Benjamin Feir 

instability was derived for quasi-monochromatic wave trains and later, by analogy, 

Onorato et al. (2001) and Janssen (2003) introduced a so-called Benjamin-Feir index 
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(BFI) in continuous spectra which is the ratio of steepness to bandwidth of the spectrum 

for the unidirectional sea states and it can be written as: 

wxy 	 
z�'�� (5.1) 

where �� and z� are the peak frequency and the bandwidth in the frequency spectrum, 

respectively. It is found that if BFI is greater than one, then the random wave fields can 

experience modulational instability, while in the opposite side where if BFI is less than 

one, then the random wave field is stable.  

As shown in Chapter 2, for directional sea states, some experiments (see, for example, 

Onorato et al., 2009a, 2009b) revealed that modulational instability depends on the 

directional distributions. However, Babanin et al. (2010, 2011a, 2011b) argued that 

directional spreading is not the only parameter of surface wave fields which influences 

modulational instability. Based on their experiments in the wave flume, they found that 

if the directional spreading becomes too broad and wave field stabilizes, an increase of 

the steepness can re-activate the instability. Moreover, they introduced their version of 

the directional Benjamin-Feir Index (BFI) in which they called a directional 

Modulational Index, ���, which is a product of the normalization factor of the 

directional distribution, ��, and the wave steepness, 
, i.e.  

��� 	 �� � 
� (5.2) 

Another version of BFI which include the directional effect has been introduced by 

Mori et al. (2011) which is  

wxy!� 	 
R��! � �!��!�  

(5.3) 

where 
, �� and �� are the steepness, frequency bandwidth and directional bandwidth, 

respectively, while �! is a constant.  

One interesting thing of the directional Modulational Index introduced by Babanin et. 

al. is the use of parameter �� which corresponds to narrower directional distribution. 

This parameter is convenient property to use as a proxy of the directional spread 

because there is an intensive parameterization available for its dependence (Babanin and 
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Soloviev, 1987, 1998b) and it is unambiguously analytically connected with other 

existing directional spread characteristics used in the literature, even for bimodal 

directional spectra. 

The role of the modulational instability on the generation of freak waves has been 

demonstrated numerically (e.g. Toffoli et al., 2010b, Gramstad and Trulsen, 2010) as 

well as experimentally (e.g. Onorato et al., 2009b, Babanin et al., 2011a) in the wave 

flumes. These results will be discussed below where both unidirectional random wave 

fields and with directional spreading will be considered, respectively. Note that a 

similar review can be found in Gramstad and Trulsen (2007). 

For unidirectional sea states, Onorato et al. (2001) performed numerical simulation 

based on the nonlinear Schrödinger equation initialized by a JONSWAP spectrum in 

order to study freak waves. They found that the probability occurrence of freak waves 

increases for large values of both Phillips parameter, �, and the peak enhancement 

factor, �, of a JONSWAP spectrum. As seen from equation (5.1), the Benjamin Feir 

Index is proportional to the steepness of the spectrum. By assuming that bandwidth of 

the spectrum is constant, increasing the Phillips parameter or the peak enhancement 

factor of the JONSWAP spectrum both will lead to increase of the steepness. This will 

cause to the BFI increase and as a result, it will increase the probability of occurrence of 

freak waves.  

Specifically, If � is increased, then to keep the steepness constant � should be 

decreased. This means that spectra become broader and this leads to corresponding 

implications for the instability of nonlinear groups – i.e. the growth rates of most 

unstable modes are expected to decrease or even be suppressed. If � is increased, then to 

keep the steepness constant � should be decreased. Such combination will instigate 

rapid narrowing of the spectral bandwidth of dominant waves, which we expect to be 

associated with their instability, and which is the most important outcome in practical 

sense, e.g. for wave breaking or freak wave probability. 

Using the Zakharov equation, Janssen (2003) showed the freak waves occurrence as a 

result for a four-wave interaction where Benjamin-Feir instability plays a key role. 

Moreover, Onorato et al. (2004) performed experiments in one of the largest wave tank 

facilities in the world and found that the tail of the probability density function for wave 

height strongly depends on the Benjamin-Feir index. They also found that for large BFI 
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the Rayleigh distribution clearly underestimates the probability of large events. 

Furthermore, Onorato et al. (2005) found that the presence of the modulational 

instability is responsible for the departure from a Gaussian behaviour, indicating that, 

for particular parameters in the wave spectrum, coherent unstable modes are quite 

prevalent, leading to the occurrence of what might be called a “rogue sea”. In addition, 

Onorato et al. (2006) showed the statistical properties of the surface elevation for long 

crested waves characterized by JONSWAP spectra with random phases. They found 

that for unidirectional waves and for large values of the Benjamin–Feir index, the 

second order theory is not adequate to describe the tails of the probability density 

function of wave crests and wave heights.  

For more realistic sea states (i.e. directional sea states) which are characterized by wave 

components propagating along different directions, numerical (e.g. Gramstad and 

Trulsen, 2010, Toffoli et al., 2010b) and experimental evidence (e.g. Onorato et al., 

2009b, Babanin et al., 2011b) shown that directional spreading plays an important role 

on the probability of occurrence of freak waves. Onorato et al. (2002), for example, 

numerically integrated a two-dimensional modified nonlinear Schrodinger equation 

initialized by JONSWAP spectra and reported that the number of extreme wave events 

was reduced when the directionality of the initial spectrum was increased. Likewise, 

Socquet-Juglard et al. (2005) also performed numerical simulations by using a modified 

nonlinear Schrödinger equation and found that for broad directional distribution, 

deviation from Gaussian statistics are only due to bound nonlinear contributions to the 

wave field, while free waves preserve the Gaussian statistics despite the third-order 

nonlinear evolution. The statistics of the numerically simulated sea surface thus showed 

an excellent agreement with Tayfun distributions (Tayfun, 1980). In addition, Gramstad 

and Trulsen (2007) performed a large number of simulations in order to investigate the 

occurrence of freak wave in deep water and found that it depends on the group length 

and directionality for a fixed steepness. They reported that Benjamin-Feir index is a 

useful parameter to indicate the increase of the freak wave activity. Moreover, Eliasson 

and Shukla (2010) derived a nonlinear wave-kinetic equation for gravity waves in 2+2 

dimensions (two spatial dimensions and two velocity dimensions) and carried out 

numerical simulations to study the stability and nonlinear spatiotemporal evolution of 

narrow-banded waves. They also found that narrower directional spectra lead to self-

focusing of ocean waves and an enhanced probability of extreme events. Furthermore, 
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Onorato et al. (2009a) and Waseda et al. (2009) performed two independent 

experimental investigations, in order to study the statistical properties of surface-

elevation for different degrees of directional energy distribution. The experimental 

facilities used had different sizes and they were equipped with different wave-makers. 

Nevertheless, they reported consistent results that the probability of the formation of 

large amplitude waves strongly depends on the directional properties of the waves 

(Onorato et al., 2009b). All of these numerical and experimental results are very 

consistent to reveal that wave directional spreading reduces the effect of instability and 

concurrently reduces the probability of occurrence of freak waves. In relation to the 

instability, however, none of the aforementioned experiments provides the deterministic 

marginal instability. Therefore, the question that still unanswered is when the instability 

stops. In order to answer this question, Babanin et al. (2010, 2011a) conducted 

experiments for quasi-monochromatic waves and as a results, they introduced what so-

called directional Modulational Index which depends on two parameters, namely 

directional spreading and the steepness (see equation 5.2). They have shown that the 

modulational instability stops when the directional modulational index is ��� � %�4?. 

This indicates that the instability condition for unidirectional sea states is well 

established (Babanin 2011, 2011b). However, for directional wave fields, it is much less 

certain although quantitative guidance exists. This is including the role of the instability 

on the formation of freak waves. 

Most of numerical studies are based on the nonlinear Schrödinger equation and its 

extensions which are the most popular tool to investigate the nonlinear waves albeit for 

their limitation on narrow spectra (Chalikov, 2009, Zakharov et al., 2010). The 

stochastic version of the nonlinear Schrödinger equation has been derived by Alber 

(1978) which is now called Alber equation. This equation is designed for treating 

inhomogeneous wave fields albeit for narrow spectra. In Chapter 3, new instability 

conditions for more realistic ocean wave spectra with and without directional 

distributions have been introduced. In addition, it has been shown in Chapter 4 that in 

the unstable condition, recurrent evolutions which are parallel to the well-known Fermi-

Pasta-Ulam recurrence phenomenon are obtained. Here we show the physical 

significance of the recurrent behaviour to study the statistics of freak waves in 

directional sea states. Specifically, we took advantage of the periodicity imposed by the 

initial disturbance and the consequent recurrent evolution of unstable spectra to 
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calculate the probability of freak waves, implying that for stable spectra the freak waves 

probability will be given by the Rayleigh distribution. The preliminary attempt to this 

regard has been done by Regev et al. (2008) using unidirectional Gaussian spectra. In 

addition, the comparison between the results obtained from the Alber equation and the 

second order theory of the Forristall distribution (Forristall, 2000) will be shown. 

5.2 Theoretical background 

In order to study the statistics of freak waves, a formula for the probability of wave 

height will be determined in this section. To do so, the method used by Regev et al. 

(2008) will be adopted. Starting from the Rayleigh distribution, the probability 

distribution of wave height will be formulated. Furthermore, the review of the Forristall 

distribution on the deep water will be presented. 

5.2.1 The Rayleigh distribution 

Following Young (1999) and adopting the basic theory for the distribution of wave 

heights that was originally developed by Rice (1944), it is assumed that the spectrum of 

the water surface elevation is narrow banded where the energy of spectrum is 

concentrated in the vicinity of the carrier waves. The probability density function for 

wave heights of such a spectrum follows the Rayleigh distribution 

p�£� 	 £A(! �� ¥lÄ�l  (5.4) 

where (! 	 ¿~��� �� is the variance of the record, ~��� is the spectrum as a function 

of wavenumber and H is the wave height. Moreover, since equation (5.4) is the 

probability density function, it must satisfy the following condition 

�p�£��£ 	 4� (5.5) 

In order to obtain the mean of the Rayleigh distribution, one can take an expected value 

of £, that is 

£É 	 
@£B 	 � £p�£�Æ
� �£ 	 � £!A(! �� ¥lÄ�lÆ

� �£ 	 ��&(! (5.6) 
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and the root mean square (rms) wave height is calculated by taking an expected value of £!, that is 

£gr©! 	 
@£!B 	 � £!p�£�Æ
� �£ 	 � £QA(! �� ¥lÄ�lÆ

� �£ 	 ?(!� (5.7) 

Note that 
@ B stands for the expected value. 

Making use of the equation (5.7), the probability density function of the Rayleigh 

distribution can be rewritten as 

p�£� 	 �££gr©! �� ¥l¥¦§¨l � (5.8) 

Furthermore, the relation between the significant wave height, £©, with the variance of 

the wave record as shown in Chapter 2 is given by (see Boccotti, 2000, Ochi, 2005, 

Holthuijsen, 2007) 

£© 	 A(� (5.9) 

Therefore, from equation (5.7) and equation (5.9), one can obtain the relation between 

the significant wave height and the root mean square wave height that is 

£© 	 q�£gr©� (5.10)  

Note that theoretical derivations of equations (5.9) and (5.10) can also be found in 

Chapter 2. 

 

5.2.2 The Forristall distribution on infinitely deep water 

As given in Chapter 2, Forristall (2000) fitted the Weilbull distribution which is the 

general form of the Rayleigh distribution obtained from the linear waves, to the second 

order simulation with a wide variety of wave steepness and Ursell number. This result is 

now known as Forristall distribution/model. One advantage of this model is that it can 

be applied for arbitrary water depths. Specifically, he fits the Weilbull distribution as 

given by (i.e. probability that £ is greater than a value £¤) 
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¢e£ L £¤f 	 ,¸¹ À�� £¤�q��£gr©�
¼Á� (5.11)  

where £ is the wave height, £gr© is the root mean square wave height and the 

parameters � and ½ for the deep water are given in the following. For the unidirectional 

sea simulations (1D), the values of parameters are 

�< 	 %����D � %��?G�~<� (5.12)  

½< 	 � � ��4�G�~<� (5.13)  

and for the directional sea simulations (2D), the values of parameters are 

�! 	 %����D � %���D?~<� (5.14)  

½! 	 � � 4��G4�~<� (5.15)  

where ~< 	 �&£©'��¾<!� is the steepness, £© is the significant wave height and is 

calculated by four times the square root of the variance of the wave spectrum, i.e. £© 	 A�ª�, where ª� is the variance of the wave spectrum. ¾< is the mean wave 

period which is determined by ¾< 	 ª�'ª<, where ª< is the first order moment.  

As seen from the Forristall parameters, the Forristall distribution on infinitely deep 

water is only a function of wave steepness. Taking for example, a unidirectional 

JONSWAP spectrum with the energy scale � 	 %�%4D, the peak enhancement factor � 	 4% and the peak width parameter ( 	 %�%?, gives the following values of Forristal 

parameters 

~< 	 %�%�?G� 
�< 	 %���%D� ½< 	 4�?��?� 
�! 	 %��D?�� ½! 	 4�?GA�� 

Using the equation (5.11), the plot of these results and the comparison with the classical 

value given by the Rayleigh distribution are shown in Figure 5.1. It is clearly seen that 

the probability of wave height obtained from the Forristal distribution, which is based 

on the second order theory, is higher than the probability of wave height given by the 
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classical values of the Rayleigh distribution. In addition, the probability of wave height 

for the directional wave fields is lower compared to probability of wave height for the 

unidirectional sea states as expected. One should note, however, that even though 

Forristall distribution is in a good agreement with the observations, it also has some 

limitations as shown in Chapter 2. Such limitations will also be shown in this research.  

 

 

Figure 5.1: Comparison between the probability of wave height for the unidirectional and 

directional sea states based on the Forristall distribution and the probability of wave height 

given by the Rayleigh distribution.  

 

5.2.3 Probability distribution of the wave height 

A two-dimensional Alber equation, which is the equation for narrow-banded random 

surface waves on the infinitely deep water, has been given in Chapter 3. The two-point 

spatial correlation function is defined as the ensemble average of the complex envelope 

of the narrow banded sea. Besides that, it has been shown that the correlation function 

for homogeneous sea only depends on the spacing Ð. Therefore, for homogeneous sea, 

the correlation function at Ð 	 $ is given by the integral of the energy spectrum and it 

can be written as 

W¡�Ð 	 $� 	 �~�#��#� (5.16)  

Now, following a procedure similar to that in Regev et al. (2008), let £gr©� be the root 

mean square wave height of the homogeneous sea and thus the correlation for 

homogeneous sea at Ð 	 $ is proportional to £gr©�!  and it can be written as 



155  

W¡�Ð 	 $� < £gr©�! � (5.17)  

Similarly, based on the equation (3.63) of Chapter 3, we can assume that the correlation 

for an inhomogeneous sea can be written as 

W�®� Ð 	 $� �� < £gr©!
 (5.18)  

where £gr©!  is a measure of the average energy density at the point W�®� ��. 
From equation (5.17) and equation (5.18), we have the following relation 

£gr©�!£gr©! 	 W¡�Ð 	 $�W�®� Ð 	 $� ��� (5.19)  

Moreover, the cumulative form of the Rayleigh distribution in the equation (5.8) 

(Young, 1999) is given by 

¢e£ M £¤f 	 ��º ¥¤¥¦§¨»l � (5.20)  

that is probability that £ is greater than a value £¤. Equation (5.20) can then be rewritten 

as 

¢e£'£gr©� M £¤'£gr©�f 	 ��@�¥¤'¥¦§¨���¥¦§¨�'¥¦§¨�Bl � (5.21)  

Making use of equation (5.19), equation (5.21) for a chosen value of W can then be 

rewritten as 

¢e£'£gr©� M £¤'£gr©�f 	 ,¸¹ À�� £¤£gr©��
! ºW¡W »Á� (5.22)  

However, the probability density function (pdf) of W�®� Ð 	 $� �� is required to 

determine the probability to obtain values of W in the interval �W� W � zW�. Therefore, 

the probability to obtain £ M £¤ throughout the spatial and temporal evolution of W is 

given by 

¢e£'£gr©� M £¤'£gr©�f 	 �¹�È º WW¡» �F�º ¥¤¥¦§¨�»lh=>= iK� º WW¡» (5.23)  

where ¹�È�W'W¡� stands for the probability density function of W�®� Ð 	 $� ��'W¡�$�. 
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5.3 Recurrent solutions 

As has been shown in Chapter 4, if the dimensionless “width parameter” } where } 	 }< o 4 for the unidirectional spectra and } 	 }! o 4�4 for the directional spectra, 

the Alber equation yields recurring solutions. One advantage of this recurrent behaviour 

is that it enables us to study the probability of occurrence of freak waves. This is 

because one can take one cycle of the recurrent solution and establish the probability 

density function. It then allows us to determine the probability of wave height and based 

on this, by definition of freak waves, one can determine its occurrence probability. 

Therefore, a further step to calculate the probability of wave height is to determine the 

probability density function of W�®� Ð 	 $� ��'W¡�$� which is ¹�È�W'W¡�. To this end, as 

aforementioned, one cycle of the stochastic recurrence will be taken. For convenience, 

however, all the parameters will be transformed into the non-dimensional forms as 

defined in Chapter 4, that is 

WS 	 ��!
! W)"�S 	 
�� �� � <!P  ���� )"�S 	 
���)"] < 	 
��]<) 
"] ! 	 
��]!) "�  	 
!������ 

(5.24)  

A typical cycle of the recurrence as given in Chapter 4 for a unidirectional wave field is 

given in Figure 5.2 and Figure 5.3 for the peak enhancements, � 	 �% and � 	 4%, 

respectively, with different values of the energy scale (see Table 5.1). For JONSWAP 

spectra with directional distributions, a typical cycle of the long-time recurring 

evolution is shown in Figure 5.4 with different values of the degree of the directional 

spreading, namely � 	 4% and � 	 �%. This is, again, the same as the case study in 

Chapter 4, where � 	 %�%4D and � 	 4% (see Table 5.2). In Figure 5.2 and Figure 5.3, WSr�� � is the maximum value of dimensionless correlation function evaluated at ]< 	 %, WS��S� %� � �, for chosen dimensionless time �  and for all possible values of �S while WSr�� � 
in Figure 5.4 is the maximum value of dimensionless correlation function evaluated at ÐS 	 $, WS��S� $� � �, also for chosen dimensionless time �  and for all possible values of �S.  
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Figure 5.2: A typical cycle of the long-time recurring evolution of ( ) / (0)m hρ τ ρ� ��  as a function 

of the dimensionless time for unidirectional JONSWAP spectra with 20γ =  and five different 

values of the energy scale.  

 

 

Figure 5.3: A typical cycle of the long-time recurring evolution of ( ) / (0)m hρ τ ρ� ��  as a function 

of the dimensionless time for unidirectional JONSWAP spectra with 10γ =  and four different 

values of the energy scale. 

 

Figure 5.4: A typical cycle of the long-time recurring evolution of ( ) / ( )m hρ τ ρ 0� ��  as a function 

of the dimensionless time for JONSWAP spectra with two different degrees of the directional 

distribution cos ( )n θ  and with 0.016α =  and 10.γ =
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5.4 The probability of freak waves 

The stochastic recurrence facilitates the study of the probability of freak waves. This is 

because the stochastic recurrence can be used to establish the probability density 

function and then to determine the freak waves probability in a straightforward fashion. 

The wave height probability is given in equation (5.23). In the following two sections 

we will show the probability of freak waves in unidirectional wave fields (based on 

JONSWAP spectrum) and directional wave fields (described by JONSWAP spectrum 

and a ������� directional function). 

 

5.4.1 Unidirectional sea states 

As a special case, a JONSWAP spectrum with � 	 �% and five different values of the 

energy scale is used to describe a variety of unidirectional sea states (see Table 5.1). 

Furthermore, in order to find the probability density function, ¹�È�WS'WS¡�, again, we 

adopted the method used in Regev et al. (2008). Firstly, more than 100 locations evenly 

distributed along the �S axis from 0 to �&'¢��rs�� were taken. Over one recurrence 

cycle, WS'WS¡ was sampled at 100 evenly distributed sampling times, so that more than 

ten thousand WS��S� %� � �'WS¡�%� values were used to establish ¹�È�WS'WS¡� (see Figure 5.2). 

The isolines of these WS'WS¡ are plotted in Figure 4.11 of Chapter 4 for the above-

mentioned five different cases (see Table 5.1).  

Secondly, all of the values were arranged from the lowest to the highest and then 

divided into 100 evenly spaced increments in WS'WS¡, e.g. from 0.26 to 4 for � 	 �% and 

from 0.5 to 2.8 for � 	 4%. The probability of each increment was calculated as the 

number of elements within the increment divided by the total number of values used. 

Figure 5.5 presents the probability density function of WS'WS¡ in the form of a bar diagram 

(to ease comparison, the widths of the bins in all bar diagrams are equal) and the 

probability function (the probability of obtaining a value smaller or equal to WS'WS¡) is 

given by the solid line for the five different cases. Note that the probability function in 

this research is commonly called cumulative distribution function (cdf) in general 

statistics. From isolines as shown in Figure 4.11 in Chapter 4 and Figure 5.5 one can see 

that for cases D and E many bins are activated and that the number of active bins 

reduces when the dimensionless “width-parameter” }< increases as shown in Table 5.1. 
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The probability function for the wave height given by equation (5.23) is calculated on 

the basis of the known values of ¹�È�WS'WS¡� as shown in Figure 5.5. Some different 

features that will be shown in relation to this probability, such as the comparison with 

the classical value given by Rayleigh distribution as given in the equation  starting from 

zero wave height and at the tail of the probability, the probability of waves whose 

heights are higher than two times and three times the significant wave height 

respectively. Figure 5.6 shows two different features of the probability in comparison to 

homogenous seas according to the Rayleigh distribution. The first feature is the tail of 

the probability. As can be seen from Figure 5.6, the results obtained from the Alber 

equation are higher than obtained from the Rayleigh distribution as expected. This is 

because, as known, Rayleigh distribution was established based on the linear waves 

theory (Longuet-Higgins, 1952) while Alber equation is the equation for the nonlinear 

ocean surface waves. In addition, in the figure, probability values of freak waves, that is 

the probability for waves with 0
ˆ 2.84 ;rmsH H≥  i.e. ˆ 2 sH H≥  is plotted (note that our 

£gr©� and significant wave height £© are connected as £© 	 q�£gr©� as shown in 

Section 5.2.1). Another feature as shown in the inset of Figure 5.6 is a full comparison 

(starting from zero wave height) between the probability of the homogeneous sea and 

the probability obtained from the Alber equation for case E. As can be seen from the 

inset, the probability up to £¤ M 4�AD£gr©� is greater for the Rayleigh distribution, but 

after the intersection point the probability is greater for the results obtained from the 

Alber equation. For other cases, namely for cases A, B, C and D one can obtain that the 

intersection values in the range £¤'£gr©� 9 �4�AD�4����.  
In order to obtain the exact values of the probability, it is necessary to change the scale 

of the vertical axis of the figure from logarithmic scale to linear scale. Then, the 

probability of waves whose heights are more than two times the significant wave height 

are shown in Figure 5.7. As can be seen from the figure, case E gives 40 out of 10000 

waves higher than ��?A£gr©�, which is equivalent to two times the significant wave 

height, as opposed to case A where about 17 out of 10000 are higher than ��?A£gr©�"���£©� which is closer to the Rayleigh distribution.  
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Figure 5.5: Probability density function pdf ( / )hρ ρ� �  and probability function P( / )hρ ρ� �  (solid 

line) as functions of / hρ ρ� �  for unidirectional JONSWAP spectra with 20.γ =  

 

Note that the Rayleigh distribution only gives about 3 out of 10000 waves higher than 

two times the significant wave height. Moreover, there are about 27, 32 and 37 over 

10000 waves whose heights are higher than two times significant wave height for the 

cases B, C and D, respectively. Furthermore, the probabilities of waves whose height 

are higher than three times the significant wave height are shown in Figure 5.8. As we 

can see from the figure, the probability values increase from “almost never” value of 4%�Ä for the Rayleigh distribution to 4%�U for case A, � Ô 4%�U for case B, � Ô 4%�U 

for case C, 44 Ô 4%�U for case D and 4� Ô 4%�U for case E. These are about 10000 

times higher probabilities. It should be mentioned in this regard that the Alber equation 

does not have any dissipation mechanisms and in theory allows for infinite wave heights 
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to occur. In reality, there is a limit of wave steepness beyond which the waves will 

break (Babanin et al., 2010), and this limit indicates the maximum ratio of individual 

wave height to the significant wave height of ~2.0 (Babanin et al., 2011a). Note, 

however, this maximum ratio was obtained from a one dimensional quasi-

monochromatic waves experiment. 

Now, it is also important to show the influence of the peak enhancement factor on the 

probability of occurrence of freak waves. In this regard, the previous peak enhancement 

factor, i.e. � 	 �%, will be changed to � 	 4% for four cases as shown in Table 5.1. 

Furthermore, a similar procedure that was used to determine the probability of freak 

waves for the case � 	 �% will be applied for these cases including the determination of 

the probability density function. To this end, one typical cycle of the stochastic 

recurrence as shown in Figure 5.3 will be used. The probability density functions of 

these cases are shown in Figure 5.9. As seen from the figures, the number of active bins 

increase by increasing the energy scale, which is consistent with the cases for � 	 �%. 

Also, in terms of the dimensionless “width parameter”, }<, the decrease of value of this 

parameter is accompanied by an increase of active bins. Likewise, using the probability 

density function as shown in Figure 5.9, one will obtain the probability of wave heights 

by using equation (5.23).  

 

Figure 5.6: The probability of freak waves 0
ˆ ˆ( / 2.84; 2 )rms sH H H H≥ ≥  for the Rayleigh 

distribution, , and the probability obtained from the Alber equation for unidirectional 

JONSWAP spectra with 20γ = : case A (�), case B (�), case C (�), case D (�) and case E 

(�) (see Table 5.1). The inset shows probability function for the Rayleigh distribution (solid 

line) and case E (dashed line) starting from zero wave height. 

2.84 3.2 3.56 3.92 4.28 4.64 5 5.36 5.72 6.08
10

−6

10
−5

10
−4

10
−3

10
−2
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Ĥ/Hrms0

P

 

 

Case E

Rayleigh



162  

 

Figure 5.7: The probability of freak waves 0
ˆ ˆ( / 2.84; 2 )rms sH H H H≥ ≥  for the Rayleigh 

distribution and for unidirectional JONSWAP spectra with 20γ =  as in Figure 5.6, linear 

scales. 

 

 

Figure 5.8: The probability of freak waves 0
ˆ ˆ( / 4.26; 3 )rms sH H H H≥ ≥  for the Rayleigh 

distribution and the probability obtained from the Alber equation for unidirectional JONSWAP 

spectra with 20γ =  as in Figure 5.6, linear scales. 
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necessary to change the vertical axis scale from logarithmic scale to linear scale as 

shown in Figure 5.11. 

 

  

  

 

Figure 5.9: Probability density function pdf ( / )hρ ρ� �  and probability function P( / )hρ ρ� �  (solid 

line) as functions of / hρ ρ� �  for unidirectional JONSWAP spectra with 10.γ =   

  

It is clearly seen from the figure that the case with the highest energy scale (the smallest 

value of the dimensionless “width parameter”, }<) gives the highest probability of 

waves whose heights are more than two times the significant wave height. In more 

details, case B4 gives about 21 over 4%E waves being higher than two times the 

significant wave height, as opposed the case B1 where it is only about 10 over 4%E. The 

latter case is closer to the Rayleigh distribution with 3 over 4%E. The case B2 and B3 

give about 12 and 17 over 4%E waves whose heights are more than two times the 

significant wave height, respectively. In addition, the probability of waves whose 

heights are higher than three times the significant wave height as shown in Figure 5.12, 

increases from values of 10
-8

 for the Rayleigh distribution to � Ô 4%�� for case B1, � Ô 4%�� for case B2, 44 Ô 4%�� for case B3 and �4 Ô 4%�� for case B4. Note that case 

B1 is about 200 times higher probability compared to the Rayleigh distribution.  
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Figure 5.10: The probability of freak waves 0
ˆ ˆ( / 2.84; 2 )rms sH H H H≥ ≥  for the Rayleigh 

distribution, , and the probability obtained from the Alber equation for unidirectional 

JONSWAP spectra with 10 :γ =  case B1 (�), case B2 (�), case B3 (�) and case B4 (�).The 

inset shows probability function for the Rayleigh distribution (solid line) and case B4 (dashed 

line) starting from zero wave height. 

 

 

Figure 5.11: The probability of freak waves 0
ˆ ˆ( / 2.84; 2 )rms sH H H H≥ ≥  for the Rayleigh 

distribution and for unidirectional JONSWAP spectra with 10γ =  as in Figure 5.10, linear 

scales.  
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Ĥ

Hrms0

)

 

 

Case B
4

Case B
3

Case B
2

Case B
1

Rayleigh



165  

for the case � 	 4% with the same energy scale, i.e. � 	 %�%�. In other words, the 

narrowness of spectrum affects the probability of freak waves.  

 

 

Figure 5.12: The probability of freak waves 0
ˆ ˆ( / 4.26; 3 )rms sH H H H≥ ≥  for the Rayleigh 

distribution and the probability obtained from the Alber equation for unidirectional JONSWAP 

spectra with 10γ =  as in Figure 5.10, linear scales. 

 

In particular, for the smaller value of the dimensionless “width parameter”, }<, the 

value of the probability of freak waves will be higher. The results for unidirectional 

JONSWAP spectra are summarized in Table 5.1. 

Table 5.1: The probability of wave height for unidirectional JONSWAP spectra where fH  

stands for freak wave height and sH  is the significant wave height. 
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5.4.2  Directional sea states 

As aforementioned, the real sea states are not only limited to the unidirectional wave 

fields but also characterized by wave components propagation along different directions 

(directional wave fields). To this end, taking the peak enhancement factor of the 

unidirectional JONSWAP spectrum, � 	 4%, and the energy scale, � 	 %�%4D, the 

probability of waves whose heights are more than two times and three time the 

significant wave height will be determined for two different degrees of the directional 

distributions which are � 	 4% and � 	 �% in the next subsection (see Table 5.2). 

Following a similar procedure to that used to determine the probability density function, 

as for the unidirectional case, the probability density functions for the JONSWAP 

spectrum with directional distributions are shown in Figure 5.13. Note that one cycle of 

the long-time recurring evolution as shown in Figure 5.4 has also been used. As can be 

seen from Figure 5.13, the decrease in the value of the degree of the directional 

spreading is accompanied by the decrease in the number of active bins. Note that spaced 

increments in / hρ ρ� �  is from 0.65 to 1.95. In particular, the number of active bins 

reduces when the “width-parameter” }! increases. This trend is very consistent with the 

unidirectional case.  

 

  
 

Figure 5.13: Probability density function pdf ( / )hρ ρ� �  and probability function P( / )hρ ρ� �  solid 

line) as functions of / hρ ρ� �  cases 1A  (left) and 2A  (right) of Table 5.2. 

 

Figure 5.14 shows the wave-height probability for an inhomogeneous ocean obtained 

from the Alber equation and for homogeneous sea given by the Rayleigh distribution. 
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� 	 %�%4D. The steepness of this case were calculated by using the formula in Chapter 

3, i.e. 
 	 ����¿ ������ where ���� is the wavenumber spectrum and yielded 
 	 %�4�D. Similar to the unidirectional case, it can be seen from the inset of Figure 

5.14 that the probability up to £¤ M 4�AG£gr©� is greater for the Rayleigh distribution. 

After the intersection point, however, the probability is greater for the results obtained 

from the Alber equation (note that our £gr©� and significant wave height £© are 

connected as £© 	 q�£gr©� (see Subsection 5.2.1)). Moreover, the probability of 

waves with wave height larger than two times the significant wave height is G Ô 4%�E 

when the degree of the directional distribution is 50 and decreases down to � Ô 4%�E 

when the degree of the directional distribution decreases to 10 while for homogenous 

seas according to the Rayleigh distribution is � Ô 4%�E.  

The reduction is even more significant for the probability of exceptionally high waves, 

with wave heights are higher than three times the significant wave height as shown in 

Figure 5.16. It is of the order of 4%�Ä for the Rayleigh distribution, 4D Ô 4%�? for case �< and � Ô 4%�? for case �!. Now, it is only about 160 times higher than given by the 

Rayleigh distribution (was 200 times for unidirectional seas). 

 

 

Figure 5.14: The probability of freak waves 0
ˆ ˆ( / 2.84; 2 )rms sH H H H≥ ≥  for the Rayleigh 

distribution, , and the probability obtained from the Alber equation for JONSWAP 

spectra with different degrees of the directional distributions: case A1 ( ) and case A2 (

), (see Table 5.2). The inset shows probability function for the Rayleigh distribution 

(solid line) and case A1 (dashed line) starting from zero wave height. 
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This result is very consistent with the results obtained by Onorato et al. (2002) who 

integrate a modified nonlinear Schrödinger equation numerically. They found that 

broadening the directional spread by decreasing the power of the directional spectrum of 

the initial spectrum would reduce the probability of freak waves. It should be noted that 

the maximum wave height limited by wave breaking changes for three-dimensional 

waves if compared with two-dimensional (increases), because both limiting steepness 

and limiting skewness of waves are different in three dimensions but the increase is not 

large (<10%) (Toffoli et al., 2010a, Babanin et al., 2011b). 

Comparing the probability of freak waves, whose wave height is larger than two times 

the significant wave height for unidirectional JONSWAP spectrum with � 	 4% and � 	 %�%4D as shown in Figure 5.10 or Figure 5.11, and for the JONSWAP spectrum 

with the degree of the directional distribution set at � 	 �% with the other parameters 

being the same. One can see that the probability for the unidirectional JONSWAP 

spectrum is slightly higher than the probability for JONSWAP spectrum with 

directional distribution, as expected. This is because as shown in Figure 4.18 of Chapter 

4, a unidirectional JONSWAP spectrum is almost identical to the JONSWAP spectrum 

with directional spreading when the degree of the directional distribution � 	 G%.  

 

 

Figure 5.15: The probability of freak waves 0
ˆ ˆ( / 2.84; 2 )rms sH H H H≥ ≥  for the Rayleigh 

distribution and for JONSWAP spectra with different directional distributions with value of 

parameters 10, 0.016γ α= =  and the linear vertical axis (see Table 5.2). 
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Figure 5.16: The probability of freak waves 0
ˆ ˆ( / 4.26; 3 )rms sH H H H≥ ≥  for the Rayleigh 

distribution and  for JONSWAP spectra with different directional distributions and value 

parameters 10, 0.016γ α= =  and the linear vertical axis (see Table 5.2). 
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height are more than two times the significant wave height for the unidirectional 

JONSWAP spectra with � 	 4% and � 	 %�%4D. On the other hand, there are 9 over 

10000 waves whose heights are more than two times the significant wave height for 

JONSWAP spectra with the degree of the directional spreading 50 of other parameters 

are the same. Further results for JONSWAP spectra with different degrees of the 

directional spreading are summarized in Table 5.2. 

 
Table 5.2: The probability of wave height for JONSWAP spectra with different degrees of the 

directional distributions where fH  stands for freak wave height and sH  is the significant wave 

height. 
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-4
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-7
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A1 50 2.84 0.86 1.53 9 16 

A2 10 1.29 0.95 1.43 7 5 

A3 2 0.64 1.11 1.28
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Ĥ/Hrms0

Case A
1

Case A
2

Rayleigh



170  

Using all our results from Table 5.1, Table 5.2 and some other cases which are not 

shown here, the occurrence probability of freak waves can be estimated by simple 

relations using the best fit in Matlab: 

¢e£� L �£©f 	 4%��<�Ä�³<�U�@� (5.25)  

¢e£� L �£©f 	 4%��!���³E��U@� (5.26)  

where £� is the freak wave height and £© is the significant wave height. Moreover, } 	 }< o 4 and } 	 }! o 4�4 are used for unidirectional JONSWAP spectrum and 

JONSWAP spectrum with directional distribution, respectively. The plots of the 

equations (5.25) and (5.26) are shown in Figure 5.17.  

The fact that almost any wave field, with a single peak frequency, can be approximated 

by a JONSWAP spectrum, adds to the applicability of the above-mentioned results. 

Finally, it has to be emphasized that the results for the probability of freak waves are in 

qualitative agreement with the results from both the laboratory experiments in the wave 

flumes such as Waseda et al. (2009), Onorato et al. (2009a) and Babanin et al. (2011b) 

and numerical simulations such as Eliasson and Shukla (2010) and Toffoli et al. 

(2010b).  

 

 

Figure 5.17: Simple relations between the probability of freak waves and the dimensionless 

“width parameter”, .Π  
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5.4.3 Comparison to the Forristall distribution 

In the previous subsections, the probability of wave height obtained from the Alber 

equation was compared to the classical value given by the Rayleigh distribution 

established for linear waves. In this section, a comparison to the Forristall distribution is 

shown, which is based on the second order theory. Forristal distribution (Forristall, 

2000) is actually the parameterization of the Weilbull distribution which is a general 

form of the Rayleigh distribution.  

The comparison is performed as follows: firstly, for unidirectional wave fields, the 

results for case w< (see: Table 5.1) will be compared to the Forristall distribution. Then, 

we change the shape of the spectrum while keeping the same steepness as per case � 

(see: Table 5.1). Finally, the influence of spectral shape will be discussed. Figure 5.18 

shows the comparison between the probability of wave height obtained from the 

Forristall distribution and the probability obtained from the Alber equation for case w<.  

As seen from Figure 5.18, the probability from the Forristall distribution is similar to 

the results from the homogeneous seas (i.e. the Rayleigh distribution). Both of them 

were higher than the probability obtained from the Alber equation until a certain point 

was reached. The probability for the Forristall distribution is greater for up to £¤ M���"£gr©�. After the intersection point the probability is greater for the results obtained 

from the Alber equation. This indicates that the second order theory could not capture 

the extreme events as shown at the tail of the probability. In addition, it slightly 

improves the probability obtained from the Rayleigh distribution.  

Changing the shape of the spectrum while keeping constant steepness gives a much 

clear comparison (see Figure 5.19). Note that case w< and case � have the same 

steepness, i.e. 
 � %�4� as given in Table 5.1. It is seen from Figure 5.19 that the 

intersection point between the probability obtained from the Forristall distribution and 

the probability obtained from the Alber equation is at about 2.75. This indicates that the 

spectral shapes do influence the probability of wave height particularly for the extreme 

events. This was also pointed out by Bitner-Gregersen and Magnusson (2004). 

However, these parameters cannot be captured by the second order theory such as the 

Forristall distribution.  
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Figure 5.18: The comparison between the probability of wave height obtained from the 

Forristall distribution for the unidirectional sea states and the probability obtained from the 

Alber equation, i.e. case 1B . 

 

Further details of these comparisons are presented in Figure 5.20. While the results 

obtained from the Forristall distribution are the same for the two cases (� and w<), the 

Alber equation gives an entirely different result. Still from Figure 5.20, the intersection 

point moves from about 3.7 for case w< to about 2.75 for case �. 

 

 

Figure 5.19: The comparison between the probability of wave height obtained from the 

Forristall distribution for the unidirectional sea states and the probability obtained from the 

Alber equation, i.e. case .A  
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Figure 5.20: The comparison between the probability of wave height obtained from the 

Forristall distribution for the unidirectional sea states and the probability obtained from the 

Alber equation, i.e. cases A  and 1.B  
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Figure 5.21: The comparison between the probability of wave height obtained from the 

Forristall distribution for directional sea states and the probability obtained from the Alber 

equation, i.e. case 1.B  

 

To summarize these comparisons, although Forristall distribution is simple and agree 

well with the observations, it is clearly shown, based on the Alber equation, that it does 

not capture the extreme events. This is seen in the tail of the distribution. Moreover, 

since Forristall distribution depends only on the wave steepness on infinitely deep 

water, it does not consider the spectral shape. It is argued in this research that the 

spectral shapes do play an important role in the probability of wave height particularly 

for the extreme events as Bitner-Gregersen and Magnusson (2004) also pointed out. 

 

Figure 5.22: The comparison between the probability of wave height obtained from the 

Forristall distribution for directional sea states and the probability obtained from the Alber 

equation, i.e. case 1.A  
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5.5 Concluding remarks 

The Alber equation, which is an appropriate equation to study the random 

inhomogeneous wave fields with narrow spectra, was used to study the statistic of freak 

waves within wave fields defined by realistic ocean JONSWAP spectrum, with and 

without directional distributions. We start from defining the probability of wave height 

based on the homogeneous seas according to the Rayleigh distribution. After that, the 

advantage of the consequent recurrent evolution was taken to establish the probability 

density function and then to determine the probability of freak waves, which defined as 

the waves whose heights exceed two times the significant wave height in a 

straightforward fashion. The probability of wave height obtained from the Alber 

equation was compared to the probability obtained from the Rayleigh distribution which 

is based on the linear waves theory and the probability obtained from the Forristall 

distribution that was derived from the second order theory. 

For unidirectional wave fields, it is found that the probability of freak waves obtained 

from the Alber equation is greater than the probability obtained from the Rayleigh 

distribution. For the peak enhancement factor of a JONSWAP spectrum that is 20 and 

the Phillips parameter that is 0.03, the probability of waves whose heights are more than 

two times the significant wave height increased up to about 13 times compared to the 

classical values given by the Rayleigh distribution. Similarly, for the peak enhancement 

factor of a JONSWAP spectrum that is 10 and a constant value of Phillips parameter, 

the probability of waves whose heights are more than two times the significant wave 

height increased up to about 7 times. This reveals that the narrower the spectrum, the 

higher the probability of freak waves. The increase is much more significant for the 

probability of wave whose heights are more than three times the significant wave 

height. For � 	 �% and � 	 %�%�, the probability increased up to about 10000 compared 

to the Rayleigh distribution. The main parameters that play an important role in the 

JONSWAP spectrum in relation to the probability of freak waves are the energy scale 

and the peak enhancement factor. These two parameters are related through the 

dimensionless “width parameter”, }< which is defined as }< 	 
'����. 
For directional sea states, the probability of freak waves depends on three parameters, 

namely the energy scale, �, the peak enhancement factor, �, and the degree of the 

directional distribution, �. These three parameters are related through the dimensionless 
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“width parameter”, }!, which is defined as }! 	 
'���� � %�%��D'
��, where 
 is the 

wave steepness and �� is the normalization factor of the directional distribution.  

The probability of wave heights obtained from the Alber equation was also compared 

with the Forristall distribution that was derived from the second order theory. It is 

clearly shown the difference between the probability obtained from the linear wave 

theory, the second order theory and the Alber equation. The latter is the stochastic 

version of the cubic Schrödinger equation at the tails of the probability. In addition, 

based on our simulation, it was confirmed that at least three features that cannot be 

captured by the Forristall distribution could be observed from the Alber equation. It 

seems that Forristall distribution cannot capture the extreme events such as the freak 

waves. Moreover, the influence of the spectral shapes that can be observed in the Alber 

equation cannot be observed for the Forristall distribution as it only depends on the 

wave steepness for the deep water that is considered in this research. Besides that, 

Forristal distribution cannot be used to study the effect of the variation of the directional 

spreading.  

In short, it is found in this research that the probability of occurrence of the freak waves 

solely depends on the dimensionless “width parameter” }, where } 	 }< o 4 is used 

for the unidirectional JONSWAP spectra and } 	 }! o 4.1 is used for JONSWAP 

spectra with directional distributions. Therefore, one could not expect any freak waves 

for }< M 4 for unidirectional sea states and for }! M 4�4 for directional sea states. 

In addition, it should be mentioned that equations dealing with nonlinear evolution of 

water waves (i.e., the Alber equation, kinetic equation, Zakharov equation, etc.) do not 

have dissipation mechanisms and energy-input mechanisms. For example, the kinetic 

equation is most broadly employed by wave forecast models always combined with 

terms which represent wind energy input, wave-breaking dissipation, among others. 

Therefore, applying the outcomes of the Alber equation to the real waves in the ocean 

should be done with caution. Moreover, in theory the Alber equation and other 

equations based on higher-order terms in deep water allow for infinite wave heights to 

occur. In reality, there is a limit of wave steepness beyond which the waves will break.  
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Chapter 6 

Summary and Conclusions 

6 Summary and Conclusions 

6.1 Summary 

The cubic Schrödinger equation (see Zakharov, 1968) is a frequently used deterministic 

equation for describing nonlinear evolution in time and space of an ocean wave field 

with a narrow spectral band. This equation was used by Longuet-Higgins (1976) and 

Alber (1978) as their starting point to formulate two rather different stochastic evolution 

equations. Whereas Longuet-Higgins assumed that the wave field is a homogeneous and 

nearly Gaussian random process, Alber enabled the random process to be 

inhomogeneous, but requires Gaussianity. Although Crawford et al. (1980) provided a 

more general case where the phenomenon is  considered an inhomogeneous and nearly 

Gaussian random process, their result is so cumbersome that it has never been used so 

far. 

Longuet-Higgins (1976) result is actually the narrow-band limit of the Hasselmann 

(1962) kinetic equation. So far, the kinetic equation has been the most frequently used 

equation in stochastic models. However, the time scale is proportional to 
�E, where 
 is 

a typical small wave steepness (see also Janssen (2003) the non-resonant kinetic 

equation and Annenkov & Shrira (2006) for the extended kinetic equation). These 

equations were derived for homogeneous wave fields where the key step in the 

derivation is the assumption that the phases of the components are close to each other in 

wavenumber space and remain uncorrelated to the lowest order (Stiassnie et al. 2008).  

Alber (1978) used his equation to study the instability of a homogeneous wave-field to 

inhomogeneous disturbances. Alber’s findings are actually the stochastic counterpart of 

the well-known deterministic Benjamin–Feir instability, which can be described with 

the cubic Schrödinger equation. The growth rates of the inhomogeneous instabilities are 

proportional to 
!, reflecting the fact that the time scale of the Alber equation is 
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proportional to 
�!. Although Alber does not state it explicitly, the choice of his initial 

small inhomogeneous disturbances discloses a certain correlation between their phases 

and those of the homogeneous base state. 

Recently, Zuevsky (2008) and Stiassnie et al. (2008) used one spatial dimension of the 

Alber equation to study linear stability analysis for unidirectional wave fields. They 

determined the exact conditions of instability. One should note that the main difference 

between the work of Stiassnie et al. (2008) and the original work of Alber (1978) is the 

initial disturbance spectra, which are principally inhomogeneous through their phase 

relation to the homogenous spectrum in the Stiassnie et al. (2008) study. This is in 

contrast to the original work of Alber (1978) for which all initial phases were 

independent and randomly chosen. 

From the cubic Schrödinger equation, it is known that the Benjamin–Feir instability 

does not lead to a permanent end state, but to an unsteady series of modulation and 

demodulation cycles, called the Fermi–Pasta–Ulam recurrence phenomenon (see Yuen 

& Ferguson Jr 1978a,b, Janssen 1981, Stiassnie & Kroszynski 1982). Janssen (1983) 

used an asymptotic method to obtain subsequent evolution for the solution of the Alber 

equation near the threshold of instability and obtained a solution which is characterized 

by an initial small overshoot followed by an oscillation around its time asymptotic 

value. Recently, Stiassnie et al. (2008) integrated one spatial dimension of the Alber 

equation and found that in the area of instability, recurrent evolution, which is the 

stochastic counterpart of the Fermi–Pasta–Ulam recurrence obtained for the cubic 

Schrödinger equation, is obtained. Furthermore, Regev et al. (2008) used the results of 

Stiassnie et al. (2008), which is the recurrent evolution of the Alber equation, to study 

the probability of freak waves occurrence.  

Here we show an extension of the work of Stiassnie et al. (2008) and Regev et al. 

(2008) from one spatial dimension to two spatial dimensions. Essentially this thesis 

consists of three main parts. First, we performed the linear stability analysis of the two-

dimensional symmetric spectra, namely, the square spectra, the rectangular spectra, the 

Lorentz spectra and both the one- and the two-dimensional asymmetric ocean wave 

JONSWAP spectra subject to two-dimensional inhomogeneous disturbances. We then 

determined the most unstable modes and their growth rates for all cases. However, since 

the dispersion relation for the disturbance (see equation 3.17) cannot be solved 
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analytically for the JONSWAP spectrum, it is necessary to seek an approximate 

solution. To this end, we replaced the original spectrum by a sum of weighted Dirac-

functions and replaced the dispersion relation for the disturbance by a high order (up to 

70) algebraic equation, seeking the root with the largest imaginary contribution. A 

Lorentz spectrum has been used to validate this rather “general method”. 

Furthermore, we determined the marginal instability conditions for the disturbance and 

found that square spectra and rectangular spectra become stable to small 

inhomogeneous disturbance when the dimensionless spectral width, {|<, in the direction 

parallel to the carrier wave is greater than 2.75. Similarly, we found that the Lorentz 

spectra become stable to inhomogeneous disturbance when the dimensionless spectral 

width, {|<, is greater than q�.  

For more realistic sea states represented by JONSWAP spectra, we defined a new 

parameter for the unstable conditions which is called a dimensionless “width 

parameter”. It is found that the unidirectional JONSWAP spectra become unstable to 

small inhomogeneous disturbances when the dimensionless “width parameter” is  

}< 	 
�� o 4� 
where 
 is the wave steepness and � and � are the Phillips parameter and the peak 

enhancement factor of JONSWAP spectra, respectively. Similarly, the JONSWAP 

spectra with directional distribution become unstable to inhomogeneous disturbances 

when the slightly corrected dimensionless “width parameter” satisfies the condition of 

}! 	 
�� � %�%��D
�� o 4�4� 
where �� is the normalization factor of the directional spreading (see Chapter 3 for 

more details). Note that the defined dimensionless “width parameter” in this work was a 

further development of the unstable transition properties available in the literature.  

In addition, we study the dependence of the most unstable mode wavenumbers and 

growth rates on the parameters of spectral width. We have shown, using the square 

spectra and the rectangular spectra numerically and using the Lorentz spectra 

analytically, that the maximum growth rate is independent of the spectral width in 

direction perpendicular to the carrier wave. On the other hand, using more realistic 
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ocean wave JONSWAP spectra with directional distributions, we found that the degree 

of the directional spreading influences the maximum growth rate of the disturbance. 

This is due to conservation of the total energy when using the JONSWAP 

parameterization of real spectra. We have shown that when the degree of the directional 

distribution is increased, then the maximum growth rates will also increase. 

It appears that the conclusion from the two-dimensional symmetric spectra such as the 

square spectra, the rectangular spectra and the Lorentz spectra is different from the 

conclusion obtained based on the JONSWAP spectra with directional distributions in 

terms of dependency on the transverse width of the spectrum. However, one can easily 

compare these spectra, namely the Lorentz spectra and the JONSWAP spectra by 

maintaining that both spectra have the same total energy and momentum, and will find 

that changing the power of the directional distribution of the JONSWAP spectra will not 

only change the spectral width, which is perpendicular to the carrier-wave of the 

Lorentz spectra, but also the spectral width, which is parallel to the carrier wave. 

In the second part of this thesis, we study the stochastic counterpart of the Fermi-Pasta-

Ulam recurrence by integrating the Alber equation numerically. A finite difference 

method was used to integrate the Alber equation by prescribing initial conditions and 

boundary conditions. Moreover, we chose the most unstable modes obtained in the first 

part of this thesis for our simulation (see Chapter 3 for more details). These simulations 

are limited to the JONSWAP spectra with and without directional distributions. It is 

found that for unidirectional JONSWAP spectra, whenever the dimensionless “width 

parameter”, }< o 4, the Alber equation yields recurring solutions. Specifically, the 

decrease in the “width parameter”, }<, is accompanied by an increase in the peak 

enhancement of the recurrence and a decrease in the numerical duration. Similarly, for 

the JONSWAP spectra with directional spreading, the Alber equation yields recurrent 

solutions whenever the dimensionless “width parameter”, }! o 4�4. Specifically, we 

study the influence of the directional spreading on the long-time evolution.  

It was shown that for JONSWAP spectra with the degree of the directional distributions � 	 4% and � 	 �%, which is from fairly broad directional spread to fairly narrow 

directional spread, the recurrence nature of the solutions is clearly manifested. These 

behaviours were in contrast to the solution for � 	 � which describes a very broad 

directional spread where there is no recurrence. Moreover, the derivation of the 
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invariants of motion, which are the quality control of the numerical solutions, for two-

dimensional Alber equation was an additional development of this work (see Chapter 4 

and Appendix � for more details).  

Possible manifestations of such inhomogeneous disturbances in nature, which can be 

used to study the development of freak waves, are the third part of this thesis. 

Specifically, we took advantage of the periodicity imposed by the initial disturbance and 

the consequent recurrent evolution of unstable spectra to calculate the probability of 

freak waves. Firstly, we derived an equation for the wave height probability based on 

the Rayleigh distribution. However, in order to implement the equation, one needs a 

probability density function. To this end, we took one cycle of the recurrent solution to 

establish the probability density function. The probability of wave heights can be 

determined in the straightforward fashion. Note that a wave whose height exceeds two 

times the significant wave height is categorized as a freak wave and a wave whose 

height is more than three times the significant wave height is called an exceptionally 

freak wave.  

For unidirectional JONSWAP spectra, we simulated nine cases which are for � 	 �% 

with � 	 %�%4� %�%4D� %�%�� %�%��� %�%� and for � 	 4% with � 	 %�%4D� %�%�� %�%�� 

and %�%�. In general, probability of freak waves obtained from the Alber equation is 

higher than the probability of freak waves given by the classical value of the Rayleigh 

distribution obtained for homogeneous seas. Specifically, the higher value of peak 

enhancement factor of JONSWAP spectrum will give a higher value of probability of 

occurrence of freak waves, while keeping the same energy scale �. Similarly, an 

increased value of the energy scale will give an increased value of probability of freak 

waves while keeping the same peak enhancement factor of JONSWAP spectrum. In this 

case, the main parameters are the energy scale and the peak enhancement factor. These 

two parameters are related through the dimensionless “width parameter” }<. It is found 

that an increase in the value of }< is accompanied by a decrease in the value of the 

probability of occurrence of freak waves. 

For JONSWAP spectra with directional distributions, we chose the value of parameters � 	 %�%4D and � 	 4% with two different values of the degree of the directional 

distributions, � 	 4% and � 	 �%. It is found that the probability of waves whose 

heights are larger than two times the significant wave height is 
49 10−×  when the degree 
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of the directional distribution is 50 and decreases down to 
47 10−×  when the degree of 

the directional distribution decreases to 10. Overall, this probability is significantly 

lower than in the unidirectional case with the same value of parameters � and �. 

The reduction is even more significant for the probability of exceptionally high freak 

waves. It is of the order of 
810−
 for the Rayleigh distribution, 

716 10−×  for case � 	 �% 

and 
75 10−×  for case"� 	 4%� Moreover, similar to the unidirectional case, it is found 

that an increased value of }! is accompanied by a decreased value of the probability of 

occurrence of freak waves. 

Finally, using all our results from the probability of occurrence of freak waves, the 

occurrence probability of freak waves can be estimated by simple relations using the 

best fit: 

(1.80 1.50 )( 2 ) 10f sP H H
− + Π> =

 

(2.00 4.65 )( 3 ) 10f sP H H
− + Π> =

 

where £� and £© are the freak wave height and the significant wave height, 

respectively. In addition, 1 1Π = Π <  and 2 1.1Π = Π <  are used for the unidirectional 

JONSWAP spectrum and JONSWAP spectrum with the directional distribution, 

respectively as the indicators for the unstable conditions. The fact that almost any wave 

field, with a single peak frequency, can be approximated by a JONSWAP spectrum, 

adds to the applicability of the aforementioned result. Finally, we have to emphasize 

that our results for the probability of freak waves are in qualitative agreement with the 

results from both the laboratory experiments such as Waseda et al. (2009), Onorato et 

al. (2009a) and Babanin et al. (2011b) and numerical simulations (e.g. Eliasson and 

Shukla (2010), Toffoli et al. (2010b)). In particular, all previous results from the wave 

flumes and the numerical simulation concluded that the occurrence probability of freak 

waves decreases when the directional spread of the initial spectrum increases. 

In order to complete our comparisons, the probability of wave heights obtained from the 

Alber equation was also compared with the Forristall distribution that was derived from 

the second order theory. It is clearly shown the difference between the probability 

obtained from the linear wave theory, the second order theory and the Alber equation. 
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The latter is the stochastic version of the cubic Schrödinger equation at the tails of the 

probability. Based on our simulation, it was confirmed that at least three features that 

cannot be captured by the Forristall distribution could be observed from the Alber 

equation. It seems that Forristall distribution cannot capture the extreme events such as 

the freak waves. Moreover, the influence of the spectral shapes that can be observed in 

the Alber equation cannot be observed for the Forristall distribution as it only depends 

on the wave steepness for the deep water that is considered in this research. Besides 

that, Forristal distribution cannot be used to study the effect of the variation of the 

directional spreading.  

It is important to mention that the initial inhomogeneous disturbances that are used in 

this work were taken to depend on the homogeneous spectra themselves, namely: (i) the 

wavenumber of the most-unstable mode is a property of the spectrum (see equation 

(3.17)), (ii) the function µ�a� in equation (3.10) was taken as W¡�a�, and (iii) δ in 

equation (3.8) was assigned the value 0.1 which is typically of the order of ε . The 

influence of different choices of disturbances is demonstrated in Stiassnie et al. (2008), 

Regev et al. (2008) and more recently in Eliasson and Shukla (2010). 

It is instructive to remind the various choices that we have made in this study. First, in 

order to enrich our knowledge about its possible physical consequences, we chose to 

explore the Alber equation rather than other possibilities listed in Table 2.1. Second, we 

decided to study the long-time evolution of unstable homogeneous spectra subject to 

their most unstable inhomogeneous disturbance; a choice which resulted in a recurrent 

solution. Taking either stable homogeneous spectra or other inhomogeneous 

disturbances is expected to yield a wealth of other types of solutions. To this end, one 

can refer to the recent work of Stiassnie et al. (2008). Third, the specific details of the 

initial inhomogeneous disturbance were taken to depend on the homogeneous spectra 

themselves. Other options are also possible (see Regev et al. (2008)). Finally, we took 

advantage of the periodicity imposed by the initial disturbance and the consequent 

recurrent evolution of unstable spectra in order to calculate the probability of freak 

waves, implying that for stable spectra the freak wave probability will be given by the 

Rayleigh distribution. Therefore, we are aware that alternative choices are available and 

we thus consider the interesting phenomenon of stochastic recurrence as opening a new 

avenue in the theory of stochastic weakly nonlinear wave fields.  
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6.2 Further work 

In the theory of the Alber equation and other equations based on higher-order terms in 

deep water allow for infinite wave heights to occur. In reality, there is a limit of wave 

steepness beyond which the waves will break (Babanin et al., 2010), and for one-

dimensional waves this limit indicates the maximum ratio of individual wave height to 

the significant wave height of the order of ~2.0 (Babanin et al., 2011a). This issue has to 

be quantitatively addressed for two-dimensional surfaces.  

It should also be mentioned that equations dealing with nonlinear evolution of water 

waves (i.e., the Alber equation, kinetic equation, the Zakharov equation, etc.) do not 

have dissipation mechanisms and energy-input mechanisms. For example, the kinetic 

equation is most broadly employed by the wave forecast models, but always combined 

with terms which represent wind energy input, wave-breaking dissipation, among 

others. Therefore, applying the outcomes of the Alber equation to the real waves in the 

ocean should be done with caution. It is known, both from solutions of the nonlinear 

Schrödinger equation with energy sources/sinks added and from experiments, that 

instability of wave trains is altered due to such external forcing (Trulsen and Dysthe, 

1992, Galchenko et al., 2012, Onorato and Proment, 2012). It will be interesting to 

investigate the ocean surface waves using the Alber equation under the influence of 

wind energy input and dissipation. Since the Alber equation was derived from the cubic 

Schrödinger equation, it is possible to include the external forcing.  
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Appendix A: Derivation of the Invariants 

 

The invariants in the Chapter 4 were derived as follows: 

1. First invariant  

Evaluating equation (3.1) at = 0r  gives 
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 (A.1) 

Integrating (A.1) over the two-dimensional domain [ ] [ ]1 20,2 / , 0,2 /x p x qπ π∈ ∈  and 

applying the periodicity yields, 

1 ( , , )I t dρ
=

=  0r
x r x  (A.2) 

which is related to the wave action. 

2. Second invariant  

The second invariant consists of two components. The first component of this invariant 

is defined by taking the first order partial derivative of the equation (3.1) with respect to

1,r  that is 1/ ,r∂ ∂  and evaluating at ,= 0r  which gives 
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Again, integrating (A.3) over the two-dimensional domain [ ]1 0,2 / ,x pπ∈
 

[ ]2 0,2 /x qπ∈  and applying the periodicity yields, 
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which is related to the wave momentum along 1r . 
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Similarly, taking the first order partial derivative of equation (3.1) with respect to 2 ,r  

that is 2/ ,r∂ ∂  evaluating at = 0r  and then integrating over the two-dimensional 

domain [ ]1 0,2 / ,x pπ∈
 

[ ]2 0,2 /x qπ∈  gives 

22
2

( , , )t
I d

r

ρ

=

∂
= 

∂
0r

x r
x  (A.5) 

which is related to the wave momentum along 2.r  

3. Third Invariant 

To obtain the explicit formula for this invariant, firstly, taking the second order partial 

derivative of the equation (3.1) with respect to 1,r  that is 2 2
1/ ,r∂ ∂  evaluating at = 0r  

and integrating over the two-dimensional domain [ ]1 0,2 / ,x pπ∈
 

[ ]2 0,2 /x qπ∈  as 

well as applying the periodicity yields, 
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Applying a similar procedure to 2r  gives 
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Evaluating equation (3.1) at ,= 0r  then multiplying by ρ  and integrating over x  

yields, 
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Integrating the right hand side of this equation by parts over ,x  and applying the 

periodicity yields, 
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Substituting (A.6) and (A.7) into (A.8) gives the third invariant as follows: 

2 2
2

3 4 2 4 2
0 1 0 2

1 ( , , ) 1 ( , , )
( , , )

4 2

t t
I t d d d

k r k r

ρ ρ
ρ

=
= =

∂ ∂
= + −  

∂ ∂0
0 0

r
r r

x r x r
x r x x x  (A.9) 

which is related to the energy of the system. 
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