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ABSTRACT

An algebraic method for the solution of some dynamical problems for

a non-relativistic system with known symmetry properties is given, in the

case of the so-called broken symmetry. Examples of soluble models are

given. One of these, based on the non-compact group Sp(6,R), gives a mass

formula for baryons depending on three parameters which reproduces the

known masses within electromagnetic mass differences. The model implies

the relation

Y* - L 5
£ - A 2

in good agreement with experiment. The mass formula in the model can be

considered as an eigenvalue solution of a differential equation in an appro-

priate Riemannian manifold.

Relation with the proposed models and charge algebras is discussed.





ON THE ALGEBRAIC FORMULATION OF DYNAMICAL MODELS

I. INTRODUCTION

In a previous work it was shown how one can give an algebraic

formulation of the dynamical problem of some classical systems whose

symmetry properties may be represented by simple Lie groups.

The interest of this approach lies in its generality which, we may

hope, will help provide some insight into the dynamical properties of

systems with no classical analogue for which the symmetry properties are

the experimentally best known features.

These symmetry properties are conventionally expressed by the

existence of a Lie algebra which, in a Lagrangian formulation of the theory,

commute both with the interaction and mass operator.

In the present approach the Lie algebra considered does not commute

with the mass operator and it is precisely the commutation relations of the

latter with the generators of the Lie algebra which determine the dynamical

properties of the system, and in particular its mass spectrum.

It is known that in general the existence of discrete mass spectra put

severe restrictions on the possibility of mixing internal with space time

symmetries. We thus restrict our consideration, for the moment, to non-

relativistic systems at rest.

The outline of the method is the following: let So be the symmetry

algebra of a system with the property of commuting with the mass operator

Mo which in turn is a non-commuting member of a larger algebra S
2)*

leaving S6 as a subalgebra; the algebra S , called dynamical algebra
3)

or spectrum-generating algebra (SGA) is characterized by having re-

presentations which are a direct sum of the discrete representations of So

belonging to the different eigenvalues of Mo .
Once So , S and Mo are known, the Casimir operators of S ,

* The concept of dynamical algebra as introduced by Barut differs from ours in that it implies >̂ resulting
from a contraction of S .
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for the value corresponding to the desired representations, allowthe de-

termination of Mo as a function of the Casimir operators of So .

By this meth,od; the dynamical problem of maximal degenerate

systems (for which Ma depends from only one quantum number) can

easily be solved.

We shall now try to apply the method to the case of so-called broken

symmetry. That is , the mass operator Mo is substituted by a new

operator M which will be invariant only with respect to a subgroup s0

of Ŝ> . This will obviously induce a lowering of the degeneracy of the

mass eigenvalues but we will see that if the breaking is obtained with the

criterion of introducing in the mass operator only commuting operators

belonging to So or to its enveloping algebra, the Casimir operator of the

original group S can still give an exact eigenvalue equation for M .

We shall see further that when the mass breaking is attained

according to the above rule, in the field theory obtained by operating a second

quantization on the eigenstates of the mass operator, the "charges" build

up the algebra So even after the symmetry is broken.

We shall give some examples of application, and a model suitable

for reproducing some aspects of baryon physics.

II. THE METHOD

Let So be a symmetry algebra for the mass operator Mo which in

turn is a generator of a larger algebra S containing So as a subalgebra.

Let the system be a maximal degenerate one. The Casimir opera-

tor C of S will be of the form

(1) C = Co + Mo + A

where Co is the Casimir operator of So and A depends on C and

Co only. C determines the representations of S and we shall be interest-

ed in those which contain the desired ones of So once and only once. Then
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Eq. (1) determines Mo as a function of Co and each eigenvalue of Mo

defines a multiplet of eigenstates belonging to it.

It is known that in general we can choose a number of commuting

operators belonging to the algebra So or to its enveloping algebra that

remove partially or completely the degeneracy of Mo .

Let us suppose we are able to identify the subgroup so of So which

remains after the symmetry is broken; this identification is in general

possible by direct inspection of the experimental data suggesting

which are the good quantum numbers.

This identification determines the set of operators which removeathe

degeneracy of Mo . If we are now able to decompose Co in (1) in terms

of Co ,the Casimir operator of sQf and operators O{ commuting among

themselves with Mo and with s0 and define M as the sum (or more

generally a function) of these operators and Mo , the new relation obtained

from (1) will be of the type: r

(2) M = M (Co , co , Oi)

and will determine the mass splitting inside the multiplets of Mo . In

general we shall also request that the operators to be added to Mo be

traceless and irreducible with respect to the unbroken symmetry So .

The corresponding eigenstates will be given by those linear com-

binations of the eigenstates of Mo (belonging to the same eigenvalue)

which are simultaneous eigenstates of the operators added to Mo to obtain

M .

By this procedure no arbitrary parameter is inserted in (2). But

it may happen that some of the commuting operators which are necessary

to lower the degeneracy of Mo do not appear from the decomposition of

Co ; in such a case one can try to find another group S from which to start

or simply add these operators in both members of (2). Obviously if

this second heuristic method is adopted for each new addition a new arbi-

trary parameter will be added in the mass formula.
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III. APPLICATIONS

In order to gain insight into the method, we shall start from a model

having some kind of similarity to elementary particles and in which the

mathematical algorithm is simple enough not to hide the physical content.

In order to simplify the algebraic calculations we shall use as far as

possible the raising-lowering operators technique.

a) The six-dimensional oscillator model.

3)
It is known that some of the properties of elementary particles can

be represented by a model of two uncoupled oscillators with creation and

annihilation operators:

In case of isotropy the Hamiltonian

(4) M.= "f

commutes with the algebra U(6) of generators.

J
(5)

r ? i I K l - S K c :

and every eigenstate of the system belonging to SU(6) representations of

the type (N, 0000), given by

(6)

with degeneracy v^,' jT,"
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is contained once and only once in two infinite-dimensional representations

of Sp(6,R) of generators:

whose commutation relations are easily obtained using (3).

The second order Casimir operator Q^ of Sp(6,R)

has the same eigenvalue -39/2 for both representations and from this value

the dependence of Mo from C& , the second order Casimir operator of

SU(6), is immediately obtained:

Now let us suppose that the symmetry is broken by letting

and the two three-dimensional oscillators correspond to different frequencies

û  and u^ . It is clear that the commutation relations of the a's and b' s

will remain unchanged and will be so for the operators (3) which are defined

in terms of the a's and b's . Only the Hamiltonian will be changed:

-^f^.a^ ^ i-[V AK
and will be symmetric only with respect to the algebra SU(3)a x

The eigenstates of the H will still be of the type

(10) /X!..*'' K ^ - - ( b 3 ^ \°> e i <*'V < V s / *

with degeneracy lowered to
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That Is, we shall have a splitting of the previous levels due to the breaking

of the symmetry. But the spectrum-generating algebra remains the same,

and we can still obtain from its Casimir operator a mass forraula which is

exact. We can write in fact:

with

Cartan operator of SU(6) invariant of SUa(3) x SUb(3). If we now reduce

the Casimir operator of Sp(6, R) with respect to SUa(3) x SUt,(3) we obtain:

0- I
where C3 and C, are the Casimir operators of the two SU(3) subgroups.

3

If we now note that Mr = u ( /3 /2 C* + 9/4 - Jz/2 c j + 9/4 ) and

substitute Mo obtained from (11) in (12), we obtain:

(13)

with ^ , j b = 0, X, 2, . .. defined by C^ = 2/3 j ^ (j^ + 3) , a formula

which is exact, but contains two arbitrary parameters.

In general, a similar result is obtained if we substitute for Mo any

function of Mo and M̂  instead of just the linear one. If we wish to

obtain the form of M for the broken symmetry with no arbitrary para-

meters but depending only on the chosen non-compact group Sp(6,f£), we

shall simply substitute in (5):

Then we obtain from Eq. (12):
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(15) MsVi^

exact for all states labelled by Mo and M-. eigenvalues,

b) The Elliott model and its generalization for hadrons

We shall now show that the same algebra may also account for the

baryon mass spectra. To this end we shall first formulate with our
4)method the Elliott model. As is known, the Elliott model amounts to

considering the nucleons bound in the nucleus in an elastic potential well

to which a quadrupole type interaction is added.

Let a. , a°£ be the creation-annihilation operators for the system

where the index a ~ 1, . . . , A refers to the nucleon in the nucleus and i

refers to the spatial degree of freedom (for simplicity we shall not con-

sider spin and isotopic spin here).

Then, the generators

build up the algebra of U(3A) and together with

the spectrum-generating algebra Sp(3A,R).

If we define

- % A

(16) M.--TZ.'I

we easily obtain

from which we get
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We know also that Mo commutes with the algebra SU(3) with genera-

tors

no\ r4-* 4 4 r ^ T si* 1 A. I * ftp

This means that the Mo eigenstates build up irreducible representations

of this algebra also.

If we re-arrange these generators in such a way as to obtain among

them the generators of the SO(3) algebra of orbital angular momenta

(19) i

the other five generators are

The Casimir operator of SU(3) now appears:

(20) C3 = £ Ll - 1 *

where q^ = -̂ 2TmC~) q ^ q ^ , and both commute with Mo .

The simultaneous eigenstates of Mo , L , q , C 2 will now be built up

by particular linear combination of the symmetric SU(3A) eigenstates.

Following our procedure, we can now substitute for Md ; M given by:

with 7 arbitrary parameter, which amounts to adding to the elastic

potential a collective quadrupole interaction. From (17) and (20) we

obtain the Elliott energy spectrum:
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f21>
2-

where L = i (i + 1) and C3Gu,V) is determined.

Let us now take a similar model to describe baryons. We shall take

the same algebra of the preceding paragraph to describe a hadron system;

we have only to interpret the indices of the a and a+ as relating to the

internal degree of freedom of quarks (spin and unitary spin).

Then, as usual, we shall assign the baryons (built up by 3 + 2n

quarks) to the symmetric representations of SU(6). Taking once again

Sp(6,R) as the spectrum-gene rating algebra we obtain for the unbroken

symmetry*:

(22)

We shall now break the symmetry with respect to SU(3) x SU(2) when the

first algebra refers to isotopic spin and the second to ordinary spin. The

Casimir operator C^ of SU(6) will correspondingly break:

(23)

valid for all symmetric representations of SU(6). Again C-j , C^ and

C^ commute with Mo . As in the Elliott model we shall now substitute

Mo by M given by

(24) ri - i<?- |-°tCi

(which amounts to adding a spin-dependent interaction) and we get

(25)

with a arbitrary constant.

The eigenstates of M will be those linear combinations of the sym-

metric eigenstates of SU(6) which are simultaneous eigenstates of C^ and

C3 . These quadratic operators in the frame of the SU{6) algebra are

* Here, obviously, the indices have no relation to spatial degree of freedom and correspondingly there is no
place for interpretation of spatial potential.
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neither traceless nor irreducible. In order to break the symmetry further

we shall decompose all tensors in (25) in traceless and irreducible parts;

we thus obtain

Substituting this expression and noting that — Cj - J (J+l) - rrr Ĉ , is

identically zero for the symmetric representation of SU(6) we obtain

(26) n= C

Now, breaking the SU(3) symmetry in SU(2) x U(l), where SU(2) refers

to isotopic spin, we obtain:

(27) % C3 =

Inserting this into (26) and adding the traceless operator T3 , commuting

with C3 and I , to M we get

(28) ?? = <~

In breaking the symmetry for SU(3) to SU(2) x U(l) we could also have

changed the frequencies of the six-dimensional oscillator, putting

This would have changed Mo to Mo given by:

and again M<> commutes with all the preceding operators inserted in M

"We finally obtain

(29) 7K*c
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For u' - .1241 , a . .039 , |3 = -.1955, the (29) fits the experimental

baryon masses within the e. m. mass differences, i .e . , within .5%. The

mean mass of the next SU(6) representation J252^ would bei.-U?; BeV.

Considering that for the symmetric representations C5 = 2J(J + 1)

+ T C 6 t we see that (29) can also be written in the form:

(30) TIL •

with Vn0 = 1,066 BeV, for the [56? and h\o = 1..6Atf BeV for the [252}

representations respectively. From (30) one obtains the relation

(3D
-/\

as compared with the experimental value 5. 01.

It must be pointed out that (29) is exact in the frame of the model;

that is, (29) represents the exact eigenvalues of >h for the eigenstates of

the SU(6) symmetric multiplets which are eigenstates of I , J , Y and Cj .

One can also try to trace back from (29) a differential operator which

gives the eigenvalue equation in an appropriate symmetric space.

Following RĴ CZKA it is sufficient to consider the group of motion

in a six-dimensional Riemannian space locally isomorphic to Tt33 SO(5)

or TtH 5* Si SO(4) or T t S S* BS SO(3) 33 SO(3) . Taking the line element

in this space as

2

(32)

the Klein-Gordon equation obtained from the Laplace-Beltrami operator in

this space is:

(32')
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with orthonormal solutions;

imt i
(33)

where the eigenvalue yno is contained in T̂v .

Since we are interested in the non-relativistic theory, the correspond

ing Schrodinger equation which has the same symmetry group is

^ -/ / a • a 9 . A

(34)
4 A

RJ*i

(33) is still the eigenfunction of the non-relativistic Eq. (34) with eigen-

values

Putting S = Y + B with Y hypercharge we have

05,

which is identical to (30), with the substitutions

In this formulation I and J can only take integer values but one can note

that in order to obtain half integer values of I and J as well as integer

ones it is sufficient to take, instead of the Riemannian space V̂  * T ĴS S"1"

BJ S'S S*" with the group of motion T1® SO(2) EJ SO(3) S SO(3) , the

Riemannian manifold Vg & Tt EJ S1 H S! Ef Si with the same isometry group.

* This substitution was suggested by Raczka.
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From this, one can easily obtain the Green function which is connect-

ed with the baryon propagator in the static limit.

For the mesons one can try to reduce Sp(6,R) with respect to the

non-maximal degenerate representations of SU(6) or to go to higher groups.

As an example of this approach one could formulate a model having a

closer resemblance to the Elliott model for nuclei also introducing indices

into the creation-annihilation operators referring to the space degree of

freedom.

Then the operators are

a- 4.- oci, - i
" - h*.~*

where the upper indices refer to unitary and ordinary spin and the lower to

spatial degrees of freedom. The algebra is now U(18) which can be broken

first to U(6) x U(3) and then to U(6) x O(3) when a quadrupole term of inter-

action is added to the elastically bound quarks; the mass formula will then

contain a term otJL (i +1) with S. orbital quantum number. Starting from

a bigger group, one obviously obtains mixing of representations when the

subgroup is considered. In this particular example in the 1140 represent-

ation of SU(18), the baryon appears as a mixing of 56, 70 and 20 represent-

ations of SU(6).

IV. CHARGE ALGEBRA

Referring to the models constructed with the SU(6) group, let us now

consider the six states

which form the basis for the irreducible representation (10000) of SU(6)j,

in cases of both broken and unbroken symmetry. We can consider them

as the six components ^ ; of a six-dimensional basic spinor | ip >. Then

defining in the usual way the corresponding bra < ijj \ it follows that the

charges

-13-



(36) < v ^ | ^ ^ !</">-

transform as the generators E: under an SU(6) transformation.

If we introduce a second quantization of this theory it is clear that,

corresponding to the "charges", (36) would be integral non-commuting

operators which would obey the equal-time commutation relations

(37)

These commutation relations are exact and the theory builds up the

SU(6) algebra despite the fact that the symmetry is broken from SU(6) to SU(3)

x SU(3) x •¥(!) or to SU{2) x U(l) x SU(2).

The breaking of the symmetry will determine the fact that, of

the 35 SU(6) charges C j , only the IT belonging to SU(3) x SU(3) x U(l) or the

7 of SU(2) x U(l) x SU(2) will be time independent; that is, they will com-

mute with the mass operator th .

In each particular case considered it will be possible to calculate

the matrix elements of C j between particular eigenstates of ?w which,in

the baryon model,will be linear combinations of the type

but the matrix element of the charges (36) will "be different from zero

only between states of the same multiplet of 7vt0 since they all commute

with vw0 .

The time-dependent charges will now have zero matrix element

between states belonging to different representations of SU(3) x SU(3)x U{1)

(or SU(2) x U(l) x SU(2)) and these matrix elements will be proportional

to the parameter multiplying the term in the mass operator which reduces

the symmetry from SU(6) to SU(3) x SU(3) . x U(l) (or SU(2) x U(l) x (SU(2)> But

the matrix element of the time-independent charges of the reduced sym-

metry (the 17 generators of SU(3) x SU(3) x U(2) or the ones of SU(2) x U(l)xSU)(2)
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will be different from zero only between states belonging to the same re-

presentation of SU(3) x SU(3) x U(l) or SU(2) x U(l) x SU(2).

Once the states are determined it will be possible from (37) to de-

termine sum rules etc.

V. CONCLUSION AND OUTLOOK

We have shown that once the labelling of the states of a system accord-

ing to a given symmetry group is assigned and the sequence of the multi-

plets of this group is known, one can find a non-compact (eventually compact)

spectrum-generating algebra which generates the given states spectrum.

From the Casimir operator of the non-compact group one can then

obtain exact solutions for the mass spectrum of the system, even in cases

of so-called broken symmetry, in terms of the conserved quantum numbers.

In corresponding quantized field theories the "charges" generate the un-

broken symmetry algebra but only some of them commute with the mass

operator and are constants of the motion.

There are still a number of open questions. One is the identification

of the proper group. It is clear that the choice of the spectrum-generating

algebra is not unambiguous. And this choice determines both the number

of arbitrary parameters in the mass formula and the multiplet mixing of

the assigned symmetry. Another important problem is the generalization

of such an approach to a moving relativistic system and it is to be expected

that the relativistic covariance requirements will bring about restrictions

on the symmetry breaking of the original group as obviously happens in

the case of the hydrogen atom when relativistic covariance reduces the

symmetry in a well defined way from SO(4) to SO(3),
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