
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

On the algebraic structure of quasi‑cyclic codes I :
finite fields

Ling, San; Sole, Patrick

2001

Ling, S., & Solé, P. (2001). On the algebraic structure of quasi‑cyclic codes I: Finite fields.
IEEE Transactions on Information Theory, 47(7), 2751‑2760.

https://hdl.handle.net/10356/96416

https://doi.org/10.1109/18.959257

© 2001 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at: [DOI:
http://dx.doi.org/10.1109/18.959257].

Downloaded on 23 Aug 2022 12:37:35 SGT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001 2751

On the Algebraic Structure of Quasi-Cyclic Codes I:
Finite Fields

San Ling and Patrick Solé, Member, IEEE

Abstract—A new algebraic approach to quasi-cyclic codes is in-
troduced. The key idea is to regard a quasi-cyclic code over a field
as a linear code over an auxiliary ring. By the use of the Chinese
Remainder Theorem (CRT), or of the Discrete Fourier Transform
(DFT), that ring can be decomposed into a direct product of fields.
That ring decomposition in turn yields a code construction from
codes of lower lengths which turns out to be in some cases the cel-
ebrated squaring and cubing constructions and in other cases the
recent ( + ) and Vandermonde constructions. All bi-
nary extended quadratic residue codes of length a multiple of three
are shown to be attainable by the cubing construction. Quinting
and septing constructions are introduced. Other results made pos-
sible by the ring decomposition are a characterization of self-dual
quasi-cyclic codes, and a trace representation that generalizes that
of cyclic codes.

Index Terms—( + + + + ) construction, Chi-
nese remainder theorem (CRT), discrete Fourier transform (DFT),
quasi-cyclic codes, self-dual codes,( + ) construction, ( +

) construction.

I. INTRODUCTION

QUASI-CYCLIC codes have been around for more than
35 years. They constitute a remarkable generalization of
cyclic codes. First, they are asymptotically good [16],

[30] due to their abundant population. Second, they have pro-
duced many record breakers in short lengths [9]–[12]. Finally,
they are closely linked to convolutional codes [6], [27]. (More
references can be found in [3].) In spite of their respectable age,
their algebraic structure has not been satisfactorily elucidated so
far. One approach uses a module structure over an infinite ring
[4]; another, more recent, employs Gröbner bases [18].

In this work, we propose to view quasi-cyclic codes of length
and index over a field as codes over the polynomial ring

When is coprime with the characteristic of, the latter ring
can be decomposed into a direct sum of fields.

This decomposition can be achieved by either the Chinese
Remainder Theorem (CRT) or the discrete Fourier transform
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(DFT) (exactly the Mattson–Solomon transform for cyclic
codes of length over ). The benefits of this approach are
twofold. First, we can investigate self-dual quasi-cyclic codes
in a systematic way. Second, we can decompose quasi-cyclic
codes into codes of lower lengths. The composition products
that occur are very well known [29] in the area of trellis
decoding: twisted squaring [1], cubing [8], ternary cubing
[17], [14], Vandermonde [15]. As the main
example, we give a motivation for the existence of the Turyn
construction for the Golay code and generalize it to all binary
extended quadratic residue codes of length a multiple of three.
New constructions (quinting, septing) are introduced as well.

We hope that a future impact of this work will be more effi-
cient trellises for more block codes and more lattices.

The paper is organized in the following way. Section II con-
tains some basic notations and definitions. Section III discusses
the correspondence between quasi-cyclic codes over a field
with linear codes over the auxiliary ring . Section IV
develops the alphabet decomposition using the CRT. Section V
tackles the same problem with the DFT which results in a trace
representation for quasi-cyclic codes that generalizes nicely the
trace representation of cyclic codes and linearly recurring se-
quences. Section VI develops applications of the above theory,
first for small lengths of the composition codes (e.g., double
circulant codes), then, for large lengths. In Section VII, we in-
clude a discussion on self-dual binary quasi-cyclic codes. An
appendix collects the necessary material on permutation groups
of codes. In particular, we give as examples affine-invariant and
extended quadratic residue codes.

II. FACTS AND NOTATIONS

A. Codes Over Fields

Let denote a finite field. When its cardinalityneeds to be
specified, we will write . If is an extension of degree

of , then the trace of down to is

A linear code of length over is an -vector subspace
of . The dual of a code is understood with respect to
the standard inner product. A codeis self-dualif .
We denote by the standard shift operator on . A (linear)
code is said to bequasi-cyclicof index or -quasi-cyclic if and
only if it is invariant under . If , it is just a cyclic code.
Throughout the paper, we shall assume that the indexdivides
the length . For instance, if and the first circulant block is
the identity matrix, such a code is equivalent to a so-called pure
double circulantcode [21]. More generally, up to equivalence,
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the generator matrix of such a code consists of circulant
matrices. This point will be elaborated upon in Lemma 3.1.

B. Codes Over Rings

For a commutative ring with identity, a linear code of
length over is an -submodule of . If is a subset of ,
checking linearity is equivalent to checking the two conditions

• ;

• , ,

with addition and scalar multiplication as per the laws of the
ring .

III. QUASI-CYCLIC CODES

Let be a finite field and let be a positive integer
coprime with the characteristic of. Let denote the poly-
nomials in the indeterminate with coefficients in . Let

. This is the same ring which
is instrumental in the polynomial representation of cyclic codes
of length over . Namely, cyclic codes of length over
are essentially ideals of .

Let be a quasi-cyclic code over of length and index
. Let

denote a codeword in .
Define a map : by

where

Let denote the image of under . The following lemma
is well-known (cf. [18] for instance).

Lemma 3.1:The map induces a one-to-one correspon-
dence between quasi-cyclic codes overof index and length

and linear codes over of length .
Proof: Since is a linear code over , is closed

under scalar multiplication by elements of. Since in
,

where the subscript is considered to be in
by taking modulo . The word

corresponds to the word

which is in since is quasi-cyclic of index . Therefore,
is closed under multiplication by , and hence is

an -submodule of .
By reversing the above argument, one sees immediately that

every linear code over of length comes from a quasi-cyclic
code of index and length over .

We now proceed to the study of duality for linear codes over
, in relation with the duality of codes over. We define a

“conjugation” map on as one that acts as the identity on
the elements of and that sends to , and is
extended -linearly.

We define on the usual Euclidean inner product: for

and

we define

On , we define the Hermitian inner product: for
and

Proposition 3.2: Let . Then for
all if and only if .

Proof: The condition is equivalent to

(1)

Comparing the coefficients of on both sides, (1) is equivalent
to

for all (2)

where the subscripts are taken modulo . Equation (2)
means precisely that . Since ,
it follows that (2), and hence , is equivalent to

for all .

By applying Proposition 3.2 with belonging to an -quasi-
cyclic codes of length over , we obtain the following.

Corollary 3.3: Let be a quasi-cyclic code overof length
and of index and let be its image in under .

Then , where the dual in is taken with
respect to the Euclidean inner product, while the dual inis
taken with respect to the Hermitian inner product. In particular,
a quasi-cyclic code over is self-dual with respect to the
Euclidean inner product if and only if is self-dual over
with respect to the Hermitian inner product.
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IV. THE RING

When , the ring
is never a finite field. However, the CRT tells us that, if is
coprime with the characteristic of , then the ring is a direct
product of finite fields.

Under the latter assumption, the polynomial factors
completely into distinct irreducible factors in , so we may
write as

where are distinct irreducible polynomials. This product is
unique in the sense that, if is another
decomposition into irreducible polynomials, then and,
after suitable renumbering of the ’s, we have that is an
associate of for each .

For a polynomial , let denote its reciprocal polynomial.
Note that . We have, therefore,

If is an irreducible polynomial, so is . By the uniqueness of
the decomposition of a polynomial into irreducible factors, we
can now write

where is nonzero in , are those ’s that are asso-
ciates to their own reciprocals, and are the
remaining ’s grouped in pairs.

Consequently, we may now write

(3)

The direct sum on the right-hand side is endowed with the co-
ordinate-wise addition and multiplication.

For simplicity of notation, whenever is fixed, we denote
by , by , and by .

It follows from (3) that

In particular, every -linear code of length can be decom-
posed as the direct sum

where, for each , is a linear code over of length
and, for each , is a linear code over of length
and is a linear code over of length .
Every element of may be written as for some poly-

nomial . The decomposition (3) shows that may
also be written as an -tuple

(4)

where

and

Of course, the , , and may also be considered as polyno-
mials in .

For any element , we have earlier defined its “conju-
gate” , induced by the map in . Suppose that,
expressed in terms of the decomposition (3), is given by

where

and

We shall now describe in terms of the decomposition (3).
We note that, for a polynomial that divides ,

the quotients and are isomorphic as rings.
The isomorphism is given by

(5)

(Here, the symbol makes sense. It can, in fact, be consid-
ered as , since and hence divide implies that

in both of these rings.)
In the case whereand are associates, we see from (5) that

the map induces an automorphism of . For
, we denote by its image under this induced

map. When the degree of is , note that the induced map is
the identity map, so .

Therefore, the elementcan now be expressed as

When and are associates, for vectors ,
, we define the Hermitian

inner product on to be

(6)

Remarks:

1) In the case where the degree ofis , since the map
is the identity, the Hermitian inner product (6)

is none other than the usual Euclidean inner product on
. Note that, when , where is a perfect square,

the Hermitian inner product (6) is thereforedifferentfrom
what is usually referred to as the Hermitian inner product
in the literature. When the Hermitian inner product is used
in the rest of this paper, we shall also mean the Hermitian
inner product as defined in (6).

2) When is a finite field and when , it
is easy to see thatand are associates implies that the
degree of is even. In this case, is isomorphic
to and the map is, in fact, the map

. Hence the map is the map In this
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case, the Hermitian inner product (6) coincides with the
usual Hermitian inner product defined on .

The following proposition is now an immediate consequence
of the above discussion.

Proposition 4.1: Let and write

and

Decomposing each using (4), we write

and

where , , , , , (with and
identified). Then

In particular, if and only if

and

An immediate consequence is the following characterization
of self-dual codes over .

Theorem 4.2:A linear code over of length is
self-dual with respect to the Hermitian inner product, or equiv-
alently, an -quasi-cyclic code of length over is self-dual
with respect to the Euclidean inner product, if and only if

where, for , is a self-dual code over of length
(with respect to the Hermitian inner product) and, for ,

is a linear code of lengthover and is its dual with
respect to the Euclidean inner product.

V. TRACE FORMULA

Let and assume . In that case,
, and the isomorphism (3) can, in fact, be de-

scribed in a more explicit way via the DFT or, in the language
of cyclic codes, the Mattson–Solomon transform.

In (3), the direct factors on the right-hand side correspond to
the irreducible factors of in .

There is a one-to-one correspondence between these factors
and the -cyclotomic cosets of . Denote by

the -cyclotomic coset corresponding to, , and
the cyclotomic cosets corresponding toand ,

respectively.
For

its Fourier transform is , where the Fourier
coefficient is defined as

where is a primitive th root of in some (sufficiently large)
Galois extension of . The inverse transform is given by

It is well known that and, for , ,
while for (resp., ), (resp., ). In fact,
the Fourier transform gives rise to the isomorphism (3). The in-
verse is given by the inverse transform, which can be expressed
as follows. Let , , and denote the Galois extensions of

corresponding to the polynomials, , and , with corre-
sponding cyclotomic cosets and . For each , choose
and fix some . For each , choose and fix some
and . Let , , and . To the

-tuple , we associate the
element

where

where, for any extension of , denotes the trace from
to . For a vector , by its Fourier transform, we simply

mean the vector whoseth entry is the Fourier transform of the
th entry of . By the trace of we mean the vector whose

coordinates are the traces of the coordinates of.
This description gives the following trace parametrization for

quasi-cyclic codes over finite fields, analogous to the trace de-
scription of cyclic codes.

Theorem 5.1:Let and . Then, for any ,
the quasi-cyclic codes over of length and of index are
precisely given by the following construction: write

, where is a nonzero element of ,
are irreducible factors that are associates to their own recipro-
cals, and are irreducible factors whose reciprocals are.
Write , , and
Let (resp., and ) denote the cyclotomic coset of
corresponding to (resp., and ) and fix ,

, and . For each , let be a code of length
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over , and for each, let be a code of lengthover and
let be a code of length over . For , ,
and , and for each , let

Then the code

and

is a quasi-cyclic code over of length and of index . Con-
versely, every quasi-cyclic code over of length and of
index is obtained through this construction.

Moreover, is self-dual with respect to the Euclidean inner
product if and only if the are self-dual with respect to the
Hermitian inner product and for each with re-
spect to the Euclidean inner product.

Remark: In the definition of in The-
orem 5.1, the has been suppressed. Note thatis nonzero
in , so .

VI. A PPLICATIONS

We now apply our earlier discussions to several situations.
We can either start with a (small) fixedor a (small) fixed .
The former case contains the popular case of double circulant
codes. The latter case is relevant to the squaring and cubing con-
structions. We give explicit examples of both cases. Due to the
arithmetic nature of the factorization of (cyclotomy),
it is hopeless to expect a unified treatment at this level of con-
creteness.

A. Quasi-Cyclic Codes of Index

Let and let be any finite field. Suppose first that
is relatively prime to . The decomposition (3) shows thatis
the direct sum of finite extensions of .

Self-dual codes (with respect to the Euclidean inner product)
of length over a finite field exist if and only if is a
square in , which is the case when one of the following is
true:

1) is a power of ;

2) , where is a prime congruent to ; or

3) , where is a prime congruent to .

In this case, up to equivalence, there is a unique self-dual code
of length over , viz., the one with generator matrix ,
where denotes a square root of in .

This enables one to characterize the self-dual quasi-cyclic
codes over of length and of index , where is rela-
tively prime to , once the irreducible factors of are
known.

Proposition 6.1: Let be relatively prime to . Then
self-dual -quasi-cyclic codes over of length exist if
and only if exactly one of the following conditions is satisfied:

1) is a power of ;

2) , where is a prime congruent to ; or

3) , where is a prime congruent to .

Proof: If a self-dual -quasi-cyclic code over of length
exists, then the decomposition (3) shows that there is a

self-dual code of length over . Hence the conditions
in the proposition are certainly necessary.

Conversely, if any one of the conditions in the proposition is
satisfied, then there exists such that . Con-
sequently, every finite extension of also contains such an.
Hence, the code generated by over any extension of
is self-dual (with respect to both the Euclidean and Hermitian
inner products) of length. Hence, Theorem 4.2 ensures the
existence of a self-dual-quasi-cyclic code of length over

.

Let denote the number of distinct linear codes of
length over . It is well known that

Proposition 6.2: Let be a prime power satisfying one of the
conditions in Proposition 6.1 and let be an integer relatively
prime to . Suppose that
in , where is a nonzero element of ,

are monic irreducible polynomials such that
are self-reciprocal, and and are reciprocals. Suppose

further that and, if is even, . Let the
degree of be , and let the degree of (hence also ) be

. Then the number of distinct self-dual-quasi-cyclic codes
of length over is given by

if is even and is odd

if is odd and is odd

if is odd and is even.

Proof: This follows from the well-known formulas for
the number of the distinct self-dual codes of lengthover
with respect to the Euclidean and Hermitian inner products,
respectively.

Proposition 6.3: Let be relatively prime to and let be
odd. Then no self-dual-quasi-cyclic codes over of length

exist. Moreover, when , self-dual -quasi-
cyclic codes over of length exist only if .

Proof: Since is a factor of , is always
a direct factor of in the decomposition (3). Sinceis odd,
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no self-dual code of lengthexists over . The last statement
follows from the fact that, when , a self-dual code
of length exists only when is divisible by [23].

When is divisible by , where is a prime such that
, writing as before, the factors on the right-hand

side of (3) are no longer finite fields. They are, however, finite
chain rings of depth [20]. Therefore, to classify the self-dual
quasi-cyclic codes over of index and of length , we
would first need a classification of self-dual codes of length
over finite chain rings of depth .

B. and the Construction

In this subsection, we consider-quasi-cyclic codes of length
over the finite field .
1) When Is Odd: Let and suppose that is odd.

Then factors into distinct linear factors ,
each of which is self-reciprocal. Hence,decomposes into a
direct sum , and an -quasi-cyclic code of length

over can be expressed as , where and
are codes over of length . Moreover, is self-dual if and
only if and are self-dual with respect to the Euclidean
inner product. It follows from the DFT (cf. Theorem 5.1) that the
correspondence is equivalent to the
construction. Therefore, we have the following proposition.

Proposition 6.4: Let be odd. If and are codes of
length over , then

is an -quasi-cyclic code of length over . All -quasi-cyclic
codes of length over are constructed this way. Moreover,

is self-dual if and only if and are self-dual.

We will see in Section VI-G that this construction is a special
case of the Vandermonde construction where .

Corollary 6.5: Let be an odd prime power with
. Then the self-dual Pless symmetry

code over can be obtained from the construc-
tion and is -quasi-cyclic.

Proof: From [13, Example 9.17], this code admits an au-
tomorphism that is a product of -cycles. This corresponds
to the situation of and .

Proposition 6.6: Suppose and is even, or
and . The number of distinct self-dual

-quasi-cyclic codes of length over is

Proof: This follows from the well-known fact that the
number of distinct self-dual codes over (with respect to the
Euclidean inner product) is

2) When Is Even: If is a power of , then
, so is the ring , where . Therefore,

every -quasi-cyclic code of length over ( even) can be
realized as a code of lengthover . See [20] for more
discussion in the case .

C. and Turyn’s Construction

In this subsection, we assume that and that is not a
power of . We study the -quasi-cyclic codes of length over

.
1) and Turyn’s Construction:When

, is irreducible in , so

as a product of irreducible factors. The decomposition (3) then
yields

This isomorphism gives a correspondence between the-quasi-
cyclic codes of length over and a pair , where

is a linear code over of length (with respect to the
Euclidean inner product) and is a linear code over of
length (with respect to the Hermitian inner product). Using
the DFT (cf. Theorem 5.1), we have

where .
In particular, when ( odd) and for any

(7)

It is easy to verify that, if for some linear code
over , then is a linear code over

.
Therefore, if we begin with two -linear codes and ,

the construction in (7) in fact yields Turyn’s
-construction. In particular, we obtain

Theorem 6.7:The -construction,
applied to two linear codes over ( odd) of length , yields
an -linear code of length that is quasi-cyclic of index.

Examples:
1) Since the binary extended Golay code may be obtained

from Turyn’s construction, by choosing and to be, re-
spectively, the binary extended Hamming code and its equiva-
lent code by reversing the order of the coordinates of the words,
we get the following.

Corollary 6.8: The binary extended Golay code is quasi-
cyclic of index .

2) In [25], Turyn’s construction is used to construct a family
of linear binary codes of parameters with

, starting from two first-order Reed–Muller
codes. It follows that these codes are also quasi-cyclic of index

.
3) Consider the binary extended quadratic residue code of

length , where is an odd prime. Corollary A.2 shows that
it is -quasi-cyclic for every divisor of . If is
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divisible by , the code is quasi-cyclic of index , so it
is obtained from the cubing construction of Theorem 6.7.

Proposition 6.9: Suppose that and satisfy one of the fol-
lowing:

i) and ; or

ii) but , and is even.

Then the number of distinct self-dual-quasi-cyclic codes over
of length is given by

where if is even, if is odd.
Proof: This follows from the well-known facts that the

number of distinct self-dual codes of lengthover (with re-
spect to the Euclidean inner product) is

and the number of distinct self-dual codes of lengthover
(with respect to the Hermitian inner product) is

2) When : In this case, factors com-
pletely into , where and

. An -quasi-cyclic code over of length , there-
fore, decomposes into , where , , and are
codes over of length . Moreover, is self-dual if and only
if is self-dual (with respect to the Euclidean inner product)
and with respect to the Euclidean inner product.

Proposition 6.10: Let and satisfy one of the following:

i) and ; or

ii) but , and is even.

Then the number of distinct self-dual-quasi-cyclic codes of
length over is given by

where if is even, if is odd.

We will see in Section VI-G that the case in this subsection is
a special case of the Vandermonde construction when .

D.

We now discuss the case where and is odd.
1) When Is Not a Square in : Suppose first that is

not a square in . In this case, the decomposition (3) ofis
isomorphic to .

Theorem 6.11:Suppose and is not a square in
with odd. Let denote an element of such that .

If and are codes of lengthover and is a code of
length over , then the code

is an -quasi-cyclic code over of length . (Here, denotes
the trace from to .) Every -quasi-cyclic code over
of length is constructed this way.

Moreover, is self-dual if and only if and are self-dual
with respect to the Euclidean inner product andis self-dual
with respect to the Hermitian inner product.

Example: When , writing , this construction
is the construction ,
where , and .

Proposition 6.12: Let be an odd prime power such that
is not a square in and let . Then the number of
distinct self-dual -quasi-cyclic codes over of length is

2) When Is a Square in : In this case, decomposes
completely into the direct sum of four copies of. Two of these
copies correspond to the self-reciprocal polynomials and

, while the other two copies correspond to , where
is a square root of , and its reciprocal . Therefore, we
get the following.

Proposition 6.13: Let be even and let be an odd prime
power such that is a square in . Then, the number of
distinct self-dual -quasi-cyclic codes over of length is

We will see in Section VI-G that this construction is a special
case of the Vandermonde construction when .

E. When

Theorem 6.14:Suppose that and is such that
is irreducible in . Let be such

that and let denote the trace from
to . Then, for a code of length over and a

code of length over , the code

is an -quasi-cyclic code of length over . Every -quasi-
cyclic code of length over is constructed this way.

Moreover, is self-dual if and only if is self-dual with
respect to the Euclidean inner product andis self-dual with
respect to the Hermitian inner product.

Remark: When , the above construction is equivalent
to the construction ,
where and .
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Example: Taking and as in the Turyn construction of
the Golay code yields an extremal binary Type II code
(see Section VII for a definition of Type II).

Proposition 6.15: Let be even and let be such that
is irreducible in . If ,

suppose further that . Then, the number of distinct
self-dual -quasi-cyclic codes over of length is

where if is even, if is odd.

F. When

Let and suppose that is such that
factors into as a product
of irreducible factors. Let be a root of in .
Let be a code of length over and let be codes
of length over . Let denote the trace from to .
Then the code

is an -quasi-cyclic code over of length . Conversely, all
-quasi-cyclic codes over of length are constructed this

way. Moreover, is self-dual if and only if is self-dual and
.

Explicitly, it is an easy, albeit somewhat tedious, exercise to
verify that, if we set

where , and ,
then

Example: There is an extremal Type I code of length
which is cyclic [26], hence-quasi-cyclic. Its binary component

has to be equivalent to the unique self-dual code.

G. The Vandermonde Construction

Let be, as before, a finite field and an integer coprime
with the characteristic of . Assume for this section only that

contains an element of order . Then the polynomial
splits completely into linear factors

From the Fourier transform of Section V, we see that if we write

where for , then

... ...

where are the Fourier coefficients and
is the Vandermonde matrix.

For a given positive integer, let be
vectors. The construction

...

...
gives an element of . If are linear codes
over of length , and for , then we
obtain a linear code over of length , which then corresponds
to a quasi-cyclic code over of length and of index .

One sees readily that the above construction gives exactly
the Vandermonde product defined in [14, Ch. 8]. We, therefore,
obtain the following theorem.

Theorem 6.16:Let be a finite field and an integer
coprime with the characteristic of . Assume that con-
tains an element of order . Let be linear
codes of length over . Then the Vandermonde product of

is a quasi-cyclic code over of length
and of index . Moreover, when and are as above, every
-quasi-cyclic code of length over is obtained via the

Vandermonde construction.

Proposition 6.17: When is even, is an integer and is
a prime power relatively prime to such that factors
completely into linear factors over , with the additional con-
straint that in the case , the number
of distinct self-dual -quasi-cyclic codes over of length
is equal to

if is even

if is odd and is odd

if is odd and is even

Proof: This follows easily from the well-known formulas
for the number of distinct self-dual codes of lengthover
with respect to the Euclidean and Hermitian inner products.

VII. SELF-DUAL BINARY CODES

Recall that a binary code is said to be of Type II if and only
if it is self-dual and all its codewords have Hamming weights
divisible by . For a binary -quasi-cyclic code of length , i.e.,

, by its binary component , we mean the component in
the decomposition (3) corresponding to the polynomial .
We also call the component corresponding to the polynomial

the quaternary component of the code.
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Proposition 7.1: A self-dual binary code is a Type
II -quasi-cyclic code of length if and only if its binary
component is of Type II.

Proof: Taking in the
construction, we see that contains for all .
Thus, is Type II. To derive the other direction, observe that
the weight of is twice the Hamming weight of

, where . From the Hermitian self-duality
of , it follows that the Hamming weight of is even,
hence the weight of is a multiple of .

Example: The Feit code [7] admits for the (extremal)
quadratic residue code.

Corollary 7.2: If there is a binary -quasi-cyclic
Type II code, then its binary component is equivalent to the ex-
tended Golay code and its quaternary component is a Hermitian
self-dual quaternary .

Proof: By the same argument as in the proof of Propo-
sition 7.1, we see that has to be of Type II of distance,
hence equivalent to the Golay code. Similarly, we see thatis
a Hermitian self-dual code.

Proposition 7.3: For or , a self-dual binary code
is a Type II -quasi-cyclic code of length if and only if its
binary component is of Type II.

Proof: If is of Type II, the same proof as for Proposition
7.1 shows that is of Type II. To show the other direction, we
observe first that is spanned by , for
and

1) for , , where
with Hermitian self-dual over ,

2) for

and

where and ,
with and defined over .

Since is of Type II, has weight divisible by . Therefore,
the weight of is divisible by .

When , observe that the weight of
is

where denotes the Hamming weight anddenotes the co-
ordinatewise multiplication.

Since is Hermitian self-dual, it follows that

Hence, it follows that the weight of
is divisible by . It also follows that is spanned by a set of
vectors whose weights are divisible by, hence is of Type II.

Using the Pless power moment identity of the first order (cf.
[21, p. 131, eq. (19)]), we see that, in the case , the
weights of

and

are four times those of and ,
respectively. It follows that is spanned by a set of vectors
whose weights are all divisible by, hence is of Type II.

Remark: When , it also follows from the above proof
that, if the minimal distance of is , then the minimal dis-
tances of and are at least .

VIII. C ONCLUSION

In this work, we have shown that all quasi-cyclic codes
admitted a combinatorial construction from codes of lower
lengths. Conversely, some codes constructed in that way are
shown to have a quasi-cyclic structure [25]. The following table
summarizes the results we know regarding classical families of
codes over finite fields. More families appear in [20].

Code Construction Reference

Cor. 6.5

SRC [25]

Theo. 6.7

APPENDIX

ALGEBRAIC CHARACTERIZATION

In this appendix, we describe a group-theoretic approach
to quasi-cyclic codes. Throughout this section, the codeis
defined over any field . Recall that the permutation group

of a code of length is the subgroup of ,
the group of all permutations on letters, that fixes under
coordinate permutations. We begin with a characterization of
quasi-cyclic codes in terms of permutation groups.

Proposition A.1: A code of length is -quasi-
cyclic if and only if contains a fixed-point free (fpf)
permutation consisting of disjoint -cycles. In particular, if

denotes a prime, of length is -quasi-cyclic if and
only if contains an fpf permutation of order.

Proof: If is -quasi-cyclic then is the permutation
sought for, where denotes the cyclic shift. Conversely, if

contains such a permutation, then up to coordinate
labeling, we can assume that .

Corollary A.2: Let be a code of length invariant under
, where is a prime. Then is -quasi-cyclic for

every divisor of .
Proof: By [21, Ch. 16, Lemma 14] contains an

fpf permutation made of two disjoint cycles of length .
Therefore, its th power is also fpf but of order.
By the characterization in Proposition A.1, the result follows.
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