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Abstract. The ring decomposition technique of part I is extended to the case when the factors in the direct

product decomposition are no longer fields but arbitrary chain rings. This includes not only the case of

quasi-cyclic codes over rings but also the case of quasi-cyclic codes over fields whose co-index is no longer

prime to the characteristic of the field. A new quaternary construction of the Leech lattice is derived.
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1. Introduction

In this work, following the approach of part I [21] we propose to view quasi-cyclic
codes over a finite commutative ring A as codes over the polynomial ring
RðA;mÞ :¼ A½Y �=ðYm � 1Þ. This latter ring can be decomposed into a direct sum
of local rings. (When RðA;mÞ is principal we obtain as direct summands chain
rings—a class of rings of current interest in coding theory [24,25]). This can be
achieved by either the Chinese Remainder Theorem or the Discrete Fourier
Transform. We emphasize the fact that codes over chain rings can shed new light on
codes over fields. This occurs when A ¼ Fq and ðm; qÞ > 1.
The benefits of this novel approach are twofold. Firstly, we can investigate self-

dual quasi-cyclic codes in a systematic way. Secondly, we can decompose quasi-cyclic
codes into codes of lower lengths. The composition products that occur are very
well-known [30] in the area of trellis decoding: twisted squaring [2], cubing [9],
ternary cubing [18], ðu þ v j u � vÞ [16] and Vandermonde [15]. In the same vein, we
derive a new Z4 construction of the Leech lattice along the lines of Forney’s
construction [9]. New constructions (quinting, septing) are introduced as well.
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We hope that a future impact of this work will be more efficient trellises for more
block codes and more lattices.
The paper is organized in the following way. Section 2 contains some basic

notations and definitions. Section 3 discusses the correspondence between quasi-
cyclic codes over a ring A with linear codes over RðA;mÞ. Section 4 develops the
alphabet decomposition using the Chinese Remainder Theorem. Section 5 tackles
the same problem with the Discrete Fourier Transform which results in a trace
representation for quasi-cyclic codes that generalizes nicely the trace representation
of cyclic codes and linearly recurring sequences. Section 6 develops applications of
the above theory, firstly for small lengths of the composition codes (e.g., double
circulant codes), secondly for large lengths. In Section 7, we include a discussion on
Type II quasi-cyclic codes. An appendix collects the necessary material on
permutation groups of codes. In particular, we give as examples affine-invariant
and extended quadratic residue codes.

2. Notations and Definitions

2.1. Rings

A commutative ring A is local if it admits a unique maximal idealM. In that case the
quotient ring k :¼ A=M is a field. Factorizations fg of elements h of k½X � can be
‘‘lifted’’ to factorizations FG of H in A in such a way that f ; g; h correspond to
F ;G;H respectively under reduction modulo M. This is the so-called Hensel lifting.
For the special case of A ¼ Z4, so k ¼ F2, see for instance Bonnecaze et al. [3].
A ring is a chain ring if and only if it is both local and principal. A local ring is a

chain ring if and only if its maximal ideal has a unique generator t, say: M ¼ ðtÞ.
With these notations the ideals of A constitute a chain for inclusion

A 	 ðtÞ 	 ðt2Þ 	 
 
 
 	 ðtd�1Þ 	 ðtdÞ ¼ ð0Þ:

The integer d is then called the depth of A. If k, as a finite field, has q elements, then
A=ðtiÞ has qi elements, so A has qd elements.

2.2. Codes

A linear code of length n over a finite commutative ring A (with identity) is an
A-submodule of An. We denote by T the standard shift operator on An. A linear code
is said to be quasi-cyclic of index ‘ or ‘-quasi-cyclic if and only if it is invariant under
T ‘. Throughout the paper we shall assume that the index ‘ divides the length n, and
we will call m :¼ n=‘ the co-index. For instance, if ‘ ¼ 2 and the first circulant block
is the identity matrix, such a code is equivalent to a so-called pure double circulant
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code [22]. More generally, up to equivalence, the generator matrix of such a code
consists of m6m circulant matrices. This point will be elaborated upon in Lemma
3.1 below.

3. Quasi-Cyclic Codes

Let A be a finite chain ring and let m be a positive integer. Let
R :¼ RðA;mÞ ¼ A½Y �=ðYm � 1Þ.
Let C be a quasi-cyclic code over A of length ‘m and index ‘. Let

c ¼ ðc00; c01; . . . ; c0;‘�1; c10; . . . ; c1;‘�1; . . . ; cm�1;0; . . . ; cm�1;‘�1Þ;

denote a codeword in C.
Define a map f : A‘m?R‘ by

fðcÞ ¼ ðc0ðYÞ; c1ðYÞ; . . . ; c‘�1ðYÞÞ [R‘;

where cjðYÞ ¼
Pm�1

i¼0 cijY
i [R. Let fðCÞ denote the image of C under f.

LEMMA 3.1. The map f induces a one-to-one correspondence between quasi-cyclic
codes over A of index ‘ and length ‘m and linear codes over R of length ‘.

The proof of Lemma 3.1 is similar to that of [21, Lemma 3.1], so we omit it here.
We define a ‘‘conjugation’’ map on R as one that acts as the identity on the

elements of A and that sends Y to Y�1 ¼ Ym�1, and extended linearly.
We define on A‘m the usual Euclidean inner product: for

a ¼ ða00; a01; . . . ; a0;‘�1; a10; . . . ; a1;‘�1; . . . ; am�1;0; . . . ; am�1;‘�1Þ

and

b ¼ ðb00; b01; . . . ; b0;‘�1; b10; . . . ; b1;‘�1; . . . ; bm�1;0; . . . ; bm�1;‘�1Þ;

we define

a ? b ¼
Xm�1
i¼0

X‘�1
j¼0

aijbij :

On R‘, we define the Hermitian inner product: for x ¼ ðx0; . . . ; x‘�1Þ and
y ¼ ðy0; . . . ; y‘�1Þ,

hx; yi ¼
X‘�1
j¼0

xjyj:

We omit the proof of the following proposition. It is analogous to that of [21,
Proposition 3.2].
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PROPOSITION 3.2. Let a; b [A‘m. Then T ‘kðaÞ
� �

? b ¼ 0 for all 0  k  m� 1 if and
only if hfðaÞ;fðbÞi ¼ 0.

By applying Proposition 3.2 with a belonging to an ‘-quasi-cyclic code C of length
‘m over A, we obtain.

COROLLARY 3.3. Let C be a quasi-cyclic code over A of length ‘m and of index ‘ and
let fðCÞ be its image in R‘ under f. Then fðCÞ? ¼ fðC?Þ, where the dual in A‘m is
taken with respect to the Euclidean inner product, while the dual in R‘ is taken with
respect to the Hermitian inner product. In particular, a quasi-cyclic code C over A is
self-dual with respect to the Euclidean inner product if and only if fðCÞ is self-dual over
R with respect to the Hermitian inner product.

4. The Ring RðA;mÞ

When m > 1, the ring RðA;mÞ ¼ A½Y �=ðYm � 1Þ is never a local ring. However, a
finite commutative ring always decomposes into a product of local rings. We study
this decomposition in our present context to facilitate our study of quasi-cyclic codes
over finite chain rings.
Let the characteristic of the finite chain ring A be pn, where p is a prime. Write

m ¼ pam0, where ðm0; pÞ ¼ 1. The polynomial Ym0 � 1 factors completely into distinct
irreducible factors in k½Y �, so by Hensel’s lifting, we may write Ym0 � 1 [A½Y � as

Ym0 � 1 ¼ f1 f2 . . . fr;

where fj are distinct basic irreducible polynomials. This product is unique in the
sense that, if Ym0 � 1 ¼ f 01f

0
2 . . . f

0
s is another decomposition into basic irreducible

polynomials, then r ¼ s and, after suitable renumbering of the f 0j ’s, we have that fj is
an associate of f 0j , for each 1  j  r.
For a polynomial f , let f � denote its reciprocal polynomial. Note that ð f �Þ� ¼ f .

We have therefore

Ym0 � 1 ¼ � f �1 f
�
2 
 
 
 f �r :

If f is a basic irreducible polynomial, so is f �. By the uniqueness of such a
decomposition into basic irreducible factors, we can now write

Ym0 � 1 ¼ dg1 . . . gsh1h�1 . . . hth
�
t ;

where d is a unit in A, g1; . . . ; gs are those fj’s that are associates to their own
reciprocals, and h1; h

�
1; to ht; h

�
t are the remaining fj’s grouped in pairs.

Now we suppose further that, if the characteristic of A is pn, where n > 1, then
a ¼ 0, i.e., m ¼ m0 is relatively prime to p. When the characteristic of A is p (such as
in the case where A is a finite field), m need not be relatively prime to p. Then it
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follows that, in A½Y �, we have

Ym � 1 ¼ Ypam0 � 1 ¼ ðYm0 � 1Þp
a

¼ dp
a

g
pa

1 
 
 
 gpas h
pa

1 ðh�1Þ
pa 
 
 
 hp

a

t ðh�t Þ
pa :

Consequently, we may now write

R ¼ A½Y �
ðYm � 1Þ ¼

Ms
i¼1

A½Y �
ðgiÞp

a

 !
+

Mt
j¼1

A½Y �
ðhjÞp

a +
A½Y �
ðh�j Þ

pa

 ! !
: ð1Þ

The direct sum on the right hand side is endowed with the coordinatewise addition
and multiplication.
For simplicity of notation, whenever m is fixed, we denote A½Y �=ðgiÞp

a

by Gi,
A½Y �=ðhjÞp

a

by H 0
j and A½Y �=ðh�j Þ

pa by H 00
j .

It follows from (1) that

R‘ ¼
Ms
i¼1

G‘
i

 !
+

Mt
j¼1

H 0
j
‘
+H 00

j
‘

� 	 !
:

In particular, every R-linear code C of length ‘ can be decomposed as the direct sum

C ¼
Ms
i¼1

Ci

 !
+

Mt
j¼1

C0
j+C00

j

� 	 !
;

where, for each 1  i  s;Ci is a linear code over Gi of length ‘ and, for each
1  j  t, C0

j is a linear code over H
0
j of length ‘ and C

00
j is a linear code over H

00
j of

length ‘.
Every element of R may be written as cðYÞ for some polynomial c [A½Y �. The

decomposition (1) shows that cðYÞ may also be written as an ðsþ 2tÞ-tuple

ðc1ðYÞ; . . . ; csðYÞ; c01ðYÞ; c001ðYÞ; . . . ; c0tðYÞ; c00t ðYÞÞ; ð2Þ

where ciðYÞ [Gið1  i  sÞ; c0jðYÞ [H 0
j and c

00
j ðYÞ [H 00

j ð1  j  tÞ. Of course, the ci; c0j
and c00j may also be considered as polynomials in A½Y �.
For any element r [R, we have earlier defined its ‘‘conjugate’’ r, induced by the

map Y�Y�1 in R. Suppose that r, expressed in terms of the decomposition (1), is
given by

r ¼ ðr1; . . . ; rs; r01; r001 ; . . . ; r0t; r00t Þ;

where ri [Gi ð1  i  sÞ; r0j [H 0
j and r

00
j [H

00
j ð1  j  tÞ. We shall now describe r in

terms of the decomposition (1).
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We note that, for a polynomial f [A½Y � that divides Ym � 1, the quotients
A½Y �=ð f Þ and A½Y �=ð f �Þ are isomorphic as rings. The isomorphism is given by

A½Y �
ð f Þ �?A½Y �

ð f �Þ

cðYÞ þ ð f Þ� cðY�1Þ þ ð f �Þ: ð3Þ

(Here, the symbol Y�1 makes sense. It can in fact be considered as Ym�1, since f and
hence f � divide Ym � 1 implies that Ym ¼ 1 in both of these rings.)
In the case where f and f � are associates, we see from (3) that the map Y�Y�1

induces an automorphism of A½Y �=ð f Þ. For r [A½Y �=ð f Þ, we denote by r its image
under this induced map. When the degree of f is 1, note that the induced map is the
identity map, so r ¼ r.
Therefore, the element r can now be expressed as

ðr1; . . . ; rs; r001; r01; . . . ; r00t ; r0tÞ:

When f and f � are associates, for vectors c ¼ ðc1; . . . ; c‘Þ; c0 ¼ ðc01; . . . ; c0‘Þ [
ðA½Y �=ð f ÞÞ‘, we define the Hermitian inner product on ðA½Y �=ð f ÞÞ‘ to be

hc; c0i ¼
X‘
i¼1

cic
0
i: ð4Þ

Remark. In the case where the degree of f is 1, since the map r� r is the identity,
the Hermitian inner product (4) is none other than the usual Euclidean inner product
on A (cf. Section 3).

The following proposition is now an immediate consequence of the above discussion.

PROPOSITION 4.1. Let a; b [R‘ and write

a ¼ ða0; a1; . . . ; a‘�1Þ;

and

b ¼ ðb0; b1; . . . ; b‘�1Þ:

Decomposing each ai; bi using (2), we write

ai ¼ ðai1; . . . ; ais; a0i1; a00i1; . . . ; a0it; a00itÞ;

and

bi ¼ ðbi1; . . . ; bis; b0i1; b00i1; . . . ; b0it; b00itÞ;

118 LING AND SOLÉ



where aij; bij [Gj, a0ij ; b
0
ij ; a

00
ij; b

00
ij [H

0
j (with H

0
j and H

00
j identified). Then

ha; bi ¼
X‘�1
i¼0

aibi

¼
X
i

ai1bi1; . . . ;
X
i

aisbis;
X
i

a0i1b
00
i1;
X
i

a00i1b
0
i1; . . . ;

X
i

a0itb
00
it;
X
i

a00itb
0
it

 !
:

In particular, ha; bi ¼ 0 if and only if
P

i aijbij ¼ 0ð1  j  sÞ andP
i a

0
ikb

00
ik ¼ 0 ¼

P
i a

00
ikb

0
ikð1  k  tÞ.

An immediate consequence is the following characterization of self-dual codes
over R:

THEOREM 4.2. A linear code C over R ¼ A½Y �=ðYm � 1Þ of length ‘ is self-dual with
respect to the Hermitian inner product (or equivalently, an ‘-quasi-cyclic code of length
‘m over A is self-dual with respect to the Euclidean inner product) if and only if

C ¼
Ms
i¼1

Ci

 !
+

Mt
j¼1

C0
j+ðC0

jÞ
?

� 	 !
;

where, for 1  i  s, Ci is a self-dual code over Gi of length ‘ (with respect to the
Hermitian inner product) and, for 1  j  t, C0

j is a linear code of length ‘ over H
0
j and

C0
j
? is its dual with respect to the Euclidean inner product.

5. Fourier Transform

In the case where m and the characteristic of A are relatively prime, hence m is a unit
in A, the isomorphism (1) can in fact be described in a more explicit way via the
discrete Fourier Transform.
Suppose that A is a finite chain ring with maximal ideal ðtÞ such that the residue

field k ¼ A=ðtÞ is Fq. Every element x of A can be expressed uniquely in the form

x ¼ x0 þ x1tþ 
 
 
 þ xd�1t
d�1;

where x0; . . . ; xd�1 belong to the Teichmüller set. Since gi; hj; h
�
j are monic basic

irreducible polynomials, the rings Gi;H
0
j and H

00
j are Galois extensions of A. Since

Galois extensions of a local ring are unramified, the unique maximal ideal in such a
Galois extension of A is again generated by t. For a Galois extension B of A, we
define the Frobenius map F on B to be the map induced by the map Y�Yq, acting
as the identity on A. If the degree of the extension B over A is e, then Fe is the
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identity map. For x [B, we define the trace of x to be

TrB=AðxÞ ¼ xþ FðxÞ þ 
 
 
 þ Fe�1ðxÞ:

In (1), the direct factors on the right hand side correspond to the irreducible
factors of Ym � 1 in A½Y �. There is a one-to-one correspondence between these
factors and the q-cyclotomic cosets of Z=mZ, where q is the order of the residue field
A=ðtÞ. Denote by Uið1  i  sÞ the cyclotomic coset corresponding to gi, Vj and Wj

(1  j  t) the cyclotomic cosets corresponding to hj and h
�
j , respectively.

For c ¼
P

g [Z=mZ cgY
g [A½Y �=ðYm � 1Þ, its Fourier Transform is

ĉc ¼
P

h [Z=mZ ĉchY
h, where the Fourier coefficient ĉch is defined as

ĉch ¼
X

g [Z=mZ

cgz
gh;

where z is a primitive m-th root of 1 in some (sufficiently large) Galois extension of
A. The inverse transform is given by

cg ¼ m�1
X

h [Z=mZ

ĉchz
�gh:

It is well-known that ĉcqh ¼ FðĉchÞ and, for h [Ui, ĉch [Gi, while for h [Vj (resp.Wj),
ĉch [H 0

j (resp. H
00
j ). In fact, the Fourier Transform gives rise to the isomorphism (1).

The inverse is given by the inverse transform, which can be expressed as follows. Let
Gi, H

0
j and H

00
j denote the Galois extensions of A corresponding to the polynomials

gi, hj and h
�
j , with corresponding cyclotomic cosets Ui;Vj andWj. For each i, choose

and fix some ui [Ui. For each j, choose and fix some vj [Vj and wj [Wj. Let ĉci [Gi,
ĉc0j [H

0
j and ĉc

00
j [H

00
j . To the ðsþ 2tÞ-tuple ðĉc1; . . . ; ĉcs; ĉc01; ĉc001; . . . ; ĉc0t; ĉc00t Þ, we associate the

element
P

g [Z=mZ cgY
g [A½Y �=ðYm � 1Þ, where

mcg ¼
Xs
i¼1

TrGi=Aðĉciz
�guiÞ þ

Xt
j¼1

ðTrH 0
j=A

ðĉc0jz
�gvj Þ þ TrH 00

j =A
ðĉc00j z

�gwj ÞÞ;

where TrB=A denotes the trace from B to A. For a vector x, by its Fourier Transform,
we simply mean the vector whose i-th entry is the Fourier Transform of the i-th entry
of x. By the trace of x, we mean the vector whose coordinates are the traces of the
coordinates of x.
This description gives the following characterization result on quasi-cyclic codes

over finite chain rings A, where m is relatively prime to the characteristic of A.

THEOREM 5.1. Let m be an integer relatively prime to the characteristic of A. Then,
for any ‘, the quasi-cyclic codes over A of length ‘m and of index ‘ are precisely given
by the following construction: write Ym � 1 ¼ dg1 . . . gsh1h�1 . . . hth

�
t , where d is a unit

of A, gi are irreducible factors that are associates to their own reciprocals, and hj are
irreducible factors whose reciprocals are h�j . Write A½Y �=ðgiÞ ¼ Gi, A½Y �=ðhjÞ ¼ H 0

j

and A½Y �=ðh�j Þ ¼ H 00
j . Let Ui (resp. Vj and Wj) denote the q-cyclotomic coset of Z=mZ
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corresponding to Gi (resp. H
0
j and H

00
j ) and fix ui [Ui, vj [Vj and wj [Wj . For each i, let

Ci be a code of length ‘ over Gi, and for each j, let C
0
j be a code of length ‘ over H

0
j and

let C00
j be a code of length ‘ over H 00

j . For xi [Ci, y0
j [C

0
j and y00

j [C
00
j , and for each

0  g  m� 1, let

cg ¼
Xs
i¼1

TrGi=Aðxiz
�guiÞ þ

Xt
j¼1

ðTrH 0
j
=Aðy0

jz
�gvj Þ þ TrH 00

j
=Aðy00

j z
�gwj ÞÞ:

Then the code

C ¼ fðc0; . . . ; cm�1Þ j xi [Ci; y0
j [C

0
j and y00

j [C
00
j g

is a quasi-cyclic code over A of length ‘m and of index ‘. Conversely, every quasi-cyclic
code over A of length ‘m and of index ‘ is obtained through this construction.
Moreover, C is self-dual if and only if the Ci are self-dual with respect to the

Hermitian inner product and C00
j ¼ ðC0

jÞ
? for each j with respect to the Euclidean inner

product.

Remark. In the definition of cg in Theorem 5.1, the m has been suppressed. Note
that m is a unit in A, so mC ¼ C.

6. Applications

We now apply our earlier discussions to several situations. We can either start with a
(small) fixed ‘ or a (small) fixed m. We give examples of both cases.

6.1. Quasi-cyclic Codes of Index 2

Let ‘ ¼ 2 and let Fq be any finite field. Suppose first that m is relatively prime to q.
The decomposition (1) shows that R is the direct sum of finite extensions of Fq.
Self-dual codes (with respect to the Euclidean inner product) of length 2 over a

finite field Fq exist if and only �1 is a square in Fq, which is the case when one of the
following is true:

1. q is a power of 2;

2. q ¼ pb, where p is a prime congruent to 1 mod 4; or

3. q ¼ p2b, where p is a prime congruent to 3 mod 4.

In this case, up to equivalence, there is a unique self-dual code of length 2 over Fq,
viz. the one with generator matrix ð1; iÞ, where i denotes a square root of �1 in Fq.
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This enables one to characterize the self-dual quasi-cyclic codes over Fq of length
2m and of index 2, where m is relatively prime to q, once the irreducible factors of
Ym � 1 are known. This characterization is summarized in [21, Proposition 6.1]. In
fact, using facts on finite chain rings, the restriction that m be relatively prime to q
can be removed.

THEOREM 6.1. Let m be any positive integer. Then self-dual 2-quasi-cyclic codes over
Fq of length 2m exist if and only if exactly one of the following conditions is satisfied:

1. q is a power of 2;

2. q ¼ pb, where p is a prime congruent to 1 mod 4; or

3. q ¼ p2b, where p is a prime congruent to 3 mod 4.

Proof. By [21, Proposition 6.1], we may now assume that q ¼ pb and m ¼ pam0,
where a > 0. It follows from (1) that the Gi are finite chain rings of depth p

a. A self-
dual 2-quasi-cyclic code over Fq of length 2m exists if and only if, for each i, there
exists a self-dual linear code of length 2 over Gi.
From now on, for simplicity of notation, we suppress the suffix i in Gi. Let G

denote a finite chain ring of depth d ¼ pa, with maximal ideal ðtÞ and residue field
Fqe . Therefore, G has q

de elements.
We first prove the sufficiency of the conditions in the Theorem. If any of the

conditions in the statement of the Theorem is satisfied, then X2 þ 1 ¼ 0 has a
solution in the residue field G=ðtÞ ¼ Fqe , and such a solution lifts to a solution in
G=ðtcÞ, for any 1  c  d (cf. [23, pp. 270–271]). In particular, there exists an i [G
such that i2 þ 1 ¼ 0. It is clear that the free code with generator matrix ð1; iÞ is self-
dual of length 2.
Next we prove the necessity. It suffices to consider the case where q is odd, since

the case where q is even is trivially true.
In this case, we look at the component G1 corresponding to the polynomial Y � 1

in (1) and let G ¼ G1. The depth d is odd. In fact, G ¼ Fq½t�=ðtÞp
a

and the map
Y�Y�1 induces the identity map on G. (Therefore, the Hermitian inner product
and the Euclidean inner product coincide in this case.) Any nonzero element of G can
be expressed as tlu, where u is a unit in G. A nonzero codeword of length 2 is
therefore of one of the forms: (i) ð0; tmvÞ, (ii) ðtlu; 0Þ or (iii) ðtlu; tmvÞ.
For a word of form (i) to be self-orthogonal, we must have m � d þ 1=2. For a

word of type (ii) to be self-orthogonal, we need l � d þ 1=2. For a word of type (iii)
to be self-orthogonal, we need

t2lu2 þ t2mv2 ¼ 0: ð5Þ

If both l; m � d þ 1=2, then (5) is automatically satisfied. Next suppose at least one
of them is at most d � 1=2. In this case, if l 6¼ m, then it is easy to see that (5) is never
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satisfied. Hence, in order for (5) to be satisfied, we need l ¼ m. Then (5) implies

u2 þ v2 [ ðtd�2lÞ: ð6Þ

This means, in particular, that u2 þ v2 [ ðtÞ, so �1 is a square in Fq. A self-dual code
of length 2 over G certainly contains at least a codeword of type (iii), for there are
not enough words of the other types to form such a code. Therefore, the conditions
in the statement of the Theorem are certainly necessary.
The Theorem is now proved. &

When m is divisible by p, where p is a prime such that q ¼ pb, writing m ¼ pam0 as
before, the factors on the right hand side of (1) are no longer finite fields. They are,
however, finite chain rings of depth pa. Therefore, to classify the self-dual quasi-
cyclic codes over Fq of index 2 and of length 2m, we will first need a classification of
self-dual codes of length 2 over finite chain rings of depth pa.

6.2. m ¼ 3 and the Leech Lattice

Assume m ¼ 3 and let A ¼ Z4. We denote by GRð4; 2Þ the unique Galois extension
of Z4 of degree 2. The ring R now decomposes into the direct sum Z4+ GRð4; 2Þ. An
‘-quasi-cyclic code C over Z4 of length 3‘ now decomposes into a pair ðC1;C2Þ,
where C1 is a code over Z4 of length ‘ and C2 is a code of length ‘ over GRð4; 2Þ. This
correspondence is given by

C ¼ fðx þ 2a0 � b0 j x � a0 þ 2b0 j x � a0 � b0Þ j x [C1; a0 þ zb0 [C2g;

where z [GRð4; 2Þ satisfies z2 þ zþ 1 ¼ 0.
If we take a linear code C0

2 of length ‘ over Z4, we see that C2 :¼ C0
2 þ C0

2z is a
linear code over GRð4; 2Þ. If C2 is obtained by such an extension of scalar from a Z4-
code C0

2, by a change of variable a ¼ � 2a0 þ b0 and b ¼ � a0 þ 2b0, we see
immediately that this construction is equivalent to the ðx � a j x þ b j x þ a � bÞ
construction, with x [C1 and a; b [C0

2.
Now let C0

2 be the Klemm-like code k8 (over Z4) [3] and let C1 be the self-dual Z4-
code O0

8, obtained from the octacode O8 by negating a single coordinate. Let (cf. [3])

k8DO0
8 :¼ fðx � a j x þ b j x þ a � bÞ j x [O0

8; a; b [ k8g:

For a Z4-linear code C of length n, let the quaternary lattice LðCÞ be defined as

LðCÞ ¼ fz [Zn j z: c mod 4 for some c [Cg:

THEOREM 6.2. Lðk8DO0
8Þ=2 is the Leech lattice L24.

Proof. From the way we obtained the ðx � a j x þ b j x þ a � bÞ construction above,
it is clear that k8DO0

8 is self-dual.
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The code is generated by vectors ð� a; 0; aÞ; ð0; b;� bÞ and ðx; x; xÞ, where a; b [ k8
and x [O0

8. All these vectors have Euclidean weights congruent to 0 mod 8. Hence all
the words in the code have weights divisible by 8. By [3, Theorem 4.1], Lðk8DO0

8Þ is
an even unimodular lattice.
From the proof of [3, Theorem 4.5], we have that k8 \O0

8 ¼ 2O0
8. It remains to

show that the minimum Euclidean weight in the lattice is at least 16.
Suppose that the Euclidean weight of ðx � a j x þ b j x þ a � bÞ, for some a; b [ k8

and x [O0
8, is equal to 8. Mimicking the proof of [3, Theorem 4.5], we see that

x: 0 mod 2 and also a: b: 0 mod 2. Then ðx � a j x þ b j x þ a � bÞ ¼
ðx þ a j x þ b j x þ a þ bÞ, and the argument in loc. cit. shows that such a word has
Euclidean weight at least 16. &

6.3. m ¼ 6 and the Golay Code

Next we let m ¼ 6 and assume A ¼ F2. Then

R ¼ ðF2 þ uF2Þ+ ðF4 þ uF4Þ;

where F2 þ uF2 ¼ F2½Y �=ðY � 1Þ2 and F4 þ uF4 ¼ F2½Y �=ðY2 þ Y þ 1Þ2, so u2 ¼ 0
in both F2 þ uF2 and F4 þ uF4.
Let C1 be the unique F2 þ uF2-code of length 4 whose Gray image is the binary

extended Hamming code with the coordinates in reverse order (cf. [6]) and let C2 be
the F4 þ uF4-code C

0
2 þ C0

2z, where C
0
2 is the unique F2 þ uF2-code of length 4 whose

Gray image is the binary extended Hamming code. Since both C1 and C2 are self-
dual, we see that this is yet another way to regard the binary Golay code.

PROPOSITION 6.3. The binary extended Golay code is 4-quasi-cyclic.

Remark. Clearly the 8-quasi-cyclicity (see [21, Corollary 6.8]) follows from
Proposition 6.3. In fact, from Corollary A.3 of the Appendix, and the fact that
the binary extended Golay code is in fact an extended quadratic residue code of
length pþ 1, where p ¼ 23, we have that the binary extended Golay code is in fact
2-quasi-cyclic. Proposition 6.3 is therefore a corollary of this fact.

6.4. The Vandermonde Construction

Let A be a finite chain ring and let the integer m be a unit in A. (This means, in
particular, that m is relatively prime to the characteristic of A.) Suppose that A
contains a unit z of order m. Then the polynomial Ym � 1 splits completely into
linear factors:

Ym � 1 ¼ ðY � 1ÞðY � zÞ 
 
 
 ðY � zm�1Þ:

From the Fourier Transform of Section 5, we see that if we write
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f ¼ f0 þ f1Y þ 
 
 
 þ fm�1Y
m�1 [A½Y �=ðYm � 1Þ, where fi [A for 0  i  m� 1, then

f0

f1

..

.

fm�1

0
BBBBBB@

1
CCCCCCA

¼ V�1

f̂f0

f̂f1

..

.

f̂fm�1

0
BBBBBB@

1
CCCCCCA
;

where f̂fi are the Fourier coefficients and V ¼ zij
� �

0i;jm�1 is the m6m Vandermonde
matrix.
For a given positive integer ‘, let a0; . . . ; am�1 [A‘ be m vectors. The construction

V�1

a0

..

.

ai

..

.

0
BBBBBBB@

1
CCCCCCCA

gives an element of R‘. If Ci (0  i  m� 1) are linear codes over A of length ‘, and
ai [Ci for 0  i  m� 1, then we obtain a linear code over R of length ‘, which then
corresponds to a quasi-cyclic code over A of length ‘m and of index ‘.
One sees readily that the above construction gives exactly the Vandermonde

product defined in [15, Chapter 8]. We therefore obtain the following theorem:

THEOREM 6.4. Let A be a finite chain ring, let m be an integer that is a unit in A and
suppose that A contains a unit of order m. Let C0; . . . ;Cm�1 be linear codes of length ‘
over A. Then the Vandermonde product of C0; . . . ;Cm�1 is a quasi-cyclic code over A of
length ‘m and of index ‘. Moreover, when A and m are as above, every ‘-quasi-cyclic
code of length ‘m over A is obtained via the Vandermonde construction.

7. Codes Over Z2k

(Exceptionally in this section, the base ring is not local). Recall that a self-dual code
over Z2k is of Type II if and only if the Euclidean weight of each of its codewords is a
multiple of 4k (cf. [1, Section II]).
Although the ring Z2k is not local, the decomposition (1) due to the Chinese

Remainder Theorem still holds in some cases. Let 2k ¼ pe11 . . . perr be the prime power
factorization of 2k, where p1; . . . ; pr are distinct primes. We first note that, for any
f [Z2k½Y �,

Z2k½Y �
ð f Þ ¼

Zp
e1
1
½Y �

ð f Þ 6 
 
 
6
Zperr

½Y �
ð f Þ : ð7Þ
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Since Y2 þ Y þ 1 is irreducible modulo 2, it follows that Y2 þ Y þ 1 is irreducible
modulo 2k for all positive integers k. Suppose k is relatively prime to 3. Then 3 is a
unit in Zp

ei
i
for every 1  i  r. Hence Y � 1 and Y2 þ Y þ 1 are relatively prime in

Zp
ei
i
½Y �, as

1 ¼ 3�1ðY2 þ Y þ 1Þ � 3�1ðY þ 2ÞðY � 1Þ:

In particular, the Chinese Remainder Theorem implies that

Zp
ei
i
½Y �

ðY3 � 1Þ ¼ Zp
ei
i
+

Zp
ei
i
½Y �

ðY2 þ Y þ 1Þ ; ð8Þ

for every 1  i  r. Equations (7) (with f ðYÞ ¼ Y � 1) and (8) together imply

Z2k½Y �
ðY3 � 1Þ ¼ Z2k+

Z2k½Y �
ðY2 þ Y þ 1Þ :

Hence, for k relatively prime to 3, an ‘-quasi-cyclic code of length 3‘ over Z2k can be
regarded as corresponding to the pair ðC1;C2Þ, where C1 is a code of length ‘ over
Z2k and C2 is a code of length ‘ over Z2k½Y �=ðY2 þ Y þ 1Þ. As in the case of binary
codes, we call C1 the Z2k-component of C.

PROPOSITION 7.1. Let k be an integer coprime with 3 and let C be a self-dual code
over Z2k. Then C is a Type II ‘-quasi-cyclic code of length 3‘ if and only if its Z2k
component C1 is of Type II.

Proof. The condition is necessary because C contains ðx; x; xÞ, where x ranges over
C1, and, by hypothesis, ð4k; 3Þ ¼ 1.
The condition is sufficient because a spanning set of codewords of Euclidean

weights :0 mod 4k is

ðx; x; xÞ; ð� a; b; a � bÞ;

with x running over C1, and a þ zb running over C2. Observe that the self-duality of
C2 entails that ða þ zbÞða þ zbÞ ¼ 0. Since

zþ z ¼ �1 and zz ¼ 1;

we obtain therefrom

a ? a þ b ? b � a ? b: 0 mod 2k:

Using the bilinearity of ð ? Þ as in

ða � bÞ ? ða � bÞ ¼ a ? a þ b ? b þ 2a ? b;
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we obtain the norm of ð� a; b; a � bÞ as

a ? a þ b ? b þ ða � bÞ ? ða � bÞ ¼ 2ða ? a þ b ? b � a ? bÞ;

which is therefore a multiple of 4k. &

For instance, a putative extremal Z8-code of Type II of length 72 would have for
Z8 component an extremal Z8-code of Type II of length 24.

8. Conclusion

In this work we have shown that all quasi-cyclic codes admitted some sort of
combinatorial construction from codes of lower lengths. A new quaternary
construction of the Leech lattice is also derived.

A. Appendix

A.1. Algebraic Characterization

In this appendix we describe a group-theoretic approach to quasi-cyclic codes.
Throughout this section, the code C is defined over any finite commutative ring A.
Recall that the permutation group PermðCÞ of a code C of length n is the subgroup
of Sn, the group of all permutations on n letters, that fixes C under coordinate
permutations. We begin with a characterization of quasi-cyclic codes in terms of
permutation groups.

PROPOSITION A.1. A code C of length n ¼ ‘m is ‘-quasi-cyclic if and only if PermðCÞ
contains a fixed point free (fpf) permutation consisting of ‘ disjoint m-cycles. In
particular, if p denotes a prime, C of length n ¼ ‘p is ‘-quasi-cyclic if and only if
PermðCÞ contains an fpf permutation of order p.

Proof. If C is ‘-quasi-cyclic, then T ‘ is the permutation sought for, where T denotes
the cyclic shift. Conversely, if PermðCÞ contains such a permutation s, then up to
coordinate labeling, we can assume that s ¼ T ‘. &

For the sake of illustration, recall that the affine group AffðqÞ acts on Fq by
transformations of the type x� axþ b with a, b in Fq and a nonzero. A code of
length q is called affine invariant if its permutation group contains AffðqÞ. The chief
examples of such codes are the extended BCH codes.

COROLLARY A.2. Let C be an affine invariant code of length q ¼ ps, where p is a
prime. Then C is ‘-quasi-cyclic for ‘ ¼ ps�1 and no other value of ‘.
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Proof. It is straightforward to check that the only fpf permutations of AffðqÞ are
the translations x� xþ b with b nonzero which are of order p. &

COROLLARY A.3. Let C be a code of length pþ 1 invariant under PSLð2; pÞ, where p
is a prime. Then C is 2‘-quasi-cyclic for every divisor 2‘ of ðpþ 1Þ.

Proof. By [22, Chap. 16, Lemma 14], PermðCÞ contains an fpf permutation made
of two disjoint cycles of length ðpþ 1Þ=2. Therefore its ‘ ¼: ðpþ 1Þ=2d-th power is
also fpf but of order d. By the characterization in Proposition A.1, the result
follows. &

Remark. When A is a finite field, examples of codes that satisfy the condition in
Corollary A.3 are the extended quadratic residue codes.

A.2 q ¼ m ¼ 2 and the Squaring Construction

It is well-understood since Dougherty et al. [6] that the case q ¼ m ¼ 2 corresponds
to binary image of codes over F2 þ uF2. If the latter code is of multilevel type (i.e.,
D1 þ uD2, where D1 and D2 are binary codes), then the former is equivalent to a code
obtained from the nested ðu j u þ vÞ construction (applied to the ordered pair
ðD2;D1Þ with D1(D2). The nested construction is a special case of the twisted
squaring construction [2].

PROPOSITION A.4. A binary code is ‘-quasi-cyclic of length 2‘ if and only if it is the
binary image of a code over F2 þ uF2. That latter code is of multilevel type if and only
if the former code is obtained from the nested squaring construction.

Proof. By the characterization in Proposition A.1, being binary ‘-quasi-cyclic of
length 2‘ is equivalent to admitting an fpf involutory permutation. The result follows
by [6]. &

A.3 q ¼ m ¼ 3 and the ðu þ v þ w j 2u þ v juÞ Construction

In Kschichang et al. [18], the following construction is introduced

KPðU;V ;WÞ :¼ fðu þ v þ w j 2u þ v j uÞ j u [U; v [V ; w [Wg;

where U;V ;W are codes of the same length over some ring A. We say that such a
construction is nested if the chain of inclusionsW(V(U holds. It is proved in loc.
cit. that the minimum distance is

minð3dU ; 2dV ; dW Þ;

where dU ; dV ; dW denote the minimum distances of U;V ;W respectively.
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Define the chain ring R27 as F3½Y �=ðY3 � 1Þ, or equivalently F3 þ uF3 þ u2F3 with
u3 ¼ 0. Define the Gray map as

fða þ bY þ cY2Þ ¼ ða; b; cÞ;

or equivalently,

fðr þ suþ tu2Þ ¼ ðr þ s þ t; 2t þ s; tÞ:

PROPOSITION A.5. A ternary code is ‘-quasi-cyclic of length 3‘ if and only if it is the
ternary Gray image of an R27 code. That latter code is of multilevel type if and only if
the former code is equivalent to a code obtained by the nested KP construction.

Proof. To check the equivalence of the two definitions of the Gray map, let
u ¼ Y � 1. The first assertion follows by the characterization. The strong KP
condition is needed to ensure R27-linearity in a multilevel construction. The second
assertion follows. &

For instance the ½12; 6; 6� ternary Golay code is 4-quasi-cyclic (its permutation
group contains PSLð2; 11Þ) but cannot be obtained from a multilevel type code since
then dW  4.

Acknowledgment

Part of this work was done when San Ling was visiting CNRS-I3S, ESSI, Sophia
Antipolis, France.
San Ling would like to thank the institution for the kind hospitality. The research

of San Ling is partially supported by MOE-ARF research grant R-146-000-029-112
and DSTA research grant R-394-000-011-422.

References

1. E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and

invariant rings, IEEE Trans. Inform. Theory, Vol. (45) (1999) pp. 1194–1205.
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