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ABSTRACT

It has been widely thought that measuring the misalignment angle between the
orbital plane of a transiting exoplanet and the spin of its host star was a good discrim-
inator between different migration processes for hot-Jupiters. Specifically, well-aligned
hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to
have formed via migration through interaction with a viscous disc, while misaligned
systems were thought to have undergone a more violent dynamical history. These con-
clusions were based on the assumption that the planet-forming disc was well-aligned
with the host star. Recent work by Lai et al. has challenged this assumption, and pro-
poses that the star-disc interaction in the pre-main sequence phase can exert a torque
on the star and change its rotation axis angle. We have estimated the stellar rotation
axis of a sample of stars which host spatially resolved debris disks. Comparison of
our derived stellar rotation axis inclination angles with the geometrically measured
debris-disk inclinations shows no evidence for a misalignment between the two.
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1 INTRODUCTION

The discovery of planets beyond the confines of our Solar
system has presented many surprises and continues to chal-
lenge our understanding of planet formation and their subse-
quent evolution. This is particularly true in the case of hot-
Jupiters, whose short orbital periods of a few days or less
was unexpected – under the standard core-accretion theory
of planet formation, volatile gas-giants should form beyond
the snow-line (Pollack et al. 1996). It is now widely accepted
that hot-Jupiters did not form in-situ at their current loca-
tions, but that some mechanism caused their inwards mi-
gration towards their parent star.

A number of theories have been postulated to ex-
plain planetary migration. One possible mechanism for

⋆ E-mail: c.a.watson@qub.ac.uk

forming short-period gas-giants is the pumping of ini-
tially wide circular orbits to high eccentricities. This could
occur via planet-planet scattering (Rasio & Ford 1996;
Weidenschilling & Marzari 1996), or perturbations from a
distant stellar binary companion (Eggenberger et al. 2004).
The highly eccentric orbit then brings the gas-giant suffi-
ciently close to the host star that tidal dissipation quickly
draws the planet to a new, smaller orbital separation. In
this scenario, the interactions and scattering involved may
lead to large changes in the value of the orbital inclination.
Interactions between the planet and a viscous disc, on the
other-hand, may also drive the planet inwards but is not
thought to perturb the initial orbital inclination.

The close alignment of the rotation and orbital axes in
the Solar system (∼7◦; Beck & Giles 2005) is attributed to
the formation of the Sun and planets from a single rotating
proto-stellar disc which was also initially coplanar to the
solar-rotation axis. On the premise that discs and stellar

http://arxiv.org/abs/1009.4132v1
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rotation axes are aligned, Rossiter-McLaughlin (RM) ob-
servations of transiting systems (e.g. Triaud et al. 2010 and
references therein) have sought to discriminate between mi-
gration caused by planet-disc interactions (leading presum-
ably to aligned systems), and migrations involving some vi-
olent dynamical history (leading to misaligned systems). In
a recent paper, however, Lai et al. (2010) present arguments
that the observed star-orbit misalignment could instead re-
sult from alterations in the stellar spin axis, introduced by
the star-disc interaction during the pre-main-sequence phase
(also see Foucart & Lai 2010). This, potentially, has impor-
tant ramifications for our interpretation of the results of
RM observations. Indeed, if the stellar rotation axis can
be driven from coplanarity with the surrounding disc then
RM observations would essentially be rendered useless as a
tool for determining the migration mechanism responsible
for forming hot-Jupiter’s.

Lai et al. consider the well known fact that a magnetic
protostar exerts a warping force on the inner part of the ac-
cretion disc (e.g. Bouvier et al. 2007). Previous authors have
assumed that this results in significant warps to the inner
disc, whereas Lai et al. (2010) argue that viscous processes
in the disc itself will smooth these torques, resulting in a
largely unwarped inner disc. Given a flat disc, the torques
arising from the star-disc interaction will act on the star
itself, changing the stellar spin axis on a timescale given by

tspin = (1.25Myr)

(

M∗

1M⊙

)(

Ṁ

10−8M⊙yr−1

)−1

×

(

rin

4R∗

)−2
ωs

Ω(rin)
, (1)

where M∗ and R∗ are the mass and radius (in solar units) of
the protostar, respectively, Ṁ is the accretion rate in solar
masses per year, rin is the inner radius of the accretion disc
in stellar radii, ωs is the spin rate of the protostar and Ω(rin)
is the rotation rate of the accretion disc at the inner disc
radius.

However, the mechanism proposed by Lai et al. (2010)
may not be effective in practice, as the timescale for spin
evolution, tspin, is of the same order as the disc evolu-
tion timescale. Near-infrared observations of protostars show
that the majority of protostellar discs have dispersed by the
age of 5 Myr (Hernández et al. 2008) whilst observations of
the accretion rates onto young stars also show that the accre-
tion rate declines rapidly with increasing age and decreasing
stellar mass (e.g Sicilia-Aguilar et al. 2006), so the accretion
rate on many protostars may well be below the canonical
10−8 M⊙yr

−1 assumed by Lai et al. (2010). In addition, the
results of Lai et al. (2010) rely on the inner disc not being
‘significantly warped’, however there is good evidence that
the inner discs of some young stars do contain significant disc
warps (see e.g. Bouvier et al. 2007; Muzerolle et al. 2009).

For these reasons, it is important to seek observational
evidence for the process suggested by Lai et al. (2010). In
this paper we present a study of star-disc alignment in debris
disc systems.

2 MEASURING THE STAR-DISK
ALIGNMENT

For the purposes of this work, we have concentrated on sys-
tems with spatially resolved debris disks. The inclination of
the disk to our line-of-sight can then be measured geomet-
rically by calculating the fore-shortening of the semi-minor
axis of the disk relative to the semi-major axis (although in
reality the models used to determine the disc geometry are
somewhat more complex).

A more indirect approach is needed in order to de-
termine the inclination angle of the stellar rotation axis,
however. To do this we have followed the method of
Watson et al. (2010) who complied the stellar rotation in-
clination angles for 117 exoplanet host stars, and we refer
the reader to that paper for in-depth details of the meth-
ods used, as well as a discussion on possible sources of sys-
tematic errors inherent in the technique. In summary, it is
possible to determine the inclination angle, i, between the
rotation axis of a star and the observers line-of-sight from
measurements of the projected equatorial velocity (v sin i),
the stellar rotation period (Prot) and the stellar radius (R∗)
via the equation

sin i =
Prot × v sin i

2πR∗

. (2)

The projected equatorial rotation velocity, v sin i, can be
measured using high-resolution spectroscopy, while the stel-
lar radius can also be indirectly determined from spectra
or, less frequently, directly via interferometry, lunar occul-
tations or eclipses (e.g. Fracassini et al. 2001). Precisions on
stellar radius measurements of ∼3 per cent are now regularly
quoted (e.g. Fischer & Valenti 2005).

Determining the stellar rotation period, on the other-
hand, tends to be more troublesome. For some active stars,
the stellar spin period can be determined photometrically to
high precision by tracking the passage of large star spots on
their surfaces. For those systems which do not have photo-
metrically measured rotation periods, measurements of Ca
ii H and K emission can be used to estimate the rotation pe-
riod by applying the chromospheric emission – rotation pe-
riod relationship of Noyes et al. (1984). Naturally, this latter
method is less precise, and is also affected by intrinsic vari-
ability of the Ca ii H and K emission due to, for example,
solar-like activity cycles or the rotation of magnetic regions.

We have carried out an extensive literature search and
present v sin i, R∗, and Prot estimates for a number of main-
sequence stars which host spatially resolved debris disks in
Table 1. Since one of the pre-requisites for measuring a
stellar rotation period is that the star must be magneti-
cally active, we are restricted to lower main-sequence stars
later than ∼F5V which have a convective envelope (and
are thereby capable of sustaining a stellar dynamo). Of the
20 main-sequence stars with resolved debris disks, only 10
have spectral types of F5V or later. Of these, we can find
no recorded Ca ii H and K emission measurement for HD
181327, and is therefore omitted from our list.

We should note that we have not considered pre-main
sequence stars in our analysis. This is for two principal
reasons. First, given their fully convective nature, it is
not certain that the activity-rotation period relationship of
Noyes et al. (1984) (which was calibrated for main-sequence
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stars) holds, indeed an entirely different stellar dynamo
mechanism may operate in pre-main sequence stars (e.g.
Scholz et al. 2007). Second, radius estimates for pre-main
sequence stars are also notoriously unreliable, since they de-
pend upon age estimates which are uncertain by a factor
of several (e.g. Naylor 2009; Baraffe, Chabrier & Gallardo
2009).

2.1 Adopted stellar parameters and errors

In order to determine sin i via equation 2, we have taken a
weighted mean of the entries in Table 1 for the final values
of v sin i and R∗. In identical fashion to that carried out
in Watson et al. (2010), where no error was quoted on a
published v sin i value we have taken it to be 1.0 kms−1

(twice the typical error assumed on v sin i measurements,
see the catalogue of Fischer & Valenti 2005 for example).
Regarding published radii with no associated error bar, we
have taken the error to be 10 or 20 per cent of the absolute
value. The choice between 10 or 20 per cent is taken to
ensure that radii estimates with associated error bars were
given a higher weighting than those without formal errors.

For stars with photometrically derived rotation periods
which have no associated error bar, we have taken the error
to be 10 per cent. This is commensurate with the typical
error bars quoted on such measurements. Where available,
photometrically derived rotation periods are adopted, oth-
erwise the rotation period is estimated from the strength of
the Ca ii H and K emission (Noyes et al. 1984). Again, fol-
lowing Watson et al. (2010), for each logR′

HK measurement
reported in Table 1 we have determined, where possible, the
number of observations and period over which they were
carried out (see Table 5). Where details are not present,
or are ambiguous, we have assumed they are from a single
observation and have flagged them as ‘individual?’. As in
Watson et al. (2010), each star was assigned a grade of P
(Poor), O (O.K.), G (Good) or E (Excellent) based on how
well monitored it was. We then assigned general error bars
on the logR′

HK values dependent on their assigned grades
and spectral type. These error bars are derived from the av-

erage rotationally modulated variations outlined in Section
3.1 of Watson et al. (2010). For a detailed discussion of the
systematic errors on the derived parameters, we refer the
reader to this work.

2.2 Determining the stellar inclination angle

Equation 2 can be thought of as a naive estimator of sin i as
it is geometrically unconstrained (e.g. sin i > 1 is allowed).
While a value of sin i > 1 is unphysical, it does allow po-
tential problem cases to be identified. Table 2 shows the
adopted parameters for each star, plus the naive sin i es-
timation alongside the formal error bar. Again, we follow
Watson et al. (2010) and reject systems with sin i’s that are
1-σ greater than 1 from further analysis – flagging these as
having a high probability of being affected by systematic er-
rors. This results in the omission of 2 systems, HD 53143 and
HD 139664, both of which have naive sin i estimates signifi-
cantly greater than 1. In the case of HD 139664, the B − V

value places it at the extreme edge of the chromospheric
emission – rotation period calibration by Noyes et al. (1984).

In addition, the star is classified as having a luminosity class
IV, and therefore both the derived rotation period from the
Noyes et al. (1984) relationship (which is only calibrated for
main-sequence stars) and radius may also be suspect. HD
53143, on the other hand, is more problematic. It appears
to have a secure rotation period which has been measured
photometrically and that also agrees very well with the pe-
riod derived from the Ca ii H and K emission. In addition,
all of the measured v sin i’s and radii are consistent with one
another. Yet, despite this and the fact that it appears to be
a solid main-sequence star with an age of 1.0 ± 0.2 Gyr
(Kalas et al. 2006), we derive sin i ∼ 1.5 ± 0.4. We can only
assume that 1 or more of the measurements are affected by
systematics.

For the 8 remaining systems we have carried out a
Markov-chain Monte Carlo (MCMC) analysis which not
only provides a means of optimising the fit of a model to
data but explores the joint posterior probability distribution
of the fitted parameters and allows proper 1-σ two-tailed
confidence limits to be placed on the derived sin i’s. In addi-
tion, MCMC rejects unphysical combinations of parameters
that result in sin i > 1. For the purposes of this work, we
have followed the MCMC process outlined in Watson et al.
(2010), keeping the same 1000-step burn-in phase and carry-
ing out 1,000,000 jumps. The results of this MCMC analysis
are shown in Table 3.

3 RESULTS AND DISCUSSION

Table 4 shows our derived stellar rotation inclination angles
versus published debris-disk inclinations. As can be seen,
there is no obvious evidence for large mis-alignments of the
stellar rotation axes and debris-disk planes in any of these
systems. By the nature of the method, the best constrained
systems have sin i ∼ 0.5 (i∗ =30◦). This is because at high
inclinations the sine curve is relatively flat, and thus small
errors in sin i (which is what is directly calculated from the
observables in equation 2) propagate to form large errors
when expressed in degrees. At sin i’s of ∼0.5, the sine curve
is much steeper, and travelling along the sine curve does
not vary the inclination i∗ as quickly as it does at high
sin i’s. As one moves to lower sin i’s, measurement errors on
v sin i naturally increase as the projected rotational broad-
ening decreases. The fact that the best constrained systems,
HD 22049 and HD 107146, with errors on i∗ of only 5 – 9◦

appear to align closely with their debris disk gives us both
confidence in the technique, and further strengthens our as-
sertion that we see no evidence for a detectable difference
between the sky-projected angle of the disc and the that of
the stellar rotation axis. In addition, it should be noted that
HD 22049 is known to host a planet that has had the inclina-
tion of its orbital plane accurately determined to be iplanet =
30.◦1±3.◦8 – suggesting coplanarity between the planetary
orbit and disk (Benedict et al. 2006). Furthermore, star spot
modeling of a MOST light curve of HD 22049 by Bryce et al.
(2006) determined the inclination of the stellar rotation axis
to be i∗ = 30◦±3◦, in excellent agreement with our derived
values. We do caution, however, that the absolute direction
of the axis (whether the rotation axis is pointing towards or
away from the observer) cannot be ascertained, and there-
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fore we do not have a knowledge of the full three-dimensional
geometry of the star-disk systems.

We interpret our results as indicating that all 8 systems
are well-aligned (since it would be a huge coincidence that
both disk and star inclination angles would be identical, but
pointing in opposite directions), we can use this to set limits
on the percentage of misaligned systems that may exist. If
∼ 30 per cent of star-disc systems are misaligned then the
chance of drawing, at random, 8 aligned systems from this
population is less than 0.06. The probability drops rapidly
to 0.004 if we assume equal numbers of aligned and mis-
aligned systems. A recent analysis of Rossiter-McLaughlin
observations by Triaud et al. (2010) suggest that between 45
– 85 per cent of hot-Jupiters appear to be significantly mis-
aligned. However, our work in this paper reveals no similar
degree of misalignment between debris disks and their host
stars. We conclude that there appears to be no substantial
evidence to suggest that the process outlined by Lai et al.
(2010) is a major mechanism in misaligning planetary orbits.



The alignment of debris disks and their host stars 5

Table 1: Published data on the properties of 10 stars hosting resolved
debris disks. Rotation periods quoted with no reference have been cal-
culated using the adjacent logR′

HK entry using the Noyes et al. (1984)
chromospheric emission – rotation period relationship along with (B−V )
values taken from NStED.

Alternative v sin i σv logR′
HK Prot σp Radius σr

HD HIP Name (km s−1) (days) (R⊙)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

10647..... 7978.... 5.6002 0.500 -4.688 7.562 ... 1.0801 0.050
6.0004 ... -4.7009 7.903 ... 0.99012 ...
4.8808 ... -4.71411 8.137 ... 1.09613 0.025
5.20011 ... ... ... ... 1.1414 0.040

10700..... 8102.... TAU Cet 1.3002 0.500 -4.9803 32.848 ... 0.7501 0.030
1.0004 ... -4.9555 32.058 ... 0.88017 0.100
0.8007,a 0.400 -4.95822 34.0022,p ... 0.83014 0.020
2.00024 ... -4.95523 32.058 ... ... ...
0.40025 0.400 -5.02611 34.266 ... ... ...

22049..... 16537... Epsilon Eri 2.400:2 ... -4.510:3 17.275: ... 0.740:1 0.030
1.70025 0.300 -4.45522 12.00022,p ... 0.86017 0.120
1.8007,a 0.400 ... 11.30026,p 1.100 0.69012 ...
... ... ... 11.15027,p 1.150 0.77014 0.020
... ... ... 11.30023,p ... ... ...

53143..... 33690... 4.0004 ... -4.5205 16.298 ... 0.9201 0.050
4.10011 ... -4.50711 15.528 ... 0.88012 ...
4.00010 ... ... 16.40018,p ... 0.87017 ...
... ... ... ... ... 0.85013 0.020

61005..... 36948... 9.0004 ... -4.2605 3.677 ... 0.81012 ...
8.20011 ... -4.32411 5.551 ... 0.8401 0.06
... ... -4.36015 6.826 ... ... ...
... ... -4.33716 5.993 ... ... ...

92945..... 52462... GJ 3615 4.0004 ... -4.3203 6.964 ... 0.8101 0.050
5.1002 0.500 -4.39316 10.446 ... 0.78014 0.030
5.1007,a 2.100 ... 13.470:21 ... 0.77012 ...
4.00010 ... ... ... ... ... ...

107146.. 60074.. 5.0002 0.500 -4.3403 3.496 ... 0.9901 0.070
5.0004 ... ... ... ... 0.9812 0.027
... ... ... ... ... 1.00014 0.040
... ... ... ... ... 1.00013 0.020
... ... ... ... ... 0.97012 ...

139664.. 76829..... GJ 594 71.6006 3.600 -4.62111 1.517 ... 1.331 0.060
105.0007 ... ... ... ... 1.27017 0.500
87.00019 ... ... ... ... 1.31813 0.030
... ... ... ... ... 1.26012 ...

197481.... 102409.. AU Mic 9.30010 1.2 -4.5205 4.86521,p ... 0.8701 0.020
8.000:7 ... ... 4.85018,p ... 0.86012 ...
... ... ... 4.82221820,p ... 0.61017 0.050

207129 107649 GJ 838 2.0004 0.000 -4.8005 15.171 ... 1.0401 0.050
2.4002 0.500 -4.8509 16.296 ... 0.98517 ...
... ... -5.02016 19.536 ... 1.08014 0.040
... ... ... ... ... 1.04713 0.024
... ... ... ... ... 0.98012 ...

References: 1NStED, 2Valenti & Fischer (2005), 3Wright et al. (2004), 4Nordström et al. (2004), 5Henry et al. (1996),
6Reiners & Schmitt (2003), 7Glebocki & Stawikowski (2000), 8 Coralie, 9Jenkins et al. (2006), 10Torres et al. (2006),
11Schröder, Reiners & Schmitt (2009), 12Rhee et al. (2007), 13Allende Prieto & Lambert (1999), 14Takeda et al. (2007),
15White et al. (2007), 16Gray et al. (2006), 17Fracassini et al. (2001), 18Pizzolato et al. (2003), 19Ochsenbein & Halbwachs
(1999), 20Pojmański & Maciejewski (2005), 21Samus et al. (2009), 22Baliunas et al. (1996), 23Noyes et al. (1984),
24Mallik et al. (2003), 25Saar & Osten (1997), 26Simpson et al. (2010), 27Fray et al. (1991)
: = value uncertain. a = mean of a range of values given by Glebocki & Stawikowski (2000). p = rotation period measured
photometrically.
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Table 2: Adopted parameters and ‘naive’ sin i estimates as derived from
equation 2, complete with formally propagated errors.

HD or v sin i σv Prot σP R∗ σR sin i ±

Alt. Name (km s−1) (days) (R⊙)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

10647 5.497 0.377 7.803 1.32 1.099 0.019 0.770 0.115
10700 0.848 0.232 34.000 3.399 0.807 0.016 0.706 0.206
22049 1.772 0.233 11.300 0.510 0.770 0.019 0.513 0.072
53143 4.033 1.000 16.399 1.639 0.850 0.019 1.536 0.412
61005 8.599 1.000 5.419 2.108 0.829 0.048 1.110 0.455
92945 5.022 0.468 7.176 2.830 0.786 0.024 0.905 0.368
107146 5.000 0.447 3.496 1.35 0.993 0.014 0.347 0.107
139664 89.711 1.827 1.517 0.249 1.319 0.026 2.038 0.339
197481 8.832 0.960 4.846 0.20 0.835 0.018 1.012 0.112
207129 2.319 0.447 17.129 1.610 1.048 0.018 0.748 0.161
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Table 3: Results of the Markov-chain Monte Carlo analysis for the 8
stars which have acceptable naive sin i estimates. Column 8 gives the
final derived sin i value, followed by the 1-σ two-tailed confidence limits.

HD or v sin i σv Prot σP R∗ σR sin i σ− σ+

Alt. Name (km s−1) (days) (R⊙)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

10647 5.497 0.377 7.803 1.32 1.099 0.019 0.768 0.142 0.157
10700 0.848 0.232 34.000 3.399 0.807 0.016 0.702 0.208 0.229
22049 1.772 0.233 11.300 0.510 0.770 0.019 0.510 0.071 0.081
61005 8.599 1.000 5.419 2.108 0.829 0.048 0.999 0.123 0.000
92945 5.022 0.468 7.176 2.830 0.786 0.024 0.908 0.091 0.087
107146 5.000 0.447 3.496 1.35 0.993 0.014 0.353 0.141 0.138
197481 8.832 0.959 4.846 0.20 0.835 0.018 0.999 0.062 0.000
207129 2.319 0.447 17.129 1.610 1.048 0.018 0.746 0.167 0.187
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Table 4. Comparison of the derived stellar rotational axes and
published disk-plane inclinations. For HD 10647 and HD 10700
the lower value for the disk inclination corresponds to that derived
from the observed disk dimensions and which we take to be the
most probable value. References for the disk inclinations are given
in the final column.

HD i∗ (◦) idisk (◦) ref.

10647 49+17
−11 >52 (Liseau et al. 2008)

10700 45+24
−15 60–90 (Greaves et al. 2004)

22049 31+5
−5 25 (Greaves et al. 1998)

61005 90+0
−26 80 (Maness et al. 2009)

92945 65+21
−10 70 (Krist et al. 2005)

107146 21+8
−9 25±5 (Ardila et al. 2004)

197481 90+0
−20 90 (Krist et al. 2005)

207129 47+22
−13 60±3 (Krist et al. 2010)
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Table 5: Compilation of chromospheric indices (logR′
HK) for the stars in

Table 1 for which no measured rotation periods have been reported. The
spectral type of the host star is given in column 2. Entries in bold give the
grade assigned to each star (P = Poor, O = O.K., G = Good, and E =
Excellent) followed by the weighted mean of the logR′

HK measurements
and adopted error bar (see section 2.1 for details). Reference numbers
are identical to those used in Table 1.

Name Type log R’HK Observations Ref.

HD 10647 F8V -4.680 individual? 8
-4.700 individual on 2001 Aug 04 9.
-4.714 individual? 11.

(P) Adopted value: -4.698 ± 0.060

HD 61005 G3/5V -4.260 1 obs on UT 14/12/1992 5
-4.324 individual? 11
-4.360 1 obs on 28/10/2002 15
-4.337 individual? 16

(P) Adopted value: -4.320 ± 0.075

HD 92945 K1V -4.320 13 obs in 6 months. Report σ = 2.72% 3
-4.393 individual? 16

(O) Adopted value: -4.325 ± 0.077

HD 107146 G5 -4.340 8 obs in 5 months. Report σ = 3.04% 3
(O) Adopted value: -4.340 ± 0.057

HD 139664 F3/5V -4.621 individual? 11
(P) Adopted value: -4.621 ± 0.060

HD 207129 G0V -4.800 1 obs on UT 28/06/1993 5
-4.850 1 obs on 2004 Aug 23/24 9
-5.020 individual? 16

(P) Adopted value: -4.89 ± 0.075
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