ON THE ALMOST-COMPLEX STRUCTURE OF TANGENT BUNDLES OF RIEMANNIAN SPACES

SHUN-ICHI TACHIBANA AND MASAFUMI OKUMURA

(Received November 10, 1961)

Recently we can see several papers concerning almost-Kählerian spaces, but it seems for the authors that there does not exist a non-Kählerian global example of such a space. In this paper we shall show that the tangent bundle space $T(M^n)$ of any non-flat Riemannian space M^n always admits an almost-Kählerian structure which is not Kählerian. This is done by making use of the almost-complex structure of $T(M^n)$ owing to T. Nagano $[1]^{10}$ and of the Riemannian metric of $T(M^n)$ owing to S.Sasaki [2]. By virtue of this structure we shall also see that an infinitesimal affine transformation has an almost-analytic property in a ce tan sense.

The authors wish to express their hearty thanks to Prof. S. Sasaki by whom they were interested in the almost-complex structure of tangent bundles.

1. Almost-Kählerian spaces. Let us consider a 2n-dimensional differentiable manifold admitting a tensor field $\varphi_{\kappa}^{\lambda}$ such that $\varphi_{\lambda}^{\alpha}\varphi_{\alpha}^{\kappa} = -\delta_{\lambda}^{\kappa}{}^{2}$. Such a manifold is called an almost-complex space and it is said that the tensor field assigns to the manifold an almost-complex structure. An almost-complex structure is called to be integrable if the tensor field defined by

$$N_{\mu\lambda}^{\ \kappa} = \varphi_{\mu}^{\ \alpha} \left(\partial_{\alpha} \varphi_{\lambda}^{\ \kappa} - \partial_{\lambda} \varphi_{\alpha}^{\ \kappa} \right) - \varphi_{\lambda}^{\ \alpha} \left(\partial_{\alpha} \varphi_{\mu}^{\ \kappa} - \partial_{\mu} \varphi_{\alpha}^{\ \kappa} \right)$$

vanishes identically.

An infinitesimal transformation V^{κ} of an almost-complex space is called to be almost-analytic [3] if it satisfies $\underset{V}{\pounds} \varphi_{\lambda}{}^{\kappa} = 0$, where $\underset{V}{\pounds}$ means the operator of Lie derivation.

An almost-complex space always admits a Riemannian metric $G_{\mu\lambda}$ such that

(1. 1)
$$G_{\beta\alpha}\varphi_{\mu}^{\ \beta}\varphi_{\lambda}^{\ \alpha} = G_{\mu\lambda}$$

which is equivalent to the fact that $\varphi_{\mu\lambda}$ defined by $\varphi_{\mu\lambda} = \varphi_{\mu}{}^{\alpha}G_{\lambda\alpha}$ is skew-symmetric or that $G_{\mu\lambda}$ is hybrid [3].

An almost-complex space with such a Riemannian metric is called an almost-Hermitian space and the differential form $\varphi = (1/2)\varphi_{\mu\lambda}dx^{\mu} \wedge dx^{\lambda}$ is called the fundamental form. If the form is closed, the almost-Hermitian

¹⁾ The number in brackets refers to Bibliography at the end of the paper.

²⁾ $\lambda, \mu, \nu, \alpha, \dots = 1, 2, \dots, 2n.$

space is called an almost-Kählerian space. An almost-Hermitian space satisfying $\nabla_{\nu}\varphi_{\mu\lambda} = 0$ is nothing but Kählerian, where ∇_{ν} means the operator of Riemannian covariant derivation.

It is known that the almost-complex structure of an almost-Kählerian space is integrable if and only if the space is Kählerian.

2. Tangent bundles. Let M^n be an *n*-dimensional differentiable manifold and $T(M^n)$ be its tangent bundle space. $T(M^n)$ is a 2*n*-dimensional differentiable manifold with the natural structure.

Let x^{i} ³⁾ be local coordinates of a point P of M^n , then a tangent vector y at P, which is an element of $T(M^n)$, is expressible in the form (x^i, y^i) , where y^i are components of y with respect to the natural frame $\partial_i = \partial/\partial x^i$. We may consider (x^i, y^i) local coordinates of $T(M^n)$. To a transformation of local coordinates of M^n

$$x^{i'} = x^{i'}(x^1, \dots, x^n)$$

there corresponds in $T(M^n)$ the coordinate transformation

(2. 1)
$$x^{i'} = x^{i'}(x^1, \dots, x^n), \quad y^{i'} = y^r \ \partial_r x^{i'}.$$

If we put

$$x^{i^*} = y^i, \quad x^{i^{*}} = y^{i'}, \quad x^{i^*} = y^{i'}, \quad x^{i^$$

then we may write (2, 1) as

(2. 2) $x^{\kappa'} = x^{\kappa'}(x^1, \dots, x^{2n}).$

The Jacobian matrix of (2. 1) or (2. 2) is given by

$$egin{pmatrix} \partial_j x^{l'} & y^r \partial_{rj} x^{l'} \ 0 & \partial_j x^{l'} \end{pmatrix}, \qquad \qquad \partial_{rj} = \partial^2 / \partial x^r \partial x^j.$$

For an infinitesimal transformation or a contravariant vector field v^i on M^n , if we define $V^{\scriptscriptstyle A}$ by

(2. 3)
$$V^i = v^i, \quad V^{i*} = y^r \partial_r v^i = x^{r*} \partial_r v^{i-5},$$

then it is a contravariant vector field on $T(M^n)$ or it defines an infinitesimal transformation of $T(M^n)$. V^{λ} is called the extension of v^i .

3. The almost-complex structure of $T(M^n)$. In the following we shall mean by M^n an *n*-dimensional Riemannian space whose metric tensor is g_{ji} . Following T. Nagano [1] we shall introduce in $T(M^n)$ an almost-complex structure as follows.

Put

³⁾ $i, j, k, \dots = 1, 2, \dots n.$

⁴⁾ $i^* = n + i$, $i'^* = n + i'$.

⁵⁾ Of course we adopt the summation convention on r.

(3. 1)
$$\Gamma_i^h = \left\{ \begin{array}{c} h \\ i r \end{array} \right\} y^r,$$

where $\left\{ \begin{array}{c} h \\ i \\ r \end{array} \right\}$ denotes the Christoffel's symbol formed by the Riemannian metric g_{ji} .

If we define $\varphi_{\lambda}^{\kappa}$ with respect to each local coordinates (x^{i}, y^{i}) of $T(M^{n})$ by

(3. 2)
$$\boldsymbol{\varphi}_{i}^{h} = \Gamma_{i}^{h}, \quad \boldsymbol{\varphi}_{i}^{h*} = -\delta_{i}^{h} - \Gamma_{i}^{r} \Gamma_{r}^{h},$$
$$\boldsymbol{\varphi}_{i*}^{h*} = \delta_{i}^{h}, \quad \boldsymbol{\varphi}_{i*}^{h*} = -\Gamma_{i}^{h},$$

then we can see that $\varphi_{\lambda}{}^{\alpha}\varphi_{\alpha}{}^{\kappa} = -\delta_{\lambda}{}^{\kappa}$ holds good. On the other hand we can also show that $\varphi_{\lambda}{}^{\kappa}$ defines a tensor field on $T(M^n)$.

Hence the tangent bundle of any Riemannian space is an almost-complex space.

REMARK. The tangent vector space of $T(M^n)$ is spanned by n vertical vectors $e_{i^*} = \partial_{i^*} = \partial/\partial y^i$ and n horizontal vectors $e_i = \partial_i - \Gamma_i^{\ r} \partial_{r^*}$. $\varphi_{\lambda}^{\kappa}$ defines a transformation on each tangent vector space of $T(M^n)$ and by the transformation a tangent vector X with components (X^i, X^{i^*}) with respect to the frame (e_i, e_{i^*}) is transformed into a vector with components $(X^{i^*}, -X^i)$.

Next we consider under what condition the almost-complex structure of $T(M^n)$ is integerable.

Let R_{kji}^{h} be the Riemannian curvature tensor of M^{n} , i.e.

$$R_{kji}{}^{h} = \partial_{k} \left\{ \begin{array}{c} h \\ j i \end{array} \right\} - \partial_{j} \left\{ \begin{array}{c} h \\ k i \end{array} \right\} + \left\{ \begin{array}{c} h \\ k r \end{array} \right\} \left\{ \begin{array}{c} r \\ j i \end{array} \right\} - \left\{ \begin{array}{c} h \\ j r \end{array} \right\} \left\{ \begin{array}{c} r \\ k i \end{array} \right\}$$

and put

$$R_{ji}{}^{h} = R_{jir}{}^{h} y^{r}.$$

After some complicated calculations we have the following equations

$$N_{ji}{}^{h} = \Gamma_{j}{}^{r}R_{ri}{}^{h} - \Gamma_{i}{}^{r}R_{rj}{}^{h},$$

$$N_{ji}{}^{h*} = R_{ji}{}^{h} - \Gamma_{j}{}^{s}\Gamma_{i}{}^{r}R_{sr}{}^{h} + \Gamma_{s}{}^{h}(-\Gamma_{j}{}^{r}R_{ri}{}^{s} + \Gamma_{i}{}^{r}R_{rj}{}^{s}),$$

$$N_{ji*}{}^{h} = R_{ji}{}^{h},$$

$$N_{j*i*}{}^{h*} = 0,$$

$$N_{ji*}{}^{h*} = -\Gamma_{j}{}^{r}R_{ri}{}^{h} - \Gamma_{r}{}^{h}R_{ji}{}^{r},$$

$$N_{j*i*}{}^{h*} = -R_{ji}{}^{h}.$$

From these equations we have

THEOREM 1.6) In order that the almost-complex structure of $T(M^n)$ is

158

⁶⁾ The analogous theorem has been obtained by T.Nagano [1], but his almost-complex structure of $T(M^{4})$ is slightly different from ours.

integrable, it is necessary and sufficient that the Riemannian space M^n is flat. (C. J. Hsu [4])

Now let V^{λ} be the extension of an infinitesimal transformation v^{i} . If we denote by \pounds the operator of Lie derivation with respect to V^{λ} , then we have

$$\underset{\mathbf{v}}{\mathbf{\pounds}} \varphi_{\boldsymbol{\lambda}}{}^{\boldsymbol{\kappa}} = V^{\boldsymbol{\alpha}} \partial_{\boldsymbol{\alpha}} \varphi_{\boldsymbol{\lambda}}{}^{\boldsymbol{\kappa}} - \varphi_{\boldsymbol{\lambda}}{}^{\boldsymbol{\alpha}} \partial_{\boldsymbol{\alpha}} V^{\boldsymbol{\kappa}} + \varphi_{\boldsymbol{\alpha}}{}^{\boldsymbol{\kappa}} \partial_{\boldsymbol{\lambda}} V^{\boldsymbol{\alpha}}.$$

On taking account of (2. 3) and (3. 2) we have after some calculations

$$\begin{split} & \underset{\mathbf{v}}{\mathfrak{L}} \ \varphi_{j}{}^{h} = - \underset{\mathbf{v}}{\mathfrak{L}} \ \varphi_{j*}{}^{h*} = y^{r}t_{rj}{}^{h}, \\ & \underset{\mathbf{v}}{\mathfrak{L}} \ \varphi_{j*}{}^{h} = 0, \\ & \underset{\mathbf{v}}{\mathfrak{L}} \ \varphi_{j}{}^{h*} = -y^{r}(\Gamma_{j}{}^{s}t_{rs}{}^{h} + \Gamma_{s}{}^{h}t_{rj}{}^{s}), \end{split}$$

where t_{ji}^{h} is given by

$$t_{ji}{}^h =
abla_j
abla_i v^h + v^r R_{rji}{}^h = \partial_{ji} v^h + v^r \partial_r \left\{ egin{array}{c} h \ j \ i \end{array}
ight\} + \left\{ egin{array}{c} h \ j \ r \end{array}
ight\} \partial_i v^r + \left\{ egin{array}{c} h \ i \ r \end{array}
ight\} \partial_j v^r - \left\{ egin{array}{c} r \ j \ i \end{array}
ight\} \partial_r v^h,$$

 ∇_i being the operator of Riemannian covariant derivation in M^n .

On the other hand we have known that an infinitesimal transformation v^i of M^n is called affine if its t_{ji}^h vanishes.

Thus we have the following

THEOREM 2. In order that an infinitesimal transformation of a Riemannian space M^n is affine, it is necessary and sufficient that its extension in $T(M^n)$ is almost-analytic.

4. The almost-Hermitian structure of $T(M^n)$. Following S.Sasaki [2] we shall introduce a Riemannian metric into $T(M^n)$. This is done by defining a line element of $T(M^n)$ such as

(4. 1)
$$d\sigma^2 = g_{ji} dx^j dx^i + g_{ji} Dy^j Dy^i,$$

where Dy^i are *n* differential forms on $T(M^n)$ given by

$$Dy^i = dy^i + y^r \left\{ egin{smallmatrix} i \ r \, s \end{array}
ight\} \, dx^s.$$

If we write (4. 1) in the form

$$d\sigma^2 = G_{\mu\lambda} dx^{\mu} dx^{\lambda},$$

the Riemannian metric $G_{\mu\lambda}$ of $T(M^n)$ is given by

$$G_{ji} = g_{ji} + \Gamma_j^r \Gamma_{ir},$$

$$G_{ji*} = \Gamma_{ji},$$

$$G_{j*i*} = g_{ji},$$

where $\Gamma_{ji} = \Gamma_j^r g_{ri}$.

Computing $\varphi_{\mu\lambda} = \varphi_{\mu}{}^{\alpha}G_{\alpha\lambda}$ we get

(4. 2)

$$\varphi_{ji} = \Gamma_{ji} - \Gamma_{ij} = y^r (\partial_j g_{ir} - \partial_i g_{jr}),$$

$$\varphi_{j*i} = -\varphi_{ij*} = g_{ji},$$

$$\varphi_{j*i*} = 0.$$

From these equations we know that $\varphi_{\mu\lambda}$ is skew-symmetric. Hence $G_{\mu\lambda}$ and $\varphi_{\lambda}^{\kappa}$ satisfy (1.1) and $T(M^n)$ is an almost-Hermitian space by virtue of this sturcture.

Now we define a covariant vector field η_{λ} in $T(M^n)$ by

(4. 3)
$$\eta_i = g_{ir} y^r, \qquad \eta_{i^*} = 0,$$

then the differential form $\eta = \eta_{\lambda} dx^{\lambda}$ is defined globally on $T(M^n)$.

As we obtain $\varphi = d\eta$ by virtue of (4. 2) and (4. 3), the fundamental form of $T(M^n)$ is derived. Thus we get

THEOREM 3. The tangent bundle space of any Riemannian space admits an almost-Kählerian structure.

The form η is called the homogeneous contact form of $T(M^n)$.

Consider an infinitesimal transformation v^i on M^n and its extension V^{λ} . Since we have by definition

$$\underset{V}{\pounds} \eta_{\lambda} = V^{\alpha} \partial_{\alpha} \eta_{\lambda} + \eta_{\alpha} \partial_{\lambda} V^{\alpha},$$

we get the following equations

$$egin{aligned} & \mathbf{f}_{v} & \eta_{i} = \mathcal{Y}^{s}(v^{r}\partial_{r}g_{si} + g_{sr}\partial_{i}v^{r} + g_{ir}\partial_{s}v^{r}), \ & \mathbf{f}_{v} & \eta_{i^{*}} = 0. \end{aligned}$$

Thus we have

THEOREM 4. In order that an infinitesimal transformation of a Riemannian space M^n is an isometry, it is necessary and sufficient that its extension leaves invariant the homogeneous contact form of $T(M^n)$.

BIBLIOGRAPHY

[1] NAGANO, T., Isometries on complex-product spaces, Tensor, New Series, 9(19E9), 47-61.

⁷⁾ S. Sasaki have obtained this form in a different poin of view. Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds II, This Journal Vol. 14, No. 2, $146 \sim 155$

- [2] SASAKI, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J.10 (1958) 338-354.
- [3] TACHIBANA, S., Analytic tensor and its generalization, Tôhoku Math. J. 12 (1960), 208-221.
 [4] HSU, C. J., On some structures which are similar to the quaternion structure. Tôhoku Math. J. 12(1960), 403-428.

OCHANOMIZU UNIVERSITY, AND COLLEGE OF SCIENCE AND ENGINER, NIHON UNIVERSITY,