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Abstract

Let d ≥ 3 be fixed and G be a large random d-regular graph on n vertices. We show that if

n is large enough then the entry distribution of every almost eigenvector v of G (with entry sum

0 and normalized to have length
√
n) is close to some Gaussian distribution N(0, σ) in the weak

topology where 0 ≤ σ ≤ 1. Our theorem holds even in the stronger sense when many entries are

looked at simultaneously in small random neighborhoods of the graph. Furthermore, we also get the

Gaussianity of the joint distribution of several almost eigenvectors if the corresponding eigenvalues

are close. Our proof uses graph limits and information theory. Our results have consequences for

factor of i.i.d. processes on the infinite regular tree.

1 Introduction

Let d ≥ 3 and let G(n, d) denote the random d-regular graph on n vertices (see e.g. the monograph

[10]). Equivalently, we can think of G(n, d) as a random model of symmetric 0 − 1 matrices in

which the row sums are conditioned to be d. It is expected that the spectral properties of G(n, d)

are closely related to random matrix theory; however, many questions in the area are still open. It is

well known that the spectral measure of G(n, d) converges to the so called Kesten–McKay measure

in the weak topology as n goes to infinity. This gives an approximate semicircle law if d is large.

A famous result by J. Friedman solves Alon’s second eigenvalue conjecture showing that G(n, d)

is almost Ramanujan [22]. Much less is known about the scaled eigenvalue spacing and about the

structure of the eigenvectors. Recent results in the area include [12, 33] on the second eigenvalue;

[6, 7, 19, 20] on eigenvalue spacing, local semicircle law and functional limit theorems; [2, 15, 26]

on the delocalization of the eigenvectors.

In the present paper we study approximate eigenvectors or shortly: almost eigenvectors of

G(n, d) i.e. vectors that satisfy the eigenvector equation (A − λI)v = 0 with some small error.
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Almost eigenvectors are not necessarily close to proper eigenvectors. They are much more gen-

eral objects. For example any linear combination of eigenvectors with eigenvalues in the interval

[λ − ε, λ + ε] is an almost eigenvector with error depending on ε. In general a vector is an almost

eigenvector if and only if its spectral measure is close to a Dirac measure in the weak topology.

We show that despite of this generality, almost eigenvectors of G(n, d) have a quite rigid struc-

ture if n is big. Our main result implies that every almost eigenvector (with entry sum 0 and nor-

malized to have length
√
n) has an entry distribution close to some Gaussian distribution N(0, σ)

in the weak topology where 0 ≤ σ ≤ 1. Note that if σ = 0, then the ℓ2-weight of the vector is

concentrated on a small fraction of the vertices. Such vectors are called localized. Our main result

holds even in a stronger sense where joint distributions are considered using the local structure of

the graph. In some sense our result is best possible since there are examples for both localized and

delocalized almost eigenvectors (see chapter 3). Note that proper eigenvectors are conjectured to be

delocalized.

The issue of eigenvector Gaussianity goes back to random matrix theory. It is not hard to show

that in the GUE (Gaussian Unitary Ensemble) random matrix model every eigenvector has a near

Gaussian entry distribution. It is much harder to analyze the random model when the elements of the

matrix are chosen from a non Gaussian distribution. Nevertheless Gaussianity of the eigenvectors is

proved under various conditions for generalized Wigner matrices [13, 37] and also for various other

models (see e.g. [9] and [8, 34] for recent surveys). Sparser models are harder to analyze [30]. This

paper deals with the sparsest case, where the matrix is the adjacency matrix of a random d-regular

graph with some fixed d. In this case there is a stronger meaning of eigenvector Gaussianity. For

example it is natural to ask about the Gaussianity of the joint distribution of the entries at the two

endpoints of a randomly chosen edge in the graph. More generally one can look at the joint distri-

bution of the entries in random balls of radius r. Our Gaussianity results for almost eigenvectors

are established in this strong sense. Furthermore, it makes sense to study the joint distribution of

the entries of several almost eigenvectors. More precisely, a k-tuple of almost eigenvectors can be

interpreted as a function from the vertices to Rk. This function evaluated at a randomly chosen

vertex gives a probability distribution on Rk that we define as the joint distribution of the entries. It

is an interesting question whether such joint distributions are Gaussian. We prove this if k is fixed,

n is large and the eigenvalues corresponding to the almost eigenvectors are close to each other.

Moreover, we also prove this result when the joint distribution of many eigenvectors is considered

in random neighborhoods.

The proof of our main theorem is based on the so-called local-global graph limits [11, 28].

However, to keep the paper self-contained, we use a slightly simplified framework (see section

5) optimized for this particular problem. We relate the properties of random regular graphs to

random processes on the infinite d-regular tree Td. Most of the work is done in this convenient
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limiting framework. An invariant process on Td is a joint distribution of random variables {Xv}v∈Td

labeled by the vertices of Td such that it is invariant under the automorphism group of Td. A special

class of invariant processes, called typical processes, was introduced in [3]. Roughly speaking, an

invariant process is typical if it can be obtained as the Benjamini–Schramm limit of colored random

regular graphs. There is a correspondence between the properties of typical processes on Td and the

properties of large random d-regular graphs.

Our main theorem is equivalent to the statement that if a typical process satisfies the eigenvector

equation at every vertex of Td and has finite variance (at every vertex), then the process is jointly

Gaussian. Note that such Gaussian eigenvector processes on Td are completely characterized and

there is a unique one for each possible eigenvalue. A key ingredient in our proof is a general

entropy inequality for typical processes. It implies that typical eigenvector processes obey another

inequality involving differential entropy. From here we finish the proof using heat propagation on

the space of typical eigenvector processes combined with DeBrujin’s identity for Fisher information.

Gaussianity will follow from the fact that heat propagation converges to a Gaussian distribution.

A well studied subclass of typical processes is the class of factor of i.i.d. processes. These

processes appeared first in ergodic theory but they are also relevant in probability theory, combina-

torics, statistical physics and in computer science. Not every typical process is factor of i.i.d.; this

follows from the results of Gamarnik and Sudan [25]; see also Rahman and Virág [36]. Despite of

recent progress in the area [4, 5, 14, 18, 16, 24, 27, 28, 31, 32, 35], a satisfying understanding of

factor of i.i.d. processes is only available in the case d = 2 [23], which is basically equivalent to the

framework of classical ergodic theory of Z actions. Our results imply that if an invariant process

(with finite variance) is in the weak closure of factor of i.i.d. processes and satisfies the eigenvector

equation then the process is Gaussian. This answers a question of B. Virág.

Outline of the paper. In Chapter 2, we formulate the main results for finite random d-regular

graphs. Chapter 3 and 4 contain general statements about invariant processes, eigenvector processes,

entropy and almost eigenvectors. Chapter 5 provides the translation of our main result to the infinite

setting using typical eigenvector processes on the infinite d-regular tree. In Chapter 6, we prove

a necessary condition for a process to be typical in the form of an entropy inequality. In Chapter

7 we reduce the limiting form of the main theorem to a special family of eigenvector processes

called smooth eigenvector processes. Chapter 8 gives a differential entropy inequality for smooth

eigenvector processes. In Chapter 9, we calculate the eigenvalues of special submatrices of the

covariance matrices of eigenvector processes corresponding to balls around vertices and edges on

the tree. In Chapter 10, we use the results from Chapter 9 to prove that among smooth typical

eigenvector processes the Gaussian minimizes the differential entropy formula from Chapter 8. On

the other hand, in Chapter 11, we show that the Gaussian eigenvector process maximizes the same

formula. Moreover, we finish the proof of the main result in Chapter 11.
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2 The main theorem

In this chapter we state the main theorem first in a simpler but weaker form and later in the strong

form. An ε-almost eigenvector of a matrix A ∈ Rn×n with eigenvalue λ is a vector v ∈ Rn such

that ‖v‖2 = 1 and ‖Av− λv‖2 ≤ ε. To every vector v in Rn we associate a probability distribution

distr(v) on R obtained by choosing a uniform random entry from v. If ‖v‖2 = 1, then the second

moment of distr(v) is 1/n. Thus, to avoid degeneracy in this case, it is more natural to consider

distr(
√
nv) whose second moment is 1. We will compare probability distributions on R using an

arbitrary but fixed metrization of the weak convergence of probability measures. Our theorem in a

weak form says the following

Theorem 1 (Weak form of main theorem) For every ε > 0 there are constants N, δ such that if

G is a random d-regular graph on n ≥ N vertices, then with probability at least 1− ε the following

holds. We have that every δ-almost eigenvector v of G (with entry sum 0) has the property that

distr(
√
nv) is at most ε-far from some Gaussian distribution N(0, σ) in the weak topology where

0 ≤ σ ≤ 1.

Note that if distr(
√
nv) is close to the degenerate distribution N(0, 0) then most of the ℓ2 weight

of v is concentrated on o(n) points. Such vectors are called localized. In general, if σ is smaller

than, 1 then some of the ℓ2 weight is concentrated on o(n) vertices and the rest is Gaussian.

To formulate our main theorem in the strong form we need some more notation. Recall that Td

denotes the infinite d-regular tree and o is a distinguished vertex called root in Td. We will denote

the vertex set V (Td) of Td by Vd. For two vertices in a graph we write v ∼ w if they are connected

to each other. Let [n] denote the set {1, 2, . . . , n} and let G be a d-regular graph on the vertex set [n].

We denote by Hom∗(Td, G) the set of all covering maps from Td to G. In other words Hom∗(Td, G)

is the set of maps φ : Vd → V (G) such that for every vertex v ∈ Vd the neighbors of v are mapped

bijectively to the neighbors of φ(v). The set Hom∗(Td, G) has a natural probability measure. We

first choose the image of o uniformly at random in V (G). Then we recursively extend the map φ

to larger and larger neighborhoods of o in a random (conditionally independent) way preserving the

local bijectivity. It is easy to see that this probability distribution is independent from the choice of

o.

Let X be a topological space and f : [n] → X be a function. We define the probability distribu-

tion distr∗(f,G) on XVd as the distribution f ◦ φ where φ is a random covering in Hom∗(Td, G).

In other words distr∗(f,G) is a random lift of f to Td using a random covering of G with Td. By

regarding vectors v ∈ Rn as functions form [n] to R it makes sense to use distr∗(v,G).

To formulate our main theorem we need the concepts of eigenvector processes and Gaussian

waves on Td (see [21]). An eigenvector process with eigenvalue λ is a joint distribution {Xv}v∈Vd

of real valued random variables with variance 1 such that it is Aut(Td) invariant and satisfies the
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eigenvector equation
∑

v∼o

Xv = λXo (1)

with probability 1. Note that the group invariance implies that the eigenvector equation is satisfied

at every vertex on Td. We call an eigenvector process trivial if E(Xo) 6= 0. Notice that the triviality

of an eigenvector process implies that λ = d. This follows by taking expectation in (1) and using

the invariance of the process. Furthermore, trivial eigenvector processes are constants in the sense

that Xv = Xw holds with probability one for every pair of vertices v, w in Vd. A Gaussian wave

is an eigenvector process whose joint distribution is Gaussian. It is proved in [21] that for every

−d ≤ λ ≤ d there is a unique Gaussian wave Ψλ with eigenvalue λ.

Let us choose a fix metrization of the weak topology on R
Vd . Our main theorem on random

d-regular graphs is the following.

Theorem 2 (Main theorem) For every ε > 0 there exist constants N, δ such that if G is a random

d-regular graph on n ≥ N vertices then with probability at least 1 − ε the following holds. For

every δ-almost eigenvector v of G (with entry sum 0) has the property that distr∗(
√
nv,G) is at

most ε-far (in the weak topology) from some Gaussian wave Ψλ with |λ| ≤ 2
√
d− 1.

Corollary 2.1 For every ε > 0 and k ∈ N there exist constants N, δ such that if G is a random

d-regular graph on n ≥ N vertices then with probability at least 1−ε the following holds. For every

k-tuple of δ-almost eigenvectors Q = (v(1), v(2), . . . , v(k)) of G (with entry sum 0) corresponding

to eigenvalues λ1, . . . , λk with the property |λi − λj | < δ we have that distr∗(
√
nQ,G) is at most

ε-far (in the weak topology) from some Gaussian wave Ψλ with |λ| ≤ 2
√
d− 1.

3 Preliminaries

Invariant processes

For a separable metric space Y we denote by Id(Y ) the set of Borel probability measures on Y Vd

that are invariant under the automorphisms of the tree. More precisely, for every τ ∈ Aut(Td) (not

necessarily fixing the root), the probability measure on Y Vd is required to be invariant under the

natural Y Vd → Y Vd map induced by τ . Note that eigenvector processes are in Id(R). If µ ∈ Id(Y )

and F ⊆ Vd, then we denote by µF the marginal distribution of µ at F . We can equivalently think

of µ ∈ Id(Y ) as a joint distribution {Xv}v∈Vd
of Y -valued random variables that is invariant under

the automorphism group of Td. In this language µF is the same as the joint distribution {Xv}v∈F .

If both F and Y are finite then µF is a probability distribution on the finite set Y F . In this case

we denote the entropy of µF by H(F ). By invariance of µ the quantity H(F ) depends only on the

isomorphism class of F .
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We will consider convergence in Id(Y ) with respect to the weak topology. Since the weak

topology is metrizable we can always choose a fixed metrization of it in advance.

Almost eigenvectors

Let A ∈ Rn×n be a matrix. An ε-almost eigenvector of A (with eigenvalue λ) is a vector v ∈ Rn

such that ‖v‖2 = 1 and ‖Av − λv‖2 ≤ ε.

Lemma 3.1 Let A be the adjacency matrix of a d-regular graph on n vertices. Let λ2(A) denote the

second largest (in absolute value) eigenvalue of A. Let v be an ε-almost eigenvector with eigenvalue

λ such that the entry sum of v is 0. Then |λ| ≤ λ2(A) + ε.

Proof. Since v has 0 entry sum, we can write v =
∑

aivi, where each vi is a nonconstant

eigenvector of A with eigenvalue λi. It follows that (A − λI)v =
∑

ai(λi − λ)vi, where |λi| ≤
λ2(A). Thus, ε2 ≥ ‖(A − λI)v‖22 =

∑
a2i (λi − λ)2. Suppose that |λ| ≥ λ2(A) (otherwise the

statement is trivial). Then |λi − λ| ≥ |λ| − λ2(A). Therefore ε2 ≥ (
∑

a2i )(|λ| − λ2(A))
2, which

completes the proof by using that
∑

a2i = ‖v‖22 = 1. �

As we mentioned in the introduction, we will give examples for both localized and delocalized

almost eigenvectors on essentially large girth d-regular graphs. (Note that a graph is called essen-

tially large girth if most vertices are not contained in short cycles.) The purpose of these examples

is to show that our results on the almost eigenvectors of random regular graphs are best possible in

the sense that all 0 ≤ σ ≤ 1 can indeed occur in the statement.

We will need some preparation. For k ≥ 1 and x ∈ [−1, 1] let

f(k, x) =
1√

d(d− 1)k−1
qk(x), (2)

where

qk(x) =

√
d− 1

d
Uk(x)−

1√
d(d− 1)

Uk−2(x); Uk(cosϑ) =
sin((k + 1)ϑ)

sinϑ
. (3)

(Uk(x) is the Chebyshev polynomial of the second kind.) Let gλ : Vd → R be the function defined

by

gλ(v) = f(|v|, λ/(2
√
d− 1)),

where |v| denotes the distance of v and the root o. It is easy to see (and well known) that gλ satisfies

the eigenvector equation with eigenvalue λ at every vertex v (for λ ∈ [−2
√
d− 1, 2

√
d− 1]).

Now let G be a d-regular graph such that there is a vertex w ∈ V (G) with the property that

the shortest cycle containing w has length at least 2n. We define the function g′λ : V (G) → R by

g′λ(v) = f(d(w, v), λ/2
√
d− 1) if d(v, w) < n and 0 otherwise. It is easy to see that u = g′λ/‖g′λ‖2

is an almost eigenvector with eigenvalue λ with error tending to 0 as n → ∞. Furthermore, if
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|V (G)| is much larger than n, then u is close to the constant 0 distribution in the weak topology.

Thus we obtain examples for completely localized almost eigenvectors for d-regular graphs (for all

λ ∈ [−2
√
d− 1, 2

√
d− 1]), which corresponds to the case σ = 0.

We switch to the delocalized example. In [27], the authors construct eigenvector processes on

Td for every λ ∈ [−2
√
d− 1, 2

√
d− 1] that are weak limits of factor of i.i.d. processes. These

processes have the property that they can be arbitrarily well approximated on any essential large

girth d-regular graph. It is easy to see that these approximations are almost eigenvectors that are

completely delocalized. This corresponds to the case σ = 1. Finally, every σ occurs by mixing

completely localized and completely delocalized almost eigenvectors corresponding to the same λ.

4 Eigenvectors and eigenvector processes on the tree

For a vertex set F ⊆ Vd we denote by Bk(F ) the neighborhood of radius k around F . Let F ⊆ Vd

be a subset of the vertices of the tree, and let f ∈ RF . We say that v satisfies the eigenvector

equation with eigenvalue λ if for every v ∈ F with B1(v) ⊆ F we have that λf(v) =
∑

w∼v f(w).

It is clear that for a fixed λ these vectors form a linear subspace of RF that we denote by Wλ(F ).

We will need a formula for dimWλ(F ) for a family of special finite sets F .

Given F , we say that F0 ⊆ F is a basis if for all f ∈ R
F0 and λ ∈ R the subspace Wλ(F )

contains exactly one extension of f to F . It is clear that if F0 is a basis in F , then dimWλ(F ) = |F0|
for all λ ∈ R.

Lemma 4.1 Let F0 be a basis of a path-connected set F . Suppose that v ∈ F and |F ∩B1(v)| = 2.

Furthermore, let D ⊆ B1(v) such that |D| = d − 2 and D ∩ F = ∅. Then F0 ∪ D is a basis of

F ∪B1(v).

Proof. Let f be a function from F0 ∪ D to R. By assumption, we have that f |F0
extends to a

unique function f̃ on F . Now using the eigenvector equation at v, we obtain a unique value for

B1(v) \ (D ∪ F ). Note that the connectivity of F implies that the function constructed this way is

in Wλ(F ∪B1(v)). �

We will use C to denote the star B1(o) and we will use e to denote a distinguished edge in Td.

It is clear that if v is a neighbor of o, then C \ {v} is a basis of C. Similarly e is a basis of itself.

Using Lemma 4.1 and induction, we obtain that

dimWλ(Bk(C)) = |∂Bk(C)| = d(d− 1)k; dimWλ(Bk(e)) = |∂Bk(e)| = 2(d− 1)k (4)

holds for every λ ∈ R and k ∈ N, where ∂F denotes the boundary of a set F .

Recall that an invariant process {Xv}v∈Vd
is an eigenvector process with eigenvalue λ if it

satisfies the eigenvector equation (1) with probability 1 and Var(Xv) = 1. Notice that if F is any
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vertex set in Td, then {Xv}v∈F is supported on Wλ(F ). In the rest of this chapter we investigate the

joint distribution {Xv}v∈S in a non-trivial eigenvector process where S is one of Bk(C) or Bk(e)

for some k ∈ N. Our goal is to find uncorrelated linear combinations of the variables {Xv}v∈S with

the property that they linearly generate every random variable in {Xv}v∈S . Observe that since the

covariance matrix of {Xv}v∈S has rank at most dim(Wλ(S)) = |∂S|, it is enough to find that many

uncorrelated linear combinations with nontrivial variance to guarantee that they generate everything.

Let Y = (Y1, Y2, . . . , Yn) be an n-dimensional distribution with 0 mean such that the covariance

matrix is of full rank. We can always find a linear transformation T : Rn → R
n with the property

that the covariance matrix of TY is the identity matrix. The probability distribution TY is unique

up to an orthogonal transformation on Rn. We call it the standardized version of Y .

Let µ ∈ Id(R) represented by an invariant joint distribution {Xv}v∈Vd
of random variables.

Assume that E(Xo) = 0. With every directed edge (v, w) of Td we associate a probability distribu-

tion on Rd−2 defined up to an orthogonal transformation. Let {vi}d−1
i=1 be the set of neighbors of w

different from v. We denote by Av,w the standardized version of {Xvi −Xvd−1
}d−2
i=1 . It is easy to

see that (the orthogonal equivalence class of) Av,w does not depend on the labeling of the vectors

vi.

We introduce the symmetric relation r on directed edges of Td such that ((x, y), (v, w)) ∈ r

if and only if the unique shortest path connecting y and w contains at least one of x and v. The

next lemma implies that if ((x, y), (v, w)) ∈ r then Ax,y and Av,w are uncorrelated and so if µ is

Gaussian then Ax,y and Av,w are independent.

Lemma 4.2 Let (v, w) be a directed edge in Td. Let {vi}d−1
i=1 be the set of neighbors of w different

from v. Let X =
∑k

j=1 ajXuj
be a linear combination such that the shortest path connecting w

and uj contains v for every 1 ≤ j ≤ k. Then E(X(Xvi −Xvd−1
)) = 0 holds for 1 ≤ i ≤ d− 2.

Proof. The condition on the vertices uj guarantees that for every fix j the distance of uj from vi

does not depend on i. Using this and the automorphism invariance of µ it follows that E(Xuj
(Xvi −

Xvd−1
)) = 0 holds for every 1 ≤ j ≤ k and 1 ≤ i ≤ d− 2. By linearity of expected value the proof

is complete. �

Let S ⊂ Vd be either Bk(C) or Bk(e) for some k ∈ N. Assume that µ is an eigenvector

process. Let p ∈ S be such that it has distance at least one from the boundary ∂S. Let D denote

the set of directed edges (v, w) inside S with the following three properties: (a) the unique shortest

path connecting p and w contains v, (b) p /∈ {v, w}, (c) B1(w) ⊂ S. Let Bp denote the joint

distribution (Xv −Xp)v∼p. We denote by Q(S, p, µ) the joint distribution of the random variables

{Av,w}(v,w)∈D and Bp. Lemma 4.2 implies that the components of Q(S, p, µ) are uncorrelated

multidimensional random variables. It is easy to see that if |λ| < d, then the correlation matrix

of each such multidimensional random variable is of full rank. This implies that if |λ| < d, then
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Q(S, p, µ) provides a linear basis for {Xv}v∈S . By counting dimensions, this yields the following

corollary.

Corollary 4.1 Let either S = Bk(C) or S = Bk(e) and µ an eigenvector process with eigenvalue

|λ| < d. Then we have that

〈supp (µS)〉R = Wλ(S).

5 Typical processes and the limiting form of the main theorem

Now we describe a limiting form of our main theorem using typical processes on Td. Typical

processes on Td were first introduced in [3] to study the properties of random regular graphs via

ergodic theory. Here we use a slightly different definition which extends the original notion to

processes that take values in a separable, metrizable space Y .

Definition 5.1 Let Y be separable, metrizable topological space and let µ be a Borel probabil-

ity distribution on Y Vd . We say that µ is a typical process if there is a growing sequence of natural

numbers {ni} with the following property. Assume that {Gi}ni=1 is a random graph sequence whose

elements Gi are independently chosen random d-regular graphs on ni vertices. Then with proba-

bility 1 there are maps fi : V (Gi) → Y such that the distributions distr∗(fi, Gi) are converging to

µ in the weak topology.

Our main theorem in the limit setting is the following.

Theorem 3 (Limiting form of the main theorem) If µ is a nontrivial typical eigenvector process

with eigenvalue λ, then |λ| ≤ 2
√
d− 1 and µ is the Gaussian wave Ψλ.

Using the fact that weak limits of factor of i.i.d processes are typical (see [3]) we obtain the next

corollary which answers a question of B. Virág.

Corollary 5.1 If µ is a nontrivial eigenvector process that is a weak limit of factor of i.i.d. processes,

then µ is a Gaussian wave with eigenvalue |λ| ≤ 2
√
d− 1.

Note that Corollary 5.1 implies that if many eigenvector processes corresponding to the same eigen-

value are coupled in a way that the coupling is a weak limit of factor of i.i.d. processes, then its

distribution is jointly Gaussian.

We emphasize that the first part of the statement in Theorem 3, namely that |λ| ≤ 2
√
d− 1 is a

consequence of Friedman’s theorem [22]. We prove this implication in Lemma 5.1. In addition, the

main goal of this chapter is to show that Theorem 3 implies Theorem 2.

Lemma 5.1 If µ is a nontrivial typical eigenvector process with eigenvalue λ, then |λ| ≤ 2
√
d− 1.
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Proof. Our first goal is to prove that there exists a sequence of d-regular graphs {Gi}∞i=1 and vectors

{fi : V (Gi) → R}∞i=1 such that (a) |λ2(Gi)| → 2
√
d− 1, where λ2(G) denotes the second largest

(in absolute value) eigenvalue of a finite graph G; (b) distr∗(fi, Gi) → µ in the weak topology.

Using that µ is typical, there exists a sequence {ni}∞i=1 of growing natural numbers such that with

probability 1, if {G′
i}∞i=1 is a sequence of independent random d-regular graphs with |V (G′

i)| = ni,

then there exists a sequence of functions {f ′
i}∞i=1 satisfying (b). Friedman’s theorem [22] implies

that with probability 1 we can choose a further subsequence satisfying (a).

We fix an arbitrary ε > 0. Let Xo be a random variable with distribution µo. Since E(X2
o ) = 1,

we can find k > 0 such that k is a continuity point of the cumulative distribution function of Xo and

k2P(|Xo| > k) < ε. Furthermore, if k is sufficiently large, we can also assume that E([Xo]
2
k) ≥ 1/2

and |E([Xo]k)| ≤ ε, where [x]k = max(min(x, k),−k). Using that distr∗(fi, Gi) converges to the

eigenvector process µ, we obtain that if i is large enough, then (i) k2P(distr(|fi|) > k) < 2ε; (ii)

P(distr(|(Gi−λI)fi|) ≥ ε) ≤ ε/k2; (iii) E(distr([fi]
2
k)) ≥ 1/3; (iv) ci = |E(distr([fi]k))| ≤ 2ε.

Note that (i) implies that fi 6= [fi]k holds on a vertex set of density at most 2ε/k2. It follows that

(Gi − λI)[fi]k 6= (Gi − λI)fi holds on a vertex of density at most (d + 1)2ε/k2. Furthermore,

we have that ‖(Gi − λI)[fi]k‖∞ ≤ (d + |λ|)k. Putting all this together, we obtain that for i large

enough

‖(Gi − λI)([fi]k − ci)‖2 ≤
√
ε2ni + (2d+ 3)(ε/k2) · ni(d+ |λ|)2k2 + |d− λ|ci

√
ni

≤ √
ni

(√
ε2 + (2d+ 3)ε(d+ |λ|)2 + 2|d− λ|ε

)
.

Let vi = ([fi]k − ci)/‖[fi]k − ci‖2. Using that (iii) implies that ‖[fi]k‖22 ≥ 1/3ni, we obtain

that for an appropriate choice of small enough ε and large enough i the quantity ‖(Gi − λI)vi‖2 is

arbitrarily small. Thus, by using (a) and Lemma 3.1, we get that |λ| ≤ 2
√
d− 1. �

Proposition 5.1 Theorem 3 implies Theorem 2.

We need a few notions and lemmas. Let P denote the set of Borel probability distributions µ

on RVd which have a second moment bounded from above by 1 at each coordinate. By tightness

of P , we have that P is compact with respect to the weak topology of measures. Let m be a fixed

metrization of the weak topology on P . Let us denote by T the set of closed subsets in P , and by

dH the the Hausdorff metric on T . We have that dH induces a compact topology on T . Let us

define the distance m∗ for d-regular graphs in the following way. If G1 and G2 are d-regular graphs

then m∗(G1, G2) is the infimum of the numbers δ with the property the if f1 : V (G1) → R, f2 :

V (G2) → R are arbitrary functions with E(distr(f2
1 )),E(distr(f

2
2 )) ≤ 1 then there are functions

f ′
1 : V (G2) → R, f ′

2 : V (G1) → R with E(distr(f ′2
1 )),E(distr(f ′2

2 )) ≤ 1 such that

m(distr∗(f1, G1), distr
∗(f ′

1, G2)) ≤ δ , m(distr∗(f2, G2), distr
∗(f ′

2, G1)) ≤ δ.
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We can describe the metric m∗ in terms of the metric dH as follows. For a graph G, let

S(G) = {distr∗(f,G)|f ∈ R
V (G),E(distr(f2)) ≤ 1}.

We have that m∗(G1, G2) = dH(S(G1), S(G2)).

Definition 5.2 We say that a finite d-regular graph G is ε-typical for some ε > 0 if with probability

at least 1−ε a random d-regular graph G′ on |V (G)| vertices has the property that m∗(G,G′) < ε.

Lemma 5.2 For every ε > 0 and T ∈ T there exists n(ε) such that for all N > n(ε) there exists a

value c satisfying

P(|dH(S(G), T )− c| > ε) < ε. (5)

Proof. The proof relies on a certain continuity property of the metric m∗ with respect to small

changes in a graph. More precisely, we show that for every ε2 if N is large enough, then for every

pair G,G′ of d-regular graphs on the vertex set [N ] satisfying |E(G)∆E(G′)| ≤ 4 we have that

m∗(G,G′) < ε2. The significance of the number 4 comes from the fact that d-regular graphs can

be transformed into each other through a sequence of operations in which two independent edges

(u1, v1), (u2, v2) are replaced by (u1, v2), (u2, v1). To prove the continuity property, we show that

if N is large enough, then the inequality

m(distr∗(f,G), distr∗(f,G′)) < ε2

holds for every function f : [N ] → R with E(f2) ≤ 1. Let k be an arbitrary integer. Observe

that the marginal distribution distr∗(f,G)|Bk(o) can be obtained from the distribution of R-colored

neighborhoods of radius k of a random vertex in G (and the analogous statement holds forG′). Since

|E(G)∆E(G′)| intersects such a neighborhood with probability tending to 0 as |V (G)| → ∞, we

have that the distance between distr∗(f,G)|Bk(o) and distr∗(f,G′)|Bk(o) converges to 0 in any

metrization of the weak topology of RBk(o). This implies the desired continuity property.

We obtain by the above statement and the triangle inequality that if |E(G)∆E(G′)| ≤ 4 and N

is large enough, then |dH(S(G), T )− dH(S(G′), T )| < ε2. It is well-known that graph parameters

on random d-regular graphs that satisfy this Lipschitz property are concentrated around their mean;

see [38, Theorem 2.19]. �

Lemma 5.3 For every ε > 0 there exists n(ε) such that for every N > n(ε) with probability at

least 1− ε a random d-regular graph on N vertices is ε-typical.

Proof. Let M be a finite ε/2-net in T . If G is a random d-regular graph on N vertices, then there

exists T ∈ M with the property that

P(dH(S(G), T ) < ε/2) ≥ 1/|M |. (6)
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We apply Lemma 5.2 with ε′ ≤ ε/4. Combining inequalities (5) and (6), we obtain that for ε′ <

1/|M | and N large enough |c| ≤ 3/4ε. Then applying (5) again, the proof is complete. �

Now we enter the proof of Lemma 5.1.

Proof. We go by contradiction. If Theorem 2 fails then there is a growing sequence of natural

numbers {ni}∞i=1, ε > 0 and a sequence {δi}∞i=1 with limi→∞ δi = 0 such that the following holds.

If G is a random d-regular graph on ni vertices then we have with probability at least ε that there

is an δi-almost eigenvector v of G (with entry sum 0) such that distr∗(v,G) is at least ε-separated

from any Gaussian wave in the weak topology.

From Lemma 5.3 we obtain that there is a sequence {ε′i}∞i=1 with limi→∞ ε′i = 0 such that a

random d-regular graph on ni vertices is ε′i-typical with probability at least 1− ε′i for every i. There

exists an index j such that for all i ≥ j we have ε′i < ε. This implies that for all i ≥ j we can choose

a graph Gi on ni vertices such that Gi is ε′i-typical and there exists a δi-almost eigenvector fi of Gi

(with entry sum 0) satisfying that distr∗(
√
nifi, Gi) is at least ε-separated from any Gaussian wave

in the weak topology.

By choosing a subsequence we can assume (by abusing the notation) that distr∗(
√
nifi, Gi)

weakly converges to some measure µ ∈ P . It is clear that µ is a nontrivial eigenvector process

which is at least ε-separated from any Gaussian wave in the weak topology. To get a contradiction

it remains to show that µ is typical.

Again by choosing a subsequence we can assume that
∑∞

i=1 ε
′
i < ∞. Let {G′

i}∞i=1 be such that

G′
i is a random d-regular graph on ni vertices and the terms of the sequence are independent. It

follows from the Borel–Cantelli lemma that almost surely all but finitely many indices i satisfy that

m∗(G′
i, Gi) ≤ ε′i. For such indices we can find f ′

i with m(distr∗(f ′
i , G

′
i), distr

∗(
√
nifi, Gi)) ≤ ε′i.

We obtain that distr∗(f ′
i , G

′
i) converges to µ showing that µ is typical. �

6 Entropy inequality for typical processes

Let X be a separable metric space; let F be a finite set and let P(F ) denote the set of probability

distributions on F equipped with the topology generated by total variation distance. A continuous

discretization of X is a continuous function φ : X → P(F ). If α ∈ XV is an X-coloring of a

finite or countable set V , then we denote by φ ∗ α the probability distribution on FV obtained by

independently choosing an element from F for each v ∈ V with distribution φ(α(v)). If µ is a

probability distribution on XV , then we denote by φ∗µ the probability distribution obtained by first

taking a µ random element α : V → X and then in a second round of randomization we take φ ∗ α.

The main result of this chapter is the next entropy inequality for typical processes.

Theorem 4 If µ ∈ Id(X) is a typical process and φ : X → P(F ) is a continuous discretization,

12



then the process φ ∗ µ satisfies the next entropy inequality.

H(Bk(C)) − (d/2)H(Bk(e)) ≥ Eµo
(H(φ(x))).

Before proving Theorem 4 we need some preparation. Let us fix a metrization of the weak

topology on Id(X). For a finite d-regular graph G let ω(G) denote the infimum of the numbers

ε > 0 for which it is true that at least 1− ε fraction of the vertices of G are not contained in a cycle

of length at most ⌊1/ε⌋. The quantity ω(G) measures how similar the graph G is to the tree Td in

the Benjamini–Schramm metric. Throughout this chapter, G is always assumed to be finite.

The operator distr∗ maps X-colored d-regular graphs (α ∈ XV (G), G) to invariant processes in

Id(X). Using this correspondence and the metric on Id(X) we define the distance of an X-colored

graph (α,G) and a process µ ∈ Id(X) as ω(G) plus the distance of distr∗(α,G) and µ in Id. Note

that if (α ∈ XV (G), G) is an X-colored d-regular graph, then (φ∗α,G) is a probability distribution

on F -valued colorings of the vertices of G. In this case distr∗(φ ∗α,G) is a probability distribution

on Id(X), while φ ∗ distr∗(α,G) is a single element in Id(X).

Proposition 6.1 Let µ ∈ Id(X) be an invariant process and φ is a continuous discretization of X .

Then for every ε > 0 there is δ > 0 such that if a colored d-regular graph (α ∈ XV (G), G) is at

most of distance δ from µ, then with probability at least 1 − ε we have that (φ ∗ α,G) is at most of

distance ε from φ ∗ µ.

The proof of Proposition 6.1 relies on the next technical lemma.

Lemma 6.1 Let µ ∈ Id(X) be an invariant process. Let r ∈ N, B = Br(o) ⊂ Vd and let

β : FB → R be any automorphism invariant function. Then for every ε > 0 there is δ > 0 such that

if a colored d-regular graph (α ∈ XV (G), G) is at most of distance δ from µ then with probability

at least 1− ε we have that

|W |−1
∑

v∈W

β(γ|Br(v))

is at most ε-far from E(β(φ ∗ µB)) where γ = φ ∗ α and W = {v : v ∈ V (G), Br(v) ≃ B}.

Proof. Assume first that (α ∈ XV (G), G) is an arbitrary d-regular X-colored graph whose distance

is δ′ from µ and let γ,W as in the statement of the lemma. For a vertex v ∈ W let Yv be the random

variable with value β(γ|Br(v)). Let g : XB → R be the function defined by g(h) = E(β(φ ∗ h)).
We have for v ∈ W that E(Yv) is equal to g(α|Br(v)). Let Y = |W |−1

∑
v∈W Yv . It follows that

E(Y ) = |W |−1
∑

v∈W

g(α|Br(v)) =

∫

XB

g dνG, (7)

where νG describes the probability distribution of the isomorphism classes of α|Br(v) where v ∈ W

is a uniform random point. Using the fact that g is a continuous function we obtain that if δ′ is
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small enough then the right hand side of (7) is at most ε/2 far from
∫
XB g dµB = E(β(φ ∗ µB)).

Observe that Yv and Yw are independent if v and w have distance at least 2r + 1 in G. It follows

that there are at most |B2r+1(o)||W | correlated pairs in {Yv}v∈W . We obtain that the variance of

Y is at most |B2r+1(o)|1/2|W |−1/2 max |β|. We use that ω(G) goes to 0 as δ′ goes to 0 and thus

|W | tends to infinity. This implies that if δ′ is sufficiently small then the variance of Y is at most

ε2/3. Now by Chebyshev’s inequality we have that P(|Y − E(Y )| ≥ ε/2) ≤ ε2. It follows that

P(|Y − E(β(φ ∗ µB))| ≥ ε) ≤ ε2 which completes the proof. �

We continue with the proof of Proposition 6.1.

Proof. Let δ′ be an arbitrary positive number. Let (α ∈ XV (G), G) be an X-colored d-regular

graph of distance δ′ from µ. Let (γ ∈ FV (G), G) be chosen according to the probability distribution

(φ ∗ α,G). Let ε′ > 0, r = ⌊1/ε′⌋ and W = {v : v ∈ V (G), Br(v) ≃ B}. It follows from

Lemma 6.1 that there is c = c(ε′) > 0 such that if δ′ < c then the condition of Lemma 6.1 holds

for (γ,G) simultaneously for every 0− 1 valued β with probability at least 1− ε′. (Here we use the

fact that there are finitely many such functions β.) If c is small enough, then it also guarantees that

|W |/|V (G)| ≥ 1 − ε′. Now it is clear that if ε′ is small enough, then these properties imply that

(γ,G) is at most ε far from φ ∗ µ. �

For the next lemma let R(d, n) denote the number of d-regular graphs on the vertex set [n]. In

case d is odd we will always assume that the number of vertices is even.

Lemma 6.2 Let F be a finite set and µ ∈ Id(F ). Let N(n, ε) denote the number of d-regular

F -colored graphs on the vertex set [n] whose distance from µ is at most ε. Assume that {ni}∞i=1 is

a growing sequence of natural numbers. Then for every ε > 0 and k ∈ N we have that

H(Bk(C)) − (d/2)H(Bk(e)) ≥ lim
ε→0

(
lim sup
i→∞

n−1
i log(N(ni, ε)/R(d, ni))

)
. (8)

Proof. First we prove the statement for k = 0. In this case we use a formula from [3] that

approximates the number N ′(n, ε) of F -colored graphs on [n] in which the statistics of colored

1-neighborhoods is ε-close to µC . We have that

N ′(n, ε) = R(d, n)H(C)(n(1+o(1))
H(e)−(dn/2)(1+o(1))

where o(1) is a quantity which goes to 0 when first n → ∞ and then ε → 0. This implies that the

right hand side of (8) is equal to the left hand side when N(ni, ε) is replaced by N ′(ni, ε). Now we

use that for every ε > 0 there exists ε′ > 0 such that N ′(ni, ε) ≥ N(ni, ε
′) holds for all i. This

finishes the proof of the first part.

The idea of the proof in case of k > 0 is to generate a new process from µ in which the color of

every vertex v ∈ Vd is replaced by the isomorphism type of the colored neighborhood of v of radius

k. The main difficulty in this approach is that the isomorphism type describes the neighborhood
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only up to automorphisms which leads to extra constants in the entropy formulas. To control these

constants (and to eventually get rid of them) we add some extra randomness to the process.

Let us introduce new processes µr,m on Td for every k,m ∈ N. If r = 0, then µ0,m denotes

the F × [m] valued process in which we generate a µ-random coloring on Td and then we add a

second coordinate from [m] to every vertex independently and uniformly. In general µr,m denotes

the process obtained from µ0,m by coloring v ∈ Vd with the isomorphism class of the coloring of

Br(v) in µ0,m. Let ar,m,k denote the left hand side (resp. br,m denote the right hand side) of (8)

evaluated for µr,m and k. It is easy to see that br,m does not depend on r. On the other hand the

independence of the two coordinates implies that b0,m = b0,1 + logm. All together this means that

br,m = b0,1 + logm. It is clear that a0,m,k = a0,1,k + logm. From the case k = 0 we have that

ar,m,0 ≥ br,m. We can write this as

a0,1,r + (a0,m,r − a0,1,r) + (ar,m,0 − a0,m,r) ≥ b0,1 + logm

and thus a0,1,r + cr,m ≥ b0,1 holds for every m where cr,m = ar,m,0 − a0,m,r. Since the inequal-

ity a0,1,r ≥ b0,1 is equivalent to the statement of the lemma for k = r it remains to show that

limm→∞ cr,m = 0 holds for every r.

Let tr denote the size of the automorphism group of the rooted d − 1-regular tree of depth r.

We claim that Hµ0,m
(Br(C))−Hµr,m

(C) = d log tr + o(1) and that Hµ0,m
(Br(e))−Hµr,m

(e) =

2 log tr + o(1) as m → ∞. It is clear that this claim implies cr,m = o(1). We show the proof of

the first claim. (The proof of the second one is almost identical.) If m is large enough then in the

process µ0,m restricted to Br+1(o) all labels are different with probability converging to 1. In such

a case knowing the isomorphism classes of the colored neighborhoods of radius r − 1 of vertices

in C is equivalent with knowing the colored version of Br+1(o) up to an isomorphism that fixes C.

The stabilizer of C in the automorphism group of Br+1(o) is the d-th power of the automorphism

group of the rooted d − 1 regular tree of depth r. Thus the entropy loss of Hµr,m
(C) compared to

Hµ0,m
(Br(C)) is converging to d log tr. �

Now we arrived to the proof of Theorem 4.

Proof. According to Lemma 6.2 it is enough to show that the process φ ∗ µ satisfies

lim
ε→0

(
lim sup
i→∞

n−1
i log(N(ni, ε)/R(d, n))

)
≥ Eµo

(H(φ(x)))

for some growing sequence {ni}∞i=1 of natural numbers. For n ∈ N, ε > 0 let a(n, ε) denote the

number of d-regular graphs G on [n] with the property that there exists an X-coloring α of [n] such

that (G,α) is of distance at most ε from µ. The fact that µ is typical is equivalent to the fact that

there is a sequence {ni}∞i=1 such that limi→∞ a(ni, ε)/R(d, ni) = 1 holds for every ε > 0.

From Proposition 6.1 we obtain that for every ε2 > 0 there is ε > 0 such that if a graph G has

an X coloring α of distance at most ε from µ, then with probability at least 1 − ε2 we have that
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(φ ∗ α,G) is of distance ε2 from φ ∗ µ. It follows that G has at least exp(H(φ ∗ α,G) + o(1))

F -colorings of distance at most ε2 from φ ∗µ. On the other hand, we have |V (G)|−1H(φ ∗α,G) =

|V (G)|−1
∑

v∈V (G)H(φ(α(v))), which converges to Eµo
(H(φ(x))) as α converges to µ.

New let N(n, ε) defined as in Lemma 6.2 for the process φ ∗ µ. From the above observations

we obtain that n−1
i log(N(ni, ε)/R(d, ni)) can be estimated from below by Eµo

(H(φ(x))) − o(1)

as ni goes to infinity. Then Lemma 6.2 finishes the proof. �

7 Smooth eigenvector processes

Let µ be an eigenvector process. If F ⊆ Vd is a finite set then the distribution of µ, when restricted

to F , is concentrated on the subspace Wλ(F ) (recall Chapter 4). We denote by Dsp(F, µ) the

differential entropy of µF measured inside this subspace using the Euclidean structure inherited

from R
F . We say that µ is smooth if Dsp(Bk(C)) and Dsp(Bk(e)) are finite for every k. In this

chapter we reduce Theorem 3 to smooth eigenvector processes. The reduction will rely on the

following statement.

Proposition 7.1 Let {Xv}v∈Vd
be a typical eigenvector process with eigenvalue λ and {Yv}v∈Vd

the unique Gaussian wave Ψλ with eigenvalue λ. Then the independent sum {Xv + aYv}v∈Vd
is

smooth for a > 0.

Proof. Let S be one of Bk(C) and Bk(e). Both {Xv}v∈S and {Yv}v∈S are supported on Wλ(S).

Moreover, by Corollary 4.1, we obtain that the support of Ψλ|S is equal to Wλ(S). Using Lemma

12.3 inside the space Wλ(S), we get that the differential entropy of the joint distribution {Xv +

aYv}v∈S is finite. �

Assume that Theorem 3 holds for smooth typical eigenvector processes. Using Proposition 7.1

we obtain that if {Xv}v∈Vd
is an arbitrary typical eigenvector process then {Xv + aYv}v∈Vd

is

smooth for all a > 0. In addition, by Proposition 14.1 and Proposition 14.2, {Xv + aYv}v∈Vd
is

typical. By our assumption, we obtain the Gaussianity of {Xv + aYv}v∈Vd
for all a > 0. This

implies the Gaussianity of {Xv}v∈Vd
by going to 0 with a.

8 Entropy Inequality for typical eigenvector processes

In this chapter we prove the next theorem.

Theorem 5 Let µ ∈ Id(R) be a smooth typical eigenvector process. Then

Dsp(Bk(C)) − d

2
Dsp(Bk(e)) ≥ 0

holds for every k ≥ 0 integer.
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To prove the above theorem we will need some preparation. For a ∈ N let us define the con-

tinuous discretization t0,a of R in the following way. If x > a (resp. x < −a), then t0,a(x) = a

(resp. t0,a(x) = −a) with probability 1. Otherwise let t0,a(x) denote the probability distribution

that takes ⌊x ∗ a⌋/a with probability 1+ ⌊x ∗ a⌋− x ∗ a and takes 1/a+ ⌊x ∗ a⌋/a with probability

x∗a−⌊x∗a⌋. For σ > 0 we define the discretization tσ,a by tσ,a(x) = t0,a(x+σN) where N is a

random variable with standard normal distribution. We denote by tnσ,a the continuous discretization

of Rn obtained by the coordinatewise independent application of tσ,a.

Lemma 8.1 Let X be a random variable with values in Rn with finite variance, i.e. E(‖X‖22) < ∞.

Then we have for every fixed σ > 0 that

H(tnσ,a(X)) = n log a+ D(X + σM) + o(1)

as a → ∞, where M is independent of X and has standard normal distribution on Rn.

The main difficulty of the proof of Lemma 8.1 comes from the fact that the support of X is not

necessarily compact. We have to treat a situation where we refine and increase the interval of

discretization simultaneously.

Proof. By Lemma 12.3, the finite variance of X guarantees that D(X + σM) exists and is a finite

quantity. Let Sa = {r/a|r ∈ Zn, ‖r‖∞ ≤ a2} and let S′
a = {x|x ∈ Sa, ‖x‖∞ < a}. For x ∈ Sa

let pa(x) denote the probability of x in the distribution tnσ,a(X). We have that

H(tnσ,a(X)) =
∑

x∈Sa

−pa(x) log pa(x).

Let qa denote the quantity P(tnσ,a(X) ∈ Sa \ S′
a) =

∑
x∈Sa\S′

a
pa(x). The construction of tnσ,a

shows that

qa ≤ P(‖X + σM‖∞ ≥ a− a−1).

By Chebyshev’s inequality we have that

P(‖X + σM‖∞ ≥ a− a−1) = O(a−2)

and so qa = O(a−2). It follows that

∑

x∈Sa\S′
a

−pa(x) log pa(x) ≤ −qa log qa + qa log |Sa \ S′
a| ≤ −qa log qa + qa log |Sa|

= −qa log qa + qan log(2a2 + 1) = o(1).

For x = (x1, x2, . . . , xn) ∈ Rn let ga(x) =
∏n

i=1 max{1−a|xi|, 0}. For every x ∈ S′
a we have

that pa(x) =
∫
z∈Rn ga(z)f(x − z) where f is the density function of X + σM on Rn. Using that

an
∫
Rn ga = 1 we have that anpa(x) is a weighted average of the values of f in an L∞-ball of radius
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1/a. It follows that for every x ∈ S′
a there is α(x) ∈ R

n with the property that ‖x−α(x)‖∞ ≤ 1/a

and anpa(x) = f(α(x)) (using that f is continuous). Now we have that

∑

x∈S′
a

−pa(x) log pa(x) = (n log a)
∑

x∈S′
a

pa(x)− a−n
∑

x∈S′
a

f(α(x)) log f(α(x)). (9)

It follows from qa = O(a−2) that

(n log a)
∑

x∈S′

pa(x) = n(log a)(1− qa) = n log a+ o(1).

It remains to bound the second part of (9). From the equation

∫

z∈[−a+a−1,a]n
−f(z) log f(z) =

∫

z∈[0,a−1]n

∑

x∈S′
a

−f(x+ z) log f(x+ z) (10)

we obtain that there is a fixed γ ∈ [0, a−1]n such that

a−n
∑

x∈S′
a

−f(x+ γ) log f(x+ γ) (11)

is equal to the left hand side of (10). On the other hand, the left hand side of (10) is equal to

D(X + σM) + o(1). It remains to show that

a−n
∑

x∈S′
a

(
f(α(x)) log f(α(x)) − f(β(x)) log f(β(x))

)
= o(1) (12)

where β(x) = x+ γ. (Note that α, β, γ all depend on a.) We will use that ‖α(x)− β(x)‖∞ ≤ 2/a

holds for every x ∈ S′
a and thus r(x) := ‖α(x) − β(x)‖2 ≤ 2

√
n/a. Let tx = f(α(x))/f(β(x)).

We have by Lemma 12.4 that for every ε > 0 if a is big enough, then tx ≥ 1− ε (resp. t−1
x ≥ 1− ε)

provided that f(β(x)) > c (resp. f(α(x)) > c) where c = σ−n/2 exp(−a/(32nσ2)). This implies

that for every a > 0 we can choose ε = ε(a) such that lima→∞ ε(a) = 0 and the previous property

holds with ε. We will assume that a is so large that ε(a) < 1/3.

Let T1 denote the sum of the terms in (12) where f(β(x)) ≤ 2c and let T2 denote the sum of the

remaining terms. According to Lemma 12.4 either f(α(x)) < c or t−1
x ≥ 1 − ε. If f(β(x)) ≤ 2c,

then we have f(α(x)) ≤ 2c/(1 − ε) ≤ 3c in both cases. It follows that T1 ≤ 3c log(3c)(2a2 +

1)n/an = o(1).

Now we estimate T2. From now on we assume that f(β(x)) > 2c. By Lemma 12.4 we obtain

tx ≥ 1 − ε holds and thus f(α(x)) ≥ (1 − ε)2c > c. This implies again by Lemma 12.4 that

t−1
x ≥ 1− ε and so |1− tx| ≤ 2ε. We have that

f(α(x)) log f(α(x)) − f(β(x)) log f(β(x)) = f(α(x)) log tx − (1 − tx)f(β(x)) log f(β(x)).

Using that f(α(x)) = anpa(x) and | log tx| ≤ − log(1− 2ε) we get that

∣∣∣∣a
−n

∑

x∈S′
a,f(β(x))>2c

f(α(x)) log tx

∣∣∣∣ ≤
∑

x∈Sa

pa(x)(− log(1− 2ε)) = − log(1− 2ε) = o(1).
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It is now clear that the following claim finishes the proof of the lemma.

Claim: a−n
∑

x∈S′
a
|f(β(x)) log f(β(x))| = O(1).

By Lemma 12.2 there is b ∈ R+ such that f(x) < 1 whenever ‖x‖∞ > b−1. Let B = [−b, b]n.

By the finiteness of B we have that

a−n
∑

x∈S′
a∩B

−β(x) log(β(x)) =

∫

B

−f log f + o(1) (13)

and that

a−n
∑

x∈S′
a∩B

|β(x) log(β(x))| =
∫

B

|f log f |+ o(1) (14)

It follows from (13) and the property that the left hand side of (10) is equal to (11) that

a−n
∑

x∈S′
a\B

−β(x) log(β(x)) =

∫

B

−f log f + o(1). (15)

By (14) and (15) we get that

a−n
∑

x∈S′
a

|β(x) log(β(x))| =
∫

Rn

|f log f |+ o(1) = O(1). �

In the following lemma, first we calculate the entropy of the random variable tσ,a(x) for every

fixed x, and then we take the expectation of this quantity with respect to the distribution of a random

variable X .

Lemma 8.2 Let X be a real valued random variable with finite variance and with distribution ν.

Then Eν(H(tσ,a(x))) = log a+ D(N(0, σ)) + o(1) for every fixed σ > 0 as a → ∞.

Proof. Let νa denote the conditional distribution of X when |X | < a/2 and let ν′a denote the

conditional distribution when |X | ≥ a/2. We have that

Eν(H(tσ,a(x))) = P(|X | < a/2)Eνa(H(tσ,a(x))) + P(|X | ≥ a/2)Eν′
a
(H(tσ,a(x))).

By Chebyshev’s inequality we obtain that P(|X | ≥ a/2) = O(a−2). It follows from the trivial

uniform bound H(tσ,a(x)) ≤ log(a2 +1) that P(|X | ≥ a/2)Eν′
a
(H(tσ,a(x))) = o(1). Similarly by

P(|X | < a/2) = 1−O(a−2) we obtain that

P(|X | < a/2)Eν(H(tσ,a(x))) = Eνa(H(tσ,a(x))) + o(1).

It is now enough to prove that if |x| ≤ a/2 then H(tσ,a(x)) = log a + D(N(0, σ)) + o(1), where

the o(1) error term does not depend on x but tends to 0 as a → ∞.

Lemma 8.1 implies that H(tσ,a(0)) = log a+D(N(0, σ)) + o(1); this is the X = 0 case. Next,

suppose that x ∈ Sa = {r/a|r ∈ Z, ‖r‖∞ ≤ a2} and 0 < x ≤ a/2. Notice that if y ∈ Sa and −a <

y < a−x, then P(tσ,a(0) = y) = P(tσ,a(x) = y+x), because the distance of 0 and x is a multiple
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of the distance of the points in the grid Sa that we used for discretization. Hence the difference

H(tσ,a(x)) − H(tσ,a(0)) contains only terms corresponding to |y − x| > a/2, y ∈ Sa in the first

entropy expression (for x) and |y| > a/2, y ∈ Sa in the second one (for 0). The facts that tσ,a is

supported on a set of at most a2 +1 elements and that the probability that a Gaussian distribution is

farther from its expectation than a/2 is O(exp(−a2)/2) imply that H(tσ,a(x))−H(tσ,a(0)) = o(1)

uniformly in 0 < x < a/2 as a → ∞, when x ∈ Sa. A similar argument works for −a/2 < x < 0

if x is an element of Sa.

Finally, let x ∈ [−a/2, a/2] arbitrary, and x be the closest element of Sa to x. As it is well known

(e.g. as a consequence of Pinsker’s inequality), the total variation distance of N(x, σ) and N(x, σ)

is of order O(1/a) provided |x − x| ≤ 1/a. By choosing an appropriate coupling of these two

distributions and applying the same discretization, it follows that dTV(tσ,a(x), tσ,a(x)) = O(1/a).

Applying Theorem 17.3.3. of [17] we obtain that

|H(tσ,a(x))−H(tσ,a(x))| ≤ −dTV(tσ,a(x), tσ,a(x)) log
dTV(tσ,a(x), tσ,a(x))

a2 + 1
= o(1),

and the error term does not depend on x. This concludes the proof. �

We finish this chapter with the proof of Theorem 5. Let µσ,a denote the process in which we

pointwise discretize µ using tσ,a (using the notation of Chapter 5, we have µσ,a = tσ,a ∗ µ) and let

µσ denote the process obtained from µ by adding σ times the i.i.d normal distribution. By Lemma

8.1 and |Bk(C)| − (d/2)|Bk(e)| = 1 we obtain that

H(Bk(C), µσ,a)−
d

2
H(Bk(e), µσ,a) = log a+ D(Bk(C), µσ)−

d

2
D(Bk(e), µσ) + o(1).

By Theorem 4 and the typicality of µ we get that

H(Bk(C), µσ,a)−
d

2
H(Bk(e), µσ,a) ≥ Eµo

(H(tσ,a(x))).

Using the previous formulas, Lemma 8.2 and the limit a → ∞ we obtain that

D(Bk(C), µσ)−
d

2
D(Bk(e), µσ) ≥ D(N(0, σ) (16)

for every σ > 0.

Let S ⊂ Vd be either Bk(C) or Bk(e). We denote by µS,σ the probability measure obtained

by convolving the measure µS with the standard normal distribution on Wλ(S) (for the definition

of Wλ(S) see chapter 4), where λ is the eigenvalue corresponding to µ. Observe that the standard

normal distribution on RS is the independent sum of the standard normal distribution on Wλ(S) and

on Wλ(S)
⊥. Then by using that dimWλ(S)

⊥ = |S| − |∂S|, we have

D(S, µσ) = Dsp(µS,σ) + (|S| − |∂S|)D(N(0, σ)).

Using this formula for S = Bk(C) andS = Bk(e) in (16) together with |∂Bk(C)| = (d/2)|∂Bk(e)|,
we obtain that

Dsp(µBk(C),σ)−
d

2
Dsp(µBk(e),σ) ≥ 0.
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If σ → 0, then we obtain the statement of Theorem 5. �

9 Eigenvalues of the covariance operator

The main goal of this section is to prove the following statement on the differential entropies of

Gaussian waves. Recall the definition of Dsp from Chapter 7. In addition, by detsp we mean the

product of the non-zero eigenvalues of a matrix.

Theorem 6 Let Ψλ be a Gaussian wave function on the d-regular tree with λ ∈ [−2
√
d− 1, 2

√
d− 1].

Then we have

Dsp(Bk(C),Ψλ)−
d

2
Dsp(Bk(e),Ψλ) → 0 (k → ∞).

Let Σk be the covariance matrix of the joint distribution of Ψλ restricted to the ball Bk(C), and

Σ′
k be the similar covariance matrix on Bk(e). The differential entropy of a multivariate normal

random variable with covariance matrix Σ of rank m is given by 1
2 log

(
(2πe)m detsp Σ)

)
if we

measure differential entropy inside the support of the variable. Equation (4) and Corollary 4.1

imply that the rank of Σk is d/2 times the rank of Σ′
k. Hence we need to prove that

log detsp Σk −
d

2
log detsp Σ

′
k → 0 (k → ∞). (17)

Notice that if s is an eigenvalue of both Σk and Σ′
k, and its multiplicity in the first case is d/2

times its multiplicity in the second case, then it is canceled out in the difference. In order to find

the eigenvalues that do not cancel out, we decompose both R|Bk(C)| and R|Bk(e)| as a union of

orthogonal subspaces that are invariant under the corresponding covariance operators.

First we need some notation. We will use the genealogical labeling of the vertices in Bk(C)

and in Bk(e) (in this section, we will not distinguish vertices and labels). In Bk(C), the root gets

label ∅, and we put the labels on the vertices such that the labels of neighbors differ only in the last

coordinate (i.e. 1, 2, . . . , d are the neighbors of the root; 11, 12, . . . , 1(d−1) are the further neighbors

of 1, and so on). For a vertex v the length of its label is denoted by |v|, which is its distance from ∅.

For a vertex v and a sequence y, by vy we mean the vertex with the label obtained by concatenating

v and y. We say that v is an ancestor of w (denoted by v → w), if w = vy for some y 6= ∅. As

for Bk(e), we use a similar notation, but keeping track of symmetry with respect to the central edge

e. The endpoints of e have labels ∅ and ∅′. The descendants of ∅ have labels 1, . . . , d − 1, their

descendants have labels 11, 12, . . . , 1(d − 1), 21, . . . and so on. Similarly, the descendants of ∅′

have labels 1′, . . . , (d− 1)′, their descendants have labels 11′, 12′, . . . , 1(d− 1)′, 21′, . . . and so on.

Note that |v| still denotes the length of the label.

We assign a linear subspace to each vertex in Bk(C) \ ∂Bk(C) and Bk(e) \ ∂Bk(e). Fix

v ∈ Bk(C) \ ∂Bk(C). Let Ev be the elements α ∈ RBk(C) for which the following hold. (i)
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αw = 0 if v is not an ancestor of w. (ii) Suppose that 1 ≤ j ≤ (d − 1) and y, z are labels with

|y| = |z|. Then αvjy = αvjz . (To put it in another way, for descendants of v, the value of α depends

only on the first coordinate after v and the distance from v.) (iii) We have
∑

y:|y|=r αvy = 0 for

r ≥ 1.

In addition, we introduce the following subspace:

G = {α ∈ R
Bk(C) : αv = αw if |v| = |w|}.

We will also refer to E ′
v (when v ∈ Bk(e) \ ∂Bk(e)), which are linear subspaces of RBk(e) defined

similarly. The definition of the complement subspace is somewhat different:

G′
1 = {α ∈ R

Bk(e) : αv = αw if |v| = |w|}.

G′
2 = {α ∈ R

Bk(e) : αv = αw if ∅ → v, ∅ → w, |v| = |w|; αv′ = −αv if v = ∅ or ∅ → v}.

Lemma 9.1 The following hold for the linear subspaces defined above.

(a) Ev, v ∈ Bk(C) \ ∂Bk(C) and G are invariant under Σk. Similarly, E ′
v, v ∈ Bk(e) \ ∂Bk(e)

and G′
1,G′

2 are invariant under Σ′
k.

(b) Ev, v ∈ Bk(C) \ ∂Bk(C) and G are pairwise orthogonal. Similarly, E ′
v, v ∈ Bk(e) \ ∂Bk(e)

and G′
1,G′

2 are pairwise orthogonal.

(c) R
Bk(C) = G +

∑
v∈Bk(C) Ev and R

Bk(e) = G′
1 + G′

2 +
∑

v∈Bk(e)
E ′
v.

Proof. Before going into the proof, we note that we will only use the property that every entry (i, j)

of Σk depends only on the distance of i and j. (a) First observe G consists of all vectors that are

invariant under the full automorphism group of Bk(C). This property is preserved by Σk and thus

G is invariant under Σk.

Take any α ∈ Ev. For Σkα, property (ii) is preserved because the entries of Σk depend only on

the distance of the two corresponding vertices (as it is the covariance matrix of an invariant random

process). Putting this together with the third property we get that (i) also holds for Σkα. Property

(iii) means orthogonality to G; using the invariance of G, this will also be satisfied by Σkα, which

is thus in Ev . Similar arguments work for the other two linear subspaces.

(b) Fix v1, v2 ∈ Bk(C). If none of them is ancestor of the other one, then the support of any

vector of Ev1 is disjoint from the support of any vector in Ev2 , which implies orthogonality. If

v1 → v2, then the value of a vector in Ev1 is the same at all vertices of type v2y with |y| fixed.

Multiplying this by the values of a vector in Ev2 and summing this up for different ys (of fixed

length) we get 0, because of property (iii). This implies the orthogonality. The other cases are

similar; we omit the details.

(c) The dimensions of these subspaces are as follows.

dim Ev = (k − |v|+ 1)(d− 2) for ∅ 6= v ∈ Bk(C) \ ∂Bk(C);
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dim E∅ = (k + 1)(d− 1); dim G = k + 2;

dim E ′
v = (k − |v|+ 1)(d− 2) for ∅ 6= v ∈ Bk(e) \ ∂Bk(e);

dim G′
1 = k + 1; dim G′

2 = k + 1.

The following equalities are easy to check by induction on k:

1 + (k + 1)d+

k∑

j=1

d(d− 1)j−1(k + 1− j)(d − 2) = |Bk(C)|;

2(k + 1) + 2

k−1∑

j=1

(d− 1)j−1(k − j)(d− 2) = |Bk(e)|.

Hence the sum of the dimension of the linear subspaces Ev and G is equal to the dimension of the

space RBk(C). Since the subspaces are pairwise orthogonal by part (b) of the lemma, this implies

that the sum must be equal to RBk(C). A similar argument works for Bk(e). �

For the following lemma, recall the definition of f(k, x) from equation (2). Furthermore, the

calculation about this recurrence relation in [1] imply that if we take λ = 2
√
d− 1x, then the

covariance of the values at distance k in the Gaussian wave Ψλ is equal to f(k, x).

Lemma 9.2 Let f(k, x) be defined by equation (2). We define

l(k, x) = 1 +

k−1∑

j=1

(d− 2)(d− 1)j−1f(2j, x).

Then the eigenvalues of Σk corresponding to E∅ and G are as follows.

s1(k, x) = 1 +

k∑

j=1

(d− 1)jf(2j, x) +

k∑

j=1

l(j, x) with multiplicity 1;

s2(k, x) =

(
1− s1(k, x) +

k∑

j=1

dl(j, x)

)
/(d− 1) with multiplicity d− 1.

The eigenvalues of Σ′
k corresponding to G′

1 and G′
2 are as follows.

s3(k, x) =
k∑

j=1

l(j, x) + (d− 1)j−1f(2j − 1, x) with multiplicity 1;

s4(k, x) =

k∑

j=1

l(j, x)− (d− 1)j−1f(2j − 1, x) with multiplicity 1.

Proof. Using the notation from Chapter 4, let Sk = Wλ(Bk(C)) and S ′
k = Wλ(Bk(e)). First we

consider G. Since f(k, x) is the covariance of the values at distance k in a (nontrivial) Gaussian

wave, we have by linearity that every row of Σk is in Sk. It follows that Im(Σk) ⊆ Sk. On the other

hand, by the previous lemma, G is invariant under Σk. Notice that G ∩Sk is one dimensional: given

the value at the root, the common value of its neighbors is determined (even for λ = 0), and this
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can be continued. It follows that Σk|G has rank one, and the eigenvalue corresponding to G can be

obtained by calculating the trace of the matrix of Σk|G in an arbitrary basis. By choosing the basis

of the indicator functions of the spheres of radius 0, 1, . . . , k around the root, elementary calculation

shows that this eigenvalue is equal to s1(k, x).

The three eigenvalues corresponding to the invariant subspaces E∅, G′
1 and G′

2 can be obtained

by similar arguments, by identifying the image of Σk (or Σ′
k) restricted to the given subspace and

calculating the trace of its matrix. In the second case, E ′
∅∩Sk has dimension d−1: 0 is assigned to the

root; the values of the d neighbors of ∅ have to sum up to 0, but there are no other conditions; given

these values, all the others are uniquely determined. The only nonzero eigenvalue has multiplicity

d − 1, which makes it possible to calculate it based on the trace of the matrix. As for the last two

cases, G′
1 ∩ S ′

k and G′
2 ∩ S ′

k both have dimension 1 again: given the value at ∅, the value at ∅′ has

to be the same or the opposite. Then the eigenvalue equation and the equality conditions in G′
1 and

G′
2 uniquely determine all the other values. By choosing appropriate bases in these subspaces, it is

straightforward to obtain the eigenvalues in the lemma. �

Lemma 9.3 Using the notation of the previous lemma, for every x ∈ [−1, 1], we have

log s1(k, x) + (d− 1) log s2(k, x)−
d

2
log s3(k, x)−

d

2
log s4(k, x) → 0 (k → ∞).

Proof. First we calculate the middle term of s1(k, x). Using equation (2), we obtain that

T (k, x) :=

k∑

j=1

(d− 1)jf(2j, x) =

k∑

j=1

(d− 1)j√
d(d− 1)2j−1

q2j(x),

where the polynomials q are defined by equation (3). Straightforward calculation shows that with

x = cosϑ we have

T (k, x) =
d− 1

d
U2k(x) +

d− 2

d sinϑ
Im

e3iϑ(e(2k−2)iϑ − 1)

e2iϑ − 1
− 1

d
,

if sinϑ 6= 0 and e2ϑ 6= 1. (We deal with the exceptional cases at the end of the proof.) Using this

formula, we obtain that

l(k, x) = 1− d− 2

(d− 1)d
+

d− 2

d
U2k−2(x) +

(d− 2)2

d(d− 1) sinϑ
Im

e3iϑ(e(2k−4)iϑ − 1)

e2iϑ − 1
(k ≥ 2).

Notice that the last term is bounded in k for every fixed x. From now on, O(1) will denote a quantity

which depends both on x and k such that for every fixed x it is bounded in k. We emphasize that in

Theorem 6 the limit is taken for fixed λ (which is equal to x ·
√
d− 1). Thus in the proofs of this

chapter we always think of x as a fixed quantity while tending to infinity with k.

Continuing our calculations, we obtain that

s1(k, x) = 1 + T (k, x) +
k∑

j=1

l(j, x) =

(
1− d− 2

d(d− 1)
− (d− 2)2

d(d− 1) sinϑ
Im

e3iϑ

e2iϑ − 1

)
k +O(1).
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On the other hand, we have

s1(k, x)− s2(k, x) =
d

d− 1
s1(k, x) −

d

d− 1

k∑

j=1

l(j, x)− 1

d− 1
= O(1);

s1(k, x)− s3(k, x) = 1 +

k∑

j=1

(d− 1)jf(2j, x)− (d− 1)jf(2j − 1, x) = O(1);

s3(k, x) − s4(k, x) = 2
k∑

j=1

(d− 1)jf(2j − 1, x) = O(1).

To put it in another way, with

A = 1− d− 2

d(d− 1)
− (d− 2)2

d(d− 1) sinϑ
Im

e3iϑ

e2iϑ − 1

the expressions s1(k, x), s2(k, x), s3(k, x) and s4(k, x) are all in the form Ak + O(1). If A > 0,

then we get that

log sj(k, x) = logA+ log k + o(1) (j = 1, 2, 3, 4),

which implies the statement of the lemma. Hence, in the rest of the proof, we check that A > 0

holds.

First notice that 1 − d−2
d(d−1) > (d−2)2

d(d−1) is satisfied for all d. In addition, by using elementary

trigonometric identities we obtain

Im
e3iϑ

sinϑ(e2iϑ − 1)
=

sinϑ− sin 3ϑ

2 sinϑ(1− cos 2ϑ)
=

1− cos 2ϑ− 2 cos2 ϑ

4 sin2 ϑ
=

sin2 ϑ− cos2 ϑ

2 sin2 ϑ
≤ 1.

Putting this together, we get the positivity of A, which concludes the proof.

We have to deal with the remaining special cases. First, if |x| = 1, then sinϑ = 0, but we

still have Uk(cosϑ) = k + 1. This implies that l(k, x) is a quadratic polynomial, and s1(k, x) is a

cubic polynomial (with leading coefficient 1− (d− 2)2/d/(d− 1) > 0). Moreover, the differences

s1 − s2, s1 − s3, s1 − s4 are all of order O(k2), which implies the statement of the lemma.

The last case is when e2iϑ = 1. This implies Uk(cosϑ) = 1 for all k. That is, qk(x) =

(d− 2)/
√
d(d− 1), and l(k, x) is of the form Bk + O(1) for some nonzero B. Now s1, s2, s3, s4

are all quadratic polynomials as a function of k, while their differences are linear. It follows again

that the expression in the lemma goes to 0 as k → ∞. �

Proof of Theorem 6. As we have discussed, it is sufficient to show that (17) holds. First fix k, and

recall Lemma 9.1. Notice that for every 1 ≤ r ≤ k − 1, if we take two vertices v1, v2 in Bk(C)

such that |v1| = |v2| = r, then the linear transformation Σk restricted to Ev1 is isomorphic to

the linear transformation Σk restricted to Ev2 (we use again that the entries of the covariance matrix

depend only on the distance of the vertices). Hence the set of eigenvalues of Σk corresponding to the

invariant subspaces Ev1 and Ev2 are the same. Furthermore, this linear transformation is isomorphic

to the linear transformation Σ′
k restricted to E ′

v , if |v| = r holds. For every 1 ≤ r ≤ k − 1 we have

∣∣{v : |v| = r, v ∈ Bk(C)}
∣∣ = d

2

∣∣{v : |v| = r, v ∈ Bk(e)}
∣∣.
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This means that all eigenvalues belonging to the spaces Ev and E ′
v cancel out in the expression in

(17) for |v| > 0.

Therefore only the eigenvalues corresponding to G, E ′
∅,G′

1 and G′
2 are left. These are calculated

with multiplicities in Lemma 9.2, and hence Lemma 9.3 finishes the proof by showing that the

difference goes to zero as k → ∞. �

10 Improved differential entropy inequality

In this chapter we use a combination of Theorem 5 and Theorem 6 to prove an improved version of

Theorem 5 for the case k = 0. We will use the notation from Chapter 4. If S is either Bk(C) or

Bk(e) for some k ≥ 0 and p is in S \ ∂S, then we have for the Gaussian wave Ψλ with distribution

µ that

D(Q(S, p, µ)) = D(Bp) +
∑

(v,w)∈D

D(Av,w). (18)

We obtain from (18) that the differential entropy D(Q(S, p, µ)) does not depend on p for a Gaussian

wave with distribution µ. Observe that changing the vertex p to p′ results in a linear transformation

Tp,p′ in the system Q(S, p, µ). The invariance of the differential entropy shows by Lemma 13.1 that

Tp,p′ has determinant 1.

Now applying Lemma 13.1 for an arbitrary smooth eigenvector process ν with eigenvalue λ we

obtain that the value of D(Q(S, p, ν)) is independent of p since the transformations Tp,p′ depend

only on the quadruple p, p′, λ, S and can be calculated from the eigenvector equation. For a general

smooth eigenvector process ν we define D(S, ν) as this unique differential entropy of D(Q(S, p, ν)).

We will need the next definition.

Definition 10.1 A process {Yv}v∈Vd
in Id(X) is called 2-Markov if for an arbitrary edge e the dis-

tributions {Yv}v∈W1
and {Yv}v∈W2

are conditionally independent with respect to {Yv}v∈e where

W1 and W2 are the set of vertices on the two sides of e. (With this notation Vd = W1 ∪ e ∪W2.)

Note that the 2-Markov property implies that the marginal distribution YC = {Yv}v∈C deter-

mines the whole process because we can build up the distribution {Yv}v∈Vd
using iterated condi-

tionally independent couplings of YC along edges. More precisely, if for some connected subgraph

K of Td the distribution {Yv}v∈V (K) is already constructed and w ∈ Vd is a vertex such that the

star B1(w) intersects K in a single edge e, then the joint distribution {Yv}v∈V (K)∪B1(w) is the

conditionally independent coupling of {Yv}v∈V (K) and {Yv}v∈B1(w) with respect to {Yv}v∈e. The

invariance of the process implies that {Yv}v∈B1(w) has the same distribution as YC . By iterating

this procedure we can build up the marginal distribution on any finite connected subgraph of Td and

thus the whole process in uniquely determined.
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Lemma 10.1 We have for every k ≥ 1 and smooth eigenvector process ν the following three in-

equalities.

D(Bk(C), ν) ≤ dD(Bk(e), ν)− (d− 1)D(Bk−1(C), ν),

D(Bk(e), ν) ≤ 2D(Bk−1(C), ν)− D(Bk−1(e), ν),

D(Bk(C), ν) − (d/2)D(Bk(e), ν) ≤ D(Bk−1(C), ν) − (d/2)D(Bk−1(e), ν).

If ν is Gaussian, then we have equality everywhere. Furthermore if we have equality everywhere

(for every k), then ν is 2-Markov.

Proof. The proof is based on the general fact (see Lemma 13.2) that for a joint distribution (X,Y, Z)

we have that D(X,Z) + D(Y, Z) − D(Z) ≥ D(X,Y, Z) holds with equality if and only if X and

Y are conditionally independent with respect to Z . To see the first inequality let us place p to the

root of Bk(C). We can cover Bk(C) in a rotational symmetric way by d copies of Bk(e) in a way

that all of them contain Bk−1(C) and they are disjoint outside of Bk−1(C). Each copy of Bk(e)

covers a subset of the variables Av,w and Bp such that the joint differential entropy of this subset of

variables is equal to D(Bk(e), ν). Now Lemma 13.2 finishes the proof of the first inequality. The

other two inequalities can be seen in a similar way. If we have equality everywhere for every k, then

by lemma 13.2 we get that the joint distribution of ν on Bk(C) is the conditionally independent

coupling of d copies of Bk(e) over Bk−1(C) and the joint distribution on Bk(e) is the conditionally

independent coupling of 2 copies of Bk−1(C) over Bk−1(e). By induction the 2-markov property

follows inside Bk(C) for every k and thus for the whole process.

Let α(S, ν) denote the differenceD(Q(S, p, ν))−D(Q(S, p, µ)) where µ is the Gaussian eigen-

vector process with the same eigenvalue as ν. If we apply the same change of basis to both

D(Q(S, p, ν)) and D(Q(S, p, µ)), they change with the same additive constant by lemma 13.1 and

thus α(S, ν) remains unchanged. This shows the basis independence of α(S, ν). In particular we

have that if ν is a smooth eigenvector process then α(S, ν) = Dsp(S, ν)− Dsp(S, µ) and so

α(Bk(C), ν)− (d/2)α(Bk(e), ν) =

(
Dsp(Bk(C), ν) − (d/2)Dsp(Bk(e), ν)

)
−
(
Dsp(Bk(C), µ)− (d/2)Dsp(Bk(e), µ)

)
. (19)

Using Theorem 5 and Theorem 6 we get the following consequence.

Proposition 10.1 If ν is a smooth typical eigenvector process then

lim sup
k→∞

α(Bk(C), ν) − (d/2)α(Bk(e), ν) = lim sup
k→∞

Dsp(Bk(C), ν) − (d/2)Dsp(Bk(e), ν) ≥ 0.

Proof. By Theorem 5 the first term in (19) is non negative and by Theorem 6 the second term

converges to 0. This completes the proof.

The main theorem of this chapter is the following.
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Theorem 7 If ν is a smooth typical eigenvector process, then α(C, ν) − (d/2)α(e, ν) ≥ 0 and

equality implies that ν is 2-Markov.

Proof. By iterating the third inequality in Lemma 10.1 we obtain that

D(Bk(C), ν) − (d/2)D(Bk(e), ν) ≤ D(Bl(C), ν) − (d/2)D(Bl(e), ν)

holds for every k ≥ l ≥ 0. Furthermore if we replace ν in the above formula by the Gaussian wave

µ then we get equality. This implies that

α(Bk(C), ν)− (d/2)α(Bk(e), ν) ≤ α(Bl(C), ν) − (d/2)α(Bl(e), ν) (20)

holds for every k ≥ l ≥ 0. By Proposition 10.1 we get the inequality of the theorem by applying

(20) with l = 0 and k → ∞. For the second statement assume that α(C, ν) − (d/2)α(e, ν) = 0.

By (20) this is only possible if α(Bk(C), ν)− (d/2)α(Bk(e), ν) = 0 holds for every k and thus the

inequalities of Lemma 10.1 are all equalities. This implies that ν is 2-Markov. �

11 Heat equation and the proof of the main theorem

Definition 11.1 For λ ∈ [−2
√
d− 1, 2

√
d− 1] and d ≥ 3 let Fd,λ denote the set of joint distribu-

tions F = (X1, X2, . . . , Xd, Z) of real valued random variables such that

1. E(XiXj) = (λ2 − d)d−1(d − 1)−1, E(XiZ) = λ/d, E(Xi) = E(Z) = 0 and E(X2
i ) =

E(Z2) = 1 holds for 1 ≤ i, j ≤ d and i 6= j;

2. the joint distribution (X1, X2, . . . , Xd, Z) is symmetric under every permutation that fixes Z;

3. for every 1 ≤ i ≤ d the joint distribution (Xi, Z) is the same as the joint distribution (Z,Xi);

4. the quantities Dsp(X1, X2, . . . , Xd, Z) and D(X1, Z) are both finite.

We define the function D : Fd,λ → R by D(F ) = Dsp(X1, X2, . . . , Xd, Z)− d
2D(X1, Z).

Notice that the covariance conditions of definition 11.1 guarantee that E((X1+X2+ · · ·+Xd−
λZ)2) = 0 and thus X1+X2+ · · ·+Xd = λZ holds with probability 1. This implies that the joint

distribution F is concentrated on the 1 co-dimensional (d-dimensional) subspace Wλ(C) in Rd+1.

The subspace differential entropy in definition 11.1 is measured in this subspace.

In this chapter we think of λ ∈ [−2
√
d− 1, 2

√
d− 1] and d as fixed values and most of the times

our notation will not indicate the dependence on these values even if there is such a dependence.

Our goal is to solve the extremal problem of maximizing D inside Fd,λ (see Theorem 8). This will

provide the last step in the proof of our main theorems (see Theorem 2 and Theorem 3) as we will

explain at the end of this chapter.

It will be important that there is a unique element F ∗ = (X∗
1 , X

∗
2 , . . . , X

∗
d , Z

∗) in Fd,λ such

that F ∗ is Gaussian. (The covariances define the Gaussian system uniquely, which clearly satisfies
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the symmetry conditions.) Note that F ∗ depends on both d and λ. Most of this chapter deals with

the proof of the the next theorem which says that the entropy formula D in Fd,λ is maximized by

the Gaussian distribution F ∗.

Theorem 8 For every F ∈ Fd,λ we have that D(F ) ≤ D(F ∗) and equality holds if and only if

F = F ∗.

To get rid of the subspace differential entropy, we apply a change of basis to the systems in Fd,λ.

We can choose a fix linear transformation T : Rd+1 → Rd (depending on d and λ) such that for

every F ∈ Fd,λ the system T (F ) = (B1, B2, . . . , Bd) satisfies E(BiBj) = δi,j for 1 ≤ i, j ≤ d.

Using that M = T (F ∗) is Gaussian we obtain that M is the standard normal distribution on Rd.

Using that linear transformations change differential entropy with a fix constant (depending on the

transformation; see Lemma 13.1), the statement of the theorem is equivalent to the fact that

D(T (F ))− (d/2)D(X1, Z) ≤ D(M)− (d/2)D(X∗
1 , Z

∗)

and equality holds if and only if T (F ) = M . The proof of Theorem 8 relies on the following

proposition.

Proposition 11.1 Let F = (X1, X2, . . . , Xd, Z) ∈ Fd,λ and Ft = F +
√
2tF ∗ (using independent

sum) for every t > 0. Then the function

ΛF (t) = D(T (Ft))− (d/2)D(X1 +
√
2tX∗

1 , Z +
√
2tZ∗)

satisfies Λ′
F (0) ≥ 0. If F is not Gaussian then Λ′

F (t) > 0 for some t ≥ 0.

Note that the choice of Ft comes from the heat equation in Rd (see chapter 12). We first show

that Proposition 11.1 implies Theorem 8. The joint distribution Ft does not satisfy the covariance

conditions of definition 11.1 but it is clear that the scaled version Ft(1 + 2t)−1/2 is in Fd,λ. Notice

that scaling does not change the differential entropy formula because the extra additive constants

coming from scaling exactly cancel each other. By using the claim for G = Ft(1 + 2t)−1/2 we

obtain from Λ′
G(0) ≥ 0 that Λ′

F (t) ≥ 0 holds for F with every t ≥ 0. Since Ft(1 + 2t)−1/2 =

F (1 + 2t)−1/2 + F ∗(2t/(1 + 2t))1/2 converges to F ∗ as t → ∞, we obtain that F ∗ maximizes D.

To see that only the Gaussian system F ∗ attains the maximum assume that F attains the maximum.

In this case Λ′
F (t) ≥ 0 is only possible if Λ′

F (t) = 0 holds for every t ≥ 0. This implies that F is

Gaussian by the second part of Proposition 11.1.

It remains to prove Proposition 11.1. We start with some notation and lemmas. Assume that the

measure µ is the distribution and f is the density function of B = T (F ). We can choose a matrix

Q ∈ R(d+1)×d such that Xi =
∑

k Qi,kBk holds for i = 1, . . . , d, and Z =
∑

k Qd+1,kBk is also

satisfied. We define vi = (Qi,1, . . . , Qi,d) for i = 1, . . . , d and w = (Qd+1,1, . . . , Qd+1,d). Notice
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that the covariance matrix of F is QQT . Hence the vectors {vi}di=1 and w are unit vectors such that

(vi, vj) = (λ2 − d)d−1(d − 1)−1 and (vi, w) = λ/d for every 1 ≤ i, j ≤ d. The joint distribution

((v1, B), (v2, B), . . . , (vd, B), (w,B)) is the same as F . We have that µ is invariant with respect

to every orthogonal transformation permuting the system {vi}di=1 and fixing w. Furthermore we

have that µ projected to the space spanned by vi and w is invariant with respect to the reflection

interchanging vi and w. We can choose two real numbers α and β such that the vectors ai =

αw + βvi and bi = αvi + βw satisfy (ai, bi) = 0 and ‖ai‖2 = ‖bi‖2 = 1 for every 1 ≤ i ≤ d (in

particular, we need that (α2 + β2)λ/d + 2αβ = 0, and (α2 + β2) + 2αβλ/d = 1). The choice of

α and β is unique up to multiplying both by −1 or switching them. Their values can be determined

using elementary geometry.

Note that construction of the vector system {vi}di=1, w, {ai}di=1, {bi}di=1 in Rd is purely linear

algebraic. Such system, with the scalar products given above, can be constructed for an arbitrary

|λ| ≤ d however in the case of |λ| ≤ 2
√
d− 1 they satisfy a useful geometric property expressed in

the following lemma.

Lemma 11.1 If |λ| ≤ 2
√
d− 1, then there are numbers t1, t2 with t1, t2 ≥ 0 and t1 + t2 = 1 such

that for every u ∈ Rd we have

‖u‖22 =
d∑

i=1

(
t1(u, ai)

2 + t2(u, bi)
2
)
.

Proof. The proof follows from two observations. The first one is the following. Let {v′i}di=1 be a

system of unit vectors such that all pairwise scalar products are equal and for all 1 ≤ i ≤ d we have

(v′i, w) = c for some c ≤ 1. (The system {ai}di=1 satisfies the conditions with c = α + βλ/d, and

{bi}di=1 with c = αλ/d+ β.) Then

d∑

i=1

(u, v′i)
2 = (1− c2)d(d− 1)−1‖u− (u,w)w‖22 + c2d(u,w)2 (21)

holds for every u ∈ Rd. To see this, first notice that
∑

i v
′
i = cdw, which implies that (v′i, v

′
j) =

(c2d − 1)/(d − 1) for 1 ≤ i < j ≤ d. It follows that we can choose γ ∈ R such that the equality

(v′i−γw, v′j−γw) = 0 holds for 1 ≤ i < j ≤ d. On the other hand, we have
∑

i(u−(u,w)w, v′i) =

0. Therefore
d∑

i=1

(u, v′i)
2 =

d∑

i=1

(
(u − (u,w)w, v′i)

2 + (u,w)2(w, v′i)
2
)
.

The second term is equal to the second term of (21). In the first term, we can replace v′i with v′i−γw.

If the latter is equal to zero, then we are done. Otherwise, since {v′i−γw}di=1 is an orthogonal basis

in w⊥, we obtain

d∑

i=1

(u, v′i)
2 = ‖v′i − γw‖22‖u− (u,w)w‖22 + c2d(u,w)2.
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On the other hand, for symmetry reasons, ‖v′i− γw‖22 does not depend on i. By substituting u = v′1

and using (v′1, v
′
j) = (c2d − 1)/(d− 1) again, we get that the value of this constant is the same as

in equation (21).

The second observation says that if |λ| ≤ 2
√
d− 1 then there exist constants t1, t2 ≥ 0 with

t1 + t2 = 1 such that t1(ai, w)
2 + t2(bi, w)

2 = 1/d. First of all note the symmetries of the vector

system imply that (ai, w)
2, (bi, w)

2 are independent from i. Elementary calculation shows that the

two values (ai, w)
2 and (bi, w)

2 are equal to (1 ±
√
1− (λ/d)2)/2. This shows the existence of

the constants t1, t2. We get the statement of the lemma by taking the convex combination of (21)

applied for {ai}di=1 and {bi}di=1 with coefficients t1 and t2. �

Now we return to the proof of Proposition 11.1. For 1 ≤ i ≤ d let fi denote the orthogonal

projection of f to the two dimensional space Vi = 〈w, vi〉R. This means that

fi(x) =

∫

z∈V ⊥

i

f(x+ z)

for x ∈ Vi. Let T2 : R2 → R2 denote the linear transformation T2(x, y) = (αx + βy, αy + βx)

with α and β defined above. We have that fi (when written in the orthonormal basis ai, bi) is the

density function of T2(Xi, Z). We can write ΛF (t) as

k + D(T (Ft))− (d/2)D(T2(X1 +
√
2tX∗

1 , Z +
√
2tZ∗)) (22)

where the constant k comes from the change of basis T2. Then by the de Bruijn identity (see equation

(27) and Lemma 12.2) we get

Λ′
F (0) =

∫

Rd

‖▽f‖22/f − (d/2)

∫

V1

‖▽f1‖22/f1.

From Lemma 11.1 we have that

‖▽f‖22 =
d∑

i=1

(t1(∂ai
f)2 + t2(∂bif)

2) (23)

holds for some t1, t2 ≥ 0 such that t1 + t2 = 1. Using

‖▽f1‖22 = (∂a1
f1)

2 + (∂b1f1)
2

and the above equations it follows that

Λ′
F (0) =

d∑

i=1

∫

Rd

(t1(∂ai
f)2 + t2(∂bif)

2)/f − (d/2)

∫

V1

((∂a1
f1)

2 + (∂b1f1)
2)/f1.

By the symmetries of f we have that the terms in the above sum are all the same and thus

Λ′
F (0) = d

∫

Rd

(t1(∂a1
f)2 + t2(∂b1f)

2)/f − (d/2)

∫

V1

((∂a1
f1)

2 + (∂b1f1)
2)/f1. (24)

31



Lemma 11.2 If u ∈ V1, then

∫

Rd

(∂uf)
2/f ≥

∫

V1

(∂uf1)
2/f1.

Equality holds if and only if the function g = ∂uf(x)/f(x) = ∂u log f satisfies g(x) = g(x + z)

for every pair x ∈ Rd and z ∈ V ⊥
1 .

Proof.

∫

Rd

(∂uf)
2/f =

∫

x∈V1

f1(x)

∫

z∈V ⊥

1

(f(x+ z)/f1(x))(∂uf(x+ z)/f(x+ z))2

≥
∫

x∈V1

f1(x)
(∫

z∈V ⊥

1

(f(x+ z)/f1(x))(∂uf(x+ z)/f(x+ z))
)2

=

∫

x∈V1

f1(x)
(∫

z∈V ⊥

1

(∂uf(x+ z)/f1(x))
)2

=

∫

V1

(∂uf1)
2/f1.

To see the inequality in the above calculation notice that f(x + z)/f1(x) is the density function of

a probability measure on x + V1 . We can apply the Cauchy–Schwarz inequality using this density

function to get the inequality. It also shows that equality holds in the statement of the lemma if and

only if ∂uf(x+ z)/f(x+ z) is constant almost everywhere on x+V1 for almost every x. Since we

work with continuous functions the almost can be omitted. �

We apply Lemma 11.2 for a1 and b1 and (24) to obtain that

Λ′
F (0) ≥ (dt1 − d/2)

∫

V1

(∂a1
f1)

2/f1 + (dt2 − d/2)

∫

V1

(∂b1f1)
2/f1. (25)

Using the symmetry of (X1, Z) we obtain that

∫

V1

(∂a1
f1)

2/f1 =

∫

V1

(∂b1f1)
2/f1. (26)

It follows that Λ′
F (0) ≥ 0. The proof of the first part of Proposition 11.1 is now complete.

We arrived to the second part of Proposition 11.1. Assume that F satisfies Λ′
F (t) = 0 for every

t ≥ 0. Using the notation from Lemma 11.1 we have by t1 + t2 = 1 that at least one of t1 > 0

and t2 > 0 holds. Without loss of generality we assume that t1 > 0. Let gt : Rd → R denote

the logarithm of the density function of Bt = T (Ft). This implies by Lemma 11.2 that ∂a1
gt

satisfies the property that ∂a1
gt(x) = ∂a1

gt(x + z) holds whenever x ∈ Rd and z ∈ V ⊥
1 . For

convenience, we will write every element x ∈ R
d as a triple (α(x), β(x), γ(x)), where α(x) =

(x, a1), β(x) = (x, b1) and γ(x) is the projection of x to V ⊥
1 . Using this notation, we have that

∂a1
gt(x) = ht(α(x), β(x)). This means that there exists a function ĥt : R2 → R such that

∂a1
ĥt(α(x), β(x)) = ∂a1

gt(x). We have by ∂a1
(gt − ĥt) = 0 that gt(x) − ĥt(α(x), β(x)) =

st(β(x), γ(x)) for some function st. We obtain that the density function of Bt can be written in the

following form.

exp(ĥt(α(x), β(x))) · exp(st(β(x), γ(x)).
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In other words, this means that the random variables of α(Bt) and γ(Bt) are conditionally indepen-

dent with respect to β(Bt). This implies by Lemma 12.6 that one of the following two possibilities

holds: either α(B) is independent of (β(B), γ(B)) or γ(B) is independent of (α(B), β(B)). In the

first case we obtain (using the terminology of Lemma 12.5) that a1 is an independent direction for

B. By symmetries of B we obtain that {ai}di=1 are all independent directions for B. If t1 < 1 then

(ai, aj) 6= 0 for every pair 1 ≤ i < j ≤ d and Lemma 12.5 finishes the proof. If t1 = 1, then

{ai}di=1 is an orthonormal basis in Rd and b1 =
∑d−1

i=2 ai(d − 1)−1/2. We have that (B, ai) are

identically distributed independent random variables and that (B, b1) =
∑d−1

i=2 (B, ai)(d − 1)−1/2

has the same distribution. This is only possible if this (B, ai) is normal for every i. We obtain that

B is Gaussian.

In the case when γ(B) is independent of (α(B), β(B)) we have that ∂ug(x) = ∂ug(x+z) holds

for every triple u ∈ V1, x ∈ Rd, z ∈ V ⊥
1 . The symmetries of f imply that ∂ug(x) = ∂ug(x + z)

holds for every triple u ∈ Vi, x ∈ Rd, z ∈ V ⊥
i . Let ri denote the orthogonal projection of ai to

w⊥ for 1 ≤ i ≤ d. Note that the vector system {ri}di=1 is completely symmetric in the sense that

the origin is the center of a regular simplex whose vertices are given by these vectors. We have for

every 1 ≤ i ≤ d that ∂rig(x) = hi((x, ri), (x,w)) for some two variable function hi : R
2 → R.

The symmetries of f imply that hi does not depend on i and thus hi = h for some h for every i.

The next step is to prove that h(x, y) = xh∗(y) for some one variable function h∗. We have

by
∑d

i=1 ri = 0 that
∑d

i=1 ∂rig(x) = 0 and thus
∑d

i=1 hi((x, ri), (x,w)) = 0 holds for every

x ∈ Rd. For arbitrary numbers x1, x2, . . . , xd, y ∈ R with
∑d

i=1 xi = 0 we can choose x ∈ Rd

such that (x, ri) = xi and (x,w) = y. It follows that
∑d

i=1 h(xi, y) = 0 holds for arbitrary

numbers with
∑d

i=1 xi = 0. Assume first that all xi is 0 then we have that dh(0, w) = 0 and

thus h(0, w) = 0 for every w. Then assume that x1 = a, x2 = −a and xi = 0 if i ≥ 3. We

obtain that h(a, w) + h(−a, w) = 0 and thus h(−a, w) = −h(a, w) holds for every a and w.

Finally let x1 = a, x2 = b, x3 = −a− b and xi = 0 if i ≥ 4. We obtain that h(a, w) + h(b, w) =

−h(−a−b, w) = h(a+b, w). Since h is additive and continuous in the first coordinate a well known

fact implies that h is a linear function in the first coordinate and thus we obtain h(x, y) = xh∗(y).

Now we have ∂rig(x) = (x, ri)h
∗((x,w)) for every 1 ≤ i ≤ d. It is easy to see that this

implies that g(x) = ‖x − (x,w)w‖22h∗((x,w)) + c∗((x,w)) where c∗ : R → R is some function.

We have that ∂wg(x) = ‖x − w(x,w)‖22(h∗)′((x,w)) + (c∗)′((x,w)). On the other hand we

have that ∂wg(x) = ∂wg(x + z) holds whenever z ∈ V ⊥
i for every 1 ≤ i ≤ d. It follows that

(h∗)′ = 0 everywhere and so g(x) = c‖x − (x,w)w‖22 + c∗((x,w)) with some constant c. Now

from f(x) = exp(c‖x − (x,w)w‖22 + c∗((x,w))) we have that B − (B,w)w and (B,w) are

independent random variables. Furthermore B − (B,w)w is a Gaussian distribution concentrated

on the orthogonal space of w. This means that the pair (B, r1), (B,w) of random variables is

independent and (B, r1) is Gaussian. We know that (B, v1) is a linear combination of (B, r1) and
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(B,w) (with a non-zero coefficient for (B, r1)) and its distribution is the same as the distribution

of (B,w) (here we use the symmetries of B). It follows that (B,w) is also Gaussian and thus

c∗((x,w)) = c2(x,w)
2 + c3 for some constants c2, c3. Thus we have that B is a Gaussian joint

distribution implying that F is also joint Gaussian, as it is a linear function of B. �

Proof of Theorem 2 and Theorem 3 From Proposition 5.1 we have that theorem 3 implies theorem

2. Let µ be a smooth typical eigenvector process corresponding to eigenvalue λ represented by a

system of random variables {Xv}v∈Vd
. According to the results in chapter 7 it is enough to show that

µ is a Gaussian wave. We have by Lemma 5.1 that λ ∈ [−2
√
d− 1, 2

√
d− 1]. Let F = {Xv}v∈C .

It is clear that F ∈ Fd,λ. We have by Theorem 7 that D(F ) ≥ D(F ∗) and thus by Theorem 8 we

obtain that F = F ∗. Again by Theorem 7 we have that µ is 2-Markov and so {Xv}v∈Vd
can be

obtained by iterating conditionally independent couplings of C along edges (see chapter 10). This

shows the Gaussianity of the whole system {Xv}v∈V .

12 Appendix A: On heated random variables

Let X be a random variable with values in Rn and let M be the standard normal distribution on Rn.

Let ft denote the density function of X +
√
2tM and let µt denote the corresponding measure on

R
n. The standard heat equation says that ∂tft = △ft holds for every t > 0. It is useful to compute

the variation of the differential entropy D(ft). The de Bruijn identity (see e.g. [17]) says that

∂t(D(ft)) = ∂t

∫

Rn

−ft log ft =

∫

Rn

−△ft(1 + log ft) =

∫

Rn

‖▽ft‖22/ft. (27)

However the validity of (27) relies on the fact that both ∂ift and ∂ift log ft vanish at infinity for

every 1 ≤ i ≤ n. This fact is proved in Lemma 12.2. Notice that if X has finite variance then also

X +
√
2tM has finite variance and if t > 0 then D(ft) is a finite quantity (Lemma 12.3).

In general if σ > 0 then the density function f of X+σM is smooth, non-vanishing and analytic

restricted to every line in Rn. More precisely, if p, q ∈ Rn then the real functionλ 7→ f(p+λ(q−p))

extends to an entire analytic function on C. Furthermore every partial derivative of f has this

property. In the rest of this appendix we prove several other facts about heated random variables.

Lemma 12.1 Let X be a random variable with values in Rn and let M be the standard normal

distribution on Rn. Let f be the density function of the independent sum X + σM for some σ > 0.

Then for every 1 ≤ i ≤ n and x ∈ Rn we have that |∂if(x)| ≤ f(x)a(1 + | log(bf(x))|1/2) for

some constants a, b depending on n and σ.

Proof. Let Φ be the density function of σM and let µ be the distribution of X . Let r ∈ R+

the smallest positive real number such that ∂iΦ(z) ≤ |f(x)| for every z satisfying |z| ≥ r. It

can be shown that r ≤ c2(1 + | log(c1f(x))|1/2) for some constants (depending on n and σ). Let
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D = {z : |x − z| ≤ r}. We have that
∫
z∈D ∂iΦ(x − z)dµ ≤ |f(x)|. On the other hand, by

f(x) =
∫
z∈R

Φ(x− z)dµ we obtain that
∫

z∈D

∂iΦ(x− z)dµ ≤ |f(x)|max
|y|≤r

∂iΦ(y)/Φ(y).

Using that ∂if(x) =
∫
z ∂iΦ(x− z)dµ and that ∂iΦ(z)/Φ(z) = O(z) the proof is complete. �

Lemma 12.2 Let X be a random variable with values in Rn and let M be a random variable with

standard normal distribution on Rn. Let f be the density function of the independent sum X + σM

for some σ > 0. Then for 1 ≤ i ≤ n the functions f , ∂if and ∂if log f vanish at infinity.

Proof. We start with f . For contradiction, assume that D = {x : f(z) ≥ c} is unbounded for

some c > 0. Let Φ be the density function of σM and let us choose r ∈ R+ such that Φ(x) ≤ c/2

whenever ‖x‖2 ≥ r. Let µ be the probability distribution of X . We have that if f(x) ≥ c and

Qx = {z : ‖z − x‖2 < r}, then
∫
z∈Qx

Φ(z − x)dµ ≥ c/2 and thus µ(Qx) ≥ ‖Φ‖−1
∞ c/2. From

the unboundedness of D we conclude that there is an infinite set of points {pi}∞i=1 in D such that

‖pi − pj‖2 > 2r holds for every pair i 6= j in N. This contradicts the fact that µ is finite. The

statement for ∂if and ∂if log f follows from Lemma 12.1. �

Lemma 12.3 Let X be a random variable with values in Rn with finite covariance matrix. Let M

be independent of X , with standard normal distribution on Rn. Then, for every σ > 0, X + σM

has finite differential entropy.

Proof. The random variable X + σM has finite covariance matrix. As it is well-known, among the

distributions with a given covariance matrix, Gaussian distribution maximizes differential entropy.

Hence D(X+σM) < ∞. On the other hand, as in the previous lemma, let f be the density function

of X + σM . Lemma 12.2 implies that {t : f(t) > 1} is a compact set. The continuity of f implies

that
∫
Rn f(t) log f(t)dt < ∞. Thus we also have D(X + σM) > −∞. �

Lemma 12.4 Let X be a random variable with values in R
n and let M be the standard normal

distribution on Rn. Let f be the density function of the independent sum X + σM for some σ > 0.

Then for every ε > 0 there is ε′ > 0 such that for every pair a, b ∈ Rn with ‖a− b‖2 = r ≤ ε′ and

f(b) > c we have that f(a)/f(b) ≥ 1− ε, where c = σ−(n−1)/2 exp(−r−1/(16σ2)).

Proof. We start by general estimates for a pair a, b ∈ R
n with r = ‖a − b‖2 ≤ 1/4. We have

that f(x) =
∫
y∈Rn Φ(x − y)dµ where µ is the probability distribution of X and Φ is the density

function of σM . Let D = {z : ‖z − a‖2 ≤ r−1/2}. Let f1(x) =
∫
y∈Rn 1DΦ(x − y)dµ and

f2(x) = f(x) − f1(x). We have that f2(x) ≤ supz∈D Φ(x − z). It follows that |f2(a)|, |f2(b)| ≤
(2πσ2)−(n−1)/2Φ0(r

−1/2 − r) where Φ0 is the density function of the one dimensional normal

distribution N(0, σ). Thus using r−1/2 − r ≥ r−1/2/2 and 1/
√
2π < 1 we have

|f2(a)|, |f2(b)| ≤ (2πσ2)−(n−1)/2Φ0(r
−1/2/2) < c2. (28)
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To estimate f1(a)/f1(b) we use

min
z∈D

Φ(z − a)/Φ(z − b) ≤ f1(a)/f1(b).

From

Φ(z − a)/Φ(z − b) = exp((‖z − b‖22/2− ‖z − a‖22/2)/σ2) = exp(((a− z, b− a) + r2/2)/σ2)

it follows that

f1(a)/f1(b) ≥ exp((−r1/2 + r2/2)/σ2) ≥ 1− r1/2/σ2. (29)

Inequality (28) implies that f(b) = f1(b) + f2(b) ≤ f1(b) + c2. Using this and f1(a) ≤ f(a) we

obtain

f(a)/f(b) ≥ f1(a)/(f1(b) + c2) = (f1(a)/f1(b))(1 + c2/f1(b))
−1.

If f(b) > c, then f1(b) = f(b)− f2(b) > c− c2 and thus by (29) we get

f(a)/f(b) > (f1(a)/f1(b))(1 + c2/(c− c2))−1 ≥ (1 − r1/2)(1− c).

The quantity c goes to 0 with r and so if r is small enough we have that f(a)/f(b) ≥ 1− ε. �

Let X be a random variable with values in Rd. We say that v ∈ Rd is an independent direction

for X if the R-valued random variable (X, v) is independent from the projection of X to the d − 1

dimensional space v⊥. Note that every direction is independent for the standard normal distribution.

Lemma 12.5 Let X be a random variable with values in Rd and with E(X) = 0. Assume that

{vi}di=1 is a basis in Rd such that each vi is an independent direction for X and furthermore for

every 1 ≤ i ≤ d there is 1 ≤ ji ≤ d such that (vi, vji) 6= 0. Then X is Gaussian.

Proof. Let N be the standard normal distribution. It is clear that the independent sum X + εN

has the same independence property as X for every ε ≥ 0. Furthermore it is enough to prove that

the heated version X + εN of X is Gaussian for every ε > 0. Let us fix ε > 0. The advantage

of working with X + εN is that it has a strictly positive smooth density function f on Rd and so

we can work with logarithms and with partial derivatives. The independence property now says that

∂vi log f(x) is equal to hi((x, vi)) for some smooth function hi : R → R. We obtain that

∂vji∂vif = (vi, vji)h
′′
i ((x, vi)) , ∂vi∂vji f = (vi, vji)h

′′
ji((x, vji )).

and so h′′
i ((x, vi)) = h′′

ji((x, vji )). Since vi and vji are independent for every pair a, b ∈ R there

is x ∈ Rd such that (x, vi) = a and (x, vji ) = b. This implies that h′′
i (a) = h′′

ji
(b) holds for every

a, b and so each h′′
i is a constant function for every i. Consequently hi is linear for every i and

thus (using that {vi}di=1 is a basis) ∂u log f is a linear function for every u ∈ Rd. It follows that

log f satisfies ∂u1
∂u2

∂u3
log f = 0 for every u1, u2, u3 ∈ Rd. This means that log f is given by a

quadratic d-variate polynomial Q on Rd. We obtain that f = c exp(Q(x)) holds and thus f is the

density function of some Gaussian distribution.
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Lemma 12.6 Let (X,Y, Z) be a joint distribution with X,Y ∈ R and Z ∈ R
d−2. Let (Xt, Yt, Zt)

be the triple obtained by running the heat equation for time t with X0 = X,Y0 = Y and Z0 = Z .

Assume that for every t ≥ 0 we have that Xt and Zt are conditionally independent with respect to

Yt. Then either (X,Y ) is independent from Z or (Y, Z) is independent from X .

Proof. We parametrize Rd with triples (x, y, z) where the coordinates x and y are real numbers

and z is a d − 2-dimensional vector. By ∆z we mean the sum of the second partial derivates with

respect to the coordinates belonging to z. We denote by ft, ht, gt and mt the density functions of

(Xt, Yt, Zt), (Xt, Yt), (Zt, Yt) and Yt, respectively. We also introduce st(z, y) = gt(z, y)/mt(y).

Using the conditional independence and the heat equation we obtain the following equations.

ft(x, y, z) = ht(x, y)gt(z, y)/mt(y) = ht(x, y)st(z, y).

∂tft = ∆ft; ∂tht = ∆ht; ∂tgt = ∆gt = ∂yygt +∆zgt; ∂tmt = ∆mt.

By abusing the notation we will omit t from ft, ht, gt,mt and st in the following calculations.

We start from the first equality, and use the other three one after the other.

∂xxf + ∂yyf +∆zf = ∂th · s+ h · ∂ts.

∂xxh · s+ ∂yyf +∆zf = ∂xxh · s+ ∂yyh · s+ h · ∂ts.

∂yyf + h ·∆zg/m = ∂yyh · s+ h ·
(
(∂tg)/m− (g · ∂tm)/m2

)
.

∂yyh · s+ 2∂yh · ∂ys+ h · ∂yys = ∂yyh · s+ (h · ∂yyg)/m− (gh · ∂yym)/m2. (30)

Before continuing this, we calculate the partial derivatives of s with respect to y.

∂ys = (∂yg)/m− (g · ∂ym)/m2.

∂yys = (∂yyg)/m− 2(∂yg · ∂ym)/m2 − (g · ∂yym)/m2 + 2g · (∂ym)2/m3.

Now we substitute this into equation (30).

2(∂yh · ∂yg)/m− 2g(∂yh · ∂ym)/m2 + (h · ∂yyg)/m

− 2h(∂yg ·∂ym)/m2− (gh ·∂yym)/m2+2hg(∂ym)2/m3 = (h ·∂yyg)/m− (gh ·∂yym)/m2.

(∂yh · ∂yg)/m− (g · ∂yh+ h · ∂yg) · (∂ym)/m2 + gh(∂ym)2/m3 = 0.

(∂yh · ∂yg)/m2 − (g · ∂yh+ h · ∂yg) · (∂ym)/m3 + gh(∂ym)2/m4 = 0.
(
(∂yh)/m− (h · ∂ym)/m2

)(
(∂yg)/m− (g · ∂ym)/m2

)
= 0.

(
∂y(h/m)

)
·
(
∂y(g/m)

)
= 0.

We obtain that at least one of ∂y(h/m) = 0 and ∂y(g/m) = 0 holds on an open set. Assume that

(without loss of generality) ∂y(h/m) = 0 holds on an open set U of the domain D of h/m which is
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R
2. This is equivalent to m∂yh−h∂ym = 0 on U . Let p ∈ U and q ∈ D be arbitrary. Let us define

the function r : R → R by r(λ) = (m∂yh−h∂ym)(p+λ(q−p)). Then r has an analytic extension

to C. In addition, r = 0 in a small neighborhood of 0 in R. It follows that r is constant 0 and thus

∂y(h/m) is 0 at every q ∈ D. This implies that Xt is independent of Yt. Similarly if ∂y(g/m) = 0

holds on an open set we obtain that Zt is independent of Yt. The conditional independence of Xt

and Zt with respect to Yt finishes the proof. �

13 Appendix B: Differential entropy

Differential entropy is defined as follows for absolutely continuous random vectors. Some properties

of the discrete entropy are preserved (e.g. it is additive if we put together independent random

variables), others do not hold any more; an essential difference is that differential entropy does not

have to be nonnegative.

Definition 13.1 Let (X1, X2, . . . , Xn) be a family of random variables. Suppose that their joint

distribution is absolutely continuous, and their joint density function is f . Then their differential

entropy is defined as follows (provided that the integral exists):

D(X1, X2, . . . , Xn) = −
∫

Rn

f(t1, . . . , tn) log f(t1, . . . , tn)dt1 . . . dtn.

To see the connection between entropy in the discrete case and differential entropy, recall Theo-

rem 9.3.1 from [17]. This says that if we divide the range of X into bins of length δ, and Xδ denotes

the quantized version of X with respect to this grid, then

H(Xδ) + log δ → H(X)

as δ → 0, assuming that the density of X is Riemann integrable.

The following well-known lemma shows how the differential entropy is modified when we apply

a linear transformation to the random vector (see e.g. corollary to Theorem 9.6.4 in [17].

Lemma 13.1 Let X = (X1, . . . , Xn) be a family of random variables, and let A ∈ Rn×n be an

invertible matrix. Then

D(AX) = D(X) + log |det(A)|.

The following lemma is equivalent to the fact that the nonnegativity of conditional mutual infor-

mation holds for differential entropy as well. We include a proof for completeness.

Lemma 13.2 Let X,Y, Z be random variables such that their differential entropy exist. Then we

have

D(X,Y, Z) ≤ D(X,Z) + D(Y, Z)− D(Z).
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Proof. Let g(x, y) = f(x, y, z)/f(z) on the support of Z , and 0 otherwise. Then g is a density

function on R2. As the nonnegativity of mutual information is satisfied for differential entropy (see

e.g. Corollary to Theorem 9.6.1. in [17]), we have

−
∫

g(x, y) log g(x, y)dxdy ≤ −
∫

g1(x) log g1(x)dx −
∫

g2(y) log g2(y)dy,

where g1 and g2 are the marginal densities of g. Multiplying both sides by f(z) and integrating with

respect to z we get the statement of the lemma. �

14 Appendix C: Factor of i.i.d. processes

Let f : [0, 1]Vd → Y be a measurable function such that it is invariant under root preserving

automorphisms. We can use f to construct an invariant process in the following way. First we put

independent uniformly random elements from [0, 1] on the vertices of Td. Then, at each vertex v,

we evaluate f for this random labeling such that the root is placed to v. If f depends only on finitely

many coordinates, then the corresponding process is called a block factor of i.i.d. process.

Proposition 14.1 If {Xv}v∈Vd
is a real-valued typical process and {Yv}v∈Vd

is a weak limit of

factor of i.i.d. processes, then their independent sum {Xv + Yv}v∈Vd
is a typical process.

Proof. Notice that the family of typical processes is closed with respect to the weak topology. On

the other hand, every process that is a weak limit of factor i.i.d. processes is also a weak limit of

block factor of i.i.d. processes [31]. Hence it is enough to prove the statement in the case when

{Yv}v∈Vd
is a block factor of i.i.d. process. It is well known that block factor of i.i.d. processes can

be approximated with the corresponding local algorithm computed on graphs with sufficiently large

(essential) girth. Since large random d-regular graphs have large essential girth, the independent

sum of the approximation of {Xv}v∈Vd
and the local algorithm approximating {Yv}v∈Vd

is an

approximation of the process {Xv + Yv}v∈Vd
. �

The next proposition was proved by Harangi and Virág in [27].

Proposition 14.2 For |λ| ≤ 2
√
d− 1 the unique Gaussian wave Ψλ is a weak limit of factor of i.i.d

processes (but not a factor of i.i.d. process itself).
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