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ABSTRACT 

A new method for adding parameters to a well-established 

distribution to obtain more flexible new families of 

distributions is applied to the inverse Weibull distribution 

(IWD). This method is known by the Alpha-Power 

transformation (APT) and introduced by Mahdavi and Kundu 

[9]. The statistical and reliability properties of the proposed 

models are studied. The estimation of the model parameters 

by maximum likelihood and the observed information matrix 

are also discussed. The extended model is applied on a real 

data and the results are given and compared to other models. 
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1. INTRODUCTION 
Reliability is a human characteristic that has been in.ect for a 

long period of time. Reliability acts the probability of 

components parts and systems to perform the desired task for 

a specific period of time without failure in fixed environments 

with required confidence. The Exponential, Raylight, linear 

failure rate, Weibull and inverse Weibull are the most 

common life distribution in reliability and life testing [11]. 

Exponential distribution has constant failure rate distribution, 

Raylight distribution has increasing failure rate distribution, 

and there are distributions that have increasing or decreasing 

failure rate introduced by Nassar and Abo-kasem [10]. The 

hazard rate function can be of bath tube shape it plays a 

central role in the work of reliability engineers (the Weibull 

distribution, Generalized exponential, Rraylight distribution, 

inverse Weibull) [4]. The inverse Weibull was originally used 

in reliability industry, it is one of the most common life 

distribution in reliability engineering, the need for an 

extended form of the distribution grow in many applied fields 

Corderio and Lemonte[7]. If the random variable 𝑌has a 

Weibull distribution, then the random variable X=𝑌−1 has an 

inverse Weibull distribution with cumulative distribution 

function (cdf) 

             𝐹 𝑥 = 𝑒−𝜆𝑥
−𝛽

,                                          (1) 

The probability density function (pdf) 

              𝑓 𝑥 = λβx− β+1   e−λx−β

,                             (2) 

And hazard rate function 

            𝑕 𝑥 = λβx− β+1     ( e−λx−β

− 1)−1.           (3) 

The inverse Weibull is more suitable than the Weibull 

distribution because the inverse Weibull distribution gives 

satisfactory parametric fit if the data indicate anon monotone 

and unimodal hazard rate function. The hazard rate function 

of the IW can be an increase or decrease depending on the 

value of the shape parameter. The IW distribution is useful to 

modal several data such as the time to fall of an isolated liquid 

subjected to the work of a fixed stress and decay of 

mechanical components such as compressor and crankshafts 

of diesel engines introduced by Nassar and abo-kasem [10]. 

Adding parameters to a well-known distribution helps us to 

obtain more flexible new families of distribution [2]. 

Madhdavi and kundu [9] suggest an interesting method for 

generating distribution function as follows: 

Let F(x) be the CDF of a continuous random variable X, then 

α - power transformation of 𝐹(𝑥) for 𝑋 ∈ 𝑅, is defined as 

follows: 

                      𝐹𝐴𝑃𝑇 =  
𝛼𝐹 𝑥 −1

𝛼−1
       , α > 0, α ≠ 1

𝐹 𝑥              , 𝛼 = 1.

                       (4) 

If f(x) is an absolute continuous distribution function with the 

probability density function f(x) then 𝐹𝐴𝑃𝑇 is also an absolute 

continuous distribution function with the pdf 

                𝑓𝐴𝑃𝑇 =  
𝑙𝑜𝑔𝛼

𝛼−1
𝑓 𝑥 𝛼𝐹 𝑥 ,    α > 0, α ≠ 1

𝑓 𝑥 ,         𝛼 = 1.
                  (5) 

The survival reliability function 𝑆𝐴𝑃𝑇  and the hazard rate 

function 𝑕𝐴𝑃𝑇  for APT distribution are in the following forms 

              𝑆𝐴𝑃𝑇 =  
−

α

α−1
 1 − αF x −1 ,  α > 0 , 𝛼 ≠ 1

1 − F x ,    α = 1.
          (6) 

and 

            𝑕𝐴𝑃𝑇 =  
𝑓 𝑥 𝛼𝐹 𝑥 −1

1−𝛼𝐹 𝑥 −1
𝑙𝑜𝑔𝛼, 𝛼 > 0, 𝛼 ≠ 1  

1 − 𝐹 𝑥 , 𝛼 = 1.

                   (7) 

The rest of the paper is organized as follows. Section 2 

introduces alpha power inverse Weibull (APIW) distribution. 

The structural characteristics of APIW distribution including 

the behavior of the probability density function, the hazard 

rate function, the reversed hazard rate function, the (reversed) 

residual life, the moments and the associated moments, 

quantile function and finally the order statistics and extreme 

values are studied in sections 3, 4, 5, 6. Section 7 concerns 

with the Maximum likelihood estimators of the unknown 

parameters and some inferential issues. Simulation schemes 

are obtained in section 8. Finally, a real data life application 

has illustrated the potential of APIW distribution compared 

with other distributions in section 9. 

2. THE ALPHA POWER  INVERSE 

WEIBULL DISTRIBUTION(APIW) 
In this section, we apply APT method to apeci.c class of 

distribution function, namely to an inverse Weibull 

distribution, and named this new distribution the three-

parameter APIW distribution. The CDF and PDF of the 

inverse Weibull distribution is 

𝐹 𝑥, 𝜆, , β = 𝑒−λ𝑥−𝛽    , 𝑥 > 0, 𝜆, 𝛽 > 0,            (8) 

and 
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  𝑓 𝑥, 𝜆, , β = 𝜆𝛽𝑥−(𝛽+1)𝑒−λ𝑥−𝛽      , 𝑥 > 0, 𝜆, 𝛽 > 0.  (9) 

where 𝝀 is the scale parameter and α, β is a shape parameter. 

Then the CDF and PDF of Alpha-power-inversed Weibull 

Distribution are 

     𝐹 𝑥, 𝛼, 𝛽, 𝜆 =  
𝛼  e−λx−β

−1

𝛼−1
,               𝛼 ≠ 1

e−λx−β

,                    𝛼 = 1

                      (10) 

 

Fig.1. plot of the cdf of APIW, at 𝜶 ≠ 𝟎. 

and 

𝑓 𝑥, 𝛼, 𝛽, 𝜆 =

 

𝑙𝑜𝑔𝛼

𝛼−1
𝜆𝛽𝑥− 𝛽+1 𝑒−λ𝑥−𝛽𝛼𝑒

−λ𝑥−𝛽

  , 𝛼 ≠ 1, 𝑥, 𝜆, 𝛼, 𝛽 > 0

𝜆𝛽𝑥− 𝛽+1 𝑒−λ𝑥−𝛽 , 𝛼 = 1, 𝑥, 𝜆, 𝛽 > 0.

         (11) 

 

Fig.2.The pdf of APIW, 𝜶 ≠ 𝟎. 

Where β is shape parameter and 𝝀 is the scale parameter. 

The survival reliability function 𝑆𝐴𝑃𝐼𝑊  for APIW distribution 

is given by 

𝐒𝐀𝐏𝐈𝐖 =  

𝛂

𝛂−𝟏
(𝟏 − 𝛂 𝐞−𝛌𝐱

−𝛃

− 𝟏), 𝛂 ≠ 𝟏

𝟏 − 𝐞−𝛌𝐱
−𝛃

,                                  𝛂 = 𝟏.

                  (12) 

Hence the graph for some values of the parameters is given as 

follows: 

 

Fig.3 the reliability function of APIW, 𝜶 ≠ 𝟎. 

3. STRUCTURAL CHARACTERISICS 
In this section, we study the structural characteristics for 

APIW distribution. 

In particular, if x~ APIW (α,β,𝝀) then the functional behavior 

of the density function ad of the hazard rate function, mean 

residual life function and others are derived and studied in 

details. 

The behavior of the probability density function of Alpha 

Power Inverse Weibull distribution  

Theorem 1:  

The pdf of alpha power inverse Weibull is: 

(i) Decreasing if 𝜆 > 0, 𝛽 ≤ 1, 

(ii) Unimodal if 𝛽 < −1, 𝜆 < 0. 

Proof 

(i) since 

𝑙𝑛𝑓 𝑥 = ln logα − ln α − 1 + ln 𝜆𝛽 

−  𝛽 + 1 𝑙𝑛 𝑥 − 𝜆𝑥−𝛽

+ 𝑒−𝜆𝑥
−𝛽
𝑙𝑛(𝛼), 

𝑑

𝑑𝑥
𝑙𝑛𝑓 =

−β − 1

x
+ 𝜆𝛽𝑥−𝛽−1  1 + 𝑒−𝜆𝑥

−𝛽
𝑙𝑛 𝛼  , 

𝐝

𝐝𝐱
𝐥𝐧𝐟 𝐱 < 𝟎, 𝒇𝒐𝒓 𝛌 > 0, 𝛽 ≤ −1 

Then F(x) is decreasing 

(ii) If 𝛽 < −1, 𝜆 < 0 since 

d2

dx2
ln f x  =

β + 1

x2
− λβ β + 1 x−β−2 − ( λ + 1 β

+ 1)λβx−β−2   e−λx−β

ln α < 0 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 11, August 2018 

8 

Hence 𝑓(𝑥) has a local maximum at 𝑥0. The behavior of 

APIW distribution density can be illustrated as in Fig.1. 

4. HAZARED RATE FUNCTION 
The hazard rate function of APIW is given by 

𝑕𝐴𝑃𝐼𝑊 =

 
 

 𝜆𝛽 𝑥−(𝛽+1)e−λx−β
𝛼  e−λx−β

−1

1−𝛼  e−λx−β
−1

𝑙𝑜𝑔𝛼        , 𝛼 > 0, 𝛼 ≠ 1

𝜆𝛽 𝑥− 𝛽+1 e−λx−β

1−e−λx−β                , 𝛼 = 1.

   

Theorem 2: The hazard rate function of alpha power inverse 

Weibull distribution is 

(i) Increasing if 𝝀, 𝛽 > 0 

(ii) Decreasing Hazard rate if 𝝀>0, β≥ −1 

Proof 

(i) Since, 

𝑑

𝑑𝑥
𝑕(𝑥) =

𝜆𝛽 𝑥−(𝛽+1)e−λx−β
𝛼  e−λx−β

−1 ln⁡(𝛼)

𝑥 (1−𝛼  e−λx−β
−1)

+

[− β + 1 + λβx−β + 2x−β e−λx−β

+

2x−βe−λx−β𝛼 e−λx−β
−1

1−𝛼  e−λx−β
−1

], 

for 𝜆, 𝛽 > 0, 
 𝑑

 𝑑𝑥
𝑕(𝑥) >0 then hazard rate function is 

increasing. 

(ii) for 𝜆 > 0, 𝛽 > −1,
 𝑑

 𝑑𝑥
𝑕(𝑥) > 0 then hazard rate function 

is decreasing. 

HRF of the APIW distribution are displayed in Fig.4 for 

different values of 𝛼, β and 𝝀. 

 

Fig.4. The hazard rate function of APIW, 𝜶 ≠ 𝟎. 

4.1 Reversed Hazard Rate 
The reserved hazard rate can be de.ned as the conditional 

random variable [𝑡 − 𝑥/𝑥 ≤ 𝑡] denote the time elapsed from 

the failure of a component given that its life is less than or 

equal this random variable is called also the time since. 

𝑟 𝑥 =
𝑓 𝑥 

𝐹 𝑥 
, 

then 

𝑟 𝑥 =
𝜆𝛽𝑥−(𝛽+1)e−λx−β

𝛼  e−λx−β

𝛼  e−λx−β

− 1
𝑙𝑜𝑔𝛼,   

      𝑥 > 0, 𝛼 ≠ 1, 𝛼, 𝛽, 𝜆 > 0 

4.2 (Reversed) Residual Life Function 
Residual life and reversed residual life random variables are 

used extensively in risk analysis. Accordingly, we investigate 

some related statistical functions, such as survival function, 

mean and variance in connection with APIW distribution. 

The residual life is described by the conditional random 

variable R(T)  =  x − t/x > 𝑡, 𝑡 ≥0, and defined as the period 

from time t until the time of failure. 

Analogously, the reversed residual life can be defined as 

𝑅  𝑡 =  t −
x

x
≤ 𝑡, 𝑡 ≥ 0, which denotes the time elapsed from 

the failure of a component given that its life ≤ t. 

i. Residual lifetime function 

The survival function of a residual lifetime 𝑆 𝑡 , 𝑡 ≥ 0, for 

APIW distribution is given by 

SR t (𝑥) =  (1 − 𝛼e−λ x +t −β
−1) (1 − 𝛼e−λ x −β

−1)−1
 

and its PDF is 

fR(t) = λβ(x + 1)− β+1   e−λ x +t −β

𝛼e−λ x +t −β
−𝛼(1 −

𝛼e−λ x +t −β
−1)  (1 − 𝛼e−λ x −β

−1)−1𝑙𝑜𝑔𝛼. 

Consequently, the hazard rate function of 𝑅(𝑡) has the 

following form 

hR t (𝑥) = λβ(x + 1)− β+1   e−λ x +t −β

𝛼e−λ x +t −β
−1𝑙𝑜𝑔𝛼. 

ii. Reversed residual life function 
The survival function of the reversed residual lifetime 𝑅 (𝑡) 

for APIW Distribution is given by 

𝑆𝑅 (𝑡) x =
F(x+ t)
F(t) =

𝛼e
−λ( t−x )−β

−1

𝛼e
−λt−β

−1
,0 < 𝑥 ≤ 𝑡, 

Hence the probability density function of 𝑅 (t) takes the 

following form 

𝑓𝑅 (𝑡) x = −
λβ t − x −β e−λ  t−x  −β

  𝛼e
−λ  t−x  −β

𝑙𝑛𝛼

𝛼e
−λt−β

−1
. 

Consequently, the hazard rate function of the reversed 

residual lifetime 𝑅 (𝑡) has the following form 

𝑕𝑅 (𝑡) x =
λβ(t− x)−β e−λ( t−x )−β

  𝛼e
−λ( t−x )−β

𝑙𝑛𝛼

1 − 𝛼e
−λt−β

. 

5. STATISTICAL INFERENCE 

5.1 Moments 
Let x~𝐴𝑃𝐼𝑊(𝛼, 𝛽, 𝝀). Hence, one can easily get the 

𝑟𝑡𝑕moment as follows: 

µ
𝑟

=  𝑥𝑟
∞

0

 𝑓𝐴𝑃𝐼𝑊  𝑥 𝑑𝑥. 

Using the series representation 

𝛼−𝑦 =  
(−𝑙𝑜𝑔𝛼)

𝑘!

∞

𝑘=0
𝑦𝑘 , 
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We then get the 𝑟𝑡𝑕moment of x 

µ
𝑟

=

 
 
 

 
 
 

(𝑙𝑜𝑔𝛼)𝑘+1(𝑘 + 1)
𝑟
𝛽 − 1) 

 1− 𝛼 𝑘!

∞

𝑘=0
𝜆
𝑟
𝛽  Г  

−𝑟

𝛽
+ 1  , 𝛼 > 0, 𝛼 ≠ 1

−𝜆
𝑟
𝛽  Г  

−𝑟

𝛽
+ 1                                   , α = 1

  

Thus, the mean and the variance of APIW are respectively 

given as follows 

𝐸(𝑥)

=

 
 
 

 
 
 

(𝑙𝑜𝑔𝛼)𝑘+1(𝑘 + 1)
1
𝛽 − 1) 

 1− 𝛼 𝑘!

∞

𝑘=0
𝜆

1
𝛽  Г  

−1

𝛽
+ 1  , 𝛼 > 0, 𝛼 ≠ 1

−𝜆
1
𝛽  Г  

−1

𝛽
+ 1                                   , α = 1

  

and 

𝑉𝑎𝑟 𝑥 

=

 
 
 
 
 

 
 
 
 

 
 log α k+1 k+ 1 

2
β
−1

 1− α k!

∞

k=0
λ
2
βГ 

−2
β

+ 1 −

  
 logα k+1 k+ 1 

1
β
−1

 1− α k!

∞

k=0
λ
1
βГ 

−1
β

+ 1  

2

   , α ≠ 1

−λ
2
β[Г −

2
β

+ 1 +  Г(
−1+ β

2 ))2 , α = 1.

  

The moment generating a function of APIW(α, β, 𝝀) can be 

obtained as 

𝑀𝑋(𝑡) = E etx =  𝑒𝑡𝑥
∞

0
f(x)dx 

                                    = 
𝑡𝑟

𝑟!

∞
𝑟=0  𝑥𝑟𝑓 𝑥 𝑑𝑥

∞

0  

5.2 Quantile 
The 𝑞𝑡𝑕quantile 𝑥𝑞of 𝐹𝐴𝑃𝐼𝑊 (𝑥)for α≠1 can be obtained as 

𝑄𝑥(𝑥) = inf {x ∈ 𝑅: 𝑝 ≤ 𝐹(𝑥)}, by using the 

transformation  𝑓(𝑞)  =  𝑞. 

Then the 𝑞𝑡𝑕quantile of APIW(α, β, 𝝀) is given by 

𝐹(𝑥𝑞)  =  𝑞, 

xq = −𝜆
1
𝛽     𝐿𝑜𝑔

log⁡[1+  𝛼 − 1 𝑞
𝐿𝑜𝑔𝛼

 

−1
𝛽

. 

At q= 0.5, the qth quantile reduced to the median which is 

given by 

x0.5 = −𝜆
1
𝛽     𝐿𝑜𝑔

log⁡[1+  𝛼 − 1 0.5

𝐿𝑜𝑔𝛼
 

−1
𝛽

. 

6. ORDER STATISTICS 
The order statistics have various applications in reliability and 

life testing. The order statistics arise in the study of the 

reliability of a system.  

Let 𝑋1, 𝑋2 , … ..  𝑋𝑛be a simple random sample from APIW(α 

,β, 𝝀) with cumulative distribution  function and pdf in 

Eq(10), Eq(11) respectively. Let 𝑋 1:𝑛 ,𝑋(2:𝑛) ………𝑋(𝑛:𝑛) 

denote the order statistics obtained from this sample. 

In reliability literature,𝑋(𝐼:𝑛) denote the lifetime of an 

(𝑛 − 𝑖 +  1)  − 𝑜𝑢𝑡 𝑜𝑓 −  𝑛 system that consists of n 

independent and identically components [3]. 

Then the pdf of 𝑋(𝐼:𝑛) , 1 ≤  𝑖 ≤  𝑛 is given by 

𝑓𝑖:𝑛=
1

𝐵 𝑖,𝑛−𝑖+1   𝐹 𝑥  𝑖−1 1− 𝐹 𝑥  𝑛−𝑖𝑓 𝑥  

Then by using Eq(10) and Eq(11), we get 

𝑓𝑖:𝑛(𝐱)

=

 
 
 
 
 

 
 
 
 log α

 α − 1 B i,n− i+ 1 λβx− β+1 e−λt−β
   
𝛼e

−λt−β
−1

α − 1  

𝑖−1

[𝟏 −
𝛼e

−λt−β
−1

α − 1 ]𝒏−𝟏                     , 𝛼 ≠ 1, α > 0
1

𝐵 𝑖, 𝑛 − 𝑖 + 1 λβx− β+1 e−λt−β

 e−λt−β

 
i−1

 1− e−λt−β

                                        , α = 1

  

We define the first order statistics 

𝑋(1)  =  𝑚𝑖𝑛(𝑋1, 𝑋2 , … ..  𝑋𝑛) the last order statistics 𝑋(𝑛) =

 𝑚𝑎𝑥 𝑋1, 𝑋2 , … ..  𝑋𝑛 . 

6.1 Distribution of minimum, maximum 

and median 
𝐿𝑒𝑡 𝑋1, 𝑋2, … , 𝑋𝑛  be independent, identically distributed 

random variables from APIW. 

𝑓𝑚𝑎𝑥  𝑥 =
𝑑

𝑑𝑥
(𝐹 𝑥 )𝑛 = 𝑛 𝐹 𝑥  

𝑛−1
𝑓(𝑥) 

=

 
 
 

 
 

𝑛 𝑙𝑜𝑔𝛼

 𝛼 − 1 𝑛
𝜆 𝛽𝑥− 𝛽+1 e−λt−β

 𝛼e−λt−β

[𝛼e−λt−β

− 1]𝛼−1                , α > 0, α ≠ 1

𝑛 𝜆 𝛽 𝑥−(𝛽+1) e
−λt−β e−λt−β

 
𝑛−1

    , 𝛼 = 1

  

𝑓𝑚𝑖𝑛  𝑥 = −
𝑑

𝑑𝑥
(1 − 𝐹 𝑥 )𝑛 = 𝑛 1 − 𝐹 𝑥  

𝑛−1
𝑓(𝑥) 

=

 
 
 

 
 

𝑙𝑜𝑔𝛼

 𝛼 − 1 𝑛
𝜆𝛽𝑥− 𝛽+1 𝑒−𝜆𝑥

−𝛽
𝛼𝑒

−𝜆𝑥−𝛽

 𝛼 − 𝛼𝑒
−𝜆𝑥−𝛽

 
𝑛−1

                       , α > 0, α ≠ 1

𝑛𝜆𝛽(1 − 𝑒−𝜆𝑥
−𝛽

)𝑛−1𝑥−(𝛽+1)𝑒−𝜆𝑥
−𝛽

      , 𝛼 = 1

  

and 

𝑓𝑚𝑒𝑑  𝑥 =
 2𝑚 + 1 !

𝑚!𝑚!
 𝐹 𝑥  𝑚  1 − 𝐹 𝑥  𝑚𝑓(𝑥) 

=

 
  
 

  
 

 2𝑚 + 1 !

𝑚!𝑚!

𝜆𝛽𝑙𝑜𝑔𝛼

 𝛼 − 1 2𝑚
𝑥− 𝛽+1 𝑒−𝜆𝑥

−𝛽
𝛼𝑒

−𝜆𝑥−𝛽

[𝛼𝑒
−𝜆𝑥−𝛽

− 1]𝑚 [𝛼 − 𝛼𝑒
−𝜆𝑥−𝛽

]𝑚        , α > 0, α ≠ 1
 2𝑚 + 1 

𝑚!𝑚!
𝜆𝛽𝑥− 𝛽+1  𝑒−𝜆𝑥

−𝛽
 
𝑚+1

[1 − 𝑒−𝜆𝑥
−𝛽

]𝑚                         , 𝛼 = 1

  

7. MAXIMUM LIKLIHOOD 

ESTIMATES 
In this section, we derive the maximum likelihood estimates 

of the unknown parameters α, β, and 𝝀 of 𝐴𝑃𝐼𝑊 (𝛼, 𝛽, 𝜆) 

based on a complete sample. 
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Let 𝑋1, 𝑋2 , … , 𝑋𝑛be a random sample from APIW (α, β,) then 

the log-likelihood function can be obtained as 

𝐿(𝛼, 𝛽, 𝜆) = 𝑛 𝑙𝑛 (𝑙𝑛 𝛼) −  𝑛 𝑙𝑛 (𝛼 − 1)  + 𝑛 𝑙𝑛 (𝜆𝛽) – (𝛽
+ 1) 

 𝑙𝑜𝑔 𝑥𝑖 − 𝜆 𝑥𝑖
−𝛽

𝑛

𝑖=1

𝑛

𝑖=1

 + 𝑙𝑜𝑔  𝛼  𝑒−𝜆𝑥
−𝛽

𝑛

𝑖=1

. 

The normal equation can be obtained by taking the first partial 

derivatives of the log-likelihood function with respect to the 

three parameters and equating the first derivative equal zero 

we get the following normal equations: 

𝑛

𝛼 𝑙𝑛𝛼
−

𝑛

𝛼 − 1 = 0, 

𝑛

𝜆
− 𝑥𝑖

−𝛽

𝑛

𝑖=1
+ 𝑙𝑛 𝛼  𝑥𝑖

−𝛽

𝑛

𝑖=1
𝑒−𝜆𝑥

−𝛽
= 0 

and 

𝑛

𝛽
− l𝑛⁡(𝑥𝑖)

𝑛

𝑖=1
+ 𝜆𝑙𝑛(𝛼) 𝑥𝑖

−𝛽
𝑙𝑛(𝑥𝑖

𝑛

𝑖=1
) 𝑒−𝜆𝑥

−𝛽
 = 0 

The normal equations do not have explicit solutions and they 

have to be obtained numerically. 

7.1 Asymptotic Confidence Bounds 
As the MLEs of the unknown parameters α, β and 𝝀 cannot be 

obtained in closed forms, it is difficult to derive the exact 

distributions of the MLEs. In this section, we derive the 

asymptotic confidence intervals of these parameters when 

α>0, β>0 and 𝝀>0. The simplest large sample approach is to 

assume that MLE (𝛼 , 𝛽 , 𝜆 )  are approximately multivariate 

normal with mean (α, β, 𝝀) and covariance 𝐼0
−1matrix 𝐼0

−1   , 

see Lawless [8], in which is the inverse of the observed 

information matrix 

𝐼0
−1 =

 

 
 
 
 
 
−
∂2L
∂λ
2 −

∂2L
∂λ ∂β

−
∂2L
∂λ ∂α

−
∂2L
∂β ∂λ

−
∂2L
∂β
2 −

∂2L
∂β ∂α

−
∂2L
∂α ∂λ

−
∂2L
∂α∂β

−
∂2L
∂α2  

 
 
 
 
 

 

where, 

∂2L
∂λ
2 = −

n
α2logα

−
n

α2logα2
+

n
(α − 1)2

 – 
𝑒−𝜆𝑥

−𝛽

α2

n

i=1
, 

∂2L
∂λ∂β

= −
n

β
2 
– λ xi

−β

n

i=1

 log xi 2 

+λ log α   λ xi
−β
− 1  xi

−β

n

i=1
(log xi)2𝑒−𝜆𝑥

−𝛽
, 

∂2l
∂λ
2 = −

n
λ
2 + log⁡(α) (xi

β
)2𝑒−𝜆𝑥

−𝛽

n

i=1
, 

∂2L
∂β ∂λ

=  xi
−β

n

i=1
log xi  

+log⁡(α)  1− λxi
−β
  xi

−β
 log⁡(xi)

n

i=1
𝑒−𝜆𝑥

−𝛽
, 

∂2L
∂α∂λ

= − 
xi
−β
𝑒−𝜆𝑥

−𝛽

α

n

i=1
 

and 

∂2L
∂α ∂β

=  
λ xi

−β log 𝑋𝑖 𝑒−𝜆𝑥
−𝛽

α

n
i=1 . 

The above approach is used to derive the 100(1 − 𝛶)% 

confidence intervals for the parameters α, βand𝝀 are 

determined respectively as 

α ± Zγ 2  Var α   , λ ± Zγ 2  Var λ   and  β ± Zγ 2  Var β  . 

where 𝑉𝑎𝑟(𝛼, ) 𝑉𝑎𝑟(𝛽 
 ) and 𝑉𝑎𝑟(𝜆 )are the variance of 

𝛼 , 𝛽 and 𝜆 , which are given by the diagonal elements of 

𝐼0
−1and 𝑍𝛶 

2

is the upper 
𝛶

2 percentile of the standard normal 

distribution. 

8. SIMULATION STUDIES 
The Equation 𝐹(𝑥)  − 𝑢 =  0, where u is an observation from 

the uniform distribution on (0,1) and 𝐹(𝑥) is cumulative 

distribution function of the distribution is used to carry out the 

simulation study to generate data from distribution. 

The simulation experiment was repeated 𝑁 =  1000 times 

each with sample sizes; 𝑛 = (20, 30, 50, 70) and (𝛼, 𝛽, 𝜆)  =
 (10, 1.5,0.5), (5, 2.5, 0.5). The following measures are 

computed. 

Average bias and the mean square error (MSE) of 𝜃  of the 

parameter α, β, and 𝝀 

                         
1
𝑁

  (𝜃 𝑛
𝑖=1 − 𝜃) and 

1
𝑁

  (𝜃  – 𝜃)2𝑛
𝑖=1 . 

Table 1 presents the average bias and the MSE of the 

estimates. The values of the bias and the MSEs decreases 

while the sample size increase 

Table 1. presents the average bias and the MSE of the 

estimates. The values of the bias and the MSEs decreases 

while the sample size increases 

α β 𝝀 n 
Bias 

(α) 

MSE 

(α) 

Bias 

(β) 

MSE 

(β) 

Bia

s 

(𝝀) 

MS

E 

(𝝀) 

10 1.5 . 5 20 −9.08 84.4 −0.12 0.29 0.56 0.36 

   30 −9.11 83.2 −0.16 0.12 0.54 0.35 

   50 −9.18 80.6 −0.22 0.10 0.40 0.31 

   70 −9.24 78.7 −0.29 0.08 0.40 0.30 

5 2.5 . 5 20 −7.21 53.0 −0.20 0.11 0.49 0.22 

   30 −7.22 51.8 −0.23 0.10 0.40 0.21 

   50 −7.25 46.8 −0.24 0.1 0.38 0.20 

   70 −7.31 39.7 −0.26 0.09 0.35 0.19 
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9. APPLICATION 
Here, the applicability of the APIW distribution is illustrated 

using real data sets from [5] the data set consist of 72 

observation. 

12  15  22  24  24 32  32  33  34  38  38  43  44  48  52 

53  54  54  55  56  57  58  58  59  60  60  60  60 61 62 

63  65  65  67  68  70   70  72   73 75  76  76 81   83 84 

85  87  91  95  96  98  99  109 110 121 127  129  131 

143  146  146  175  175  211   233  258  258  263   341 

341  376  

We compare the fit of the APIW distribution with those of the 

inverse Weibull, Frechet, inverse Raylight and inverse 

Exponential distributions. The model selection is carried out 

using the AIC (Akaike information criterion), the BIC 

(Bayesian information criterion), the CAIC (consistent Akaike 

information criteria) and the HQIC (Hannan Quinn 

information criterion). 

Table2: Estimated parameters, AIC, CAIC, BIC and 

HQIC for the real data set 

`Dis. Parameters −2𝑙  AI

C 

CA

IC 

BI

C 

HQ

IC 

 𝛼  𝛽  𝜆   

APIW

(𝛼 , 𝛽 , 𝝀 ) 

99.1625 1.78 343.87 391.181 788.36 388.716 795.193 392.794 

IW

 (𝛽 , 𝝀 ) 

 1.415 284.08 791.2 795.2 795.46 799.85 797.1 

F(𝛽 )  0.31  1026.5 1028.5 1028.6 1030.8 1029 

IR(𝝀 )   2187.9 813.47 815.47 815.52 817.75 816.3 

If(𝝀 )   60.09 805.343 805.34 807.4 809.62 808.2 

 

The maximum likelihood estimates and the corresponding 

AIC, CAIC, BIC, and HQIC values are shown in Table 2. We 

can see that the smallest AIC, CAIC, BIC, and HQIC are 

obtained for the APIW distribution. So, one can conclude that 

the APIW distribution is the most appropriate model for this 

data set among the considered distributions. 

Now, we shall apply formal goodness-of-.t-tests in order to 

verify which distribution fits better these real data sets. We 

consider the Kolmogorov. 

Smirnov k−s, P-value, Anderson. Darling A and Watson W 

statistics, which are described in details by [6]. In general, the 

smaller the values of these statistics, the better the .t to the 

data. The statistics k-s, P-value, W and A for all the models 

are listed in Table 3. The APIW distribution approximately 

provides an adequate fit for the data. 

Table3: Goodness-of-fit statistics corresponds to data set 

Dis. k−𝑠  p−𝑣𝑎𝑙𝑢𝑒  A W 

APIW 0.109619 0.35247 0.687468 0.111395 

IW 0.1381 0.1381 1.5177 0.2538 

F 0.6398 8.95 × 10−27 44.042 9.6086 

IR 0.2369 4.88 × 10−4 6.5639 1.2661 

IF 0.1846 0.0126 4.6425 0.8379 

 

 
Fig.5. The empirical and fitted cumulative for the 

APIW 

10. CONCLUSION 
In this paper, a three parameters alpha power inverse Weibull 

distribution have introduced, based on alpha-power 

transformation method (APT). Most statistical and reliability 

properties are derived and studied. Simulation schemes are 

formulated and provide less bias and mean square error as a 

sample size increases for MLEs of APIW parameters. Point 

Estimation via MLE method is done moreover, the Fisher 

information matrix for interval estimation is studied for 

APIW. A real data is used to illustrate and compare the 

potential of APIW distribution with other competing 

distributions showed that it could offer a better fit than a set of 

extensions of Weibull distribution. 
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