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ABSTRACT
Designing an efficient solution for Byzantine broadcast is an impor-

tant problem for many distributed computing and cryptographic

tasks. There have been many attempts to achieve sub-quadratic

communication complexity in several directions, both in theory and

practice, all with pros and cons. This paper initiates the study of an-

other attempt: improving the amortized communication complexity

of multi-shot Byzantine broadcast. Namely, we try to improve the

average cost when we have sequential multiple broadcast instances.

We present a protocol that achieves optimal amortized linear com-

plexity under an honest majority. Our core technique is to efficiently

form a network for disseminating the sender’s message by keeping

track of dishonest behaviors over multiple instances. We also gener-

alize the technique for the dishonest majority to achieve amortized

quadratic communication complexity.
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1 INTRODUCTION
Byzantine broadcast (BB) is one of the fundamental problems in

distributed systems. In the problem of Byzantine broadcast, there

are 𝑛 nodes, one of which is a designated sender. The sender is

given a message𝑚 and wants to share it with the rest of the nodes.

Despite up to 𝑓 nodes being corrupt, all honest nodes agree on the

sender’s message.

An important metric of a Byzantine broadcast protocol is its

communication complexity, which measures the number of bits

sent by non-corrupt parties during the protocol execution. Dolev

and Reischuk [12] showed any deterministic Byzantine broadcast

protocol costs at least Ω(𝑓 2) messages in the worst case, which

was matched by Berman et al. [5] for 𝑓 < 𝑛/3 and then by Momose

and Ren [26] for 𝑓 < 𝑛/2. However, for large-scale distributed

systems, Θ(𝑛2) communication complexity may still be expen-

sive. Many attempts have been made to circumvent the impos-

sibility results, mainly in three directions – (1) Randomized so-

lutions [1, 6, 9, 22], which improves the communication cost to

(worst-cast or expected) sub-quadratic. But this approach is inher-

ently vulnerable to strongly adaptive adversaries [1]. (2) Optimistic

solutions [16, 23, 25, 29, 31, 33] that have sub-quadratic commu-

nication under optimistic executions such as synchrony and no

failures. But they still incur quadratic costs in the worst case. (3)

Extension protocols [14, 15, 27] can achieve the optimal commu-

nication cost 𝑂 (𝑛𝐿) for an input of sufficient size 𝐿. Thus they

can also reduce the cost of multiple parallel broadcasts (or atomic

broadcasts [10]) through batching. But they do not allow sequential

and causal broadcast invocations (i.e., a decision in an instance may

affect the input of the next instance), which is required in many

cryptographic protocols assuming broadcast channel [4, 17, 28]. We

refer the reader to Section 2 for more discussions and comparisons.

Despite all the efforts in the above three directions, another

natural attempt through amortization across multiple (sequential)

instances, is somehow overlooked in the literature. In this paper,

we initialize the formal study of the amortized communication com-

plexity of multi-shot Byzantine broadcast. Multi-shot BB consists of

sequential broadcasts with clear boundaries (i.e., one instance ends

before the next instance starts) performed by possibly different

senders. The amortized communication cost of a multi-shot Byzan-

tine broadcast protocol is measured as the average cost of each
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broadcast instance if the protocol runs sufficiently long. Due to the

ever-growing nature of targeted applications such as blockchains,

reducing the amortized cost of the multi-shot Byzantine broadcast

can significantly improve the performance of a long-running sys-

tem. More formally, suppose the total communication complexity

in bits of the multi-shot protocol is 𝐶 (𝐿, 𝑛, 𝑓 ) after 𝐿 sequential

instances of Byzantine broadcast, our goal is to design multi-shot

Byzantine broadcast protocols that can minimize

lim

𝐿→∞
𝐶 (𝐿, 𝑛, 𝑓 )

𝐿
.

Interestingly, we show that we can design amortized linear multi-

shot Byzantine broadcast protocols under synchrony with the hon-

est majority and strongly adaptive adversaries, circumventing the

Ω(𝑓 2) lower bound. We also extend our technique to the dishonest

majority case to achieve quadratic amortized cost. Our results are

the following (summarized in Table 1).

• Assuming a threshold signature scheme, we show how to achieve

𝑂 (^𝑛) (^ is a security parameter) amortized communication

cost for synchronous multi-shot Byzantine broadcast under 𝑓 ≤
(1/2 − Y)𝑛 for any positive constant Y (Section 4).

• Assuming a digital signature scheme, we show how to achieve

𝑂 (^𝑛2) amortized communication cost for synchronous multi-

shot Byzantine broadcast under 𝑓 < 𝑛 (Section 5).

Technical challenge. At a high level, Byzantine broadcast is com-

monly implemented with repeated invocations of consistent broad-
cast [8], which guarantees nodes’ outputs are consistent, i.e., no-

body outputs different values. There are known solutions to achieve

consistent broadcast with linear communication [26, 33], so achiev-

ing safety with a linear cost is not hard. However, note that con-

sistent broadcast does not provide totality. In other words, it is

allowed that some nodes output but others do not when the sender

is dishonest. Therefore, to achieve liveness, we have to dissem-

inate the sender’s message to everybody. The common step to

handle this issue is each node forwards the sender’s message once

received. But this always costs quadratic messages. The key tech-

nical contribution of this work is to adaptively form an efficient

data dissemination network between honest nodes that eventually

converges with bounded cost, which is amortized over multiple

instances.

2 RELATEDWORK
Communication bound of Byzantine broadcast. Dolev and Reis-

chuk [12] showed any deterministic Byzantine broadcast protocol

requires at least Ω(𝑓 2) messages in the worst case even against

static adversaries. This was later extended by Abraham et al. [1],

who showed that even the expected communication of random-

ized protocols is subject to the quadratic bound under strongly
adaptive adversaries who can corrupt a node and retract the mes-

sages sent by that node in the same round. The Dolev-Strong pro-

tocol [13] costs quadratic messages but its communication com-

plexity in bits (for a constant size input) is Ω(^𝑛2 + 𝑛3) (assuming

multi-signatures). These lower bounds on communication were first

matched by Berman et al. [5] who showed a synchronous protocol

with 𝑂 (𝑛2) communication and 𝑓 < 𝑛/3. Recently, Momose and

Ren [26] extended it to protocols with𝑂 (^𝑛2) communication with

1) 𝑓 < 𝑛/2 assuming threshold signatures, or 2) 𝑓 ≤ (1/2 − Y)𝑛 for

any positive constant Y assuming digital signatures.

Circumventing the quadratic bound. There have been significant

efforts to circumvent the quadratic lower bound in several direc-

tions, all with pros and cons. Below, we highlight three main direc-

tions to compare with our approach.

One common direction is to achieve (worst-case or expected)

sub-quadratic communication through randomization. There are

several solutions for both (partial) synchrony [1, 19, 22] and asyn-

chrony [6, 9]. A common solution is to sample a random committee

of a small size to perform consensus within the committee and then

inform the rest of the nodes. However, due to the aforementioned

impossibility result [1], this approach is inherently vulnerable to

strongly adaptive adversaries, who can perform after-the-fact mes-

sage removal, i.e., rushingly corrupt nodes (e.g., nodes selected in

the committee) and erase messages already sent by the nodes before

reaching the recipients.

Another approach is to have an optimistic execution path that

costs sub-quadratic communication under good conditions such as

synchrony and no faults [16, 23, 25, 29, 31]. But they always have

another expensive path that costs quadratic communication in the

worst case. We note here HotStuff [33] can also be categorized into

this type of solution. More specifically, HotStuff can also solve a

synchronous multi-shot BB with amortized linear communication

in failure-free cases. However, we have to prepare a fallback path for

dishonest senders (not fully specified in [33]) due to the aforemen-

tioned message dissemination problem (Section 1). In Appendix A,

we explain why/how HotStuff fails to achieve liveness without a

fallback path.

Finally, extension protocols achieve optimal 𝑂 (𝐿𝑛) communica-

tion if input size 𝐿 is sufficiently large [14, 15, 27]. This is another

orthogonal approach to reduce the amortized communication cost

of multiple parallel instances of broadcast. Namely, we can batch

the inputs of multiple parallel instances together and solve them

once. However, in order to achieve optimal cost, the extension pro-

tocol needs to wait for inputs of sufficient size (e.g. 𝐿 = Ω(^𝑛) for
honest majority) and then batch the inputs to start the protocol,

which can introduce additional latency. Moreover, such a solution

does not support sequential causal inputs of broadcasts, which is

important in certain applications [4].

Byzantine atomic broadcast. With synchrony, multi-shot Byzan-

tine broadcast can directly solve Byzantine atomic broadcast [10, 30]
that commits values at increasing slots (not vice versa, as an atomic

broadcast does not have clear boundaries). State-of-the-art syn-

chronous Byzantine atomic broadcast protocols [2] cost quadratic

communication per decision. Our protocol also solves Byzantine

atomic broadcast with linear communication complexity.

Trust graph in Byzantine broadcast/agreement. There have been
several works that use trust graphs. Liang and Vaidya [24] use a

trust graph to design an extension protocol for the Byzantine agree-

ment with 𝑓 < 𝑛/3. The amortized cost of their protocol is Ω(𝑛4).
Recently, Wan et al. [32] improved the expected round complexity

of single-shot Byzantine broadcast using a trust graph. Their key

observation is that, if properly maintained, the diameter of the trust

graph at any honest node can be constant. Although orthogonal in
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Protocol

Network

Model

Fault

Tolerance

Total Cost

(𝐿 decisions)

Amortized

Cost

Cryptographic

Primitives

Berman et al. [5] synchrony 𝑓 < 𝑛/3 𝑂 (𝑛2𝐿) 𝑂 (𝑛2) None

Momose-Ren [26] synchrony 𝑓 < 𝑛/2 𝑂 (^𝑛2𝐿) 𝑂 (^𝑛2) threshold sig.

Momose-Ren [26] synchrony 𝑓 ≤ (1/2 − 𝜖)𝑛 𝑂 (^𝑛2𝐿) 𝑂 (^𝑛2) signature

This work synchrony 𝑓 ≤ (1/2 − 𝜖)𝑛 𝑂 (^𝑛𝐿 + ^𝑛3) 𝑂 (^𝑛) threshold sig.

Dolev-Strong [13] synchrony 𝑓 < 𝑛 𝑂 ((^𝑛2 + 𝑛3)𝐿) 𝑂 (^𝑛2 + 𝑛3) multi-sig *

This work synchrony 𝑓 < 𝑛 𝑂 (^𝑛2𝐿 + ^𝑛4) 𝑂 (^𝑛2) signature

Table 1: Comparison with existing solutions for multi-shot BB with constant-sized inputs under strongly adaptive adversaries.
The original Dolev-Strong broadcast uses signature and has cost 𝑂 (^𝑛3).

goal, their protocol inspired us to use the trust graph for keeping

track of misbehaviors across different instances. Beside expected

round complexity, Ghinea et al. [18] showed that corruption detec-

tion mechanism can also reduce the worst-case round complexity

and the failure probability.

Amortized communication in MPC. As a separate track of re-

search, amortizing communication in multi-party communication

has been studied [3, 11, 21]. They achieve linear communication

(amortized over multiple gates) by detecting corrupt nodes and

eliminating them from the execution. The underlying BA costs

quadratic communication per instance.

3 PRELIMINARY
Model and assumptions. We consider a system of 𝑛 nodes (num-

bered 1 to 𝑛) in the lock-step synchronous model; all nodes have

synchronous clocks that start at the same time from round 𝑟 = 0

and increase at the same speed, and any message sent by an honest

node in round 𝑟 will be delivered to the recipient by the beginning

of round 𝑟 + 1. We assume 𝑓 out of 𝑛 nodes are corrupt (Byzantine)

and behave arbitrarily. We assume adaptive corruption, i.e., corrup-
tion happens anytime during the execution. We also assume the

adversary is strongly adaptive [1] who can perform after-the-fact
message removal, i.e., an adversary can decide the newly corrupted

nodes in round 𝑟 after seeing the messages sent by nodes in round

𝑟 and erase the messages. Any node that remains non-faulty during

the entire execution is referred to as honest.
We assume a digital signature scheme with a public-key infras-

tructure (PKI). A message𝑚 signed by node 𝑖 is denoted ⟨𝑚⟩𝑖 . Our
protocol in Section 4 assumes a threshold signature scheme [7].

In a (𝑡, 𝑛)-threshold signature scheme, each node 𝑖 can generate a

signature share ⟨𝑚⟩𝑖 on a message𝑚. A set of 𝑡 distinct signature

shares {⟨𝑚⟩𝑗1 , .., ⟨𝑚⟩𝑗𝑡 } on the same message𝑚 can be combined

into a full signature thsig(𝑚), which has the same length as a sin-

gle signature share ⟨𝑚⟩∗. An adversary cannot generate the full

signature thsig(𝑚) from less than 𝑡 signature shares. The threshold

signature scheme can be set up either through a trusted dealer, or

distributed key generation [20]. Our protocol uses the threshold

𝑡 = 𝑛 − 𝑓 .

Problem definition. We are interested in the problem ofmulti-shot
Byzantine broadcast, which consists of a sequence of single-shot

Byzantine broadcasts [13]. We first review the definition of the

single-shot BB.

Definition 1 (Byzantine Broadcast (BB)). A Byzantine broad-
cast protocol for a set of 𝑛 nodes with a designated sender with input
value 𝑣 invoking bc(𝑣), must satisfy the following properties.
• Consistency. If two honest nodes commit values 𝑣 and 𝑣 ′ respectively,
then 𝑣 = 𝑣 ′.
• Termination. All honest nodes commit and terminate.
• Validity. If the designated sender is honest and invokes bc(𝑣), then
all honest nodes commit 𝑣 and terminate.

We now define multi-shot Byzantine braodcast below, which
repeatedly invokes single-shot BB.

Definition 2 (Multi-shot Byzantine Broadcast). A multi-
shot Byzantine broadcast protocol for a set of 𝑛 nodes with a (possibly
different) designated sender 𝑆𝑖 for each slot 𝑖 > 0 with input value 𝑣
invoking bc𝑖 (𝑣), must satisfy the following properties.
• Consistency. If two honest nodes commit values 𝑣 and 𝑣 ′ respectively
at the same slot, then 𝑣 = 𝑣 ′.
• Termination. All honest nodes eventually commit a value at any
slot.
• Validity. If the designated sender of slot 𝑖 is honest and invokes
bc𝑖 (𝑣), then all honest nodes commit 𝑣 at slot 𝑖 .
• Sequentiality. For any slot 𝑖 , the sender 𝑆𝑖 is allowed to invoke bc𝑖
after bc𝑗 is committed at all honest nodes for all slots 𝑗 < 𝑖 .

Note that the multi-shot BB has clear boundaries between each

slot due to the sequentiality. In contrast to atomic broadcast [10], it

supports causal inputs. Namely, the sender of each slot can decide

its input depending on the previous decisions. As mentioned, using

extension protocols with batching cannot solve the problem with

linear cost, since 𝑂 (𝑛) many slots’ senders must input in parallel.

Metrics. First of all, communication complexity is measured as

the bit amount sent by honest nodes. In this paper, we are interested

in the amortized communication complexity of multi-shot Byzantine

broadcast, defined as follows.

Definition 3 (Amortized Communication Complexity). Let
𝐶 (𝐿, 𝑛, 𝑓 ) be the communication complexity of a multi-shot Byzantine
broadcast protocol for 𝑛 nodes with 𝑓 faults to commit 𝐿 slots. The
amortized communication complexity of the protocol is defined to be
lim𝐿→∞

𝐶 (𝐿,𝑛,𝑓 )
𝐿

.

For example, a multi-shot BB protocol that naively runs multiple

instances of single-shot BB of cost 𝐶𝐵𝐵 , will have an amortized

communication cost of 𝐶𝐵𝐵 . Since the current state-of-the-art BB
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protocol for the honest majority is the Momose-Ren Byzantine

broadcast of cost 𝑂 (^𝑛2), such a naive approach only gives us

an amortized 𝑂 (^𝑛2) protocol, which has an 𝑂 (𝑛) gap from the

optimal.

Expander graph. Our protocol in Section 4 uses an expander

(inspired by [26]), which is a graph with sparse edges but overall

good connectivity. More formally, an (𝑛, 𝛼, 𝛽)-expander (0 < 𝛼 <

𝛽 < 1) is a graph of 𝑛 vertices s.t. for any set 𝑆 of 𝛼𝑛 vertices, the

number of neighbors of 𝑆 is more than 𝛽𝑛. It is well-known that for

any 𝑛 and any constants 𝛼, 𝛽 such that 0 < 𝛼 < 𝛽 < 1, an expander

with constant degree exists [26].

4 AMORTIZED LINEAR COMMUNICATION
UNDER HONEST MAJORITY

This section shows how to achieve𝑂 (^𝑛) amortized communication

complexity with 𝑓 ≤ (1/2 − Y)𝑛 for any positive constant Y.

Our protocol is described in Algorithm 4. At a high level, our

multi-shot BB protocol consists of multiple slots, where each slot

implements a single-shot BB. Each slot progresses through many

epochs, with each epoch having a unique leader. A leader proposes

a value, other nodes vote for it, and nodes commit it after collecting

enough votes. Before explaining the detail, we first define some

notions and notations used in our protocol.

Definition and notations. For each slot 𝑘 ≥ 1, we have 𝑓 + 2
epochs 0 ≤ 𝑖 ≤ 𝑓 + 1 each takes 11 rounds. So epoch 𝑖 of slot 𝑘

starts in round 𝑡 = 11((𝑘 − 1) (𝑓 + 2) + 𝑖). The leader 𝐿0 of the first
epoch 𝑖 = 0 is the sender 𝑆𝑘 , and the leader 𝐿𝑖 of epoch 1 ≤ 𝑖 ≤ 𝑓 +1
is node 𝑖 .

To reduce message size, we use a threshold signature scheme

to combine a set of votes into a certificate. A certificate for a value

𝑚 in epoch 𝑖 of slot 𝑘 , denoted C𝑘,𝑖 (𝑚), is thsig(vote, 𝑘, 𝑖,𝑚) of an
(𝑛 − 𝑓 , 𝑛)-threshold signature scheme, i.e., aggregated votes from

a quorum of 𝑛 − 𝑓 nodes. For a technical reason, we also consider

⊥ as a certificate for any slot 𝑘 and value𝑚. We define freshness
of certificates of the same slot by epoch: the higher the epoch, the

fresher the certificate (e.g., C𝑘,1 (𝑚) is fresher than C𝑘,0). Also, any
certificate is fresher than ⊥.

We say a leader 𝐿𝑖 equivocates, if there are two different proposals
in the same epoch and slot, i.e., ⟨prop, 𝑘, 𝑖,𝑚, C⟩𝐿𝑖 and ⟨prop, 𝑘, 𝑖,𝑚′,
C⟩𝐿𝑖 for𝑚 ≠𝑚′.

Common path. We now explain the protocol in more detail. The

first 7 rounds of each epoch perform the propose-then-vote oper-

ation. The leader proposes a value𝑚 (round Propose), and other

nodes vote for it twice. They first vote for the value𝑚 (round Vote),

then vote for the certificate C𝑘,𝑖 (𝑚) (round Propagate-2). Nodes

commit𝑚 after receiving a commit-proof thsig(C𝑘,𝑖 (𝑚)). To make

the cost linear, we use two known techniques.

First, we use the leader as a "message hub" [33]. Namely, nodes

send signed votes (threshold signature shares) only to the leader,

and the leader, after collecting a quorum of 𝑛 − 𝑓 votes, aggregates

them into a ^-size certificate (or a commit-proof) and sends it to

nodes. This allows nodes to make progress with linear costs under

an honest leader.

Second, we use an expander graph to prevent the formation of

certificates on two different values (which would lead to disagree-

ment) [26]. More specifically, we use an (𝑛, 2Y, 1 − 2Y)-expander
with each vertex representing each node. Each node, after receiving

a proposal from the leader, sends it to its neighbors in the expander

(round Propagate-1) before voting. If a certificate C𝑖,𝑘 (𝑚) exists,
𝑛 − 𝑓 ≥ 𝑓 + 2Y𝑛 nodes, out of which at least 2Y𝑛 honest nodes,

must have sent the proposal of𝑚 to their neighbors. The expansion

property implies more than (1 − 2Y)𝑛 ≥ 2𝑓 nodes, out of which

at least 𝑓 + 1 are honest, would receive the proposal. They would

never vote for𝑚′ ≠𝑚, so C𝑖,𝑘 (𝑚′) cannot exist.

Achieving liveness with dishonest leaders. So far, we have ex-

plained how to commit safely with linear communication when the

leader is honest. But if the leader is dishonest, a commit-proof may

not be formed. In that case, to ensure liveness, nodes accuse the

leader by sending accuse messages to all nodes (round Query-1). If

the leader is completely silent, at least 𝑛− 𝑓 nodes accuse the leader

which forms a corrupt-proof of the leader. The corrupt proof will

be forwarded to everybody (after aggregation), and honest nodes

will simply ignore this leader ever after. But the situation will be

more complex if the dishonest leader sends messages selectively.

Some nodes may receive the commit-proof, but somemay not. Since

not everybody accuses the leader, we do not have a corrupt-proof;

but not everybody receives a commit-proof, either. The last four

rounds (rounds 8–11) resolve this issue. Roughly, we try to dissemi-

nate the commit-proof in two steps. First, the node 𝑢 missing the

commit-proof queries one node 𝑣 selected deterministically (round

Query-1), who responds with the commit-proof (round Repond-1).

If 𝑣 does not help, then node 𝑢 accuses 𝑣 and queries all nodes,

some of whom have a commit-proof (round Query-2, Respond-2).

The high-level idea is, though quadratic communication may be in-

curred in this latter query-all step, the number of such occurrences

is bounded. An honest node 𝑢 selects its helper from nodes that it

has not accused (Query-1). So each honest node will eventually find

an honest helper, after which they can receive a commit-proof from

the helper alone. A dishonest node 𝑢 may try to keep invoking the

query-all step. But honest nodes respond only when 𝑢 accuses a

new node (Respond-2). Thus, the dishonest node 𝑢 will eventually

run out of new nodes to accuse, after which honest nodes will no

longer respond to 𝑢.

4.1 Proof of Correctness
We first show that the protocol satisfies consistency using the fol-

lowing two lemmas. Lemma 1 implies that nodes cannot commit

different messages within the same epoch. Lemma 2 implies that

nodes cannot commit differently even across different epochs.

Lemma 1. If certificates C𝑘,𝑖 (𝑚) and C𝑘,𝑖 (𝑚′) both exist, then
𝑚 =𝑚′.

Proof. Suppose C𝑘,𝑖 (𝑚) exists, then at least 𝑛 − 𝑓 ≥ 𝑓 + 2Y𝑛
must have sent ⟨vote, 𝑘, 𝑖,𝑚⟩∗, out of which at least 2Y𝑛 honest

nodes must have forwarded the leader’s proposal to the neighbors

in the expander graph (in round Propagate-1). Due to the expansion

property, more than (1 − 2Y)𝑛 ≥ 2𝑓 nodes, out of which at least

𝑓 + 1 honest nodes would receive the proposal, who would never

vote for𝑚′ ≠𝑚. Thus, C𝑘,𝑖 (𝑚′) cannot exist. □
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Algorithm 4: Linear communication multi-shot BB

Each epoch 0 ≤ 𝑖 ≤ 𝑓 + 1 of slot 𝑘 ≥ 1 takes 11 rounds. Let 𝐿𝑖 be the leader of epoch 𝑖 , and 𝐺Y be an (𝑛, 2Y, 1 − 2Y)-expander that is
known to all nodes. Each node 𝑢 runs the following steps if it has neither 1) committed in slot 𝑘 , nor 2) received the corrupt-proof

thsig(accuse, 𝐿𝑖 ).
// Leader proposes a value

(1) Collect: Send the freshest slot-𝑘 certificate to 𝐿𝑖 .

(2) Propose: If 𝑢 = 𝐿𝑖 , multicast ⟨prop, 𝑘, 𝑖,𝑚, C⟩𝐿𝑖 where:
(a) If 𝑢 has received a slot-𝑘 certificates (≠ ⊥), then C is the freshest C𝑘,𝑗 (𝑚) among those ever received.

(b) Otherwise, C = ⊥, and𝑚 ← bc𝑘 (if 𝑖 = 0) or an arbitrary value (if 𝑖 > 0).

// Vote for a leader’s value

(3) Propagate-1: If 𝑢 receives a proposal ⟨prop, 𝑘, 𝑖,𝑚, C𝑘,𝑗 (𝑚)⟩𝐿𝑖 s.t. C𝑘,𝑗 (𝑚) is a certificate as fresh as what 𝑢 sent to 𝐿𝑖 during

Collect, then send the proposal to its neighbors in the expander 𝐺Y .

(4) Vote: If 𝑢 has detected equivocation of 𝐿𝑖 , 𝑢 multicast ⟨accuse, 𝐿𝑖 ⟩𝑢 (if not yet sent). Else if 𝑢 has sent 𝐿𝑖 ’s proposal on𝑚 in

Propagate-1, send ⟨vote, 𝑘, 𝑖,𝑚⟩𝑢 to 𝐿𝑖

// Vote for a certificate

(5) Certificate: If𝑢 = 𝐿𝑖 and it receives 𝑛− 𝑓 ⟨vote, 𝑘, 𝑖,𝑚⟩∗, aggregate them to generate C𝑘,𝑖 (𝑚) ← thsig(vote, 𝑘, 𝑖,𝑚) and multicast

it.

(6) Propagate-2: If 𝑢 receives C𝑘,𝑖 (𝑚), send it to its neighbors in 𝐺Y , and send ⟨C𝑘,𝑖 (𝑚)⟩𝑢 to the leader 𝐿𝑖 .

(7) Commit: If 𝑢 = 𝐿𝑖 and it receives 𝑛 − 𝑓 ⟨C𝑘,𝑖 (𝑚)⟩∗, aggregate them to generate a commit-proof thsig(C𝑘,𝑖 (𝑚)) and multicast it.

// Disseminate a commit-proof

(8) Query-1: If 𝑢 has not received any commit-proof of epoch 𝑖 , multicast ⟨accuse, 𝐿𝑖 ⟩𝑢 (if not yet sent), and send ⟨query
1
, 𝑘, 𝑖⟩𝑢 to

the smallest node 𝑣 s.t. 1) 𝑢 has not accused 𝑣 and 2) 𝑣 has not accused 𝐿𝑖 .

(9) Respond-1: If 𝑢 has received ⟨query
1
, 𝑘, 𝑖⟩𝑣 and it has a commit-proof thsig(C𝑘,𝑖 (𝑚)), send thsig(C𝑘,𝑖 (𝑚)) to 𝑣 if 1) 𝑣 has

accused 𝐿𝑖 and 2) 𝑢 is the smallest node 𝑣 has not accused.

(10) Query-2: If 𝑢 sent a query
1
message to node 𝑣 in Query-1 and has not received a commit-proof from 𝑣 , then multicast

⟨accuse, 𝑣⟩𝑢 and ⟨query
2
, 𝑘, 𝑖⟩𝑢 .

(11) Respond-2: If 𝑢 has received ⟨accuse,𝑤⟩𝑣 and ⟨query2, 𝑘, 𝑖⟩𝑣 and it has a commit-proof thsig(C𝑘,𝑖 (𝑚)), send thsig(C𝑘,𝑖 (𝑚)) to
𝑣 , if this is the first time 𝑢 receives ⟨accuse,𝑤⟩𝑣 .

At any point of the protocol:

(★) Upon receiving a commit-proof thsig(C𝑘,𝑗 (𝑚)), commit𝑚 at slot 𝑘 .

(★) Upon receiving ⟨accuse, 𝑣⟩𝑤 , forward it to the accused node 𝑣 .

(★) Upon receiving 𝑛 − 𝑓 ⟨accuse, 𝑣⟩∗ for any 𝑣 , aggregate them into a corrupt-proof thsig(accuse, 𝑣) and multicast it.

(★) Upon receiving a commit-proof thsig(C𝑘,𝑗 (𝑚)) for any 𝑗 , if 𝑢 has received 𝑛 − 𝑓 ⟨accuse, 𝐿𝑗 ⟩∗, then multicast the commit-proof.

Lemma 2. If there exists a commit-proof thsig(C𝑘,𝑖 (𝑚)), then for
all epochs 𝑗 > 𝑖 , there cannot exist a certificate C𝑘,𝑗 (𝑚′) on𝑚′ ≠𝑚.

Proof. The commit-proof requires a quorum of 𝑛 − 𝑓 nodes’

signatures on C𝑘,𝑖 (𝑚). Therefore, at least 𝑛 − 2𝑓 ≥ 2Y𝑛 honest

nodes must have received C𝑘,𝑖 (𝑚) in epoch 𝑖 of slot 𝑘 . After they

propagate it in round Propagate-2, more than (1− 2Y)𝑛 ≥ 2𝑓 nodes

(out of which at least 𝑓 + 1 are honest) must have received C𝑘,𝑖 (𝑚).
The 𝑓 + 1 honest nodes will send C𝑘,𝑖 (𝑚) to the next leader 𝐿𝑖+1
during Leader setup, so they will never vote for a proposal in the

epoch 𝑖 + 1 unless it contains an epoch 𝑖 certificate. As a certificate

C𝑘,𝑖 (𝑚′) cannot exist for𝑚′ ≠𝑚 (by Lemma 1), they will never vote

for𝑚′ in epoch 𝑖+1 of slot𝑘 , which implies C𝑘,𝑖+1 (𝑚′) cannot exists.
Inductively, for any 𝑗 > 𝑖 , a certificate C𝑘,𝑗 (𝑚′) cannot exist. □

With the above lemmas, we can now show that our protocol

satisfies consistency.

Theorem 1. The protocol satisfies consistency. If any two honest
nodes 𝑢 and 𝑣 commit𝑚𝑢 and𝑚𝑣 respectively at the slot 𝑘 , it must
be that𝑚𝑢 =𝑚𝑣

Proof. An honest node outputs if it has observed a commit-

proof. Suppose 𝑢 observes a commit-proof on𝑚𝑢 of epoch 𝑖 and 𝑣

observes a commit-proof on𝑚𝑣 of epoch 𝑗 . We can assume w.l.o.g.

that 𝑖 ≤ 𝑗 .

• If 𝑖 = 𝑗 , by Lemma 1, there cannot exist commit-proof on different

messages in epoch 𝑖 . Therefore,𝑚𝑢 =𝑚𝑣 .

• If 𝑖 < 𝑗 , by Lemma 2, if a commit-proof on𝑚𝑢 exists in epoch

𝑖 , then any future commit-proof must also be on𝑚𝑢 . Therefore,

𝑚𝑢 =𝑚𝑣 .

This completes our consistency proof. □

Finally, to prove the remaining properties, we prove the following

lemma that shows an honest leader’s epoch is always successful.

Lemma 3. If the leader 𝐿𝑖 is honest, all honest nodes commit by
the end of epoch 𝑖 in each slot.

Proof. Consider slot 𝑘 = 1. In epochs before 𝑖 , since 𝐿𝑖 is not

the leader, the only case where 𝐿𝑖 gets accused by an honest node 𝑢

is when 𝑢 has sent query
1
to 𝐿𝑖 but it has not sent back a commit-

proof to 𝑢 during round Respond-1. However, if 𝐿𝑖 does not have
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a commit-proof to send back to 𝑢, then 𝐿𝑖 must have also accused

the epoch’s leader, and 𝑢 would not have sent query
1
to 𝐿𝑖 . So,

honest nodes do not accuse 𝐿𝑖 before epoch 𝑖 . Now, in epoch 𝑖 , since

𝑛 − 𝑓 accusations cannot exist for 𝐿𝑖 , all honest nodes (of at least

𝑛− 𝑓 ) vote for the leader’s proposal (the leader’s proposal is always
accepted by honest nodes since it contains the freshest certificate

among those honest nodes sent during the round Collect, forming

a certificate and then a commit-proof. So honest nodes commit and

do not accuse 𝐿𝑖 . Therefore, in the next slot (and inductively in all

later slots), all honest nodes commit by the end of epoch 𝑖 without

being accused by honest nodes. □

The lemma above trivially implies validity as the first leader 𝐿0
is the sender. Also, since we have at most 𝑓 dishonest leaders, we

will have an honest leader by epoch 𝑓 + 1. So, by the end of each

slot, all honest nodes commit a value for the slot. This implies our

protocol satisfies termination and sequentiality.

4.2 Communication Complexity
Let us first consider the cost of expensive slots: a slot with more

than one epoch with non-zero communication. In an expensive slot,

the leaders of all epochs except the last one must be accused by all

honest nodes, forming the corrupt-proofs (i.e., 𝑛 − 𝑓 accusations)

for these leaders; Otherwise, at least an honest node who does not

accuse the leader must have received a commit-proof before round

Query-1 which is forwarded to all honest nodes (in either round

Respond-1 or 2) and all honest nodes would stop sending messages

in all later epochs. So, the number of epochs across all expensive

slots is 𝑂 (𝑛), and the total cost across all expensive slots is 𝑂 (^𝑛3)
as each epoch costs at most 𝑂 (^𝑛2) communication.

Next, for non-expensive slots (i.e., with only one epoch), we con-

sider expensive epochs: an epoch with super-linear communication.

Obviously, the first 7 rounds cost 𝑂 (^𝑛) per epoch. The cost of

forwarding a commit-proof will be super-linear communication

only when a corrupt-proof is formed; such epochs exist at most

𝑓 times, hence totally costs 𝑂 (^𝑛3) across all expensive epochs.

Finally, the cost of round 8–11 is analyzed below:

(1) Query-1: Each honest node sends only one message; per-

epoch cost is linear.

(2) Respond-1: Each honest node can receive a response from

one node, which costs linear per epoch. Suppose in an epoch,

multiple honest nodes 𝑅 respond to a malicious node 𝑣 . In

this case, 𝑣 has accused all nodes in 𝑅 except the highest

one, which are forwarded to the accused nodes, who will

stop responding in all later epochs/slots. Therefore, for each

malicious node 𝑣 , there are at most 𝑛 epochs s.t. multiple

honest nodes respond to 𝑣 ; totally costs 𝑂 (^𝑛3) across all
expensive epochs.

(3) Query-2: Each honest node sends query
2
when it accuses

a new node (i.e., the helper), which can happen at most 𝑓

times; totally costs 𝑂 (^𝑛3) across all expensive epochs.
(4) Respond-2: An honest node 𝑢 responds to a node 𝑣 only if

𝑣 accuses a new node, which can happen at most 𝑛 times;

totally costs 𝑂 (^𝑛3) across all expensive epochs.

To sum up, the total cost is 𝑂 (^𝑛𝐿 + ^𝑛3) for 𝐿 slots.

5 AMORTIZED QUADRATIC
COMMUNICATION UNDER DISHONEST
MAJORITY

In this section, we generalize the idea used in Section 4 to show

how to achieve amortized 𝑂 (^𝑛2) communication complexity for

the dishonest majority case, i.e., 𝑓 < 𝑛.

Overview. The state-of-the-art for the dishonest majority case in

terms of communication complexity is the Dolev-Strong protocol,

which costs cubic communication (𝑂 (^𝑛2+𝑛3) withmulti-signature

or 𝑂 (^𝑛3) with signature). Our first natural idea is, instead of di-

rectly agreeing on the sender’s value, we use the Dolev-Strong

protocol to agree on the sender’s dishonesty when the sender mis-

behaves. Every time we call the Dolev-Strong protocol, at least one

node will be proved corrupt and removed from the protocol. This

way, the Dolev-Strong protocol is called at most 𝑓 + 1 times across

all instances.

Now, to agree on a dishonest sender, we have to provably detect

the sender’s misbehavior. For the honest majority case, more than 𝑓

accusations from honest nodes work as a corrupt-proof. But it does

not work directly for the dishonest majority case. We instead utilize

the TrustCast protocol introduced byWan et al. [32]. Looking ahead,

our technique used in Section 4 can also be explained generally in

the same context. Before describing our protocol, we briefly review

the TrustCast protocol and what they provide below.

5.1 TrustCast
We describe a simplified TrustCast protocol [32] in Algorithm 5.1

(as our protocol does not require the constant-size diameter prop-

erty of the trust graph as in [32]). It allows a designated sender to

multicast a message while allowing other nodes to provably detect

the sender’s misbehavior when they do not receive the message

from the sender. Nodes detect a dishonest sender by carefully ob-

serving trust relationships between nodes. More specifically, each

node locally maintains a trust graph, a graph of𝑛 vertices with edges
representing the trust relationships between nodes. The edges are

updated based on nodes’ accusations, and a dishonest sender is

detected when it is removed from the graph, i.e., losing trust by

everybody.

Suppose𝐺𝑢 is a complete graph (i.e., every pair of vertices has an

edge), and 𝑇 ≥ 𝑛. The protocol provides the following guarantees.

(1) Transferability. For any honest nodes 𝑢, 𝑣 and any round 𝑡 ,

𝐺𝑢 in round 𝑡 + 1 is a subgraph of 𝐺𝑣 in round 𝑡 .

(2) Termination. By the beginning of round 𝑛, any honest node

𝑢 either receives a sender’s message or removes the sender

from 𝐺𝑢 .

(3) Integrity. For any honest nodes 𝑢, 𝑣 , honest nodes never re-

move the edge between 𝑢 and 𝑣 from their trust graphs.

First of all, transferability is obvious since honest nodes forward

all accusations received. Second, if any honest node 𝑢 has not re-

ceived any ⟨prop, ∗, 𝑘⟩𝑆 at the beginning of round 𝑡 , 𝑢 accuses any

node with a distance of less than 𝑡 from 𝑆 in round 𝑡 . So𝑢’s distance

from 𝑆 at the beginning of round 𝑡 + 1 should be at least 𝑡 + 1. By
induction, we can show that honest nodes never accuse each other

(integrity). Finally, termination holds since the diameter of the trust
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Algorithm 5.1: TrustCast(𝐺𝑢 ,𝑇 , 𝑘).
Inputs: 𝐺𝑢 is an undirected graph of numbered 𝑛 vertices, 𝑇

and 𝑘 are integers representing the length of the protocol and

the slot number, respectively.

In round 0, the sender 𝑆 who has a message 𝑚 multicasts

⟨prop,𝑚, 𝑘⟩𝑆 . Each node 𝑢 runs all of the following steps in

each round 1 ≤ 𝑡 ≤ 𝑇 .
• If 𝑢 receives ⟨prop,𝑚, 𝑘⟩𝑆 for the first time, multicast it.

• If 𝑢 receives ⟨accuse, 𝑣⟩𝑤 for any two vertices 𝑣,𝑤 ∈ 𝐺𝑢 ,

remove the edge (𝑣,𝑤) from𝐺𝑢 , and multicast ⟨accuse, 𝑣⟩𝑤
(if not yet sent).

• If 𝑢 has not received any ⟨prop, ∗, 𝑘⟩𝑆 , then for any vertex

𝑣 ∈ 𝐺𝑢 s.t. the distance between 𝑣 and 𝑆 is less than 𝑡 , multi-

casts ⟨accuse, 𝑣⟩𝑢 (if not yet sent).

• Remove all vertices in 𝐺𝑢 unconnected with vertex 𝑢 (i.e.,

nodes with no direct/indirect path from 𝑢).

• If 𝑢 receives ⟨prop,𝑚, 𝑘⟩𝑆 and ⟨prop,𝑚′, 𝑘⟩𝑆 for 𝑚 ≠ 𝑚′,
then multicast them, and remove 𝑆 from 𝐺𝑢 .

graph is at most 𝑛 − 1 ∗
(by definition). If an honest node does not

receive the sender’s message by the beginning of round 𝑛, then

the node’s distance from 𝑆 should be at least 𝑛, which means 𝑆 is

unconnected.

Communication complexity: For 𝐿 instances of TrustCast with
each node maintaining the trust graph across instances, the total

communication cost is 𝑂 (^𝑛2𝐿 + ^𝑛4). In each instance, an honest

node multicasts the sender’s messages at most twice which costs

𝑂 (^𝑛2). The cost of maintaining the trust graph is bounded by

𝑂 (^𝑛4) across all instances, since for each edge in the trust graph,

honest nodes multicast the accuse message at most once.

Our technique in Section 4. Interestingly, the technique we used
for Algorithm 4 can be explained generally in the context of the

TrustCast operation above. Recall that in Algorithm 4, a node 𝑢

accuses its helper node 𝑣 if 𝑣 does not respond with a commit-proof.

The rationale was since 𝑣 has not accused the leader, it must have

received a commit-proof from the leader. This is exactly what a node

does in round 𝑡 = 2 in TrustCast. Since a node 𝑣 who has a distance

1 < 𝑡 from the sender must have received the message in round

1, if 𝑢 has not received the sender’s message (which means 𝑣 has

not forwarded the sender’s message), 𝑢 knows 𝑣 is malicious and

accuses 𝑣 . Essentially the TrustCast does this operation repeatedly

and inductively.

5.2 Our Protocol
Our protocol is described in Algorithm 5.2. It consists of two phases:

1) the TrustCast protocol to receive the sender’s message or create

a corrupt-proof when the sender is silent, and 2) the Dolev-Strong

style protocol to agree on whether the sender is dishonest, which

helps decide whether the sender’s message (if received) is commit-

ted. Note that each node uses the same trust graph across all slots.

So communication to maintain the trust graph and detect malicious

senders is bounded and amortized over all slots. Likewise, each

∗
The diameter of the trust graph is actually more tightly bounded [32], but we

use a loose bound since it is sufficient for our result and makes the protocol simpler.

Algorithm 5.2: Quadratic communication multi-shot BB

Let 𝐺𝑢 be an undirected complete graph of numbered 𝑛 ver-

tices. Each slot 𝑘 ≥ 1 takes𝑇 = 𝑛 + 𝑓 + 3 rounds. Each node 𝑢

runs the following steps.

TrustCast. In round 0, start invoking TrustCast(𝐺𝑢 , 𝑛, 𝑘)
where 𝑆𝑘 works as the sender 𝑆 in the TrustCast. Let𝑚 be a

value received from 𝑆𝑘 (through ⟨prop,𝑚, 𝑘⟩𝑆𝑘 ) by the begin-

ning of round 𝑛.

Dolev-Strong. In each round 𝑛 + 1 ≤ 𝑡 ≤ 𝑛 + 𝑓 + 2 run the

following. Let 𝜏 = 𝑡 − (𝑛 + 1), i.e., rounds after starting this

phase.

• 𝜏 = 0: if 𝑆𝑘 is not in 𝐺𝑢 , then multicast ⟨corrupt, 𝑆𝑘 ⟩𝑢 (if

not sent before).

• 1 ≤ 𝜏 ≤ 𝑓 + 1: If 𝑢 has received ⟨corrupt, 𝑆𝑘 ⟩∗ signed by at

least 𝜏 distinct nodes and 𝑆𝑘 is not in 𝐺𝑢 , then multicast

them (those not sent before) and ⟨corrupt, 𝑆𝑘 ⟩𝑢 (if not sent

before).

Finally, in round 𝑡 = 𝑛 + 𝑓 + 2, if 𝑢 has not sent ⟨corrupt, 𝑆𝑘 ⟩𝑢 ,
then commit𝑚 for slot 𝑘 . Otherwise, commit ⊥. Note that
each ⟨corrupt, 𝑣⟩𝑤 message is shared among all slots and

sent/forwarded only once.

⟨corrupt, 𝑣⟩𝑤 message in the Dolev-Strong phase is shared among

all slots and is sent/forwarded only once. So communication in the

Dolev-Strong phase is also amortized over all slots.

5.3 Proof of Correctness
We prove the correctness of Algorithm 5.2. Termination and sequen-

tiality are obvious. Below, we say a node 𝑢 votes for the corruption
of 𝑆𝑘 if 𝑢 send ⟨corrupt, 𝑆𝑘 ⟩𝑢 .

Lemma 4 (Validity). If the sender 𝑆𝑘 is honest, then all honest
nodes commit the sender’s message at slot 𝑘 .

Proof. Due to the integrity of TrustCast, an honest sender never

gets removed from any honest node’s trust graph. So honest nodes

never vote for the corruption of an honest sender. Thus, all honest

nodes always commit the honest sender’s message. □

Lemma 5 (Consistency). If two honest users 𝑢 and 𝑣 commit𝑚𝑢

and𝑚𝑣 respectively at slot 𝑘 , then𝑚𝑢 =𝑚𝑣 .

Proof. We first show that if an honest node 𝑢 votes for the

corruption of 𝑆𝑘 , then any honest node 𝑣 also votes for it.

Suppose 𝑢 sends ⟨corrupt, 𝑆𝑘 ⟩𝑢 before the last round (i.e., 𝜏 <

𝑓 + 1), then 𝑣 receives it by the beginning of round 𝜏 + 1. The node 𝑢
must have removed 𝑆𝑘 from𝐺𝑢 in round 𝜏 . Due to the transferability
of TrustCast, 𝑣 removes 𝑆𝑘 from 𝐺𝑣 in round 𝜏 + 1. Also, 𝑢 must

have forwarded the corrupt messages from at least 𝜏 nodes, so 𝑣

receives the corrupt messages from 𝜏 + 1 distinct nodes by round

𝜏 + 1. Thus, 𝑢 also votes for the corruption of the 𝑆𝑘 .

Suppose 𝑢 sends ⟨corrupt, 𝑆𝑘 ⟩𝑢 at the last round (i.e., 𝜏 = 𝑓 + 1).
Then 𝑢 must have received the corruptmessages from 𝑓 +1 distinct
nodes, at least one of them must be from an honest node, who must

have sent it before the last round. The analysis above implies 𝑣

votes for the corruption of 𝑆𝑘 .
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Therefore, if an honest node commits ⊥, then all honest nodes

also commit ⊥.
Suppose an honest node𝑢 commits𝑚 ≠ ⊥, then honest nodes do

not commit𝑚′ ≠𝑚; otherwise, these two different prop messages

are forwarded to all honest nodes by the beginning of round 𝑛 +
1 (when the Dolev-Strong phase starts), which would lead to all

honest nodes voting for the sender’s corruption and 𝑢 would not

commit𝑚. Since none of the honest nodes could have voted for the

sender’s corruption, they must have received𝑚 by the termination
of TrustCast, hence they all commit𝑚. Therefore, all honest nodes

commit the same value at the same slot. □

5.4 Communication Complexity.
We analyze the communication complexity of Algorithm 5.2.

• In the TrustCast protocol, as analyzed in Section 5.1, an honest

node multicasts the sender’s messages at most twice. This adds

up to 𝑂 (^𝑛2) communication complexity per instance. Since we

use the same trust graph for all slots, the cost of maintaining the

trust graph is 𝑂 (^𝑛4) across all instances.
• In the proof of Lemma 5, we showed that if any honest node sent

a corrupt message during Dolev-Strong, then all honest nodes

would remove the sender from their trust graphs. Therefore,

there can be at most 𝑓 instances where any honest node sends

messages in the Dolev-Strong protocol. So the communication

complexity for the Dolev-Strong protocol is upper bounded by

𝑂 (^𝑛3 · 𝑓 ) across all instances.
To sum up, the total cost is 𝑂 (^𝑛2𝐿 + ^𝑛4) for 𝐿 slots.

6 CONCLUSION AND OPEN QUESTIONS
This paper studied amortized communication complexity of multi-

shot Byzantine broadcasts and presented protocols with linear com-

plexity for the honest majority and quadratic complexity for the

dishonest majority using a novel data dissemination and node ac-

cusation technique. We finalize the paper with two open questions.

First, our protocol for the dishonest majority is not known to be

optimal. It is an interesting question whether quadratic communica-

tion is necessary or linear complexity is possible under a dishonest

majority. Another question is whether we can also achieve the same

complexity under partial synchrony or asynchrony. Since nodes

can accuse honest senders in an asynchronous network, we need a

mechanism to refresh the trust information (e.g., the history of ac-

cusations) maintained, which is an interesting technical challenge.
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A COMMUNICATION COMPLEXITY OF
HOTSTUFF

HotStuff [33] is a partially synchronous atomic broadcast protocol

with 𝑓 < 𝑛/3. To briefly review, it progresses through repeated

views (epochs), with each view having a unique leader. In each

view, a leader proposes a value along with a certificate for the

previous decision. Upon receiving a leader’s proposal, nodes send

votes (threshold signature shares) for it to the leader, and the leader

collects 𝑛 − 𝑓 votes to generate a certificate and send it to all nodes.

After three rounds of voting, the leader sends a commit-proof (an

aggregated𝑛−𝑓 round-3 votes) to all nodes, and everybody commits

the value. We can also think of HotStuff as a synchronous multi-

shot Byzantine broadcast in failure-free cases. More specifically, if

we consider the leader of each view 𝑣 as a sender 𝑆𝑣 of slot 𝑣 , all

honest nodes commit a single value at every slot 𝑣 at the end of

view 𝑣 .

However, we point out HotStuff must have a fallback path (not

fully specified in [33]) to prepare for dishonest senders/leaders.

Otherwise, we can have a permanent liveness failure due to the

message dissemination problem mentioned in the technical chal-

lenge paragraph of Section 1. More specifically, a dishonest leader

may not send messages to at most 𝑓 honest nodes. The leader can

still create a certificate and a commit-proof by talking to the rest of

the nodes. The 𝑓 honest nodes left behind cannot commit values

at the slot. This work exactly addresses this liveness issue with

amortized linear communication.
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