
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Open Access Dissertations

9-2012

On the Analysis and Management of Cache Networks On the Analysis and Management of Cache Networks

Elisha Rosensweig
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

Rosensweig, Elisha, "On the Analysis and Management of Cache Networks" (2012). Open Access

Dissertations. 663.

https://scholarworks.umass.edu/open_access_dissertations/663

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It
has been accepted for inclusion in Open Access Dissertations by an authorized administrator of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/open_access_dissertations
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations/663?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ON THE ANALYSIS AND MANAGEMENT OF
CACHE NETWORKS

A Dissertation Presented

by

ELISHA J. ROSENSWEIG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2012

Computer Science

c© Copyright by Elisha J. Rosensweig 2012

All Rights Reserved

ON THE ANALYSIS AND MANAGEMENT OF
CACHE NETWORKS

A Dissertation Presented

by

ELISHA J. ROSENSWEIG

Approved as to style and content by:

Jim Kurose, Chair

Don Towsley, Member

David Jensen, Member

Lixin Gao, Member

Lori Clarke, Department Chair
Computer Science

To my wife,
the wind beneath my wings,

and to my parents,
an overflowing river from a live spring.

ACKNOWLEDGMENTS

The statement that this dissertation could never have come to be without the

support of many people requires no formal proof, though if one would try to construct

such a proof there would be ample evidence for it in all the avenues of my life. On

both the intellectual and personal planes, I would never have been able to produce

the work presented here if not for my biological and academic families standing by

my side from the very beginning.

I would like to thank my advisor, Prof. Jim Kurose, who was not only a teacher

and an advisor, but a true mentor to me. The mixture of constructive criticism and

encouragement to follow my instincts he bestowed upon me has truly molded my

research style. Especially, I would like to thank him for teaching me the importance

not only of good research, but also of good writing, and I hope that he sees in me a

successful product in both.

I owe a great deal as well to two other members of my committee, Prof. Don

Towsley and Prof. David Jensen. Each, in their own field, have taught me the

importance of asking the right questions and the right way, and to let the evidence

lead the way. Throughout these past few years, their doors and minds were always

open for discussion of research ideas I wished to share, which was a critical step on

the way to producing this document. I would also like to thank each of the members

of my committee for agreeing to serve on my committee. A special thanks in this

is due to Prof. Lixin Gao, who agreed to help me in this final step of reviewing my

dissertation despite our lack of previous acquaintance.

At this point I would also like to thank my Master’s Advisor, Prof. Hanoch Levy

from Tel-Aviv University, without whom I would never have made it this far. My

v

Master’s Thesis did not have an Acknowledgement section, and so he never got his

due. I hope this corrects that mistake, if belatedly.

Next, I would like to thank my labmates in the CNRG lab, who sat there through

my dry-runs and gave me comments, and who were there for brainstorming sessions

despite having plenty on their plate already. Thank you all, for making our lab a

place where nobody ever needed to feel alone. I would also like, at the same time, to

thank the amazing and caring staff of the UMass CS department, whose doors and

ears were always open and happy to help with any problem I had.

Moving on the the personal sphere, I would like to thank the wonderful community

in West Hartford, CT, who were our family for these past five years. Of these,

I must single out Dr. Adam Gamzon, a recent graduate from the UMass school

of Mathematics. It is not an exaggeration to say that he probably saved my life

numerous times by being my reliable car-pooling partner on the long drives to and

from campus, and that in addition to being a wonderful conversation partner for

hours on-end.

And finally, I would like to thank my family. My parents, who supported us in all

things material and spiritual, and are responsible for making this amazing journey

more than just a young man’s dream. My children, who made sure to interrupt my

academic activities just enough to remind me that there is life worth living beyond

these walls. Most of all, though, I thank my wife - for making sure that our family

was taken care of through all the paper deadlines and exams, and for never letting me

give up even when I doubted my own worth. As the renown Jewish sage of Antiquity,

Rabbi Akiva, said to his students upon his return home from years of study and

teaching, “All that is mine and yours - belongs to her”.

vi

ABSTRACT

ON THE ANALYSIS AND MANAGEMENT OF
CACHE NETWORKS

SEPTEMBER 2012

ELISHA J. ROSENSWEIG

B.Sc., HEBREW UNIVERSITY OF JERUSALEM

M.Sc., TEL-AVIV UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jim Kurose

Over the past few years Information-Centric Networking, a networking archi-

tecture in which host-to-content communication protocols are introduced, has been

gaining much attention. A central component of such an architecture is a large-scale

interconnected caching system. To date, the modeling of these cache networks, as

well as understanding of how they should be managed, are both in their infancy.

This dissertation sets out to consider both of these challenges. We consider ap-

proximate and bounding analysis of cache network performance, the convergence of

such systems to steady-state, and the manner in which content should be searched for

in a cache network. Taken as a whole, the work presented here constitutes an array of

fundamental tools for addressing the challenges posed by this new and exciting field.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xii

LIST OF FIGURES .xiii

CHAPTER

1. INTRODUCTION AND OVERVIEW . 1

1.1 Introduction . 1
1.2 Goals and Contributions . 3
1.3 Thesis Outline . 7

2. ANET - APPROXIMATING CACHE NETWORK
PERFORMANCE . 8

2.1 Introduction . 8
2.2 Model and Notation . 10

2.2.1 System Components and Operation . 10
2.2.2 Model Assumptions . 15
2.2.3 Simulation and experimental methodology . 16

2.3 Related Work . 17

2.3.1 Results for stand-alone caches . 18
2.3.2 Results for networked caches . 19
2.3.3 The P2P connection . 20
2.3.4 Modeling Assumptions . 21

2.3.4.1 IRM Exogenous Request Streams 22
2.3.4.2 System Architecture - Cache Coordination 22

viii

2.3.4.3 System Architecture - Replacement Policies 23

2.4 The a-NET Algorithm . 23

2.4.1 Preliminaries . 24
2.4.2 Algorithm Description . 25
2.4.3 a-NET convergence . 27

2.4.3.1 FIFO and RANDOM replacement 29
2.4.3.2 Convergence for LRU . 32

2.5 Performance Evaluation . 33
2.6 Analysis of performance-affecting factors . 42
2.7 summary . 48

3. A NETWORK CALCULUS FOR CACHE NETWORKS 50

3.1 Introduction . 50
3.2 Related Work . 52
3.3 A (ρ, σ) Model for Cache Networks . 52

3.3.1 Bounding Model . 53
3.3.2 Bound tightness . 54
3.3.3 Bounds at work: an example . 55

3.4 Computing Worst-Case Bounds for finite windows 57

3.4.1 Notation and Preliminaries . 57
3.4.2 Bounds over window w . 59
3.4.3 Bounds and Download Delay . 61

3.5 Computing (ρ, σ) bounds on the miss stream . 62

3.5.1 Bounding the miss rate . 63
3.5.2 Computing M̂ as a function of input bounds 66
3.5.3 Achieving bounds simultaneously . 70
3.5.4 Bounding the miss burstiness . 72

3.6 Evaluation of Worst-Case Bounds . 74

3.6.1 Extracting bounds from Trace Data . 74
3.6.2 Bound tightness in practice . 75

3.7 Discussion and Future Work . 80

ix

4. STEADY-STATE OF CACHE NETWORKS . 82

4.1 Introduction . 82
4.2 Model and Notation . 83
4.3 Sensitivity to the initial state: examples . 85

4.3.1 Example 1 . 85
4.3.2 Example 2 . 86

4.3.2.1 A single FIFO cache in isolation . 87
4.3.2.2 Dependencies in networks . 88

4.4 Conditions for Ergodicity: Topology and Admission Control 90
4.5 Conditions for Ergodicity: Replacement Policy . 92

4.5.1 Theorem for Random Replacement . 93
4.5.2 From Random Replacement to non-protective policies 96
4.5.3 Generalizing the Model . 100

4.6 Summary and Future Work . 100

5. BREADCRUMBS - BEST-EFFORT CONTENT SEARCH IN
CACHE NETWORKS . 102

5.1 Introduction . 102
5.2 Related Work . 105

5.2.1 Optimizing Cache Networks . 105
5.2.2 Content Search in Cache Networks . 106
5.2.3 Breadcrumbs expansions . 108

5.3 The Breadcrumbs Architecture . 108

5.3.1 File download path . 113

5.4 Best-Effort Content Search (BECONS) . 115
5.5 Breadcrumbs Evaluation . 120

5.5.1 Comparison Benchmarks . 120
5.5.2 Simulation Setup . 121
5.5.3 Performance Metrics . 122
5.5.4 Performance Evaluation . 123

5.6 Causality analysis - cache contents vs. search policy 134

5.6.1 Breadcrumbs Causality Model . 135

x

5.6.2 The impact of Breadcrumbs routing in Random replacement
network with limited caching. 137

5.6.3 The utility of Breadcrumbs routing in general BCNs 141

5.7 Discussion . 144

6. SUMMARY AND FUTURE DIRECTIONS . 147

APPENDIX: APPROXIMATION ALGORITHMS FOR
INDIVIDUAL CACHES . 151

A.1 LRU . 151
A.2 RND. 151

BIBLIOGRAPHY . 155

xi

LIST OF TABLES

Table Page

2.1 Table of System Notation . 11

2.2 Default values in simulations . 33

3.1 Table of Notation . 57

4.1 Table of notation for Markov model representation 83

4.2 Example of the impact of initial state on system solution for the
topology in Fig. 4.2 and transition matrix shown in Fig. 4.3. 89

5.1 List parameter values used for causality investigation. 138

xii

LIST OF FIGURES

Figure Page

2.1 Example for endogenous and exogenous arrivals. 12

2.2 Request forwarding options. Dotted lines indicate requests, while
solid lines indicate content downloads. A single node v1 is shown.
Case (a)-(b) depicts the CCN protocol, where requests are
aggregated, while (c)-(d) depicts the baseline protocol where
requests are not aggregated. 14

2.3 Request aggregation, for the scenario where nodes v2, v3 forward all
misses for fj to v1. 15

2.4 Flow-Diagram of a-NET. 26

2.5 Example of a-NET performance, where data points are sorted
according to increasing miss rates in the simulation. Shows the
miss rates of a 10-by-10 Torus topology with four custodians, each
holding a quarter of 500 files, as computed via simulation and
a-NET. Values are shown for each cache (x-axis) and sorted in
ascending order of simulation values. Requests arriving at each
node are distributed according to Zipf distribution. 90%
confidence intervals shown. 28

2.6 Torus topology used throughout this dissertation. Four custodians
are indicated (bold borders) at nodes 1,6,51,56. The torus
property is explicitly denoted for nodes v1, v100, but apply across
all the border. 34

2.7 Per-node MPR for 10-by-10 torus networks, as a function of the L/c
ratio. The values were sorted in ascending order. As we can see
here, as the ratio grows the performance of a-NET improves. 36

xiii

2.8 For the same scenario shown in Figure 2.7, the correlation between
MPR and miss probability in the simulation. Each point
represents the miss probability and MPR for a cache in the
network. For each of the three scenarios we show the correlation
for a single simulation. We can see here that between scenarios,
the MPR decreases as the miss probability increases. 36

2.9 Per-node MPR for 10-by-10 torus networks, as a function of the
arrival distribution (Zipfian with parameters 1.0 and 0.6). The
values were sorted in ascending order. As we can see here, as the
distribution becomes less skewed (0.6), the performance of a-NET
improves. 37

2.10 The impact of a tree branch factor on a-NET performance. Due to
symmetry within the tree, values for each level are aggregated.
We can see that as the branch factor grows, so does the
approximation become more accurate. 37

2.11 Mean MPR for random graphs over 400 nodes, as a function of p, the
probability that each edge is in the network. The mean is taken
over 10 simulations for each p, with 95% confidence intervals
showing. 39

2.12 The impact of inter-custodian distance on a-NET, for 10x10 torus
topologies and four custodians. Radius indicated the minimal
distance between custodians, and values are sorted in ascending
order. As seen here, the increased distance makes performance
degrade. 39

2.13 a-NET performance for Random Replacement, using the SCA
Algorithm defined in Appendix A. As can be seen here, precision
here seems to be higher than for LRU. 41

2.14 Per-node MPR for 10-by-10 torus networks, as a function of
propagation delay. Delay for query propagation was set to be half
the request arrival rate per-node, and content propagation double
that. For the increased delay, the values are doubled. The nodes
that are impacted the most by the introduction of delay are those
close to the custodians (nodes 0, 5, 50, 55). 43

xiv

2.15 Per-node MPR for 10-by-10 torus networks, as a function of
propagation delay. The arrival rates at each node were 10
requests/unit time; propagation delay of requests was 0.05 time
units; and content download delay is 0.1 time units. For the
increased delay, the propagation delay values are doubled. Values
are sorted in ascending order to emphasize the fact that as the
delay grows, the per-cache performance of the network seems to
improve, as the miss-probability decreases. 43

2.16 Example of analyzing the impact of error factors on a-NET, for the
plot shown in Fig. 2.5. As in said figure, we consider performance
of a 10-by-10 Torus topology with four custodians, each holding a
quarter of 500 files. Requests arriving at each node are
distributed according to Zipf distribution. 90% confidence
intervals show. The results are plotted in ascending sim-to-approx
order. As can be seen here, the non-IRM traffic is the major
contributor to approximation error . 47

2.17 Example of analyzing the impact of error factors on a-NET, for a
cache hierarchy - a 4-level binary tree. As can be seen here, the
non-IRM traffic is the major contributor to approximation
error . 48

3.1 Network calculus - high-level depiction of flow-bounds “entering” the
cache and miss-flow bounds “leaving” the cache. 54

3.2 Topology for simulations. Custodians are at nodes 7, 14. 76

3.3 Impact of cross-flows on the bound tightness. cache size on bound
tightness, with 90% confidence intervals shown. Setup is identical
to Fig. 3.4. X/Y indicates X files at v7 and Y files at v14. 78

3.4 Impact of cache size on bound tightness, with 90% confidence
intervals shown. Requests arrive at all nodes following a
multi-zipf distribution. Files are divided between custodians at
nodes 7, 14, with 225 files at the first and 375 at the second. As
cache sizes decrease, bounds become more tight. 78

3.5 Impact of non-IRM traffic on bound tightness, with 90% confidence
intervals shown. Setup is identical to Fig. 3.4. As we see here,
with inter-arrival distances following the Gamma distribution
with a scale parameter 4, bounds become more tight relative to
with IRM. 79

xv

3.6 Performance of LRU as compared to LRU worst-case. 90% confidence
intervals shown. 80

4.1 Example scenario in which the solution of the MC is dependent on
initial state. 87

4.2 Topology for second scenario in which the solution of the MC is
dependent on initial state. Caches here are assumed to be using
the FIFO replacement policy. 88

4.3 Transition matrix of Example 2 (diagonal elements not shown). The
system state is (w, x, y, z) where w and x (resp., y and z) are the
two files at cache 1 (resp., 2). Let A = f1, B = f2, C = f3 when
the initial state is (f1, f2). Let A = f1, B = f3, C = f2 when the
initial state is (f1, f3). 89

4.4 RND-to-LRU state mapping and edge contractions example. Edges
indicate transitions in the markov model. As can be seen here,
the closure of the indicated transitions results in a clique (broken
edges mark the added connectivity), so it is possible to move from
any state to any other without influencing the set of files stored in
any cache. 98

4.5 An example for the situation with FIFO replacement.
X, Y ∈ F \ {1, 2}. As can be seen here, with FIFO there are no
edges between states with the same content in all the caches, and
all paths between such states require changing the content of
some caches. In fact, there is no way to change the order of
eviction in a cache with FIFO. 98

5.1 Breadcrumbs example . 109

5.2 Example of trail extension. Broken lines indicate file download, and
red arrows indicate the direction of breadcrumb pointers. 111

5.3 Download policies depiction. Initially, the content fj was downloaded
to v3 via v1, v2. Later, a request for this content originated at
node v5, passed through v2 which did not have the content but
did have a valid breadcrumb, pointing to v3. 115

5.4 Example of a broken trail. A breadcrumb entry is valid at nodes
v1, v3, but not at the intermediate node v2. 116

xvi

5.5 CN hit probabilities, broken down according to file IDs. Popular files
have lower indices. The impact of Breadcrumbs is mainly on the
popular files. 90% confidence intervals shown. See Figure 5.6 for
these results but focusing on the popular files. 125

5.6 CN Hit probabilities, broken down according to file IDs, and showing
popular files. Popular files have lower indices. 90% confidence
intervals shown. 126

5.7 CN Hit probabilities, as impacted by cache and network scale. 90%
confidence intervals shown. 127

5.8 The impact of the timeout threshold, or time to live (TTL), on
performance. As we can see, with longer TTL the hit probabilities
increase. Popular files shown. 128

5.9 Mean search hops, broken down according to file IDs, for a 15x15
torus. Popular files have lower indices. 90% confidence intervals
shown. 130

5.10 Mean search hops, broken down according to file IDs. Popular files
have lower indices. 90% confidence intervals shown. 131

5.11 Ratio between search and download hops, broken down according to
file IDs. Popular files have lower indices. 90% confidence intervals
shown. 132

5.12 The impact of using Breadcrumbs on local cache miss probabilities.
As we can see, with Breadcrumbs the miss probabilities per cache
grow, even though globally the network satisfies more
requests. 133

5.13 Partial DAPER model of Breadcrumbs system, focusing on custodian
load as affected by routing and cache contents. Each logical entity
represents possibly multiple physical entities in the network. 136

5.14 DAPER model for the causal links from routing to cache content.
Blue dotted lines connect one policy variable to one other
variable. This (non-standard) notation indicates that whether or
not the attached variable will have any impact on cache contents
will depend on the policy variable. 139

xvii

5.15 Topology portion, depicting the different paths affected when
following a breadcrumb trail vs. the shortest path to the
custodian. The origin of the request is v1, and fj can be found at
both v4, v7, which are circled in green. 139

5.16 The performance increase due to efficient routing with RANDOM
replacement and limited placement, for caches sizes k = 5, 20, 40.
The white bars (left) represent
(hits(BCN)− hits(CN))/hits(CN), the fractional reduction in
custodian load when moving to BCN. The yellow bars (right)
show the fraction of requests sent int o the system that were
served by the network due to BCN routing. 95% confidence
intervals are shown. 142

5.17 Custodian request rate - comparison with quasi-simulation of BCNs.
k = 20. 144

xviii

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Introduction

Since the development of its earliest technical foundations more than 40 years ago,

the Internet’s dominant communication paradigm has been packet-based, host-to-host

communication. Indeed, this view is deeply embedded in today’s layered Internet

architecture, with host-to-host segment-transport service (as embodied in TCP and

UDP) serving as the communication abstraction provided to all applications. The

idea, as developed over the past five decades and as encapsulated in the TCP/IP

protocols, was to separate the question of “who/what do I wish to communicate

with” from the implementation question of “how does a message get from here to

there.” While circuit-switching required global knowledge of the network topology

and continuously maintaining a path between the two points by some central entity

(e.g. a human operator), packet-switching required knowledge only of the address

of the destination, and at each junction along the way (i.e., routers) a local decision

was made regarding the next hop. The implications of this change in design were

far-reaching, allowing the Internet to grow while retaining its basic properties of

efficiency (via multiplexing sessions over the same links) and robustness (no single-

point-of-failure).

Fast-forwarding ahead almost fifty years, the same basic architecture is still in

place, surviving through the years with astounding resilience. However, with the

passing of time the world surrounding and connecting to the Internet has changed in

significant ways. Mobile devices now connect to the Internet, upsetting the topolog-

1

ical stability that the network once had. As the Internet became more ubiquitously

available, individuals and businesses began to move their services to the network.

To deal with the increase in demand for content, suppliers first replicated content

across servers, then moved to leasing Content Delivery Network (CDN) services, as

well as leveraging Peer-to-Peer (P2P) technology. Packet-switching was designed to

help computers locate each other; Internet users now needed systems to help locate

content, the need growing as the rate of content production continued to increase.

To address this challenge, the past decade has seen the emergence of Information

Centric Networking (ICN), in works such as TRIAD and DONA, and more recently

in the CCN architecture [1, 25–27, 32, 52, 55, 68]. In these proposals, each piece of

content is given a unique identifier (a “name”) which can then be referenced in a

host-to-content communication protocol. Content consumers state the name of the

content they wish to retrieve, and the request is routed within the network, searching

for the content according to some search policy. Just as TCP/IP separated the “what”

from the “how” with regard to inter-host communication, these architecture propose

to do the same for host-to-content communication.

Since, in ICN architecture, routers are aware of which content they store via

content name, this creates an opportunity for content reuse: a router can send the

same content to several content consumers that have expressed an interest in this

content, instead of having each consumer access the content server individually. A

central part of all leading ICN proposals thus involves universal caching: refitting

routers with large caches that allow each router to store content that passes through

it. When requests for content arrive at such a router-cache element, the cache can be

checked for a copy of the content. If the content is available, it can then be downloaded

from that cache, thus avoiding redundant delay and access to the content servers.

This change in the architecture is transformative: while previously the network

could be thought of, broadly, as a large system of “bit-pipes,” content is now stored

2

at multiple locations inside the network, raising issues of scalability and privacy.

Furthermore, with respect to content requests, the system can be viewed as a series

of filters, allowing only a fraction of requests arriving to be forwarded on to the next

hop. While networked caches have been researched in the past, these works have

considered only small-scale systems and simple topologies (e.g., hierarchies). This

dissertation considers a set of key challenges presented by the ICN architecture: the

design, analysis and management of widely-deployed, tightly-connected, heterogenous

Internet-scale networks of caches, of arbitrary topologies. As we will see, this is still

a relatively uncharted field.

1.2 Goals and Contributions

In this dissertation, we address two distinct goals. The first is that of analyzing

the behavior of Cache Networks (abbreviated as CNs). To understand the challenges

involved in achieving this goal, it is instructive to consider the difference between mod-

els of caching networks, models of packet-switched networks, and models of circuit-

switched networks. Unlike queuing networks for packet-switched networks, requests

(workload) in caching networks are not queued - instead, they are either immediately

satisfied locally or forwarded upstream. In this latter case, assuming negligibly small

request-forwarding times, an exogenous arrival effectively generates simultaneous re-

quest arrivals at each node along the path in the routing tree, from the cache at

which it first exogenously arrived to the node at which the file is found. According

to leading ICN proposals (e.g., [27]), the file is then cached at each of these inter-

mediate nodes. Thus caching network models should perhaps more closely resemble

loss network models [34, 35] of circuit-switched networks, where exogenous calls are

allocated resources (e.g., trunk lines between switches) at each node from source to

destination. However, unlike loss networks, where a departing call releases resources

simultaneously, resources in a caching network (cache storage) are separately released

3

at each node as a result of subsequent arrivals and the node’s cache-replacement pol-

icy. Also, unlike loss networks, a request results in resources (cache storage) being

allocated only from the point of exogenous arrival to the point at which the file is

found, rather than on the entire path from the arrival node to the destination node

where the request was initially sent.

Cache networks differ in significant ways also from the small-scale cache hierarchies

that have been analyzed previously with some success. In these smaller systems,

content requests are all forwarded upstream, towards a common content server, which

we refer to here as a content custodian, while caches are inspected along the way.

Once content is located, it is sent downstream, back to where the request originated

from. As a result, requests at one level in the tree are comprised solely of request

misses one level below, while requests at the upper levels have no impact on lower-

level caches. This special structure is heavily relied upon in previous work, allowing

a bottom-up analysis of the network from the lower levels up towards the root. In

cache networks of arbitrary topologies, on the other hand, multiple content custodians

are spread throughout the network, and requests for different content are forwarded

along different paths. As a result, two neighboring nodes might both send requests

to, and receive requests from, one another. This introduces two layers of complexity

into the model that do not exist in hierarchies. First, one cannot define an ordering

on the nodes in the system, such that solving the state of one node depends only on

those preceding it in this ordering; the modeling method mentioned before is difficult

therefore to apply here. Second, since requests can flow in both directions across a

given link, the miss streams of neighboring nodes can have a reinforcing effect on one

another, a fact which does not exist in models for hierarchical systems. Finally, an

additional challenge arises from the large scale of the network, which can make small

node-wise modeling errors (that were acceptable in small networks) grow significantly

over multiple hops.

4

Just as queueing theory was central for understanding the behavior of packet-

switching networks, we believe that developing such a new set of analytical tools

will be crucial for understanding cache networks. In this dissertation, we make the

following contributions to the study of cache network modeling:

1. We develop an approximation algorithm for cache network performance, called

a-NET. a-NET takes existing approximation algorithms that estimate the per-

formance of a single cache in isolation, and uses these models to compute an

approximation for an entire network. a-NET can deal with any network topol-

ogy, and heterogenous networks where caches use different replacement policies.

2. We conduct an analysis of the factors affecting the accuracy of a-NET, when us-

ing a specific approximation algorithm for stand-alone LRU caches, and demon-

strate that for this version of a-NET the dependencies within the cache miss

streams are the major cause for inaccuracies. Based on this observations, we

identify topological properties of a network that affect the accuracy of a-NET

when using this LRU approximation algorithm.

3. We develop a network calculus for bounding request flows passing through LRU

and FIFO caches. This calculus produces several key analytical results regard-

ing LRU and FIFO worst-case performance. We demonstrate via simulation

that in cache networks the worst-case bounds are indicative of actual network

performance.

4. We also consider the factors that impact the steady-state behavior of a cache

network. We demonstrate that, counter-intuitively, some networks can be

greatly influenced by the initial state of the system (i.e., the initial contents

in each cache). We then prove three independent conditions that ensure the

steady-state of the system is not impacted by the initial state. In the course of

5

this, we present the concept of equivalence classes among replacement policies,

such that proving properties for one proves them for all others in the class.

The second goal we set out to achieve is improved management of cache networks,

specifically in the realm of content search - how to route content requests within

the network. In the original proposal for Content Centric Networking (CCN) [27],

requests are routed to the content custodian, which is known in advance via some

mechanism (e.g., a search engine), and caches are inspected along this path. Routing

directly to the custodian might reach a copy quicker, but it does so at the expense of

creating bottlenecks at or nearby the custodian, and with possibly missing opportuni-

ties at caches off this direct path. Diametrically opposed to this would be exhaustive

search or random walks, as in earlier versions of Gnutella P2P networks, which can

spread the load but can incur long delays. A third option would be for caches to col-

laborate among themselves, determining where content is stored and where to route

requests; these approaches can have high computational complexity and communica-

tion overhead which might make them unfeasible for ICNs [51]. A DNS-like system

that explicitly keeps track of content location might suffer from similar problems, in

addition to introducing a single point of failure. In light of the existing options and

their limitations, we set out to develop a simple method for content search, that is

both light-weight in terms of stored state information and coordination, while at the

same time adaptive to system state.

In this dissertation, we make the following additional contributions, focusing on

the field of content search in CNs:

5. We describe Breadcrumbs, a best-effort content search policy, in which each

cache routes requests dynamically, based solely on local information. Bread-

crumbs achieves this by using past traffic to set up breadcrumb entries - short-

term routing hints that eventually expire Breadcrumbs is tunable, striking a

balance between the route-to-custodian and exhaustive search policies. Bread-

6

crumbs also fosters an implicit inter-cache coordination of routing, without in-

volving any inter-cache control overhead.

6. For a certain version of Breadcrumbs, called BECONS, we prove several prop-

erties regarding the efficiency of breadcrumb management. We show that BE-

CONS creates a perimeter surrounding each content custodian, such that re-

quests are routed to the custodian when they originate within this perimeter,

thus reducing the load at custodians.

7. We present an analysis of causal relationships within the network, specifically

between cache state and request routing tables. From this analysis, we devise

and execute experiments to demonstrate the impact that Breadcrumbs-based

search has on custodian load reduction.

1.3 Thesis Outline

The rest of this dissertation is organized as follows. Chapter 2 presents our algo-

rithm for approximating the behavior of CNs. We also introduce here the model and

notation used throughout this proposal, as well as much of the related work on CNs.

Chapter 3 presents a network calculus for cache networks, and Chapter 4 discusses

the impact (or lack thereof) of the initial state of a CN on its steady-state. Chapter

5 presents Breadcrumbs, our best-effort content-search policy, with extensive experi-

mental results as well as causal analysis, focused on determining the efficiency of the

Breadcrumbs content search. We conclude in chapter 6 with a summary of the thesis

contributions and discuss future research directions.

7

CHAPTER 2

ANET - APPROXIMATING CACHE NETWORK
PERFORMANCE

2.1 Introduction

Caches are an integral part of many computing systems, and consequently their

policies and resulting performance have been the focus of much research. Earlier works

have considered caches in isolation; more recent research has considered hierarchical

(i.e., tree-like) cache network architectures [7,9,12,44]. Aside from the work presented

here, interest in modeling cache networks of arbitrary topology has only recently

started to appear; in addition to the work presented in this thesis there are several

works-in-progress for analyzing such systems [33,60,61].

Caches are notoriously difficult to analyze, even when the policies employed to

control which content is stored and which removed from the cache, known as re-

placement policies, are seemingly simple. For example, when considering the single,

isolated cache running the popular LRU replacement policy, the complexity of exact

models of cache state and performance grow exponentially as a function of cache size

and the number of files in the system [14,37]. The challenges only increase as one con-

siders networks of such caches. As a result, research on analyzing cache networks has

been limited to simulation studies on the one hand and modeling a limited range of

topologies and replacement policies on the other. With the increasing interest in ICN,

there is a need for tools that can estimate the behavior of large-scale inter-connected

networks of caches, arranged in an arbitrary topology and running a variety of cache

replacement policies.

8

Networked caches in arbitrary topologies have several aspects that contribute to

their complexity, and here we mention two of them. First, in all such systems the

output process (known as the miss stream) of one cache becomes a part of the input

process to another cache. Computing the state of a flow after passing through several

such caches is thus a complex process. Second, when the topology allows requests

and content to flow in both directions between neighboring caches, referred to here

as cross flows, the analysis becomes more complex as each neighbor can affect the

other simultaneously. While the first challenge has been discussed when considering

hierarchical systems, to the best of our knowledge the work presented here is the first

to address the second challenge.

In this chapter we present a novel multi-cache approximation (MCA) algorithm,

denoted as a-NET, that approximates the performance of a cache network of any

topology and scale, and which can deal with heterogenous mixes of replacement poli-

cies. As a basic building block, we assume that for each individual cache we have

a method for evaluating its performance under a given load. Due to the computa-

tional complexity of exact models for several common replacement policies, such as

the LRU replacement policy we focus on here, we specifically consider the case where

the performance of the cache is only approximated. Algorithms that compute such an

approximation are referred to here as single-cache approximation (SCA) algorithms.

Given SCA algorithms for the replacement policies used by caches in the network,

the approach taken by a-NET is to (a) compute an SCA for each individual cache

in the network, given its arrival process; (b) recompute the arrival process at each

cache based on the misses computed in the previous step; and (c) repeat steps (a)-(b)

multiple times until the solutions converge to a fixed point. In addition to present-

ing a-NET, we also consider its convergence properties and its accuracy for multiple

topologies. In the process of this analysis, we identify several key parameters that

affect this accuracy.

9

The structure of this chapter is as follows. Section 2.2 describes the model of

cache networks adopted throughout this thesis, and Section 2.3 surveys work on cache

network modeling, which is the focus of Chapters 2-4. Section 2.4 presents a-NET,

and discusses some initial observations regarding its output. We follow with a survey

of a-NET performance in Section 2.5. Motivated by several of the observations made

in this section, in Section 2.6 we develop a method for determining the impact of

several key factors on the precision of a-NET, and use it to determine the significance

of inter-dependencies within the request stream on a-NET inaccuracies. We conclude

with a summary of our results in this chapter in Section 2.7.

2.2 Model and Notation

2.2.1 System Components and Operation

We begin by describing the model used in this dissertation for cache networks

(CNs). A summary of the notation that follows is presented in Table 2.1.

Content and Caches. Let G = 〈V,E〉 be a finite network comprised of nodes

V = {v1, ...vN} and edges E ⊆ V × V . Each node corresponds to a cache-router

element — a router augmented with short-term storage capabilities, such that content

forwarded by the router can also be stored locally. Edges in this network indicate

neighbor relationships among the cache-routers, such that cache-router vi can forward

an unsatisfied request — a cache miss — only via its neighbors. In related work, these

are sometimes referred to as Transparent En-Route Caches, TERC for short [29,39,40].

For the sake of readability, the terms “cache”, “router” and “node” will be used

interchangeably in what follows, each indicating such a cache-router entity.

Let F = {f1, ..., fL} be the set of unique items of content, termed here files, that

can be requested in the network. The state of a node vi at time t is the sequence of

files stored at it, where the order of files in the sequence determines the next file to be

evicted upon a cache miss and subsequent download of new content. For replacement

10

Table 2.1: Table of System Notation

Notation Meaning
vi A cache-router entity
c The number of files a cache can store
f A content entity (file)

N,L The number of nodes and files, respectively
cust(j) ⊆ V List of custodians for fj

qij A request for fj at cache vi
eij Probability that fj ∈ vi
λij Exogenous arrival rate for fj at vi
rij Combined arrival rate for fj at vi
sij Miss rate for fj at vi
Ri Request routing matrix at node vi

policies in which the file order within the cache is unimportant, we shall represent

the cache state as a set of files instead of a sequence. The state of the network is the

state of all its nodes. fj ∈ vi denotes that fj is stored at the cache of vi, and ci = |vi|

is the size of the ith cache. By default, we will assume that all files in the system

are of identical size, and consequently the units of cache sizes will be the number

of files the cache can store1. This assumption is common practice in the field, and

we adopt it here since we focus on replacement policies that are agnostic to content

size. For simplicity of presentation, we shall assume all caches have identical size,

and accordingly we denote the size of each cache as c.

Content Custodians. In addition to the short-term storage provided by caches,

we assume the each piece of content is also stored permanently at one or more content

custodians in the network, such as public content servers [23,49,67]. Each custodian

connects to the network at a specific location — a cache-router element — and so we

will denote these custodians as a set C ⊆ V . Note that for each vi ∈ C, the storage

required for maintaining these permanent copies is not included in the specified cache

1These files can also be thought of as named chunks of data, such that each file with variable size
is broken into chunks of uniform size for dissemination [48].

11

size, as the content is not stored at the cache-router but at a device connected to

it. We use vi ∈ cust(j) to denote that (a custodian connected to) node vi has a

permanent copy of fj. All of our results in this dissertation hold for content stored

at multiple custodians, and it is only for expositional purposes that we assume for all

1 ≤ j ≤ L, |cust(j)| = 1, both in our discussion and in our simulations.

Request Routing. Requests for content can arrive at a cache either exogenously

from a user directly connected to the cache-router, or endogenously when a cache

miss occurs at a neighboring cache (Fig. 2.1). Exogenous requests flow through the

network, passed endogenously from one cache to another until they are satisfied by

locating a copy of the requested content. When a cache cannot satisfy a request,

it generates a cache miss, and forwards the request along a path in the network in

search of a copy. In this work we assume there exists a static routing matrix for each

vi denoted as Ri, such that a cache miss for fj at vi will be forwarded to vk with

probability Ri(j, k). Denote R := {Ri}1≤i≤N as the set of all routing matrices. In

this work we assume each file has at least one custodian and that the request path

ends at a node v ∈ cust(j), so all requests are satisfied in finite time. A common

example for a set of static paths is that of shortest path routing (used, for example,

in [9]), in which a request for fj is routed along the shortest path to the closest node

in cust(j). Dynamic routing matrices that change over time are addressed in Chapter

5.

1j

3j

Exogenous

V1 r1j

V1 V2

Endogenous

Figure 2.1: Example for endogenous and exogenous arrivals.

Request Handling. A request for fj is denoted as qj, and such a request arriving

at node vi is denoted as qij. For all 1 ≤ i ≤ N and 1 ≤ j ≤ L, λij is the exogenous

12

rate of qij, where by “rate” we mean the average number of requests per unit time.

We further denote

λ = {λij}1≤j≤L,1≤i≤N
(2.1)

When a request qj arrives at vi, the treatment of the request depends on the cache

state:

• If fj ∈ vi, a cache hit occurs, and the file is forwarded back to the origin node

where the request first entered the network. Unless otherwise stated, the file

follows the reverse path traversed by the request.

• Otherwise, a cache miss occurs. If vi ∈ cust(j) then fj is retrieved from this

custodian; otherwise, the request is forwarded according to Ri.

The hit probability at node vi for fj, denoted as hij, is the fraction of requests for fj

at vi that result in a hit. The miss probability is then simply mij := 1− hij.

We will consider two approaches for handling miss forwarding, as shown in Figure

2.2. The first (Fig. 2.2(a)-(b), referred to here as the CCN approach following its

introduction in [27], allows for only a single miss for each file to be forwarded until

that file is retrieved. Additional misses that arrive between the first miss (since the

last download) and the resulting eventual download are registered at the node; when

the requested content arrives at the node, it is forwarded to all nodes that requested

it in that duration. The second, referred to here as the baseline approach and shown

in Fig. 2.2(c)-(d), forwards each cache miss regardless of past events.

We denote eij = Pr(fj ∈ vi). Also, let rij be the combined incoming rate of qij,

and let sij be the rate of requests for fj in the miss stream at node vi. The rate of

qij is then

rij = λij +
∑

vk∈V

Rk(j, i)skj (2.2)

and a depiction of this is shown in Figure 2.3.

13

 (a) (b)

 (c) (d)

t = 4

t = 0

t = 1

t = 2

V1

t = 4

V1

t = 3

t = 3

t = 4 t = 2

t = 5

t = 0

t = 1

t = 1

V1

t = 4

V1

Figure 2.2: Request forwarding options. Dotted lines indicate requests, while solid
lines indicate content downloads. A single node v1 is shown. Case (a)-(b) depicts
the CCN protocol, where requests are aggregated, while (c)-(d) depicts the baseline
protocol where requests are not aggregated.

As with the exogenous rates, we denote

r = {rij}1≤j≤L,1≤i≤N
, s = {sij}1≤j≤L,1≤i≤N

When a file fj is downloaded and passes through a node vi whose cache is full and

fj /∈ vi, one of the files in the cache will be evicted to make room for fj. A replace-

ment policy at each cache determines which file is evicted. The caching literature

is filled with many policies for such cache replacement, and in this dissertation we

limit ourselves to considering the following policies, commonly found in the caching

literature:

• Random (RND) - when removing a file, select a file uniformly at random from

the available cached content.

14

λ1j

s2j

s3j
V1 r1j

Figure 2.3: Request aggregation, for the scenario where nodes v2, v3 forward all misses
for fj to v1.

• First-In, First-Out (FIFO) - when removing a file, select the file least recently

stored. This policy is conveniently implemented as a queue of content, where

the item most recently stored is placed at the tail of the queue and files are

removed from the head of the queue.

• Least Recently Used (LRU) - when removing a file, select the file least recently

requested. This policy is conveniently implemented as a queue of content, where

an item is placed at the tail of the queue when it is first stored, and moved to

the tail whenever it is requested. This is also the replacement policy of choice

for many systems, including leading proposals for ICN [27].

2.2.2 Model Assumptions

In this dissertation, we frequently adopt two significant modeling assumptions

that are common in the caching literature. In places where we relax or change these

assumptions, we state this explicitly.

The first assumption concerns the properties of the exogenous arrival pro-

cesses. We model the arrival process of exogenous requests using the Independent

Reference Model (IRM) (as in, for example, [14,23]). According to IRM, the next file

requested exogenously at a given cache is independent of the earlier requests. For-

mally, let Xh be a random variable representing the hth file exogenously requested at

some cache v, then with IRM we have for all 1 ≤ j ≤ L

Pr(Xh = fj|x1, . . . xh−1) = Pr(Xh = fj) (2.3)

15

This assumption is considered valid when we assume that the exogenous requests are

generated by a large number of independent users [19].

The second assumption relates to content download delay. When modeling the

behavior of a cache or a cache network, a common assumption in the literature is that

the download time of content is negligible [12,14,23,24], which we term here the zero

download-delay (ZDD) assumption. The main implication of this assumption is that

whenever a cache miss occurs, the requested content is assumed to be instantaneously

retrieved and stored at the cache. This makes the system more tractable for modeling,

since as a result the order of content arrivals at the node is identical to the order of

request arrivals, and cache state between request and subsequent download need not

be considered. In Chapters 3-5 this assumption is not required, though we adopt it at

times to make the exposition clearer, as is explained later. In this chapter we assume

that ZDD holds, since the SCA algorithms we consider make this assumption for the

single cache, and indeed a-NET would require modification in its design to explicitly

address this delay. Addressing this is beyond the scope of this work.

The ZDD assumption has an additional convenient implication: with ZDD, one

can ignore which miss forwarding policy we adopt, whether the CCN or baseline

policy described above. This is due to the fact that these differ from one another

only when there is a non-negligible window of time between when a cache miss occurs

and its corresponding content download. Since we assume ZDD by default, we ignore

this distinction unless otherwise stated.

2.2.3 Simulation and experimental methodology

The experiments conducted for this dissertation were conducted on an event-

driven simulator written in Python (using the numpy and pylab libraries) for this

purpose. Each experiment was constructed in two phases. First, the exogenous

arrivals were generated and stored in a file, and then a simulation was conducted using

16

this file. By reusing these arrival stream files, we could compare the performance of

the different policies over different network instances for an identical request stream.

Since caches are always initialized empty and get populated via experienced con-

tent flows, we ignored the state of the system during the transient period at the

beginning of each simulation. We defined a transient period in our system as the

time until the distribution of exogenous requests at each node becomes close to the

request distribution in the underlying generative model of these requests. Similarity

between distributions was measured by using the Kolmogorov-Smirnoff (K-S) Statis-

tic, also known as K-S distance. Given two random variables, X1, X2, the K-S statistic

of these is defined as the maximal distance between their CDFs, i.e.

max
x
|FX1(x)− FX2(x)|

In all the simulations here, where X1 was the generative model and X2 was the actual

load experienced at each node, we set the transient period to end when for each node

the K-S distance for the exogenous request distribution was less than 0.05. In practice,

in each simulation approximately 10,000 exogenous requests arrived at each node, and

approximately 20% of these were attributed to the transient period.

Distance in the network was defined as the number of hops between two points.

For constructing Ri we used shortest path routing, and when several paths existed

with the same distance, each path was selected uniformly at random from all those

with the shortest distance.

2.3 Related Work

The first three chapters of this work consider different aspects of cache network

modeling, and thus share much of the related work. This section thus outlines past

research related to the first three chapters. Our survey will focus on the LRU replace-

ment policy, the replacement policy of choice in leading ICN proposals, although we

17

will consider the Random and FIFO policies as well in some of the subsequent chap-

ters.

2.3.1 Results for stand-alone caches

Research on analyzing the performance of single-cache systems abounds, and sur-

veying it is beyond the scope of this section. A partial survey of common replacement

policies can be found in [2,73]. In general, it is accepted that for many classic replace-

ment policies (e.g.,LRU,FIFO), exact modeling of a stand-alone cache is intractable

due to state explosion as c and L grow [37]. As a result, fast approximations have

been proposed for these caches [14, 17].

A description of a CN includes, among other things, the policies used by each

cache. The a-NET algorithm we present in this chapter assumes that there are

algorithms for approximating performance of stand-alone caches using these policies,

termed SCA (Single Cache Approximation) algorithms. In this work we use an IRM

SCA algorithm developed by Dan and Towsley [14] for LRU caches, which we denote

here a-LRU. a-LRU computes eij for vi and fj pair, and under IRM this is equal

to the file hit probabilities [59]. See Appendix A for the formal description of this

algorithm.

In addition to a-LRU other researchers have presented algorithms that compute

an SCA of the hit probability at an isolated LRU cache under IRM assumptions. For

example, Flajolet et. al. [17] present an integral solution for the cache approximation

problem, which can be solved numerically to produce the hit probability. However,

there is no straight-forward manner by which to observe the behavior of each file

with this approach. Levy and Morris [47] compute the hit probabilities of an LRU

cache given the stack-depth distribution of the cache — the distribution of which slot

in an infinite cache will be referenced by a random request. Che et. al. [12] use a

mean field approximation to approximate the behavior of individual caches. Their

18

approximation assumes each file spends a constant time in the cache before it is

evicted if not requested; they claim this assumption becomes more appropriate as the

number of files in the system goes to infinity. In addition to the limitations of this

approach for analyzing arbitrary topologies (see below), a-NET is a framework that

can deal with policies for which files spend variable time in the cache.

Most of the cache analysis research to date has focused on the steady-state be-

havior of these systems, but there has also been interest in the behavior during the

transient period of the system. In [6] the authors discuss the warmup phase of LRU,

when starting from either an empty or non-empty cache, and use this to understand

better how LRU behaves under traffic surges. Our work in Chapter 4 also considers

the effects of the initial state, but differs in that it considers entire networks of such

caches, and in that we focus on the resulting steady state of the system as a function

of the initial state. To the best of our knowledge, this issue has not been addressed

before.

2.3.2 Results for networked caches

We next consider models for networks of caches. There has been substantial work

regarding cache hierarchies or trees [7–9, 12, 22, 44, 53, 54, 57, 73]. These systems are

characterized by the existence of a single content custodian at the root for all content

(e.g., slow memory for file-systems, the Internet for web proxy caches) and shortest-

path request routing.

Rodriguez [57] considers cache hierarchies of multiple layers, but assumes the cache

hit probabilities are given, and focuses instead on optimizing performance for a given

system. Che et. al. [12] model a 2-tier cache hierarchy using the aforementioned

mean field approximation (MFA). In subsequent work [44], they use this modeling

technique to analyze cache coordination policies for cache hierarchies. Neither of these

two papers provides much simulation support for this model. In recent work, Fricker

19

et. al. [19] strengthen the analytical justification for using MFA in the context of

Content-Centric Networking, and specifically suggest using MFA as the SCA within

the a-NET algorithm we present here. Exploring this connection is left for future

work.

The models mentioned above rely heavily upon the special properties of the hi-

erarchical topology. First, several efforts make use of the symmetry of tree struc-

tures [7,12]. When this symmetry is combined with uniformity assumptions on node

policy and exogenous load, nodes at the same tree level behave in an identical man-

ner. Second, with only one custodian and shortest path routing, requests flow only

upstream, from caches towards the custodian, and content flows only in the opposite

direction, essentially making this network a feed forward network. This feature (com-

bined with ZDD assumptions) allows for analysis to be done from the bottom up. In

contrast to these works, all four chapters in this dissertation are applicable networks

of arbitrary topologies, where content and requests can flow in both directions on

network links.

2.3.3 The P2P connection

A large body of work that bears much resemblance to networks of caches is that of

P2P networks, especially hybrid unstructured P2P networks [23,24,49,67], abbreviated

here as HP2P. In these systems, peers form an overlay network of arbitrary topology,

search for content among peers in this network and then download the located content.

The system is “hybrid” as it assumes there is always an accessible publisher entity

for each content item, to distinguish from “pure” P2P systems where content might

become unavailable when a set of peers leaves the swarm. Thus, publishers and peers

20

have similar roles to custodians and caches respectively, suggesting that results from

one field might be applicable to the other 2.

In the field of HP2P, Kleinrock & Tewari [67] show that using LRU at all peers

achieves near-optimal replication of content in terms of load distribution at peers and

distance to content. They assume copies are distributed uniformly in the network,

and ignore the question of how content is found. Ioannidis & Marbach [23] consider

the performance of Random Walk and expanding ring query propagation in HP2P

systems. They also assume content is uniformly distributed in the system, and ignore

the storage limitations of each node (thus not considering replacement policies).

While these results contribute to our understanding of cache networks, there are

some important differences between the two fields. One important difference is that

with most P2P and HP2P systems the overlay topology is relevant only for content

search, while in CNs content download and content search take place over the same

topology, with content populating the caches during download. While there are P2P

systems where content populates the peers along the download path (e.g., Gnutella

[42]), this is not required for P2P to function, and little analysis has been conducted

for such systems. In this sense, cache networks are a generalization of P2P/HP2P

systems, in that the download path plays a central role in how and where content is

stored within the system. Thus, a richer set of tools is needed to understand their

behavior.

2.3.4 Modeling Assumptions

All the components of the model we adopt and describe here are used elsewhere in

the literature. These include ZDD [12,23,24,44], IRM exogenous requests [12,14,23,

24,44,67], and storing content at nodes that did not request it [49]. In our simulations,

2In fact, some work on hybrid P2P networks might be even more applicable to CNs than to P2P
systems. For example, in [23,24,49,67] the analysis of HP2P networks relies on the network having
a static topology. While this assumption is violated in P2P, it is more well-founded in CNs.

21

we in general assume identical exogenous request distribution at all users [7, 24, 67].

We now explore in more detail some of our main modeling assumptions — IRM

exogenous arrivals, cache coordination and homogeneous cache policies.

2.3.4.1 IRM Exogenous Request Streams

The model we use here for exogenous request traffic is the Independent Reference

Model (IRM). However, there are alternative models for request patterns at single

caches. Panagakis et. al. present approximate analysis for streams that have short

term correlations for requests [50]. As we shall see below, CNs exhibit the opposite

effect, with content requested recently less likely to be requested next.

An approach that deviates sharply from IRM is that of Stack Depth Distribution

(SDD) [47]. With this model, the stream of requests is characterized as a distribu-

tion ~h = (hi)
∞
i=1 over the cache slots in a cache of infinite capacity, where hi is the

probability that the next cache hit will be at slot i. In this model, all information

regarding the individual files being requested is ignored or unavailable.

2.3.4.2 System Architecture - Cache Coordination

When considering cache interaction, different approaches have been suggested for

coordinating caches. Some have proposed systems where caches explicitly coordinate

what to store and where [38,41,65], while at the other end of the spectrum some have

considered systems where caches are oblivious to the state of other caches [12,58,59].

In this dissertation we consider only architectures of the second type, though some

of the modeling tools presented here could be used for some coordinated systems as

well. We discuss the differences between these approaches in more detail in Chapter

5.

22

2.3.4.3 System Architecture - Replacement Policies

It is standard practice to select LRU replacement policy as the policy used by

caches in the network. This selection is justified by the benefits that LRU has been

shown to give in smaller caching systems. As such, most of the experiments and

discussion in this dissertation assumes LRU is used at all nodes. However, recently [20]

it has been suggested that RND replacement would have comparable performance.

This might make RND a better choice for CNs, as it is much easier to implement and

its performance is easier to understand and characterize via modeling. These results

correspond to observations we have made over the course of our work. A detailed

comparison of replacement policies for CN is beyond the scope of this work.

The results presented in Chapters 2 and 4 apply equally to homogenous and

heterogenous cache networks. Homogenous CNs are networks in which all caches

employ the same replacement policy, while in heterogenous CNs each cache might

use a different policy or policy combination (e.g., vi uses LRU and vk uses RND

replacement). We believe that this second class of networks is likely to occur especially

when network management is not under a single controlling authority, and indeed

might improve performance in some cases [43]. It is worth noting that very little is

known about the performance of heterogenous networks with an arbitrary topology.

Heterogenous replacement policies have been discussed previously in the context of

cache hierarchies, where some have suggested that upper-level caches should employ

different replacement policies than those in lower levels [8, 22, 73]. Extending these

ideas to networks with arbitrary topologies is non-trivial and is beyond the scope of

this work.

2.4 The a-NET Algorithm

In this section, we describe the a-NET algorithm and discuss some of its proper-

ties. After presenting preliminary concepts (§2.4.1) we formally present the algorithm

23

(§2.4.2), and prove that a-NET always converges to a solution for FIFO and RND

(§2.4.3). We followup In Section 2.5 with a survey of the accuracy of a-NET over

multiple scenarios.

2.4.1 Preliminaries

For a given cache network and exogenous request load, our goal is to compute the

load experienced at each cache in the network, as well as the performance of each

cache under that load.

We characterize the exogenous arrival stream as the set of request rates λ, where

arrivals follow IRM as discussed above. We adopt this model here — one which is

widely used in the literature — to conform to the assumptions made regarding the

input to isolated-cache approximation algorithms we use here. However, it is impor-

tant to note that a-NET can be applied more generally to any flow characterization,

as discussed in Section 2.7.

a-NET takes as input a cache network G, the size of each cache, the exogenous

rates λ, the custodian location for each file, and the routing tables for each node. It

produces an estimate for both r and s, and then the miss probability for fj at vi is

sij/rij. Note that for the case of a single node, by construction λ = r. In what follows

we shall refer to computing an estimate for r and s as estimating the performance of

the network.

In order to compute the performance of the network, a-NET requires an algorithm

for computing the performance of a single cache (in isolation, with no surrounding

network), given the arrival rates at the cache. We refer to these as Single Cache

Approximation (SCA) algorithms. The input to the SCA algorithms we consider

here consists of the cache size and IRM arrival rates, and the output is the miss-rate

at the cache for each file. A detailed definition of the algorithms we use here can be

found in Appendix A.

24

2.4.2 Algorithm Description

a-NET is an iterative, fixed-point algorithm, as shown in the flow-diagram in

Figure 2.4. We begin with assigning r the values of the exogenous arrival flows

(top left box), and using the SCA algorithm we compute the miss stream per cache.

We then repeat, until convergence, the following two-step process: (a) Recompute

the arrival streams at each node from the miss stream and the routing matrices;

(b) Recomputing the miss streams using the SCA algorithms and the new arrival

streams. The converged-to values are returned as the estimate for arrival and miss

rates (bottom right box).

Algorithm 1 presents the pseudo-code for this process, which we review now in

more detail. After initializing the estimation variables to zero (line 1) we enter the

while loop (lines 2-3). In each iteration over this loop, we assign the arrival rates at

each node according to Eq. 2.2, which in the first iteration equals the exogenous rates

(lines 5-9). We then compute the resulting miss rates (lines 10-12). The difference

between the computed values from the previous round and this round is computed

(line 13), and the loop condition is checked. We repeat this process until the sys-

tem converges to a fixed point, which is returned as the estimate for the network

performance.

To compute the distance between iteration computations, we use the Kolmogorov-

Smirnoff (K-S) Statistic, also known as K-S distance. Given two random variables,

X1, X2, the K-S statistic of these is defined as the maximal distance between their

CDFs, i.e.

max
x
|FX1(x)− FX2(x)|.

In our experiments, we computed the K-S distance for each node between one iteration

and the next. Formally, let (p
(k)
i1 , ..., p

(k)
iL) be the popularity distribution at node vi as

computed for the kth iteration, where p
(k)
ij :=

r̂
(k)
ij

∑
h r̂

(k)
ih

. The K-S distance is computed

for these distributions, between one iteration and the next, for each node. In our

25

 Repeat until

converge

Using SCA

algorithm

Using Routing

Table

Using SCA

algorithm

Initialize

rij=λij

Return

rij, sij

Compute

miss rates sij

Compute

arrival rates rij

Figure 2.4: Flow-Diagram of a-NET.

experiments, we halted the algorithm when this distance went below 10−4 for all

caches. In all of our experiments, the system converged to such a fixed point.

The number of iterations a-NET required until convergence depended on the topol-

ogy under consideration. For tree topologies, the number of iterations required was

equal to the height of the tree, since after the kth iteration there is no change to the

arrival streams at the bottom k levels of the tree, as can be proven by induction3.

For other, arbitrary topologies with multiple custodians, the number of iterations re-

quired for convergence was bounded by twice the radius of the network. These results

highlight the benefits of using a-NET over simulation of a cache network, where the

simulation length required for meaningful results can be very long.

In Section 2.5 we survey the accuracy of a-NET in detail, and for now we consider

a single example to gain some intuition as to what a-NET produces as output, shown

in Figure 1. Here we consider a 10x10 torus (see Fig. 2.6 below) with 500 files

distributed among four custodians. File popularity follows a Zipfian distribution

3Proof sketch: For k = 1, the only arrivals at the leaf nodes are exogenous, and these do not
change at any iteration. For the induction step, the kth level from the bottom receives requests
only from lower levels, and since there is no change in these levels from this iteration on per our
induction assumption, the claim is proven.

26

Algorithm 1 The a-NET algorithm.

Input: λ, c,R, ǫ, alg // alg is the SCA algorithm
1: ∀i, j ŝij := 0, r̂ij := 0
2: ∆ = 2ǫ // Dummy value, to ensure entering loop.
3: while ∆ > ǫ do
4: r̂prev := r̂ // Store for convergence check
5: for i=1 to N do
6: for j=1 to L do
7: r̂ij = λij +

∑

vk∈V
Rk(j, i)ŝkj

8: end for
9: end for
10: for i=1 to N do
11: ŝi1, ..., ŝiL = alg(c, r̂i1, ..., r̂iL)
12: end for
13: ∆ = computeDiff(r̂prev, r̂)
14: end while
15: RETURN r̂, ŝ

with parameter 0.8. The figure shows the actual and estimated s. As we can see

in this example, a-NET consistently under-estimates the miss-rates in this example,

with the approximation usually within 80− 85% accuracy.

2.4.3 a-NET convergence

Before delving into the output of a-NET, we address the issue of algorithm con-

vergence. As is clear from Algorithm 1, a-NET can only return a solution if the

iterative procedure converges to some fixed point solution. In this section we prove

such convergence is guaranteed for FIFO and RND. Showing this for LRU and other

policies is left for future work. We note, however, that in all of our LRU experiments,

the algorithm converged.

We begin with a qualification of our claim in this section. The convergence (or lack

thereof) of an a-NET implementation depends on the SCA algorithm, which is affected

in part by the replacement policy whose performance is being approximated. Since

all such algorithms attempt to reflect the behavior of the actual replacement policy,

we prove here that a perfect SCA algorithm will ensure convergence. Since the SCAs

27

0 20 40 60 80 100

cid (sorted)

0

10

20

30

40

50

60

70

80

M
is

s
R

a
te

s

aNet Performance

Sim
aNet

Figure 2.5: Example of a-NET performance, where data points are sorted according
to increasing miss rates in the simulation. Shows the miss rates of a 10-by-10 Torus
topology with four custodians, each holding a quarter of 500 files, as computed via
simulation and a-NET. Values are shown for each cache (x-axis) and sorted in as-
cending order of simulation values. Requests arriving at each node are distributed
according to Zipf distribution. 90% confidence intervals shown.

we consider here assume IRM for the arrival streams, this perfect algorithm computes

the correct miss rates given an IRM set of arrival rates. For specific approximation

algorithms, this proof approach might be applicable depending on the approximation

properties.

Since we assume IRM, we use the following important property that relates the

existence probability of fj at a cache to the hit probability for fj:

Lemma 1. If the request arrival process is IRM, ej = hj for all 1 ≤ j ≤ L.

28

Proof: Let Xk be a random variable for the identity of the file requested by the

kth request to arrive at v, such that Xk = fj indicates the kth request was for fj.

The hit probability is then, according to Bayes’ Theorem,

hj = Pr(fj ∈ v |Xk = fj) =
Pr(Xk = fj | fj ∈ v)Pr(fj ∈ v)

Pr(Xk = fj)
(2.4)

Since the arrival process follows IRM, Xk is independent of earlier requests; also note

that whether fj ∈ v is determined only by the previous requests. Thus, Pr(Xk =

fj | fj ∈ v) = Pr(Xk = fj), and continuing from where Eq. 2.4 left off we conclude

our proof:

Pr(Xk = fj | fj ∈ v)Pr(fj ∈ v)

Pr(Xk = fj)
=

Pr(Xk = fj)Pr(fj ∈ v)

Pr(Xk = fj)
= Pr(fj ∈ v) = ej

From this lemma we can compute mj := 1−hj = 1− ej, i.e., the miss probability

can be determined from the existence probability; combined with the arrival rate, the

miss rate can be computed. Thus in what follows we will focus on properties of the

existence probability of individual files in FIFO and RND.

2.4.3.1 FIFO and RANDOM replacement

We next state and prove properties of FIFO and RND that, if reflected in the

SCA algorithms used, will ensure a-NET convergence. Our proofs hold also for het-

erogenous networks, where each cache selects one of these policies independently. To

this end, we make use of the following property of these replacement policies:

Lemma 2. Let v be some cache using FIFO (or RND) replacement. Then whenever

fj ∈ v, requests for fj do not impact cache state.

Proof: With RND there is no meaning to internal ordering of content in the

cache, and requesting content that is in the cache does not generate any changes in the

29

contents of the node. With FIFO the internal ordering of content reflects the order

of when content was last inserted into the cache, but additional content references do

not impact cache state.

Lemma 3. Let v be some cache using FIFO (or RND) replacement. Let τj,in be the

mean time fj spends in v before eviction. Then τj,in is independent of rj.

Proof: From Lemma 2 we know that for both FIFO and RND, cache hits do

not affect the cache state. Since cache hits occur iff the requested content is in the

cache, during τj,in all requests for fj will generate hits, with no impact on cache state.

Thus, we specifically conclude that the value of τj,in is not impacted by requests for

fj.

Theorem 4. When each cache independently uses either FIFO or RND, a-NET

converges to a fixed-point solution.

Proof: We show that each individual cache will converge in a-NET, thus leading

to the convergence for the entire network. Recall that we are assuming the arrival

process at each cache is IRM, which allows us to use Lemma 1.

First we note that, for each file, the sum of all exogenous request rates arriving

into the system is a bound on the arrival and miss rates for each cache individually.

This is a bound on the arrival rates since the routing table is assumed to lack cycles,

so requests never move through a cache more than once on their way to a custodian.

Furthermore, by definition the miss stream rates at a cache are bound by the arrival

stream rates, so by transitivity the miss stream of each cache is bound from above as

well.

Next, we now show that for a cache using RND or FIFO, the miss rate for fj

increases monotonically with an increase to the arrival rate of fk requests. We consider

two scenarios:

30

• j 6= k: From Lemmas 2-3 we know that the added requests for other content

only impact the cache state if they generate a cache miss, and cache misses

for fk 6= fj generate evictions at the cache, which can cause fj to be evicted

sooner. Thus, an increase in requests for fk 6= fj can only decrease τj,in. Let δ

be the decrease in τj,in, hj be the original hit probability and h
(δ)
j the new hit

probability. With IRM an eviction is independent of past and future requests,

so τj,out = 1/rj; From Lemma 1 we know the hit probabilities are equivalent to

the existence probability, so we get

hj =
τj,in

τj,in + 1/rj
>

τj,in − δ

τj,in − δ + 1/rj
= h

(δ)
j

The miss rate is then increased, since the arrival rate for fj remained unchanged:

sj = rj(1− hj) < rj(1− hj(δ)) = s
(δ)
j .

• j = k: With the increase in requests for fj the hit probability increases as well.

We show now that despite this rise, the miss rate continues to increase.

Let sr(rj) be the miss rate for fj given that r is a vector of the arrival rates of

each fh 6= fj, and rj the arrival rate for fj. Similarly we use er(rj), hr(rj) to

denote the existence and hit probabilities as a function of r and rj. So,

sr(rj) = rj(1− hr(rj)) = rj(1− er(rj))

= rj

(

1−
τj,in

τj,in + 1/rj

)

= rj
1/rj

τj,in + 1/rj

=
1

τj,in + 1/rj

Taking the derivative of this expression w.r.t. rj we get (keeping in mind that

τj,in is independent of rj, as shown in Lemma 3)

31

sr(rj)
′ =

1

τj,in + 1/rj
·
1

r2j
> 0

This expression is always positive, and so we know that the miss rate is mono-

tonically increasing, despite the rise in hit probability.

From this property, we prove using induction that in each a-NET iteration the

arrival and miss rates for each file monotonically increase. In the first iteration, the

arrivals are the exogenous arrivals and the miss rates are set to zero. At the end of

the first iteration, the miss-rates are non-zero, and the arrivals are now a combination

of the exogenous arrivals and the endogenous miss flows. For the induction step, we

know from the claim above that if there is an increase in the arrival rates, there will

be an increase in the miss rates, so the the claim is proven.

We conclude our proof by stating that since the arrival and miss rates are mono-

tonically increasing but bounded (per cache) from above, the system converges to a

fixed point.

2.4.3.2 Convergence for LRU

In proving the convergence of a-NET for FIFO and RND replacement, we lever-

aged the monotonicity of the miss stream in these caches. Based on our experience,

such an approach is not suitable for proving convergence with LRU. Our experiments

have shown that, with LRU, increasing the arrival rate for a given file can actually

reduce the miss rate for that file. Specifically, consider the miss rate for file fj at some

cache v using LRU, as a function of rj. Our experiments indicate that the miss rate

for this file is unimodal: sj first increases with rj, then decreases. Assuming that this

observed behavior is indeed a property of LRU, it can be explained by the fact that

with LRU a popular file can remain almost indefinitely in the cache, thus having a

near-zero misses. Thus, other proof techniques should be considered when proving

convergence of a-NET where caches use LRU as a replacement policy.

32

Table 2.2: Default values in simulations

Parameter Value (default)
Topology Tree / 10x10 Torus

num. of files (L) 500
Popularity distribution Zipfian with parameter 0.8
Confidence intervals 90%

2.5 Performance Evaluation

In this section we evaluate the performance of a-NET, varying multiple parame-

ters: network connectivity, custodian placement, request distribution, cache dimen-

sions and the number of unique files in the system. While most of our experiments

relate to LRU caches, we demonstrate a-NET also for RND replacement. Finally, we

also consider the impact of download delay on the approximation accuracy. Some of

these results are used to motivate our discussion of the properties of a-NET in the

following sections of this chapter.

In this chapter, the default network parameters are specified in Table 2.2. We

consider two basic topologies:

Trees. These are complete k-ary trees, with a single content custodian at the root.

These topologies are studied in much of the related work, though usually for

small-scale, two-level scenarios.

Toruses. See Fig. 2.6 for a 2D depiction of this topology. As shown there, this

topology can be viewed as a grid where nodes directly opposite at the grid

rim have edges between them. Unless otherwise specified, we divide the files

among four custodians. These custodians that are placed in the network so as

to maximize the minimal distance between any two custodians, thus generating

much traffic in both directions across all links in the network. To the best of

our knowledge, these topologies have not been addressed to-date in the cache

33

networks modeling literature, and thus we present here more torus than tree

topology simulations.

Our selection of the Torus topology (instead of more realistic topologies) was

motivated by the significance of custodian placement in these networks. The

location of each content custodian in the network determines the direction

in which requests are routed. In order to avoid simulation artifacts that are

strongly affected by this custodian placement within the topology, we selected

the torus topology due to its symmetric structure.

In order to measure approximation accuracy, the metric we focus on here is the

miss probability ratio, abbreviated MPR. The MPR is the ratio, for each node, be-

tween the actual miss-probability at that node and the approximated miss probability.

V1 V2

V100

V56

V91

V51

V11

V10 V6

V91

V10

V91

V10

V12

Figure 2.6: Torus topology used throughout this dissertation. Four custodians are
indicated (bold borders) at nodes 1,6,51,56. The torus property is explicitly denoted
for nodes v1, v100, but apply across all the border.

Impact of number of files, cache size and exogenous distribution. We

consider the impact of changes to the number of files L and the cache size c on a-NET

34

accuracy for the torus topology. In Figure 2.7 we plot the MPR for each node, for

varying combinations of L and c. As can be seen in this figure, as the L/c ratio

increases, so does a-NET prediction improve its precision. Figure 2.8 shows, for these

cases, the correlation between the simulation miss probability and the MPR. We can

see here that the MPR increases as the miss probability grows, though this effect is

weaker within each scenario. The fact that a-NET performs better when the L/c ratio

increases is an important feature for practical uses of a-NET, as in real systems this

ratio is expected to be very large. We also can see in Fig. 2.9 that a-NET performs

better as the exogenous distribution is closer to uniform.

Impact of node degree. Figure 2.10 shows the MPR in a complete k-ary tree as

a function of the tree branching factor (i.e., the value of k). Our results show clearly

that as the branch factor increases, so too does the accuracy of a-NET improve.

This same behavior is exhibited with other exogenous popularity distributions, such

as uniform and geometric. Thus, it seems that a-NET is more precise as the node

degree increases. Additional corroboration for this can be seen in Fig. 2.11, which

shows the precision of a-NET over a random graph where each pair of nodes has an

edge with probability p, shown in the x-axis. As p grows, the performance of a-NET

also improves, matching our findings in trees. However, in Random graphs and unlike

the tree scenario, increasing p also decreases the path length between nodes, which

causes a-NET to require fewer iterations. Thus, the decrease in error here might be

related to a different factor. We provide some analytical support for the importance

of node degree Section 2.6.

Impact of inter-custodian distance. In a torus topology where custodians are

close together, we expect the network to behave in a similar manner to that of a Tree

with a single custodian. Specifically, on most edges in the network, requests will flow

in one direction and content in the opposite direction. By distancing custodians from

one another we generate cross-flows on edges.

35

0 20 40 60 80

cid (sorted)

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

M
P
R

 (
S
im

/A
p
p
ro

x
)

aNet - impact of |F|/c ratio

f=500, c=5
f=500, c=20
f=250, c=20

Figure 2.7: Per-node MPR for 10-by-10 torus networks, as a function of the L/c ratio.
The values were sorted in ascending order. As we can see here, as the ratio grows the
performance of a-NET improves.

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Simulation Miss Probability

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

S
im

/A
p
p
ro

x
 M

P
R

aNet - Correlation between Miss Probability and MPR

f=500, c=5
f=500, c=20
f=250, c=20

Figure 2.8: For the same scenario shown in Figure 2.7, the correlation between MPR
and miss probability in the simulation. Each point represents the miss probability
and MPR for a cache in the network. For each of the three scenarios we show the
correlation for a single simulation. We can see here that between scenarios, the MPR
decreases as the miss probability increases.

36

0 20 40 60 80

Cache ID (sorted)

1.01

1.02

1.03

1.04

1.05

1.06

M
P
R

 (
si

m
/a

p
p
ro

x
)

aNet - Impact of Exogenous Distribution

Zipf 1
Zipf 0.6

Figure 2.9: Per-node MPR for 10-by-10 torus networks, as a function of the arrival
distribution (Zipfian with parameters 1.0 and 0.6). The values were sorted in ascend-
ing order. As we can see here, as the distribution becomes less skewed (0.6), the
performance of a-NET improves.

0 (root) 1 2 3

Level

0.99

1.00

1.01

1.02

1.03

M
P
R

 (
a
p
p
ro

x
/s

im
)

aNet - Branch Factor Impact

k=3
k=4
k=5

Figure 2.10: The impact of a tree branch factor on a-NET performance. Due to
symmetry within the tree, values for each level are aggregated. We can see that as
the branch factor grows, so does the approximation become more accurate.

37

Our results (Fig. 2.12) indicate that performance degrades as the inter-custodian

distance grows. While the exact mechanism that explains this is currently unknown,

this result highlights the complications inherent in non-hierarchical systems.

a-NET for Random replacement. To demonstrate the flexibility of a-NET,

we present here in Fig. 2.13 the MPR for a different replacement policy — Random

replacement, using the SCA algorithm defined in Appendix A. As can be seen here,

a-NET demonstrates very high accuracy for this scenario. We leave an extensive

review of this accuracy under different conditions to future work.

Impact of delay. a-NET was designed to compute estimates under the ZDD

assumption. In Figures 2.15-2.14 we show the impact of adding propagation delay to

the system on its precision. We add a small amount of constant delay to the system:

the mean exogenous arrival rate at each node was 10 requests per time unit, and so we

let query propagation be of length 1/20 and content propagation 1/10, to reflect that

content is larger and thus might take longer move in the network. We also consider

the impact when these values are doubled. Note that since a-NET does not take delay

into account, adding delay only changes the simulation data, not the approximated

values.

Fig. 2.14 shows the per-node performance, and Fig. 2.15 shows this after sorting

the values in ascending order, independently for each delay. In Fig. 2.14 we can see

that on a per-node basis, the delay at most of the nodes has not impacted performance

to a large degree. Also, we take note that content custodians are placed at nodes

0, 5, 50, 554, and that most of the large deviations as a function of delay take place at

these nodes and their immediate surroundings. In Fig. 2.15 we can see a clear trend,

that per-node approximation accuracy improves as the delay increases, lowering the

miss probability of the nodes. While a majority of nodes still have an MPR above 1.0,

4These indices are off by one compared to Fig. 2.6, due to programming indices starting from 0.

38

0.0 0.2 0.4 0.6 0.8 1.0
Connectivity Parameter

1.000

1.005

1.010

1.015

1.020

1.025

M
P
R

MPR for random graphs as a function of connectivity

Figure 2.11: Mean MPR for random graphs over 400 nodes, as a function of p, the
probability that each edge is in the network. The mean is taken over 10 simulations
for each p, with 95% confidence intervals showing.

0 20 40 60 80

cid (sorted)

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

M
P
R

 (
si

m
/a

p
p
ro

x
)

aNet - Impact of Inter-Custodian distance

Radius=0
Radius=5

Figure 2.12: The impact of inter-custodian distance on a-NET, for 10x10 torus topolo-
gies and four custodians. Radius indicated the minimal distance between custodians,
and values are sorted in ascending order. As seen here, the increased distance makes
performance degrade.

39

and for these a-NET under-estimates the miss probabilities, it seems that with large

delays a-NET might eventually become an upper bound on the number of misses in

practice.

40

0 20 40 60 80

cid (sorted)

1.000

1.005

1.010

1.015

1.020

1.025

1.030

M
P
R

 (
a
p
p
ro

x
/s

im
)

aNet - Random Replacement

RND

Figure 2.13: a-NET performance for Random Replacement, using the SCA Algorithm
defined in Appendix A. As can be seen here, precision here seems to be higher than
for LRU.

41

2.6 Analysis of performance-affecting factors

A close review of all the examples shown in the previous section reveals that,

under the ZDD assumption, a-NET usually under-estimates the MPR per cache. In

the next two sections we investigate the cause or causes for approximation error in a-

NET (§2.6). By determining these causes, we can identify features of a cache network

that can affect the performance of a-NET. Such analysis can also help determine the

aspects to focus on when developing improved approximation tools in the future.

We argue that for any implementation of a-NET as shown in Algorithm 1, there

are three5 possible error-causing factors to consider for a-NET:

Prediction error of the SCA algorithm. The precision of the SCA algorithm(s)

clearly impacts the precision of a-NET for the entire network.

Non-IRM flows. The SCA algorithms we use here were developed for IRM arrival

streams, while the actual arrival stream at a cache contains dependencies. Since

the arrival stream does not match the model for which the SCA algorithm was

designed, this can cause approximation errors.

Error propagation / Input error. In each iteration of a-NET, the computation

of the arrival streams is based on the misses computed in the previous iteration.

Thus, errors in the preceding iteration (due to one or both of the causes men-

tioned previously) cause the input to the next iteration to be inexact, which

in turn causes the prediction in the next iteration to be inexact as well. Thus,

we can see that errors to the input of a cache propagate through the system

with each iteration, which might cause small deviations at one cache to have

considerable impact on the final system-wide estimate.

5Note that since we assume ZDD for this chapter, we ignore aspects that involve the download
delay.

42

0 20 40 60 80

cid

0.94

0.96

0.98

1.00

1.02

1.04

1.06

M
P
R

 (
a
p
p
ro

x
/s

im
)

aNet

ZDD
Delay x 2

Figure 2.14: Per-node MPR for 10-by-10 torus networks, as a function of propagation
delay. Delay for query propagation was set to be half the request arrival rate per-
node, and content propagation double that. For the increased delay, the values are
doubled. The nodes that are impacted the most by the introduction of delay are
those close to the custodians (nodes 0, 5, 50, 55).

0 20 40 60 80

cid (sorted)

0.94

0.96

0.98

1.00

1.02

1.04

1.06

M
P
R

 (
a
p
p
ro

x
/s

im
)

aNet

ZDD
Delay
Delay x 2

Figure 2.15: Per-node MPR for 10-by-10 torus networks, as a function of propagation
delay. The arrival rates at each node were 10 requests/unit time; propagation delay
of requests was 0.05 time units; and content download delay is 0.1 time units. For
the increased delay, the propagation delay values are doubled. Values are sorted
in ascending order to emphasize the fact that as the delay grows, the per-cache
performance of the network seems to improve, as the miss-probability decreases.

43

We next present an analysis of these factors, isolating the effect of each factor

on a-NET accuracy. For system performance, we again select the miss probability

at a cache, though this methodology can be equally applied for other performance

metrics, such as miss rates. Denote the miss probability of a given system by sim,

and similarly let aprx denote the corresponding values for the a-NET approximation.

The ratio sim/aprx is the prediction error. We then conduct the following three

additional experiments to determine the impact of each of these factors:

Quantifying the impact of non-IRM traffic. Recall that our SCA algorithm (and

hence a-NET) assume IRM arrivals at each cache. To evaluate the impact of

this assumption we do the following. From the true (simulated) system we

determine the distribution of requests r at all nodes. Note that no IRM as-

sumptions were imposed on these request flows, which are a mixture of IRM

exogenous flows and (possibly) non-IRM endogenous flows. We then perform a

second simulation of each of the individual nodes in isolation, using r as input

but generating arrivals in accordance with IRM. Thus, this second simulation

(termed a quasi-simulation, and formally defined in Algorithm 2) is similar to

the first, except that we have introduced IRM-ness into the combined arrival

stream at each node. We then compare the miss probabilities of this second

simulation to the original simulation. Both of these simulate the performance

of the cache using the same arrival rates r, only the first simulation makes no

assumptions regarding dependencies in the stream, while the quasi-simulation

receives IRM flows as input per cache. Thus, the only difference between these

is the impact of IRM.

Quantifying the effect of error propagation. Our approach here is similar to

that of our factor analysis of IRM. We once again determine r, but this time give

it as input to the SCA at each node. We call the result of this approximation

a quasi-approximation, which is formally defined in Algorithm 3. We then

44

compare the miss-probability of this approximation to that of a-NET. Both

of these use the same SCA algorithm per node, which assumes IRM in the

arrival stream. They differ only in the propagating error — a-NET uses the

estimated arrival rates r̂ as input while the quasi-approximation uses r.

Quantifying the impact of the SCA algorithm. Depending on the method of

computing the misses at a cache given the arrivals, this method might intro-

duce additional inaccuracies into the estimates of a-NET, especially when using

an approximation algorithm for this purpose. Thus, we seek to quantify the

effects/magnitude of the error introduced by the SCA algorithm we used in

our work. From the true (simulated) system we again determine the request

rates r. We then adopt the IRM assumption to drive both a simulation of, and

an SCA computation of, each node in isolation and examine the ratio of these

performance computed via these two techniques. In other words, we compare

the performance of the quasi-simulation to that of the quasi-approximation. In

this case, the only difference at each node is the manner in which individual

cache performance is computed (by the approximate SCA or by simulation,

both assuming IRM), as the inputs are identical.

Algorithm 2 Computing Quasi-simulation

Input: G, r, c, simIRM
1: for i=1 to N do
2: (ŝi1, ..., ŝiL) := simIRM(c, ri1, ..., riL)
3: end for
4: RETURN ŝ // With r and ŝ, compute performance

Formally, for node vi sim(vi) denotes the simulated miss probability at vi, and de-

note similarly for a-NET, the quasi-simulation and quasi approximation with aprx(vi),

q-sim(vi) and q-aprx(vi) respectively. Above we explained how

• sim(vi)
aprx(vi)

quantifies the approximation error;

45

Algorithm 3 Computing Quasi-approximation

Input: G, r, c, alg
1: for i=1 to N do
2: (ŝi1, ..., ŝiL) := alg(c, ri1, ..., riL)
3: end for
4: RETURN ŝ // With r and ŝ, compute performance

• q-sim(vi)
q-aprx(vi)

quantifies the SCA error;

• q-aprx(vi)
aprx(vi)

quantifies the propagating error;

• sim(vi)
q-sim(vi)

quantifies the non-IRM error;

and we can easily see

sim(vi)

aprx(vi)
=

sim(vi)

q-sim(vi)
×

q-sim(vi)

q-aprx(vi)
×

q-aprx(vi)

aprx(vi)
(2.5)

Which can be interpreted as

a-NET error = IRM error× SCA error× Propagating error.

Let us next consider a few examples of this methodology at work. Recall that

we are focused on the miss probability ratio, abbreviated MPR, the ratio of the miss-

probability of each cache according to the different simulations and approximations.

The results for both torus and tree topologies, when using the SCA algorithm

presented in [14] and described in Appendix A, are shown in Figures 2.16 and 2.17,

respectively. In both of these we can see that, once removing propagating and IRM-

based errors, the error all but disappears (i.e., the ratio is close to 1.0). More impor-

tantly, the strongest impact on approximation error is that of non-IRM traffic — the

dependencies within the miss stream.

One implication of this observation is that in networks where the dependencies in

the endogenous flow are lessened, the approximation error will decrease. Recall that

46

0 20 40 60 80

Cache ID (sorted)

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

M
P
R

aNet - Factor Analysis

aNet Accuracy
non-IRM Error
Propagating Error
SCA Error

Figure 2.16: Example of analyzing the impact of error factors on a-NET, for the plot
shown in Fig. 2.5. As in said figure, we consider performance of a 10-by-10 Torus
topology with four custodians, each holding a quarter of 500 files. Requests arriving
at each node are distributed according to Zipf distribution. 90% confidence intervals
show. The results are plotted in ascending sim-to-approx order. As can be seen here,
the non-IRM traffic is the major contributor to approximation error

we saw earlier that the performance of a-NET improves for trees as we increase the

branch factor k of the tree. The incoming flow at each node in a tree is a mixture

of the miss flows from lower down in the tree, and specifically note that these flows

are independent of one another6. As k grows, this incoming flow is a mixture of

more mutually-independent flows, which reduces the intra-flow dependencies, and as

k goes to infinity, we get closer to a purely IRM request stream at vi. This hypothesis

is supported by the results shown in Figure 2.10 for k-ary trees. The results show

clearly that as the branch factor increases, so too does the accuracy of a-NET.

6This is true since each of vi’s children does not share any descendants with any other child of
vi, and we are assuming ZDD.

47

0 (root) 1 2 3 4

Tree Level

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

M
P
R

aNet - Factor Analysis

aNet Accuracy
non-IRM Error.
Propagation Error
SCA Error

Figure 2.17: Example of analyzing the impact of error factors on a-NET, for a cache
hierarchy - a 4-level binary tree. As can be seen here, the non-IRM traffic is the
major contributor to approximation error

2.7 summary

In this chapter, we presented a-NET, an algorithm for approximating the perfor-

mance of cache networks of arbitrary topology and scale. Given an SCA algorithm

for each of the replacement policies used in the network, a-NET can also compute

performance estimates for heterogenous networks.

An important note to make is that a-NET can support additional stream represen-

tations, and these might greatly affect the accuracy of a-NET. In the implementation

we considered here, the SCA accepted as input the arrival rates at each cache and

gave miss rates as output, thus implicitly assuming IRM. If, however, an SCA were

to be developed that considered parameters that expressed the locality of reference

within the arrival stream in addition to the rates, a-NET could be used with this as

well, and might indeed produce more accurate results than shown here.

Since, in our experiments, the inherent error in the SCA algorithms we used (See

appendix A) was very small for IRM traffic, our experiments can also be viewed as

indicating the impact of non-IRM flows on the performance of LRU caches within a

48

network. Our results thus join observations made by others, that the miss stream

of an LRU cache does is not suitable for efficient caching as is. This phenomenon

has been widely observed in the literature, leading some to propose heterogenous

architectures, where neighboring caches use different replacement policies [8, 22, 71,

73]. This highlights the importance of mixing the miss flows, as we have shown in

addressing the impact of node degree on cache performance.

As for future work, we have constructed a Markov model for characterizing the

miss stream of a cache, to further understand the difficulty posed for caching by

the miss stream of a cache. While some progress has been made in characterizing

the miss stream for Zipfian arrival streams [28], little is understood about the miss

stream under arbitrary arrival loads. Our model can compute the inter-arrival dis-

tance between requests in the miss stream for any IRM arrival stream for both LRU

and FIFO replacement, from which we can determine certain properties of the next-

hop cache performance. We believe that with the insights gained from this model,

better understanding (and, hopefully, better cache network architectures) could be

developed.

49

CHAPTER 3

A NETWORK CALCULUS FOR CACHE NETWORKS

3.1 Introduction

The previous chapter highlights the difficulty in approximating efficiently the per-

formance of a cache network. The endogenous flows that flow within the network have

complex dependencies, and this mismatch with the simple IRM flow model expected

by the SCA algorithm causes approximation error. In this chapter, we address this

challenge by developing an alternate approach — a network calculus for computing

deterministic bounds on the request flows that move through the cache network. We

show how these flow bounds can then be used to calculate performance bounds for

metrics such as the cache miss rate for a given piece of content at a given network

cache. Our work is inspired by Cruz’s pioneering network delay calculus [13] for de-

terministically bounding flows in general queueing networks, which later led to new

bounding techniques [46,63,64,72] and found use in fields beyond classic queueing net-

works, including sensor networks [31,62], smart grids [45] and anomaly detection [56].

While flows in a network delay calculus represent units of work routed among queues,

flows in a cache network represent content requests routed among caches. Here, a

request may either be satisfied at a cache (and the content subsequently stored at

downstream caches as requested content is returned to the requestor) or forwarded

upstream to another cache in the event of a cache miss. Queueing networks and cache

networks thus have many fundamental differences.

Our work makes several important contributions.

50

1. We define an upper-bound characterization of a stream of requests at a cache,

and highlight differences between cache networks and queueing networks.

2. We develop a calculus for computing bounds on the miss stream of an LRU

cache, given bounds on the incoming request stream. We show that these

bounds are tight and consistent, i.e., that the upper bound can be realized

for all files simultaneously.

3. We use this calculus to gain analytical insights into the behavior of LRU caches

in isolation, and in networks. We identify the uniformizing effect of LRU on

the request stream, and the impact of cache and topology diversity on system

performance.

4. Using an iterative fixed-point approach similar to a-NET, we use this calculus to

study LRU replacement in cache networks with arbitrary topology. Our results

indicate that these bounds can be close-to-tight for realistic network scenarios.

More generally, we believe our work represents an important step forward in de-

veloping performance models for emerging content-centric networks, as well as other

systems in which an interconnected network of caches provides efficient, scalable con-

tent distribution.

The remainder of this chapter is organized as follows. In Section 3.2 we present

related work. In Section 3.3 we present our flow model, and define the notion of

bound tightness. In Section 3.4 we present theorems on bounding the number of

cache misses over a finite window, and formulate theorems bounding the miss stream

flow in Section 3.5. These theorems reveal analytical properties of LRU’s impact on

request flows. In Section 3.6 we use our calculus to study the performance of cache

networks and evaluate bound tightness. We conclude with a summary of our results

and discussion of future work.

51

3.2 Related Work

Beginning with Cruz’s pioneering network delay calculus [13], numerous researchers

have developed both deterministic and stochastic calculi for bounding the perfor-

mance of networks of queues [46]. Networks of queues, where units of work proceed

from one queue to another are quite different from networks of caches, which per-

form a filtering function, only forwarding cache misses on to the next hop towards a

custodian.

A number of efforts have adopted a bounding approach, similar to network delay

calculus for analyzing systems with complex, time-varying, stochastic flows. These

efforts have analyzed energy flows in smart grid systems [45, 70] and energy harvest-

ing/expenditure in wireless sensor networks [31]. While the flows in these systems

are characterized by (σ, ρ) bounds, the behavior of individual components through

which these flows pass, and the manner in which the bonded flows are transformed,

are quite different from cache networks.

In our bounding model, the rate component is used to indicate the popularity of

content while burstiness is used to bound the variation in arrival rates. Other models

for flows in the network can be considered. Fonseca et. al. [18] proposed characterizing

a stream using two different measures: the popularity distribution was characterized

as a whole by its entropy, with lower entropy indicating skewed distributions, and

the inter-arrival distribution for the entire stream was expressed via coefficient of

variation. While their approach can be helpful in analyzing existing streams (as

proposed in [18]), in its current form it does not differentiate between files, nor does

it readily lend itself for computing the impact of LRU on the flow.

3.3 A (ρ, σ) Model for Cache Networks

In this chapter we continue using the model presented above in Section 2.2 for

CNs.. In this section we present the model we use here for flow bounding (§3.3.1).

52

We define the concept of tight bounds as used in this chapter (§3.3.2), and conclude

with an expositional example of bounds on the miss stream (§3.3.3).

3.3.1 Bounding Model

In this work we adopt the flow model proposed by Cruz [13]. For a stream of events

over time let R(t) be the number of events that took place at time slot t. These events

can be jobs or packets in queueing networks, or content requests in cache networks.

In this work, we consider the latter. For a stream R(t), (ρ, σ) is a deterministic

bounding representation of a stream, if for any interval [t1, t2), 0 ≤ t1 ≤ t2 ∈ R,

∫ t2

t1

R(t) ≤ ⌈ρ(t2 − t1) + σ⌉ (3.1)

Note that we take the ceiling of the bound since arrivals are binary in nature —

a request either arrives or does not arrive during some window, yet ρ(t2− t1)+ σ can

be any real number.

In queueing networks, the standard interpretation of ρ is the average arrival rate

per time unit, and σ indicates the “burstiness” component of the stream, as the

bounds allow σ packets to arrive irrespective of the size of the window. In Cruz’s

work [13] this bounding property was denoted as R ∼ (σ, ρ). However, as we shall see

later on, cache networks differ from queueing networks in that the rate component

dominates the impact on the miss stream. We express this by modifying the notation

slightly, and use instead R ∼ (ρ, σ).

The key result in [13] for queueing networks is that if each input flow j (corre-

sponding to a source-destination node pair in a queueing network) has a (ρj,in, σj,in)

characterization, then its output flow has a (ρj,out, σj,out) characterization that can be

computed as a function of the input characterizations at that node, {(ρk,in, σk,in)}
L
k=1

for L input flows (see Figure 3.1). These output flows are then the input flows at the

subsequent network nodes, and in this manner, per-flow bounding characterizations

53

can be “pushed” through feed-forward networks. For non-feedforward networks, a

system of simultaneous equations can be established and solved. Here we develop a

calculus for cache networks, specifically those employing LRU caches, which is the

policy of choice for many ICN architectures.

(��,��, ��,��)

V1

(�	,��, �	,��)

(�
,��, �
,��)

(��,��
 , ��,��
)

(�	,��
 , �	,��
)

(�
,��
 , �
,��
)

Figure 3.1: Network calculus - high-level depiction of flow-bounds “entering” the
cache and miss-flow bounds “leaving” the cache.

3.3.2 Bound tightness

Next, we address how to select the bound for a given stream. Since (ρ, σ) is only

an upper bound, there are an infinite number of bounds for any given stream: for

example, if (ρ, σ) is a bound for R(t), then for any positive ∆ρ,∆σ (ρ+∆ρ, σ +∆σ)

is also a bound for R(t). Thus, we define the following concept of bound tightness:

Definition 5. For a given (ρj, σj) bound for fj requests we will say that it is globally-

tight if (a) limt→∞
1
t

∫ t

t′=0
Rj(t

′)dt′ = ρj, i.e., if ρj is the average rate of requests, and

(b) if ⌈σj⌉ ≥ 0 is minimized given that ρj.

Lemma 6. ρ is minimized over all bounds when the bound is globally-tight.

Proof: Let (ρg, σg) be the globally-tight bound, and (ρ, σ) be any other bound

for R(t). By construction, limt→∞
1
t

∫ t

t′=0
R(t′)dt′ = ρg . Additionally, using equation

3.1 we conclude our proof:

54

∫ t

t′=0

R(t′) ≤ ⌈ρt+ σ⌉ ≤ ρt+ σ + 1

lim
t→∞

1

t

∫ t

t′=0

R(t′) ≤ lim
t→∞

ρ+
σ + 1

t

ρG ≤ ρ

In what follows we shall prove that globally-tight bounds always exists for bound-

able flows, and these are the bounds we shall compute. We select these bounds because

they support the interpretation of ρ as the long-term mean arrival rate, which is con-

venient in several contexts. For example, for a given arrival stream characterization,

we can compute ρ by computing the mean arrival rate.

3.3.3 Bounds at work: an example

We conclude this section with a simple example of bounding a miss stream, to

give the reader some intuition regarding the impact of caches on request streams,

specifically regarding how these streams are characterized using the (ρ, σ) model. We

use this example to draw distinctions between the manner in which queueing networks

and cache networks behave.

For a given cache v, let Rj,in(t) be the arrival rate for qj requests at v, and let

Rj,out be the miss rate for qj at v, for all 1 ≤ j ≤ L. Assume that these flows are

bounded as follows:

R1,in ∼ (ρ1,in, 0), ρ1,in > 0

∀2 ≤ j ≤ L Rj,in ∼ (0, σj,in), σj,in > 0

Aside from the f1 flow, the remaining streams will consist of a finite number of

requests over an infinite window of time. Consider now the case where the cache

55

size is c = 1. The miss stream is maximized for all request streams when the arrival

stream is an alternating sequence of requests, i.e.,

f1, f 6=1, f1, f 6=1, f1, f 6=1, ...

In this sequence, all qj for j 6= 1 will generate a miss, and we will also have
∑L

j=2 σj,in + 1 misses for fj (we add the 1 for the first request of f1). After all these

misses take place, all requests for f1 will generate cache hits. Thus, we move from

arrivals R1,in ∼ (ρ1,in, 0) to misses R1,out ∼ (0,
∑L

j=2 σj,in + 1).

We glean several insights from this example. First, note that the ρ component

has disappeared in the miss stream, and that a σ component (that did not exist in

the input stream) has appeared instead. Thus, there is no conservation of flows in

this model, nor is there no conservation of ρ or σ individually.

A second observation is that the miss stream of f1 is bounded by the combined

arrival streams for the other files. A cache miss for f1 occurs only if requests for

other files caused f1 to be evicted from v before the next f1 request arrived. This

underscores the difference between queueing and cache networks. In the former, an

increase in traffic of flow i might decrease the rate of flow j by causing flow j packets

to be dropped; in the latter, an increase in flow i can have the opposite effect, by

causing evictions of fj and subsequent additional misses.

One final and critical insight here is regarding the interpretation of σ. In the

context of a queue, the worst case usually occurs when a large burst of jobs arrives

at the queue at the same time. Thus, in queueing networks, the σ component is

commonly referred to as the burstiness component. However, in the example we

show here, the worst case is when the σj,in requests for fj arrive spaced out, to

generate maximum misses at the cache w.r.t. f1 and fj. Additionally, note that the

miss stream of f1 has a positive σ component, despite the fact that the miss stream

is only a thinning of the non-bursty arrival process. Thus, a more convenient way to

56

think of the σ component in cache networks is as a set of requests, each of which can

arrive at any time for any given window, without positioning constraints. Despite

this change, in what follows we shall stick with the conventional terms and refer to ρ

and σ as the rate and burstiness components, respectively.

3.4 Computing Worst-Case Bounds for finite windows

In this section, we describe how to bound the miss stream for each file over a

window w = [s, t). For each file we are given the number of requests that arrive

during w, and then we compute a bound on the number of misses per file during w.

w a window of time
Tj fj request stream
T combined arrival stream
I(w, j) num. of arriving qjs during window w for T
O(w, j) num. of qj misses during window w for T
Mw,j max. num. of miss sets for fj during w
Mw max. num. of miss sets during w

M̂j max. miss rate for fj

Table 3.1: Table of Notation

3.4.1 Notation and Preliminaries

We begin with notation, as summarized in Table 3.1:

• Tj = (tj,1, tj,3, tj,3...) is a (possibly infinite) monotonically increasing sequence

of times for fj requests.

• T denotes a sequence of file requests arriving at a specific cache. Formally,

T = {Tj}
N
j=1.

• The outcome of a request for fj at time t is a hit if at that time fj ∈ v, and a

miss otherwise.

57

• For a window w and request sequence T, let I(w, j) be the number of qjs in w,

andO(w, j) the number of misses. Note that for deterministic cache replacement

policies, the misses can be computed as a function of cache contents at the outset

of w and T.

Definition 7. For any file fj, requests for fi where j 6= i are said to be interfering

with respect to fj.

Definition 8. A miss set s ⊆ F for a cache of size c is a multi-set of requests for

at least c + 1 unique files, where we omit the dependence of s on c for notational

convenience. A miss sequence −→s is any ordered miss set. A miss sequence for fj
−→sj

is a miss sequence containing one or more requests qj, such that these requests make

up the sequence suffix. Formally, let Xi be the ith request in miss sequence −→s , and

let k > c be the length of the sequence. −→s is a miss sequence for fj iff there exists

an index c < h < k s.t.

∀ i ≤ h Xi 6= qj

∀ i > h Xi = qj

For example, (q1, q2, q3, q3) is a miss sequence for f3 when c = 2, but not (q1, q3, q2, q3).

A miss sequence for fj is so named for the following reason. For a window w, if

the arrivals during w form a miss sequence for fj, there is a single miss for fj which

occurs at the first qj in w. Since a miss set is a multi-set, it has the following property:

Property 9. Let s be a miss set s.t. qj ∈ s. Then

• s′ := s ∪ {qj} is a miss set.

• s′ := s \ {qj} is a miss set if qj ∈ s′.

58

Finally, a note about ZDD. As in the previous chapter, we assume in our discussion

here that ZDD applies. As a result, the order and time of requests is the same as

the order and time of the corresponding content arriving at the cache. However, we

demonstrate in Section 3.4.3 that (at least when we adopt the CCN approach for miss

forwarding1), the bounds computed for ZDD apply also when ZDD is not assumed

and download delay can be positive. Thus, the bounds computed here are applicable

also to realistic systems.

3.4.2 Bounds over window w

We begin with bounding O(w, j), given T. For a given window w, denote with W

a partition of w, W = {w1, ..., wl} s.t. w = w1|w2|...|wl. (| indicates concatenation).

Lemma 10. For a given request sequence T and window w, and assume fj is the

most recently requested file at the beginning of w, O(w, j) equals the maximal number

of wk ∈ W for any partition W of w s.t. the requests in wk form a miss sequence for

fj.

Proof: With LRU, a cache miss occurs for fj iff c interfering requests for unique

files arrive at the cache between two consecutive requests for fj. Including the qj

request at the end of this sequence, we get a miss sequence. A any additional requests

for fj at the end of the sequence retain the definition as a miss sequence, yet generate

only hits as the file is still in the cache. Note that since we assume fj was the most

recently requested file when w starts, the first cache miss for this file will also occur

only after it is evicted by the first c requests.

Note that any partition of w defines also a partition of the arrivals over w into

disjoint sets. In what follows, we will say that miss-sets are disjoint if each is contained

1Recall the CCN approach states that if several requests for the same content arrive at a node
and are misses, only the first is routed on, and when the content is downloaded to this node, it is
then forwarded in all the directions from which requests came in.

59

in a different window in some partition of w. We next consider the case where the

exact sequence T is unknown, and we are only given the number of arrivals I(w, j)

over w for all 1 ≤ j ≤ L. Then, for each arrangement of these arrivals, the miss

sequence can be different. Denote

• Mw,j as the maximum number of disjoint miss-sets for qj in any arrangement

and partition of arrivals over w.

• Mw as he maximum number of disjoint miss-sets in any arrangement and par-

tition of arrivals over w.

Note that Mw is not necessarily equal to maxj Mw,j. To see this, consider a case

where c = 2 and a sequence of requests over w consisting of a single request for each

of f1, ...f9. In this scenario, Mw = 3, while for all j Mw,j = 1.

Using these definitions, the following corollary of Lemma 10 follows immediately:

Corollary 11. Given I(w, j) for all 1 ≤ j ≤ L, O(w, j) ≤Mw,j +1, and there exists

a sequence T for which this bound is reached.

Proof: The first request for fj might be a miss regardless of preceding requests

in w, for example if it is not in the cache at the beginning of w. After this request,

from Lemma 10 we have an equality between the number of misses and the number

of miss sequences for the given arrival sequence. Since Mw,j is the maximal number

of miss sequences for fj in any arrival sequence, Mw,j + 1 thus bounds the misses for

fj in this scenario, and is reachable for some sequence.

Next, in the main result of this section, we quantify Mw,j:

Theorem 12.

Mw,j = min{I(w, j),Mw} (3.2)

Proof: Assume there is an arrangement and partition for which there are Mw

miss-sets. If I(w, j) ≤ Mw, from the pigeonhole principle we can move qjs so that

60

each is in a different miss-set. If there is a miss-set with duplicates, from Property 9

it can be moved to a set with no qj without changing the number of miss-sets. Thus

we get Mw,j = I(w, j). Otherwise I(w, j) > Mw, and using the same argument we

can move qjs between sets until each has at least one qj, in which case Mw,j = Mw,

which concludes our proof.

3.4.3 Bounds and Download Delay

We complete this section by proving that our bounds apply also for the non-ZDD

case.

Theorem 13. The upper-bound on the miss stream for a ZDD system is also a

bound on the miss stream for non-ZDD systems, for the CCN approach to request

forwarding2.

Proof: When assuming ZDD, T represents the arrival stream for both requests

and content. In a non-ZDD system, however, T represents the arrival process for

requests, while the content arrives at some later point in time. Consider then a

sequence of requests T arriving over a window w1, and let w = w1|w2 be the window

during which all the requests from w1 are satisfied at this node.

First, we note that requests qj that arrive between a request qj and corresponding

download of fj have no impact on the miss stream (as they are not forwarded in the

CCN approach), so we ignore these intermediate requests temporarily. We therefore

associate each forwarded miss with a corresponding subsequent file download.

Next, we note that with LRU, cache state is only affected by file arrivals and cache

hits. As a result, the time between a cache miss and its corresponding content has no

impact on cache behavior. For example, if we kept the file arrivals as is and changed

2Recall the CCN approach states that if several requests for the same content arrive at a node
and are misses, only the first is routed on, and when the content is downloaded to this node, it is
then forwarded in all the directions from which requests came in.

61

the arrival time of the corresponding request, the number of misses over w would not

change.

Consider therefore the scenario where we make the arrival time of these requests

equal to the download time of content. This new configuration generates the same

number of misses for the requests originally arriving in w1, while abiding by ZDD.

From Lemma 14 (see below) we know that including the misses we ignored earlier

cannot decrease the number of misses over w. Thus, while the misses are spread over

a larger window (w instead of w1) in this new configuration, the total number of

misses remains the same, so the mean arrival rate does as well.

Next, we return to the requests we ignored earlier. These misses would be for-

warded on to the next cache if ZDD were assumed. By increasing the number of

misses at the next cache, this will increase the number of arrivals at neighboring

caches, which again by Lemma 14 does not result in lower miss bounds, which con-

cludes our proof.

3.5 Computing (ρ, σ) bounds on the miss stream

In this section we leverage the bounding techniques for finite windows to generate

(ρ, σ) bounds on the miss stream, given bounds on the incoming stream. We begin

with the following lemma, which states that increasing the number of arrivals over w

for file fj does not lower the bounds on the number of misses for file fk:

Lemma 14. For all 1 ≤ i, j ≤ L, Mw,i monotonically increases with I(w, j).

Proof: Increasing I(w, j) can only increase the number of disjoint miss sets

that can be constructed. So, from Equation 3.2 we get that Mw,i = min{I(w, i),Mw}

monotonically increases.

We will therefore assume that I(w, j) equals the arrival bounds over w, and say that

the bounds are tight over w. Let M̂w be Mw when for all 1 ≤ j ≤ L, I(w, j) is tight

62

over window w, and similarly regarding M̂w,j. Since we assume the bounds are tight,

and from Equation 3.1 the only parameter that impacts the bounds is the window

size, the following lemma directly follows:

Lemma 15. If |w| = |w′|, M̂w = M̂w′ and M̂w,j = M̂w′,j.

3.5.1 Bounding the miss rate

To compute bounds on ρj,out, we first show that the “burstiness” parameters

{σi,in}
L
i=1 do not impact ρj,out, as they constitute only a finite number of requests:

Theorem 16. Let T, T′ be two request streams with corresponding sets of globally-tight

bounds, {(ρj,in, σj,in)}
N
j=1 and {(ρ′j,in, σ

′
j,in)}

N
j=1, such that for all 1 ≤ j ≤ L ρj,in =

ρ′j,in. Let {(ρj,out, σj,out)}
N
j=1 and {(ρ′j,out, σ

′
j,out)}

N
j=1 be the corresponding globally-tight

bounds on these miss streams. Then, for all 1 ≤ j ≤ L, ρj,out = ρ′j,out.

Proof: W.l.o.g., assume σj,in = 0 for all 1 ≤ j ≤ L, and consider the qj miss

stream over some window w. We use the subscripts T and T ′ to distinguish between

the different streams. Since we assume that the bounds are tight over w, we set

IT(w, j) = ρj,in(t− s) + σj,in and IT ′(w, j) = ρ′j,in(t− s) + σ′
j,in. W.l.o.g. assume that

these values are integers, so we drop the rounding operation. Then, the difference in

the total volume of the arrival streams is

∆ =
L
∑

j=1

IT ′(w, j)−
L
∑

j=1

IT(w, j)

=
L
∑

j=1

(ρ′j,in − ρj,in)(t− s) + σ′
j,in − σj,in =

L
∑

j=1

σ′
j,in

For a given sequence T, each request can belong to at most a single miss-sequence

w.r.t. fj. Thus, if we maximize the number of miss-sequences for both streams, ∆

63

bounds the difference between the number of misses —
∣

∣OT ′(w, j)−OT(w, j)
∣

∣ ≤ ∆.

Since ∆ is independent of the window size and OT(w, j) =
∫ t

u=s
Rj,out(u) we get

∣

∣

∣

∣

∫ t

u=s

R′
j,out(u)−

∫ t

u=s

Rj,out(u)

∣

∣

∣

∣

≤ ∆

∣

∣

∣

∣

1

t− s

(
∫ t

u=s

R′
j,out(u)−

∫ t

u=s

Rj,out(u)

)∣

∣

∣

∣

≤
∆

t− s

We take the limit for t→∞, and recall the definition of globally-tight bounds,

∣

∣ρ′j,out − ρj,out
∣

∣ ≤ 0

ρ′j,out = ρj,out

Based on Theorem 16, we shall thus assume in this section that the σ components

of all arrival streams are 0. We next turn to bound the rate of the miss stream —

the (ρ, σ) version of Theorem 12.

Theorem 17 (ρ bounds). Let M̂ = lim|w|→∞ M̂w/|w|. Then the globally-tight bound

on the mean miss rate for fj is

ρj,out := min{ρj,in, M̂}

and there exists a σj,out for which (ρj,out, σj,out) is a bound for the miss stream.

Proof: From Theorem 12 we know Mw,j = min{I(w, j),Mw}. For tight bounds

and σ = 0, I(w, j) = ⌈|w|ρj,in⌉, which results in

M̂w,j = min{⌈|w|ρj,in⌉, M̂w},

min{|w|ρj,in, M̂w} ≤ M̂w,j ≤ min{|w|ρj,in + 1, M̂w}.

64

Dividing by |w| and taking the limit as the window size approaches to infinity we get

min{ρj,in, M̂} ≤ lim
|w|→∞

M̂w,j

|w|
≤ min{ρj,in + lim

|w|→∞

1

|w|
, M̂}

and using this sandwich argument we get

lim
|w|→∞

M̂w,j

|w|
= min{ρj,in, M̂} (3.3)

Finally, if we maximize the number of misses per window, we get that regarding the

miss process

∫

w

Rj,out(t) = M̂w,j + 1

1

|w|

∫

w

Rj,out(t) =
M̂w,j + 1

|w|

lim
|w|→∞

1

|w|

∫

w

Rj,out(t) = lim
|w|→∞

(

M̂w,j

|w|
+

1

|w|

)

= lim
|w|→∞

M̂w,j

|w|

and by the definition of global tightness we get

ρj,out = lim
|w|→∞

M̂w,j/|w| (3.4)

and from Eq. 3.3 and 3.4 we conclude that ρj,out = min{ρj,in, M̂}.

We have shown here how to compute the per-stream miss rate over an infinite

horizon. However, our bounds must hold as well for all windows, and so we must

demonstrate next that this bound can be used with a finite burstiness component for

all windows. To show this, we prove next that M̂w,j monotonically increase as |w|

grows, and since ρj,out is computed for an infinite window the argument is proven.

Let w,w′ be two windows s.t. |w| = k · |w′| for some integer k > 1. Since we

can assume the burstiness component is zero in the arrival streams, the number of

65

requests arriving in w is exactly k times that of what arrives in w′. Denote |w′| = δ

and w = [s, t). Then,

1
|w|

M̂w,j ≥(∗)
1

|w|

k−1
∑

h=0

M̂[s+hδ,s+(h+1)δ),j

=(∗∗)
1

k|w′|

k−1
∑

h=0

M̂w′,j =
1

k|w′|
kM̂w′,j =

1

|w′|
M̂w′,j

Inequality (*) is a result of the fact that we can construct miss sets for w by iteratively

doing so for each [s+ hδ, s+ (h+ 1)δ) separately. Equality (**) is based on Lemma

15. From this derivation we see that 1
|w|

M̂w,j is monotonic with the increase of the

window size. Thus we know that ρj,out can be applied to every window for some

constant σ, which concludes our proof.

Discussion. Theorem 17 reveals some interesting properties of LRU caches. As

this theorem states, the bound M̂ is the same for all files — in the worst case, LRU

acts as a capping mechanism on the arrival flow, enforcing a cutoff point at M̂ . Arrival

rates are only affected by the cache if they go above a certain value. The literature

on LRU contains observations that in practice LRU conducts a sort of “low-pass

filtering” [12] or “Majorization” [69]. Previous work on this subject showed this for

actual behavior but was limited to simulation-based conclusions, specific topologies or

analytical models for a limited range of arrival distributions. Our results here prove

this to be the case for worst-case bounds over arbitrary boundable flows and arbitrary

network topologies.

3.5.2 Computing M̂ as a function of input bounds

In the previous section we demonstrated how the per-flow bounds are a function

of M̂ . In this section we present an algorithm for computing Mw and M̂ .

We begin with the case of a finite window w. With Algorithm 4 we can compute

the value of Mw when the input is xj := I(w, j) for all 1 ≤ j ≤ L.

66

Theorem 18. Algorithm 4 returns M s.t. ⌊M⌋ = Mw.

Proof sketch: The algorithm consists mainly of iterating over two steps, shown in

lines 8 and 10 of Algorithm 4. Line 10 (and initially 5) bound the number of miss sets

by dividing the number of requests by c + 1, the size of a miss-set. Since duplicate

requests in such a set do not increase the number of misses, in Line 8 we remove

such requests from our accounting. this ensures we get an upper bound. When the

algorithm concludes, from the pigeonhole principle we show that each request can be

a part of a miss-set, so the bound is tight. Next, we prove this claim formally.

Algorithm 4 Bounds(x1, ..., xL, c).

1: // For all the following, assume 1 ≤ k ≤ L
2: for 1 ≤ k ≤ N do
3: yk := xk

4: end for
5: M := 1

c+1

∑

k yk
6: while maxk yk > M do
7: for 1 ≤ k ≤ L do
8: yk := min{xk,M}
9: end for
10: M := 1

c+1

∑

k yk
11: end while
12: RETURN M

Lemma 19. If with an arrival of {xk}1≤k≤L we can construct Mw miss sets, then

with yk := min{xk,Mw} requests for each k we can construct Mw miss sets as well.

Proof: From Property 9 we know that for any miss set, after removing duplicate

requests this set remains a miss sequence w.r.t. the same file. Thus, considering only

the cases where all miss-sets are strict sets and not multi-sets is sufficient. To generate

Mw strict miss-sets, at most one request for each file can appear in each such set, so

Mw bounds the number of requests for each file, which concludes our proof.

Lemma 20. If M ≥Mw and yk := min{xk,M}, then Mw ≤
1

c+1

∑

k yk.

67

Proof: Since M ≥ Mw, then from Lemma 19 we know that by using only yk

requests for fk does not reduce the number of miss sets we can construct. Next, since

the minimal size of a miss set is c + 1 and the sets are disjoint, the lemma is proven.

Theorem 21. Algorithm 4 returns M s.t. ⌊M⌋ = Mw.

Proof: Denote the output of the algorithm as M . First we show that in each

stage of the algorithm, M ≥ Mw. At the initialization of the algorithm we have

yk = I(w, k), and from Lemma 20 we know that in Line 5 M ≥Mw.

If we enter the “while” loop, in each iteration we reduce yk in a manner which,

according to Lemma 19, does not reduce the maximal number of miss-sets that can

be constructed. We then update the value of M in line 10, which according to Lemma

20 bounds the number of miss-sets that can be constructed. Repeated application of

these two steps will therefore not violate the condition M ≥ Mw. Thus, regardless

of entering the loop, we always get M ≥ Mw, and since Mw ∈ N, this implies

⌊M⌋ ≥Mw.

Next we show that ⌊M⌋ ≤Mw by proving that when the algorithm halts ⌊M⌋miss

sets can be constructed. By the loop exit condition (line 6) we know that yk ≤ M

for all 1 ≤ k ≤ L when the algorithm halts, and that (from line 10) M = 1
c+1

∑

k yk.

From line 10 we know that yk = M for at most c+1 files, and since for all 1 ≤ k ≤ L

xk ∈ N, taking the maximum in line 8 ensures at most c + 1 files have non-integer

yk. Thus, rounding down all yk will result in enough requests to construct ⌊M⌋ miss

sets. By the pigeonhole principle, since for all files ⌊yk⌋ ≤ M , we can construct M

miss sets, which concludes our proof.

Next, we use Algorithm 4 to compute M̂ . This is done by applying the algorithm

with ρ components as inputs, and no rounding operation.

68

Lemma 22.

1

t
Bounds(ρ1,int, ..., ρL,int, c) = Bounds(ρ1,in, ..., ρL,in, c),

where Bounds() is specified in Algorithm 4.

Proof: To show this, we note that in both lines 8, 10 the t parameter has linear

impact. In the first iteration:

line 8: yk = min{ρk,int,
t

c + 1

∑

k

ρk,in}

= tmin{ρk,in,
1

c + 1

∑

k

ρk,in}

line 10: M =
1

c + 1

∑

k

ρk,int =
t

c + 1

∑

k

ρk,in

and in all subsequent iterations, this phenomenon repeats itself, and so we can

extract the t variable from the input.

Theorem 23. M̂ = Bounds(ρ1,in, ..., ρL,in, c)

Proof: Let t be the length of window w. We can get bounds on the miss rate

with

1

t
Mw =

1

t
Bounds(I(w, 1), ..., I(w,L), c)

For the case where the arrival streams are tight over the window w we get

1

t
M̂w =

1

t
Bounds(⌈ρ1,int+ σ1,in⌉, ..., ⌈ρL,int+ σL,in⌉, c)

69

From Theorem 16 we assume the burstiness is zero, and using a sandwich argument

as in Theorem 17 the rounding operation can be ignored as t → ∞. Thus, from

Lemma 22 we conclude

M̂ = lim
t→∞

1

t
Bounds(ρ1,int, ..., ρL,int, c)

= Bounds(ρ1,in, ..., ρL,in, c)

The following theorem is also a result of this algorithm:

Theorem 24. Consider two adjacent caches A,B such that the arrival stream at B

consists totally of the entire miss stream of A, and B is smaller or equal in size to

A. Then the bounds on the miss stream in A are identical to the bounds on the miss

stream in B.

Proof: This can be determined from Algorithm 4. For equal sized caches, the

value ⌊M⌋ computed for cache A will be computed in Line 5, and the loop will not

be entered, so the same cap will be used. This the miss stream is a result of this

capping, the cache B miss stream is unaffected. For smaller caches, the cap will be

higher, once again having no impact on the miss stream of B.

Theorem 24 emphasizes the importance of cache and flow diversity in the network: In

order for the next hop cache to lower the bounds on the arrival flows it experiences,

it must be of a larger size, use different replacement policies or accept miss flows from

a multitude of neighboring caches.

3.5.3 Achieving bounds simultaneously

Until this point, our discussion has focused on the upper bounds per individual

file, rearranging the arrival order of the interfering requests to generate the worst

case for some fj. In this section, we show that in fact these bounds are tight also

70

in combination — the worst case can be reached for all files simultaneously. We do

so using a constructive proof: Algorithm 5 provides an arrangement of requests that

generates the worst-case for all files.

In Algorithm 5, which considers a window w, we take as input the number of

miss sets M and, for 1 ≤ k ≤ L, yk = min{I(w, k),M} as used in Algorithm 4. We

show now that the arrangement the algorithm produces will generate misses for all

yk requests, for all k, in the case where the cache was empty at the beginning of w.

Algorithm 5 GetMissSets(y1, ..., yL, c, M)

1: S = ∅
2: for k=1 to M do
3: ~sk = ∅ // Initialize empty sequence
4: S := S ∪ sk
5: end for
6: j = 0
7: for k=1 to L do
8: for h = 1 to yk do
9: sj := sj|qk // “|” indicates concatenation
10: j := (j + 1) mod M // Next qk request will be in a different sequence
11: end for
12: end for
13: RETURN S

Theorem 25. All yk requests for fk will be cache misses, for all 1 ≤ k ≤ L.

Proof: First note that each qk is in a different miss sequence, by the pigeonhole

principle and the fact that yk ≤M . Next, denote the position of qk in si as index(i,k) .

If qk ∈ si∩sj and i < j, the algorithm ensures index(i, k) ∈ {index(j, k), index(j, k)+

1}. Thus, if we concatenate the sequences in the reverse index order, i.e.,

~sM . ~sM−1.....~s2.~s1,

then all requests for the same file will be spaced out by at least c interfering requests.

The first requests are all misses since we assume an empty cache, which concludes

our proof.

71

The algorithm just described arranges exactly yk requests per file to generate the

worst case, when in practice there are I(w, k) ≥ yk arrivals during w. To address this,

we can place each of the excess I(w, k) − yk requests for fk adjacent to a qk in the

sequence produced by the algorithm. This will not change the number of cache misses

for any file, as a miss sequence for fj can have an arbitrarily-long suffix consisting of

requests for fj.

3.5.4 Bounding the miss burstiness

We next consider the burstiness components of the miss streams, given the arrival

stream bounds and ρj,out computed in the previous sections. In a slight variation of

our earlier definition, we define an eviction set (previously - miss set) and eviction

sequence as follows:

Definition 26. An eviction set e ⊆ F is a multi-set of at least c requests for unique

files. A eviction sequence −→e is an ordered eviction set. We say this is an eviction set

(sequence) for file j if qj /∈ e (qj /∈ −→e).

We further define similar concepts for eviction sets as we did for miss sets. Ew,j

denotes the number of eviction sets for j over w; Êw,j is Ew,j when the arrivals

are tight with the arrival bounds; and Êj = lim|w|→∞ Êw,j/|w|. Since appending an

eviction sequence w.r.t. j with a request qj yields a miss sequence, it can be shown

from Theorems 12 and 17 that

Mw,j = min{I(w, j), Ew,j} (3.5)

ρj,out = min{ρj,in, Êj} (3.6)

In what follows we also use the following two sets for each j: Xj = {k 6= j : ρk,in <

M̂}, and Yj = {1, ..., L} \ (X ∪ j).

72

Theorem 27 (σ bounds). (a) If ρj,in < Êj, then σj,out = σj,in.

(b) If ρj,in > Êj, then σj,out = Bounds({σk,in}k ∈ Xj, c−|Yj|−1), where the Bounds()

function is defined in Algorithm 4.

(c) If ρj,in = Êj, then σj,out = min{σj,in,Bounds({σk,in}k ∈ Xj, c − |Yj| − 1)}

As with the rate component, we see here once again that the less-popular files

are unaffected by the cache (as shown in part (a) of the theorem), contrary to the

popular files.

Proof: We adopt an amortized analysis approach here: for purposes of comput-

ing the bounds, we first associate requests to the rate component and then associate

the remaining requests to the burstiness component of a given bound. We say that

the first group are rate related while the second is burstiness related. We note that for

any file such that ρj,in < M̂ , the entire rate component is accounted for in computing

M̂ . We can see this by observing that in Algorithm 4 increasing this ρj,in slightly

(e.g. to anything less than M̂) will result in an increase of M̂ . On the other hand, if

ρj,in > M̂ , parts of the rate component will not be associated with any rate-related

miss-set.

(a) Assume ρj,in < Êj, then we know ρj,out < Êj from Eq. 3.6. Thus, there is a

large enough window [s,t) over which (Êj − ρj,out)(t− s) ≥ σj,in, where we can place

each of σj,in requests for qj after a eviction-sequence w.r.t. j, resulting in additional

σj,in miss-sets for j. This yields a total number of misses of ρj,outt+σj,in = ρj,int+σj,in,

which is clearly bounded by the input, so it is tight.

(b) Assume ρj,in > Êj, then from Eq. 3.6 we know ρj,out < ρj,in, so we have an

infinite number of requests for fj that are not in a rate-related miss-set. We now

construct additional miss-sets for fj by using the burstiness components. For each

k ∈ Yj we have an infinite number of qk arrivals also not in any miss-set, and all we

require to complete a miss set is to add a request qj and an additional c−|Yj| unique

requests from Xj. The number of these is at most Bounds({σk,in}k ∈ Xj, c−|Yj|−1).

73

(c) If ρj,in = Êj, both bounds from the previous sections hold using the same

arguments above. Since one bounds the potential of interfering requests and the

other the requests for fj, taking the minimum of both gives us the bound on the miss

stream burstiness.

What is left is to compute Êj. To this end, note that eviction sets for fj are

identical to miss sets, except that (a) they do not include qjs and (b) they are of

size c, not c + 1. Thus, to compute Êj we once again use Algorithm 4, but with two

changes:

• The input given is only for files k 6= i.

• In line 10 we substitute 1/(c + 1) with 1/c.

The arguments and proofs are identical to those shown for the proof regarding M̂

and so are not detailed here.

3.6 Evaluation of Worst-Case Bounds

3.6.1 Extracting bounds from Trace Data

When evaluating how close our bounds come to predicting actual performance, we

compare them to simulator-generated traces. Here we briefly discuss how to compute

the (ρ, σ) bounds for flows in the simulation, both exogenous (user-to-router) and

endogenous (router-to-router).

For a given trace, and since we compute here globally-tight bounds, this can be

computed in linear time with the length (in terms of the number of requests) of the

simulation:

• ρj is the mean request rate for fj.

• To compute σj, compute first σ′ = maxk∈N
1

tj,k+1−tj,k
, where tj,k is the arrival

time of the kth request for fj. σ
′ is the highest observed arrival rate. We then

74

compute σ by canceling out the mean rate component for that same time slot,

so we get σ = σ′ − ρ(tj,k+1 − tj,k).

In addition to computing bounds based on trace data, we may want to compute

the bounds on an arrival process based on its stochastic properties. Computing the ρ

component is once again identical to the mean arrival rate of the process. Regarding

the burstiness component, some processes do not have a deterministic bound (e.g.,

exponential distribution). In such cases, we can use a statistical bounding point: for

some α, let σα be such that

Pr(tj,k ≤ t+ σα|tj,k−1 = t) = α

for all k ∈ N. Then, σα − ρ is the burstiness bound.

Due to the negligible or zero impact that the burstiness component has on perfor-

mance (e.g., when considering the miss rates), we do not present simulation results

regarding it in this work.

3.6.2 Bound tightness in practice

We next present several results concerning the performance of our calculus. As in

the analytical sections, we focus on the ρ component, due to its centrality for system

performance. As proven in this chapter, the bounds hold for all the experiments we

conducted.

For Figures 3.3-3.5, the topology we consider is a complete binary tree of depth 4,

where level 0 is the root node, shown in Figure 3.2. By default, we assume 600 unique

files can be requested exogenously. One of the benefits of our calculus is the ability

to compute performance for non-hierarchical systems. Thus, we place two custodians

at nodes v7, v14, and split the files between them. As a result, the path from v7 to v14

experiences cross-flows — flows of requests going in both directions. We consider the

75

number of cross-flows to be the minimum of rates in either direction across a link, so

for hierarchical systems this number is zero.

0

2 1

6 5 4 3

10 9 8 7 11 12 13 14

Figure 3.2: Topology for simulations. Custodians are at nodes 7, 14.

Since we are interested in assessing the impact of cross-flows on the bound tight-

ness, we consider the case where files are distributed according to a multi-zipf dis-

tribution. The approach here is to divide the files into sets of equal size, give each

set an equal probability, and then have the popularity within each set be distributed

according to zipf. In the examples shown here we divide the files into eight sets of 75

files. The benefit of using this distribution is that it is uniform across the sets, so we

can move sets between custodians and know that each set carries the same probabil-

ity, while still modeling the realistic scenario of non-uniform request patterns. Note

that as the number of sets increases to L we get closer to uniform distribution, while

as the number decreases to 1 we get the zipf distribution.

We consider two uses of our calculus. The first is for computing bounds on a

network of arbitrary topology. We begin by computing per-node bounds when the

exogenous rates are the arrivals per node. These arrival rates are then recomputed by

combining the exogenous rates with the bounds on the miss stream that are forwarded

to that node. This process is then repeated until the system converges to a fixed point.

Essentially, we are using a-NET where our bounding algorithm acts as the SCA. We

then compare the computed bounds to the actual performance of the system using

76

simulations. As the bound-to-simulation ratio goes to 1, the bounds become more

reflective of actual performance, indicating LRU performing close to its worst case.

The second use of our calculus is for specifically studying the performance of LRU

in cache network scenarios. In this context, we simulate the performance of a cache

network and then extract the simulated arrival rates at each node. We feed these

arrival rates to the calculus and compare the actual (simulated) miss rates with the

bounds. The same interpretation of bound-to-simulation ratio applies here as well.

Figures 3.3-3.5 consider the first use case of evaluating the tightness of these

bounds. In Fig. 3.3 we gradually shift content from the custodian at v14 to the one at

v7, which generates more cross-flows. We see in this figure how this increase in cross

flows causes the bounds to be tighter, especially near the root of the tree (nodes 0-2)

where the flows are largest.

In Fig. 3.4 we see how when decreasing the cache size the bounds become tighter,

and that the same phenomenon occurs when increasing the number of files. These

results are especially relevant to cache networks, where the file-to-cache size ratio is

expected to be high, making the bounding calculus a useful tool in estimating an

upper bound on performance in practice.

We now turn briefly to applying our calculus in the second manner noted above

— to determine how well LRU performs in a cache network. We once again consider

the tree topology as before, but this time place a single custodian for all files at the

root node, thus eliminating cross flows. The results are shown in Figure 3.6. They

demonstrate that the bounds became tighter as we progress up the tree, indicating

that cache hierarchies using LRU at all levels are inefficient as they increase in scale.

The importance of this calculus is highlighted when we consider a wider variety

of arrival processes. Most models for caches consider only cases where the exogenous

arrival process follows the Independent Reference Model (IRM). In Figure 3.5 we show

how varying the inter-arrival time distribution can generate worse performance for

77

0 2 4 6 8 10 12 14

Node ID

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

M
is

s
R

a
te

 R
a
ti

o

Tree - Cross Flows - Bounding performance

no cross
75/525
225/375

Figure 3.3: Impact of cross-flows on the bound tightness. cache size on bound tight-
ness, with 90% confidence intervals shown. Setup is identical to Fig. 3.4. X/Y
indicates X files at v7 and Y files at v14.

0 2 4 6 8 10 12 14

Node ID

1.1

1.2

1.3

1.4

1.5

1.6

M
is

s
R

a
te

 R
a
ti

o

Tree - Cross Flows - Bounding performance

csize = 20
csize = 35
csize = 50

Figure 3.4: Impact of cache size on bound tightness, with 90% confidence intervals
shown. Requests arrive at all nodes following a multi-zipf distribution. Files are
divided between custodians at nodes 7, 14, with 225 files at the first and 375 at the
second. As cache sizes decrease, bounds become more tight.

78

0 2 4 6 8 10 12 14

Node ID

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

M
is

s
R

a
te

 R
a
ti

o

Tree - Cross Flows - Bounding performance

gamma 4
IRM

Figure 3.5: Impact of non-IRM traffic on bound tightness, with 90% confidence inter-
vals shown. Setup is identical to Fig. 3.4. As we see here, with inter-arrival distances
following the Gamma distribution with a scale parameter 4, bounds become more
tight relative to with IRM.

79

0 (root) 1 2 3

Tree Level

1.0

1.1

1.2

1.3

1.4

1.5

1.6

B
o
u
n
d
s/

S
im

 M
is

s
R

a
te

 R
a
ti

o

LRU Performance

200 files
300 files
500 files

Figure 3.6: Performance of LRU as compared to LRU worst-case. 90% confidence
intervals shown.

LRU. In this plot, we use the Gamma distribution to model exogenous arrivals: the

time until the next arrival of a request for fj with popularity pj = λj/
∑

i λi is modeled

according to Gamma(pj, β), where β is a scaling parameter (β = 1 generates the

exponential distribution). As we can see in this figure, as the scaling parameter grows,

the bounds become tighter. Thus, our bounding calculus is suitable for generating

upper bounds in cases where the arrival process is not known in advance.

3.7 Discussion and Future Work

In this work we presented a Network Calculus for boundable flows in an LRU

cache network, and demonstrated its performance for non-hierarchical topologies —

scenarios that have not been addressed to date. Our bounds reveal that in the worst-

case LRU acts as a cutoff point on the arrival process, providing analytical support

to similar observations made earlier [12,69] regarding actual behavior in the network.

80

The results presented here can be extended in several directions. The bounds here

can be shown to hold equally well for FIFO, whose worst-case is very similar to that of

LRU. Also, due to the limited impact of burstiness on the miss rate, similar bounds on

the rate can be shown for non-deterministic bounding models, such as Exponentially

Bounded Burstiness [64]. As for extending beyond deterministic replacement policies

and addressing policies such as random replacement, a bound on the mean behavior

would be more suitable, for which a different set of analytical tools will be needed.

81

CHAPTER 4

STEADY-STATE OF CACHE NETWORKS

4.1 Introduction

In this chapter, we continue our analysis of cache networks and focus on factors

that impact the steady-state behavior of content occupancy, which directly impacts

performance.

Analytical models for caching systems, such as those discussed in the previous two

chapters usually take into account the cache capacity (i.e., how much storage is avail-

able), the topology of the cache network (e.g., hierarchical), the cache-management

policies and the exogenous request arrival rates per-file at each cache [44] [23] [59] [12].

Absent from this list is the initial state of the system — the files stored in each cache

when the system is initialized. The fact that the initial state is ignored reflects an

(explicit or implicit) intuition that the steady-state performance of the system is un-

affected in the long-term by the initial content stored in the cache. In this chapter we

consider this assumption and its validity as a function of various system properties.

The major contributions of this chapter are the following:

• We present two examples of non-ergodic CNs, in the sense that different content

placed initially at the caches will lead to different steady-state behavior. In both

examples, the observed behavior arises only when the caches are interconnected.

• We establish several important properties of CNs, in the form of three inde-

pendently sufficient conditions for the CN system to be ergodic. Each property

addresses a different aspect of the system — topology, admission control and

cache replacement policies.

82

Table 4.1: Table of notation for Markov model representation

Notation Meaning
a, b ∈ Ω States in the Markov Chain system representation
a[j] The content of vi when system at state a

• We demonstrate that the replacement policies can be grouped into “equivalence

classes,” such that the ergodicity (or lack-thereof) of one policy implies the same

property holds for all replacement policies in the class.

The structure of this chapter is as follows. We begin in Section 4.2 by presenting

the Markov model used throughout this chapter. Then, in Section 4.3, we present

two examples of non-ergodic cache networks, in that the initial state determines

the steady-state that the system converges to, with a consequent impact on system

performance. In Section 4.4 we formulate and prove two theorems regarding system

ergodicity, which relate to network topology and admission control. Then, in Section

4.5 we outline a class of cache replacement policies for which the system is always

ergodic. We also identify equivalence classes of replacement policies such that the

ergodicity (or lack-thereof) of one policy implies the same holds for other policies in

that class. We conclude the chapter with a summary and discussion of future work

in Section 4.6.

4.2 Model and Notation

We adopt here the same model described in Section 2.2, and only add to it now

a description of a Markov Model for the behavior of a cache network. We do this

using a discrete-time Markov chain with state space Ω0. The system state s, s =

(s[1], s[2], . . . , s[N]), is a concatenation of N vectors, each of length equal to the

cache size — ci ∀1 ≤ i ≤ N . The kth element in vector vi corresponds to the

content (e.g. file identifier) in the kth position of vi. When all caches have the same

83

size, the state space Ω0 has cardinality
(

(

L

c

)

· c!
)N

. When the order of the elements

in the caches is irrelevant, states that differ only through such ordering are lumped

together. In this case, when all caches have the same size, the state space Ω ⊂ Ω0

has cardinality
(

L

c

)N
. In what follows, we denote the size of the state space as u.

A sample path τ s of a CN is determined by its initial state, s, and a sequence

of file requests and consequent evictions, σ and π, respectively, τ s = (σ,π). Let

σ = (σk)1≤k≤K be a sequence of K file requests. Let π = (πk)1≤k≤K be a sequence of

K sets of files, each set indicating the files evicted in the network as a result of σk. For

each request σk, let πk(i;σ) ∈ F ∪ {⋆} be the file evicted from vi, 1 ≤ i ≤ N , while

request σk is served. πk(i;σ) = ⋆ means that no file is evicted from vi when request

σk is served. Note that a single request can cause, via file download path, changes at

multiple caches. Recall that we assume ZDD, so we can ignore intermediate system

states that would exist while content is being forwarded along its download path.

Given initial state s, let sk be the state resulting from the service of the k-th

request in τ s . Let sk[i] be the state of vi at system state sk. Let Γ(τ s) be the

sequence of states of the sample path τ s , Γ(τ s) = (s1, . . . , sk), where s1 = s. Let

ϕ(τ s) denote the last state of Γ(τ s), ϕ(τ s) = sk.

Let A = (αd,e)1≤d,e≤u be the adjacency matrix of a CN. A is a binary matrix,

where αd,e = 1 if it is possible to reach state e from state d through one transition,

αd,e=











1, ∃τ d=(σ,π) : e=ϕ(τ d) ∧ |σ| = 1

0, otherwise
(4.1)

State e can be reached from state d if there is a sample path τ d = (σ,π) such that

e=ϕ(τ d). Let α
(n)
d,e be an element of An, 1 ≤ d, e ≤ u. State e can be reached from

state d if there exists an integer n such that α
(n)
d,e = 1. We conclude with terminology

that will be used throughout the chapter:

84

Definition 28. A recurrent state of a CN is a state d such that for any state e for

which there exists an n ∈ N, α
(n)
d,e = 1 there exists an n′ ∈ N s.t. αn′

e,d = 1.

Definition 29. A transient state of a CN is any state that is not recurrent.

Definition 30. An ergodic set of a CN is a set of recurrent states in which every state

can be reached from every other state, and which cannot be left once it is entered.

Formally, it is a set S s.t. for all d, e ∈ S there exists an n ∈ N s.t. α
(n)
d,e = 1, and for

all pairs of states s.t. d ∈ S, e /∈ S, α
(n)
d,e = 0 for all n ∈ N. [Note that for the second

case there still might be some n ∈ N s.t. α
(n)
e,d = 1.]

Definition 31. A quasi-ergodic CN is a CN that comprises a single ergodic set.

Formally, it is a CN such that if two states d, e ∈ Ω0 (Ω) each belong to some ergodic

set Sd, Se respectively, then Sd = Se. For such a CN, we say that its Markov chain is

quasi-ergodic.

According to Definition 31 a quasi-ergodic CN is a CN whose state space consists

of a single ergodic set after the removal of all transient states. Note that according to

this definition, a quasi-ergodic Markov chain differs from the classic ergodic Markov

chain, whose states form a single ergodic set but transient states are not allowed [36].

In the remainder of this paper, except otherwise noted, we will ignore transient states

and refer to a quasi-ergodic CN simply as an ergodic CN.

4.3 Sensitivity to the initial state: examples

To motivate the need for considering the initial state of the CN, we present here

two scenarios in which the initial conditions of the CN determine its steady-state

behavior, and consequently the performance of the CN system.

4.3.1 Example 1

In our first example we consider the topology in Figure 4.1, consisting of two

caches of size c each. Let A,B be two disjoint sets of files, such that |A| = |B| = c,

85

and assume LRU replacement is used at both caches. The file set that user i requests

from is denoted by Yi, and consider the case where Y1 = A, Y2 = B. Now, we consider

two initial states: (I) when v1 (v2) contains exactly the set of files A (B), and (II)

when both caches are empty. For scenario I the system will remain in the initial state

indefinitely, with each cache storing only files from a single set, and will experience no

cache misses. For scenario II, on the other hand, cache misses will occur indefinitely,

and both caches will store files from both sets over time.

While this example is outwardly simple, it offers several interesting lessons, beyond

the impact on performance. First, it is important to note that, in this example, the

state space is disjoint: the initial state described in I cannot be reached from any other

state. Second, slight changes in the request patterns of users can lead to drastically

different cache behaviors. For example, one can show that if |Y1| = |Y2| = c but each

Yi has elements from both A and B, the system would eventually converge to a single

state, vi = Yi (i.e., that each cache stores the content requested by the exogenous

stream of requests arriving at it), mirroring the user demand, independently of the

initial state. This is true since once in this state it will never be changed, and it can

be shown that this state is reachable from any other state for LRU caches. Thus, we

can see dependencies form in the network in such a way that, at times, small changes

in user demand can have a very significant impact on cache behavior.

4.3.2 Example 2

As a second example consider a network comprised of caches using the FIFO

replacement policy and L = c + 1 files in the network, with a non-zero request rate

for each of these files at each node. In §4.3.2.1 we will first show that although these

caches are non-ergodic in isolation, their performance is independent of the initial

state. Next, in §4.3.2.2, we show that once interconnected, performance depends

crucially on the initial state.

86

V1 V2

A B

Requests

A files

Requests

B files

Figure 4.1: Example scenario in which the solution of the MC is dependent on initial
state.

4.3.2.1 A single FIFO cache in isolation

Here we show that a single FIFO cache with the given L = c + 1 ratio is non-

ergodic. The set of states for which the cache is full can be partitioned into (n− 1)!

disjoint sets of states, such that a state is reachable from another only if they are

within the same set. Each of these sets of states corresponds to a cyclical ordering of

the files, indicating the order in which they are evicted — an order that repeats itself

indefinitely. Thus, the initial state (or, if we start with an empty cache, the first c

unique files requested), determines the steady-state of the cache. Despite this fact

the probability that fj ∈ v is independent of the initial state. This can be determined

from the balance equations for the Markov chain:

(1− ej)λj = (1− ek)λk, ∀ 1 ≤ j < k ≤ L (4.2)

where ej is the probability fj ∈ v. The system of equations (4.2) admits a single

solution, independent of the initial state,

ej = 1−

(

λj

L
∑

k=1

1

λk

)−1

(4.3)

87

Since the arrival process is IRM, the occupancy probability is also the hit probability

[59].

4.3.2.2 Dependencies in networks

Next, we show that the interconnection of the two isolated FIFO caches described

in the previous section results in a CN in which the initial state impacts steady

state performance. Consider the CN shown in Figure 4.2. This network has three

files and two caches arranged in a line, and c1 = c2 = 2. Upon a cache miss, the

request is forwarded in the direction of the custodian. Figure 4.3 shows the transition

probability matrix, obtained using Tangram II [15].

V1 V2

{1,2,3}

Requests

all files

Requests

all files

Figure 4.2: Topology for second scenario in which the solution of the MC is dependent
on initial state. Caches here are assumed to be using the FIFO replacement policy.

To illustrate the impact of the initial state on the steady state solution, we initialize

both caches at the same state, and consider two different initial conditions, v1 = v2 =

(f1, f2) and v1 = v2 = (f1, f3). Let λ11 = 0.35, λ12 = 0.55, λ13 = 0.1, λ21 = 0.05,

λ22 = 0.15, λ23 = 0.8. Table 4.2 shows the steady state file occupancy probabilities

at cache 2, as a function of the initial state. It is clear from these results that,

for this system, the initial state has substantial impact on the overall steady state

performance.

88

request file A at cache 2

request file A at cache 1

cache 2, file 2 (next to evict)
cache 2, file 1
cache 1, file 2 (next to evict)
cache 1, file 1

(A B A B)

(A B B C)

(A B C A)

(B C A B)

(B C B C)

(B C C A)

(C A A B)

(C A B C)

(C A C A)

(
A

B

A

B
)

(
A

B

B

C
)

(
A

B

C

A
)

(
B

C

A

B
)

(
B

C

B

C
)

(
B

C

C

A
)

(
C

A

A

B
)

(
C

A

B

C
)

(
C

A

C

A
)

request file B at cache 2

request file B at cache 1

request file C at cache 2

request file C at cache 1

Figure 4.3: Transition matrix of Example 2 (diagonal elements not shown). The
system state is (w, x, y, z) where w and x (resp., y and z) are the two files at cache 1
(resp., 2). Let A = f1, B = f2, C = f3 when the initial state is (f1, f2). Let A = f1,
B = f3, C = f2 when the initial state is (f1, f3).

Table 4.2: Example of the impact of initial state on system solution for the topology
in Fig. 4.2 and transition matrix shown in Fig. 4.3.

Initial State e21 e22 e23
(f1, f2) 0.46651 0.63134 0.90214
(f1, f3) 0.33054 0.76861 0.90083

89

Let us provide some intuition about what is happening here. In the case of a

single cache, the system is non-ergodic but, due to a symmetry among the states in

the Markov model, the performance of this cache is unaffected by the initial state or

requests. Once the caches are networked, however, this symmetry no longer holds,

and a different steady-state distribution of files is obtained, depending on the ini-

tial conditions. Once again we see that the interconnecting (networking) of caches

introduces unexpected behaviors.

4.4 Conditions for Ergodicity: Topology and Admission Con-

trol

In light of the examples presented in the previous section, we present here several

theorems with regards to the ergodicity (or lack thereof) of a CN. Each theorem

presents an independently-sufficient condition for ergodicity. We begin with several

definitions.

Definition 32. The topology of a cache network is feed-forward if on every link

requests flow only in one direction and content is downloaded only in the other di-

rection.

A classic example of a feed-forward network is a cache hierarchy (i.e., a tree), with

a single custodian at the root.

Definition 33. An exogenous request stream for files at vi is said to be positive iff

∀fj ∈ F , λij > 0. If this condition holds for all v ∈ V , we say the exogenous request

stream at the (cache) network is positive.

Recall that a cache in isolation is a single-cache system (see §4.3.2).

Definition 34. A CN is said to be individually ergodic if its components are ergodic

in isolation for a positive request stream. This means that, for each cache v ∈ V ,

90

when v functions as a cache in isolation, v is ergodic, given the exogenous request

stream is positive.

The example in §4.3.1 used a non-positive request stream, while the example

in §4.3.2 uses a cache hierarchy that is not individually ergodic. We are currently

unaware of any system where request streams are positive and caches are individually-

ergodic, but the system as a whole is non-ergodic. We discuss the possibility that

such a system exists in §4.6. We now state our first two theorems.

Theorem 35. An individually-ergodic CN with positive exogenous request streams is

ergodic if it is feed-forward.

Theorem 36. Consider an individually-ergodic CN where vi caches file fj (if and

when fj passes through vi) with probability 0 < θij < 1 for all 1 ≤ j ≤ L and

1 ≤ i ≤ N . Then this system is ergodic when subject to positive exogenous request

streams.

These two theorems are proven using the same general approach: We begin by

selecting a pair of states a, b ∈ Ω and demonstrate that there exists a sample path

between them. In other words, we show that there is a series of requests and evictions

that change the system state from a to b. Since the system is finite in size, this implies

ergodicity of the entire system.

We begin with Theorem 35. For a feed-forward network we define the direction

of requests as upstream and the reverse as downstream. We rely on the following

observation regarding feed-forward networks:

Lemma 37. When ZDD is assumed, caches are not affected by the state or request

stream experienced at caches further upstream.

Proof: A cache v is only affected by the requests and content that pass through

it. Requests only travel upstream, so upstream nodes do not impact v via the requests

91

it experiences directly. Content flows downstream, but only for requests that were

forwarded by v, which are not affected by upstream nodes. Finally, with ZDD the

download delay is negligible, so state along the download path of upstream node has

no impact on the state at v.

Proof: [Proof of Theorem 35] To transition from a to b, we iterate over all caches,

marking them as we proceed. We start from those with no downstream nodes, and

gradually move up to the next node that has no unmarked children downstream.

Recall from Table 4.1 that for a system state a, a[i] is the state (i.e., stored contents)

at node vi at that state. At each node vi, we generate a sequence of exogenous requests

at each cache that will modify it from state a[i] to b[i]. This can be done, since we

assume the request stream is positive and IRM, and that the nodes are individually

ergodic. From Lemma 37 we also know that this process has no impact on the state

of caches downstream.

Proof: [Proof of Theorem 36] We assume that for each cache vi θij < 1 for all

1 ≤ j ≤ L. Thus, for any finite sequence of files σ that pass through this node and

any sub-sequence σ′ of σ, there is a positive probability that only the files in σ′ will be

admitted to the cache for storage. Thus, we iterate over the caches in arbitrary order,

and at each cache let σi be a sequence of requests originating from vi, s.t. applying

these requests yields a[i] b[i] — since the caches are individually ergodic, such a

sequence exists. In addition, there is a non-zero probability that only vi will store the

files requested in σi. This series of events will therefore result in the path a b.

4.5 Conditions for Ergodicity: Replacement Policy

We now proceed to present the main contribution of this chapter — a theorem

regarding the impact of a replacement policy on the ergodicity of the system. We

shall begin in Section 4.5.1 considering only Random replacement, and then in Section

4.5.2 expand this result to a broad class of replacement policies.

92

4.5.1 Theorem for Random Replacement

In this section we consider the Random replacement policy. A CN in which all

caches use the Random replacement policy is individually ergodic. In general, whether

individually ergodic CNs are ergodic is an open question. Nevertheless, when caches

use the Random replacement policy the answer to the question is yes, as stated in

the following theorem.

Theorem 38. A CN that uses Random replacement is ergodic when subject to positive

exogenous request streams.

Before we present our proof, we give a short overview of our method of proof. Let

a, b ∈ Ω be two recurrent states. We will prove our claim by showing there exists a

state d that is reachable from both a and b. Since we assume a and b are recurrent,

there exists a reverse path from d to each of them, and so a and b belong in the

same ergodic set. Since a, b are any two recurrent states, this proves there is a single

ergodic set of states in this system, which concludes our proof.

Our proof will proceed by considering two CNs that are identical in all aspects

(topology, routing, cache size and replacement policy, custodian location) except in

their initial state — CNa begins in state a and CNb in state b. Given their states,

we generate a sequence of exogenous requests σ, (denote K := |σ|), that arrive at

both CNs. To accommodate the differences in the initial state, we will also design

two sequences of evictions πa and πb to match σ, and demonstrate that the sample

path in both networks leads to the same state. In fact, we will design these paths

so that both networks are monotonically becoming more similar to one another. To

quantify this, we use the following definition: Let γa,b(i) = |a[i]∩b[i]| be the agreement

index of two networks at vi. We say that two caches agree iff γa,b(i) = c. As we will

demonstrate for the sequence we construct, for all 1 ≤ h < k ≤ K and all 1 ≤ i ≤ N ,

γak,bk(i) ≥ γah,bh(i), and after σ is served 1 ≤ i ≤ N , γaK ,bK (i) = c. In what follows,

93

we formalize this intuition by showing how to construct the sequences of file requests

and evictions.

Requests. Consider two CNs, CNa and CNb, which differ only through their

initial states, a and b, respectively. Algorithm 6 describes how to construct the

sequence of requests σ to be applied in each of these networks. Our approach will

be to iterate over all the caches (line 2), and for each cache ensure that its state is

the same for both CNs. Specifically, for cache vi, ∆i is the set of files in the cache

in CNb but not in CNa (line 3). Then, for each file fj we generate requests for fj at

each cache along the path from cust(j) to vi according to the routing matrix. We do

so by injecting an exogenous request at each node along this path (lines 5-11).

Algorithm 6 SigmaConstruct(a, b).

Input: a, b ∈ Ω recurrent states in the Markov chain representing the CN
1: σ ← () // Empty sequence
2: for i = 1→ N do
3: ∆i ← b[i] \ a[i]
4: for fj ∈ ∆i do
5: σ

′ ← ()
6: h← i
7: while vh 6= cust(j) do
8: σ

′ ← qhj.σ
′ // “.” indicates concatenation

9: h← next hop according to Rh

10: end while
11: σ ← σ|σ′

12: end for
13: end for
14: return σ

Evictions. Next, our goal is to determine the evictions that will take place in

both networks. Assume during execution of σk ∈ σ file fj arrives at vh. The file that

we evict (as part of the process of bringing the state of the two networks together)

will depend on the state at each of the networks at this stage:

• fj ∈ ak[h] ∩ bk[h] - no evictions are needed, since in both networks the file is

already cached at vh.

94

• fj /∈ ak[h]∪ bk[h] - in both networks, the cache does not have the file. We cache

fj in each, and evict some file from each.

– If ak[h] ∩ bk[h] = ∅, select a random file from each to evict. This is called

a random two-sided eviction.

– Otherwise, select a file f ∈ ak[h]∩ bk[h] to evict. This is called an identical

two-sided eviction

• Otherwise, w.l.o.g. fj ∈ bk[h] \ ak[h]. Then we change nothing at bk[h], and

evict from ak[h] some file f ′ ∈ ak[h] \ bk[h]. We call this a one-sided eviction.

Lemma 39. Following the eviction rules above, bk[i]\ak[i] ⊆ bh[i]\ah[i] for all h < k.

Proof: Let us consider a file fj, requested at σl, h < l ≤ k, causing an eviction at

node vi. A one-sided eviction increases agreement of caches, since a non-matching file

was evicted to make room for a matching file. A random two-sided eviction increases

agreement, since beforehand the caches were disjoint, and now they share fj. Finally,

with an identical two-sided eviction, file fq ∈ bh[i]∩ah[i] was evicted from both caches

to make room for fj, which does not decrease the cache agreement.

Lemma 40. After the files in ∆i were requested in σ, both networks agree on vi.

Proof: Assume ∆i−1 ended with request σk. From Lemma 39 we know that

bk[i] \ ak[i] ⊆ ∆i. Every file that is in bk[i] \ ak[i] will therefore cause a one-sided

eviction, increasing agreement by 1, and every other file does not decrease agreement.

Thus at the end of ∆i the networks agree at vi.

We use this construction to prove our Theorem.

Proof: [Proof of Theorem 38] We prove Theorem 38 using an inductive argument.

From Lemma 40 we know that after requesting ∆i both networks agree on the state of

vi. Furthermore, we know that no download can negatively impact cache agreement

from Lemma 39, so once caches agree they continue to agree. Thus, after requesting

all the mismatched files at all caches, the networks agree.

95

4.5.2 From Random Replacement to non-protective policies

A review of our proof for Theorem 38 reveals that the only place in which it

relied on using Random replacement was in assuming that, given that an eviction is

taking place, there is a transition in the Markov chain for evicting each of the files

at that node. This allowed us more freedom in designing a sample path between two

designated states. With this insight, we consider the following class of policies:

Definition 41. A replacement policy for an isolated cache is said to be non-protective

if for any file f ∈ v there is a positive probability that f will be the next file to be

evicted (if another eviction takes place). A replacement policy for which this property

does not hold will be termed protective.

Note that a cache using a non-protective replacement policy is individually ergodic.

While with Random replacement the next eviction could be any file, this definition

is broader. It covers policies in which requests can change the order of evictions at

a cache without changing its contents. LRU is an example of such a policy, since a

request for fj ∈ vi that arrives at vi can change the eviction order. The same holds

for other policies such as LRU-K and LFU. FIFO, on the other hand, is a protective

policy when c > 1. In this section, we prove the following extension of theorem 38:

Theorem 42. A CN with positive exogenous request streams is ergodic if the replace-

ment policy used in each cache is non-protective.

Note that this theorem allows for heterogenous systems where each cache selects a

replacement policy that might be different than the policy selected at another node in

the network. Our approach will be to demonstrate that ergodicity of Random replace-

ment can be used to prove the ergodicity of all cache networks with non-protective

caches. At a high level, given a path in the Markov chain of a Random replacement

network, we add exogenous requests at each cache where a reordering of evictions

must take place so that the sequence of states of this non-Random replacement net-

96

work continues to match the sequence of states in the Random-replacement network.

in order to maintain correlation with the path for Random replacement. For exposi-

tion purposes, examples shall be presented using the LRU replacement policy, though

the proof applies to all non-protective policies.

Unlike Random replacement, other policies use an (explicit or implicit) ordering

of the files in the cache, from which the eviction order can be determined. With

LRU, for example, items are ordered according to last reference. We begin here by

“lumping” together, in the LRU model, all the states that differ only in the internal

ordering of content, and mapping these to the state in the Random model. Figure

4.4 depicts an example of such a mapping for a 2-node cache, while Figure 4.5 does

the same for FIFO.

These examples demonstrate that changes in eviction order without impacting

the content of any cache are possible within LRU networks but not within FIFO

networks. For the former, the closure of each such “lump” of states is a clique, with

every pair of states communicating with one another only via other states with the

same content. For the latter, even for an isolated cache, a change in order can only

be achieved by changing the content of the cache, and in networked scenarios the

situation is complicated by the fact that during content download other caches might

be impacted as well. This makes determining ergodicity for FIFO and other protective

policies more challenging, since a state-request pair fully or partially determines the

files to be evicted, limiting us in finding a path between two recurrent states.

Proof: [Proof of Theorem 42] Let Malg be the Markov chain of a CN using

a replacement algorithm alg. Furthermore, let M∗
alg be the same graph, but after

contracting all nodes representing identical cache contents. After the contraction,

edges between states with the same content are eliminated, and all edges with other

states are attached to the contraction node. We first demonstrate that M∗
alg = Mrnd

97

((2,1),(3,4))

Random LRU

({1,2},{3,4})

((1,2),(3,4))

((1,2),(4,3))

((2,1),(4,3))

Figure 4.4: RND-to-LRU state mapping and edge contractions example. Edges in-
dicate transitions in the markov model. As can be seen here, the closure of the
indicated transitions results in a clique (broken edges mark the added connectivity),
so it is possible to move from any state to any other without influencing the set of
files stored in any cache.

((1,Y),(3,4))

FIFO

((1,2),(3,4))

((1,2),(4,3))

((2,1),(4,3))

((2,1),(3,4))

((X,1),(3,4))

((Y,X),(3,4))

Figure 4.5: An example for the situation with FIFO replacement. X, Y ∈ F \ {1, 2}.
As can be seen here, with FIFO there are no edges between states with the same
content in all the caches, and all paths between such states require changing the
content of some caches. In fact, there is no way to change the order of eviction in a
cache with FIFO.

98

if alg is non-protective. Next, we show that when alg is non-protective, if M∗
alg is

ergodic, so is Malg. Since we know Mrnd is ergodic, the theorem is proven.

As discussed above, each node in Mrnd is mapped to the a node in M∗
alg represent-

ing all nodes in Malg where caches have the same content. By construction, this is a

one-to-one mapping. Next, consider two states in Mrnd and their mapped counter-

parts, denoted as srnd, s
′
rnd, salg∗, s

′
alg∗. We want to prove there is an edge (srnd, s

′
rnd)

iff there exists an edge (salg∗, s
′
alg∗).

• First, we note that in srnd and salg∗ each cache holds the same content. Thus, a

request will traverse the same caches in both networks regardless of replacement

algorithm, and be stored at the same caches.

• Second, we show that the same evictions can take place in both. Consider a

specific cache vi. With Random replacement all content in vi is up for eviction.

Similarly, since alg is non-protective, for every fj ∈ vi there is a state in the set

of contracted states that evicts this file. Thus, an edge reflecting this eviction

will exist.

Thus, the identity of these graphs is proven, and one is ergodic iff the other is

as well. We now demonstrate that since M∗
alg is ergodic, Malg is as well. Since with

non-protective systems there is a path between any two states that share the same

cache contents, without moving outside this set of states, this claim is true. For each

request σk and eviction set πk for random replacement, we inject requests between

σk−1 and σk that cause no eviction, but rearrange the content in the caches such

that when σk is served the same πk are evicted. This is possible due to being non-

protective. Thus, since all states within the contracted states communicate, and all

recurrent states in M∗
alg communicate (following ergodicity), we conclude that Malg

is ergodic.

99

4.5.3 Generalizing the Model

Throughout the chapter we assumed ZDD and that files and caches were all of

constant size. While these make the exposition simpler, the proofs we present here

apply equally when these restrictions are removed. Recall that our proof technique

was to demonstrate that there exists a path within the Markov chain that leads from

one state to another. Even when we relax the ZDD assumption, it is still possible that

every request was satisfied before the next one was generated. Thus, the same path

we constructed in each of the proofs will exist in this finer-granularity environment

as well.

Regarding cache sizes, the proofs apply as-is to variable cache sizes, by changing

each c with |vi| for the jth cache. Similarly, allowing for files to have variable size does

not interfere with our proof concept, as long as (when needed) it is possible to evict

a set of smaller files to make room for a single large file. The proofs for Theorems

35 and 36 do not rely on file sizes. For Theorem 42, the request sequence described

in the proof is constructed in the same manner, and when evictions take place, each

eviction type can be shown to maintain or improve cache agreement.

4.6 Summary and Future Work

In this chapter we continued our theme of cache network analysis from the previous

two chapters, establishing here several properties regarding the ergodicity of cache

networks. While solving a Markov model of a cache network is intractable for any

Internet-scale system, we have shown here that one can still use these models to make

structural arguments that lead to interesting insights.

The significance of our results are threefold. From a theoretical standpoint, our

analysis provides tools for determining the ergodicity of cache networks. Furthermore,

since we considered only the structural topology of the Markov chain while ignoring

edge weights, our results show that for a non-ergodic system there are certain recur-

100

rent states that are unreachable even during fluctuations in the Markov chain edge

weights. From an experimental standpoint, ergodicity determines whether or not the

initial state of the system must be varied for valid system evaluation.

The examples presented in §4.3 did not include cases with positive request streams

and individually ergodic systems. We pose as an open question if there exists such a

system that is not ergodic. Theoretically, such a system could exist, with non-ergodic

behavior on a system-wide level caused by dependencies among caches, formed by

the file download paths. At this time, however, we are unaware of such a system. We

hope that future investigations will shed light on this question.

101

CHAPTER 5

BREADCRUMBS - BEST-EFFORT CONTENT SEARCH
IN CACHE NETWORKS

5.1 Introduction

In this final technical chapter, we discuss best-effort content search methods in a

cache network. To this end, we relax the assumption that we use only static routing

matrices Ri for request routing, and consider dynamic request routing policies, where

nodes adapt their routing decisions as a function of time and/or system state. We

present an adaptive content search scheme named Breadcrumbs, in which caches only

use local information to determine where a copy of the content is likely to be found,

and route requests accordingly.

When we allow for dynamic request routing, the miss routing decisions can be

viewed as part of a content search process. In many ways, a cache network can be

thought of as a large distributed cache; several classic performance metrics, such as

hit probabilities and miss rates, are equally applicable to individual caches as well

as to the network as a whole (i.e., considering the network of caches as a single,

distributed entity). The fact that caching functionality is distributed can impact

certain measures; for example, the download delay might be variable even when

content was located at one of the networked caches. Perhaps the most significant

manner in which a cache network differs from a single cache is, however, the fact that a

copy of content might be present at some networked cache and still a request might not

locate this copy, and instead retrieve the content from the content’s custodian. The

search process defined by the request routing policy is therefore a major differentiator

of cache networks from standard caches, and demands special attention.

102

In general, caches can collect information about network state and then collaborate

with other caches to improve content search. Such a collaboration can take the form

of determining where content is stored and where to search for it. One defining

characteristic of this collaboration is whether caches coordinate explicitly or implicitly.

With explicit coordination, caches send messages to other caches, announcing their

state (or state summary) [41, 44, 65]. Upon receiving these messages, a cache can

then use the information in the messages to make decisions regarding what to store

or evict, as well as where to route misses (i.e., where to search for content). While

explicit coordination may be useful, it comes at the cost of increased communication

overhead and possibly computationally-expensive coordination algorithms as well.

An alternative approach to explicit coordination is implicit coordination among

network caches. With implicit coordination, each cache acts based solely on its lim-

ited, local view, and does not notify other caches of its state. When such coordination

is constructed effectively, the actions taken by caches based on this local perspective

can result in favorable results on a system-wide scale. The local view of the network

consists, in our case, of the stream of requests received at the cache and the content

that have passed through the cache.

Implicit coordination schemes can rely on and leverage the network topology [10],

cache management policies [3], or other system parameters. For example, in a cache

hierarchy [10], where all requests are forwarded towards the root, the position of a

cache w.r.t. the root can define its function within the network; the caches lower down

serve one type of request pattern, and shape the miss stream for the next level up.

For such hierarchies, it has been suggested that using different replacement policies

at different levels in the hierarchy would be beneficial [8]. Others have proposed

hierarchy-specific eviction and caching policies [16, 44].

103

This chapter presents Breadcrumbs - a best-effort content search approach that

uses only implicit coordination among caches1. Breadcrumbs is “best-effort” - there

are no guarantees that cached content will be found and downloaded from a net-

work cache. Therefore, in the event that content search has failed, the request is

re-routed directly to the content custodian, where the requested content can always

be found. However, we demonstrate in this chapter that, despite the lack of explicit

coordination, Breadcrumbs can match and even improve upon performance compared

to caching architectures that are based on explicit coordination. Indeed, one of our

goals in developing Breadcrumbs was to investigate how well a simple, implicitly-

coordinated caching system would compare to its more stateful, and more complex,

explicitly-coordinated counterparts.

The main contributions of this chapter are:

• We describe Breadcrumbs, a best-effort content search policy for cache networks,

in which each cache determines the next hop to route a request dynamically,

based solely on local information (in addition to knowledge of the location of

the content custodians). Breadcrumbs achieves this by using past traffic to

set up breadcrumb entries - short-term routing hints that eventually expire.

Breadcrumbs is tunable, striking a balance between the route-to-custodian and

exhaustive search policies. As we will see, Breadcrumbs also fosters implicit

inter-cache routing coordination, without involving any inter-cache control over-

head.

• For a particular version of Breadcrumbs, called BECONS, we prove several

properties regarding the efficiency of breadcrumb management. We show that

BECONS creates a perimeter surrounding each content custodian, such that

1It is important to clarify that our use of the term “Breadcrumbs” is for request routing hints,
not to be confused with the same term used in [27] for content forwarding hints in CCN.

104

requests originating outside this perimeter are routed, with high probability,

away from the custodian. In such a manner, BECONS reduces the load at

custodians.

• We present an analysis of causal relationships within the network, specifically

between cache state and request routing tables. From this analysis, we de-

vise experiments to demonstrate the impact of Breadcrumbs-based search on

custodian load reduction.

The remainder of this chapter is structured as follows. In Section 5.2 we discuss

related work. In Section 5.3 we present Breadcrumbs. As this approach has multiple

variations, we focus our discussion on one such version, which we name the Best-

Effort Content Search (BECONS) policy (Section 5.4). For this version, we prove

several properties regarding the efficiency of breadcrumb management. In Section

5.5 we present extensive simulation results of that demonstrate the performance of

BECONS, and compare it two other content-search methods - shortest-path routing

and an explicitly-coordinated cache-management system defined below. In Section

5.6 we delve deeper into understanding the manner in which Breadcrumbs achieves

its performance. We use causality analysis to determine the degree to which request

routing, and not content distribution, is responsible for the performance observed for

Breadcrumbs.

5.2 Related Work

5.2.1 Optimizing Cache Networks

Research on optimizing the performance of caching systems touches upon many

fields. For small scale caching systems, previous works have examined systems where

a small number of caches are placed within a (possibly large) network. These works

consider the question of where in the network to place the caches [40], where to cache

105

specific objects [65], and generally address the question in a limited number of topolo-

gies. Indeed, it has been recently [21] noted that existing work on networked caching

is insufficient for addressing the cache networks proposed for ICN architectures. In

this chapter we address the ICN architecture, of caches distributed on a large scale

throughout the network, and study how to improve content search within such a

network.

Work on improving the performance of large-scale cache networks can be found

in [2, 3], where the authors consider how to optimize system performance via an

adaptive cache replacement policy named ACME. ACME uses machine learning tech-

niques to determine when and what to cache locally, without explicit communication

among caches. Specifically, each network cache manages a pool of virtual caches.

Each virtual cache is assigned a different (static) replacement policy, and simulates

the behavior of a network cache had it been using this replacement policy. ACME as-

signs performance-based weights to each virtual cache and, using Machine Learning

algorithms, selects from the virtual cache pool the best replacement policy to ap-

ply in the near future. Using this approach, ACME achieves improved performance

compared to specific static policies. The Breadcrumbs system we present here differs

from ACME in that Breadcrumbs improves performance via adaptive request routing,

instead of adaptive caching. In this sense, the two architectures are complementary,

making it possible to potentially combine these approaches. Such a task, however, is

beyond the scope of this thesis.

5.2.2 Content Search in Cache Networks

Efficient content search has been addressed in the (Hybrid) P2P literature. In

the Gnutella P2P system [4], content is located via exhaustive search (in the form of

broadcasting requests to all neighbors); others have proposed to limit the search cost

by having requests move through the network using random walks [11]. To mitigate

106

communication overhead, peers using more recent versions of Gnutella implement the

Query Routing Protocol (QRP) to notify their close neighbors of their cached content;

statistical versions of QRP have been considered as well [41]. In [74], network nodes

are organized into semantic groups, and request flooding is constrained to occur within

these groups. Specifically, a node will receive a request for specific content only if

it is associated with this type of content. In [42], request flooding is controlled by

caching content along the download path within the P2P network. [23, 49] discuss

search via expanding ring search and random walks, with [49] using simulations for

evaluation while [23] provides theoretical bounds. Our Breadcrumbs system differs

from all of these in that (a) we consider systems where content location changes

dynamically, and (b) requests are routed towards likely locations of content without

explicit coordination among caches prior to or during the search process.

In [24], the authors develop a method for ascertaining if certain content is un-

available anywhere in the P2P overlay network. Initially, content is searched for via

a random walk for a bounded amount of time, after which the search ends if the con-

tent was not found. To help reduce the search time of future random walks, a peer

that received such a content request logs this occurrence, and any future search for

this content that passes through this peer is dropped. As time passes, peers with re-

quest blocking information leave the network, allowing new arrivals to support search

for this content once more. This enables the system to adapt to changes over time.

While in [24] past requests are used to learn what is not available in the network,

Breadcrumbs nodes keep logs of past requests and downloads, and these are used to

determine where copies might be found.

Content search in a cache network is also related to some degree to several classic

search algorithms proposed within the field of Artificial Intelligence. Network traver-

sal algorithms, such as DFS, BFS, and A*, are not suitable in this context due both

to the large network scale and to the dynamic nature of content position. Other tools,

107

such as Markov Decision Processes (MDPs), traditionally assume global knowledge

in order to solve the system, and can also have very high time complexity.

5.2.3 Breadcrumbs expansions

Since the publication of Breadcrumbs in [58], there have been several followup

projects that considered different aspects of this content search approach. In [30]

Kakida et. al considered how to ensure that no breadcrumb cycles form within

the network. In [66], Tsutsui et. al. considered the performance of a cache net-

work in which Breadcrumbs is deployed only at a portion of network caches. They

demonstrated that such deployment improves the performance of the network, es-

pecially if an overlay network is constructed between the breadcrumbs-supporting

nodes. Recently, researchers from NEC and Kansei University have demonstrated a

Breadcrumbs implementation.

In [16], the authors propose a combination of Breadcrumbs with the LCD caching

approach presented in [44]. In this system, content is stored in only one location along

a download path, the position of which is determined by its popularity. Specifically,

more popular content is stored further downstream. This differs from the Breadcrumbs

approach discussed here, in which content is cached at all nodes along the downstream

path, though the claims regarding Breadcrumbs presented here are equally valid if

content is cached at only a subset of nodes along the download path.

5.3 The Breadcrumbs Architecture

The Breadcrumbs system builds upon the cache network architecture described in

Section 2.2, by adding a dynamic request-routing element. Each node maintains two

routing tables - the static table Ri and a dynamic routing table Rbc
i . The dynamic

table is populated by breadcrumb entries, which are logs of recent activity for each

108

file. Specifically, each breadcrumb at vi is a 5-tuple entry, with at most a single entry

per file, containing the following information:

• The file identifier.

• vprev - The node from which the file arrived at vi.

• vnext - The node to which the file was sent from vi.

• tfj - the time when the file passed through vi.

• tqj - the time when the file was last requested at vi.

(�� , ��, ��		, 7, −∞)

(�� , ��, ��, 3, −∞) (�� , ��		, ��, 0,−∞) fj

fj

V1 V2

V4 V3

V5

Figure 5.1: Breadcrumbs example

We denote by bcij the breadcrumb for file fj at cache vi; when the cache is known,

we use the simpler notation bcj. In the case portrayed in Figure 5.1, file fj was sent

from a custodian, attached to v1, to node v2, and the file arrived at v2 at time t = 3.

From there the file was forwarded to the destination at v4, arriving at v4 at time

t = 7. The first and last hops have “null” entries where no cache identifier is relevant.

There were no requests for fj in the scenario shown, so the time of the last request

for fj is set to tqj = −∞.

As in the example above, when each file is downloaded it leaves behind a trail of

breadcrumbs at the caches along its download path, where a trail is simply a non-cyclic

109

path in the graph. Each entry along this trail can be thought of as a bi-directional

pointer, indicating the upstream and downstream caches along a trail, and therefore

where such content might still be currently located. As each breadcrumb is very

small, we assume for now that there is no limit on the number of such entries that a

node can store at any given time. In practice, the length of time that a breadcrumb is

kept in the table depends on both the popularity of the corresponding content and a

timeout parameter that can be tuned by the cache (or network) operator. We discuss

this timeout parameter below.

We next describe a simple use-case of these breadcrumb entries. Consider again

the scenario in Fig 5.1, followed by a request qj arriving at node v5. This request is

initially routed towards the custodian, to v2, using the standard routing tables R5.

En-route to the custodian, at node v2, the cache contents are inspected as in the

standard operation of a cache network. In the event that fj /∈ v2, R
bc
2 is inspected.

If there is a breadcrumb entry for fj in Rbc
2 , as is the case in Fig. 5.1, we say that

the request has intercepted a trail of breadcrumbs for fj. Using this entry, qj can be

routed either upstream (v1) or downstream (v4) towards a cache with a recent copy

of the content might be found. Once the content is located, it is forwarded to the

requesting user as in the standard operation of a cache network. We emphasize that

file downloads set the pointers in a breadcrumb, while requests follow the pointers.

A similar notion of routing towards a source, but then exploiting state found at

an intercepting node, is used in multicast tree construction in core-based multicast

routing trees [5].

While arguments can be made for using either of the pointers of a breadcrumb,

in this work we limit ourselves to forwarding requests downstream, in the direction

of vnext. The motivation for such a heuristic policy is twofold. First, the request will

typically move farther away from the content custodian when routed downstream,

thus encouraging load distribution in the network. Second, during the last download

110

content was cached at downstream nodes more recently than at those upstream (due

to download delay).

Before we continue to analyze the behavior of Breadcrumbs, we note that trails can

be extended multiple times by repeated downloads. This basic property is shown in

Figure 5.2. Here we see that the initial download of fj generated a trail of breadcrumbs

that ended at v3, and that a future request from v4 to v2 (which still had a copy of fj)

changed the direction of the initial path and extended the trail to node v4, replacing

the breadcrumb pointer to v3. Note that such trail extensions or changes are possible

only via content download, which can set the breadcrumb entries, but not via request

routing. Also, the times of tfj , t
q
j are always monotonically increasing as one proceeds

downstream along the updated trail.

(a)
(b)

(�� , ��, ��, 3,∞)

V1

V2

V4
V3

(�� , ��, ��, 5,∞)

V1

V2

V4 V3

Figure 5.2: Example of trail extension. Broken lines indicate file download, and red
arrows indicate the direction of breadcrumb pointers.

Due to the fact that the location of content in the cache network is dynamic, the

information in a breadcrumb loses its relevance over time. When it is determined that

the information in a breadcrumb is stale (a stale breadcrumb, if you will), it is said

to be invalidated. An invalidated breadcrumb bcij is removed from Rbc
i , and until

fj passes through vi once more, all requests for fj will be routed according to Ri.

111

In our work, we consider two conditions that, each independently, cause breadcrumb

invalidation:

Soft-state timeout. Recall that each breadcrumb logs tfj and tqj , which are used to

determine when an entry contains stale information. Here, a breadcrumb for fj

is invalidated at time t if t− tfj and t− tqj are each greater than some threshold.

The reason for this policy is that (a) when fj passes through a node v, it will

be cached along the trail, and thus it is likely that to remain cached along the

trail shortly after tfj ; and (b) when a request qj passes through and is routed

according to the entry, it might locate the content fj, and there refresh it (as

in LRU) or download it elsewhere. Either way, following the downstream trail

can be seen as searching in the direction where content, according to the local

view of v, is likely to be found, but only as long as the breadcrumb is fresh.

Different methods can be proposed for how to select this timeout threshold2, as

we discuss in later sections.

Reverse request traffic. A breadcrumb for fj is invalidated if a request for fj ar-

rives at the node from the direction of vnext, i.e., from the immediate down-

stream node. The reason for this is twofold. First, the content is not at vnext,

as indicated by the forwarding of the request from vnext to v. Second, a request

arriving from vnext indicates that the breadcrumb at vnext is no longer valid, so

a request sent to it will have no trail of breadcrumbs to follow.

For a Breadcrumbs network (BCN) as just described, it is possible for a bread-

crumb trail to form a directed cycle. A request moving in such a cycle can continuously

update the value of tqj at each node in the cycle, and thus continue to move in the cycle

indefinitely, never locating the content. There are several ways to avoid such cycles,

2In this manner, breadcrumbs is a generalization of the standard routing policy, as we can set
the threshold to be zero.

112

for example those proposed in [30]. In this work we do not concern ourselves with

a method for cycle detection. Instead, we assume that cycles can be detected, and

that when they are detected, R is used instead of Rbc from that point and on, until

the request is satisfied. The same protocol is used if a request follows a breadcrumb

trail and reaches a ⁀dead end, i.e., a cache without the content or a valid breadcrumb.

In Section 5.7 we discuss the impact of allowing breadcrumb entries to be used more

persistently, even once a cycle is detected or a dead-end is reached.

5.3.1 File download path

Once a request reaches a cache with a copy of the content, it is downloaded to the

requesting user. When requests are routed along the shortest path to the custodian,

the download path is identical to the shortest path from where content was found.

With Breadcrumbs, on the other hand, the request and download path might be

different. As such, we consider two options for download policy, depicted in Figure

5.3:

Download Follows Query (DFQ). When the file is downloaded from vi, it follows

the reverse search path that the request traversed.

Download Follows Shortest Path (DFSP). When the file is downloaded from

vi, it is sent along the shortest path to the requesting user.

DFSP has a straightforward advantage: it ensures that the content arrives in

the most efficient manner to the requesting user. However, note that the content

download path affects the places where content is cached, and so this property does

not imply that DFSP also generates the best performance globally, since it might

generate sub-optimal content placement that will affect future searches.

Using the DFQ approach has several advantages as well. First, it allows for request

aggregation - other requests that are currently following the same breadcrumb trail

will be satisfied at nodes along the download path, since the download is moving along

113

the same path but in the opposite direction to these requests. Second, it maintains

some of the properties of standard cache networks, allowing analysis tools for standard

networks (including those developed in earlier chapters of this dissertation) to be

applied to those using Breadcrumbs. For example, with DFQ there is still a single fj

download at vi for every qj sent by vi.

DFQ ensures additional properties for the breadcrumb trails as well. Specifi-

cally, when we consider the upstream path we find that it retains some properties of

shortest-path routing to the custodian, as we state now:

Theorem 43. The upstream path of a breadcrumb trail when using DFQ for content

download is always the shortest path to the custodian, if the initial request routing for

each file request follows the shortest path.

Proof: Consider a request qj. The initial request routing, until a trail is located,

follows the shortest path to the fj custodian, and once content is located it is down-

loaded along the reverse query path, which is the shortest path. Since this holds for

every request, each upstream path consists of a concatenation of (partial) shortest

paths to the custodian.

DFQ has, however, an important drawback. If we follow the Breadcrumbs policy

in a strict manner, a breadcrumbs path would be reversed upon each successful search,

since it reverses the upstream/downstream directions. In Fig. 5.3, the breadcrumb at

v2 will change its pointer direction towards v5, instead of continuing to point to where

content was just found. To negate this continuous change of pointers, we propose the

following change in Breadcrumbs when using DFQ: the direction of a breadcrumb is

not modified at v when a file arrives at v from the direction of vnext.
3 While this

means that the breadcrumb is not always pointing to the most recently-cached copy,

it can extend the length of time a trail is maintained.

3This is not to be confused with the arrival of a request for fj from vnext. A file arrival indicates
the content is somewhere downstream, while a request indicates the trail is no longer useful.

114

DFQ DFSP

V1

V2

V4 V3 V5

V1

V2

V4 V3 V5 fj fj

Figure 5.3: Download policies depiction. Initially, the content fj was downloaded to
v3 via v1, v2. Later, a request for this content originated at node v5, passed through
v2 which did not have the content but did have a valid breadcrumb, pointing to v3.

5.4 Best-Effort Content Search (BECONS)

In Section 5.3 we presented the basic architecture of Breadcrumbs. In this sec-

tion we propose the following specific instantiation of Breadcrumbs, termed the Best

Effort CONtent Search (BECONS) query routing policy. In BECONS, we make the

following two decisions regarding Breadcrumbs:

Invalidation at content destination. If a node v is the last hop of a specific file

fj, it invalidates any existing breadcrumb for that file once it received the file.

We use this property later on. For now, we note that this invalidation policy

ensures that a node does not have a breadcrumb that was created earlier than

when the content was last at the node. Consequently, if v does not have the

content, it does not consider any specific neighbor as especially likely to be

storing the content.

Identical Thresholds. For each file fj there are two thresholds that are identical

across all caches, ∆f
j and ∆q

j , such that a breadcrumb bcij is timed-out at time

t iff

115

t− tfij > ∆f
j and t− tqij > ∆q

j . (5.1)

That is, a breadcrumb is invalidated and removed from Rbc
i if both ∆f

j time has

passed since the content was last forwarded by this node, and ∆q
j time passed since

the content was last requested at this node. Since the passing of a file through vi

is a stronger indication of the file’s presence along the trail than the passing of a

request for the file, we shall set thresholds such that ∆f
j > ∆q

j for all 1 ≤ j ≤ L.

Note that by assuming a common threshold for each file, we are introducing a degree

of explicit coordination among caches. This coordination is very limited, though,

and is independent of the traffic flowing in the network. Additionally, once network

caches share the same threshold values, new caches connecting to the network can

easily discover them by querying their neighbors once for these threshold values. We

discuss alternatives to this approach in Section 5.7.

We next prove that BECONS has two important properties: trail stability and

trail invalidation.

Definition 44. A trail v′1, ..., v
′
k for fj is said to be broken if there exist indices

1 ≤ h < i < l ≤ k s.t. bchj, bclj are valid yet bcij has been invalidated. An example

is shown in Fig. 5.4.

(�� , ��, ��		, 7,

V1 V2 V4 V3

Figure 5.4: Example of a broken trail. A breadcrumb entry is valid at nodes v1, v3,
but not at the intermediate node v2.

Definition 45. Consider a trail v′1, ..., v
′
k and a request starting to follow this trail

downstream. The trail is said to be stable if it does not become broken during the

request’s traversal of the trail. Thus, if a query starting a search along a stable

116

downstream trail reaches an invalid breadcrumb, this implies that all breadcrumbs

further downstream are also invalid.

A policy that ensures stability is advantageous: it ensures that a search down-

stream will cover all valid breadcrumbs in the trail while searching for the file, and that

a dead-end will not be reached due to a single invalidated breadcrumb mid-stream in

the trail.

Definition 46. A policy is said to support the trail obsoleteness property, if a node

v can determine that all nodes along its downstream trail for fj do not have a copy

of fj as a result of this trail download.

There is an important clarification to be made regarding this property. With trail

obsoleteness, it is still possible that fj is in some node downstream when the trail

is obsolete. However, this downstream copy was cached as a result of a download

along a different download trail (i.e., a trail that has some nodes not in the obsolete

trail). As a result, there is no reason for v to forward its requests along this trail,

as (a) there are no breadcrumbs along this trail that were installed when the file last

passed along this download trail; and (b) all copies that were downloaded during that

last download have since been evicted. The property of detecting trail obsoleteness

thus helps reduce searches according to breadcrumbs that have lost their semantic

meaning.

Theorem 47. Let v1, v2 be two nodes such that v2 is the downstream neighbor of v1

w.r.t. fj. If v1 receives a request for fj from v2, v1 can consider the downstream trail

to be obsolete.

Proof: We prove this by induction on the length of the trail. For the base

case of a single link (2 nodes), if v2 sends a query upstream to v1, this means that

the file is not cached at v2 and that it does not have a breadcrumb for fj, so the

downstream trail is obsolete. Note that here we rely on the fact that the destination

117

node of a download removes its breadcrumb entry for that node, so v2 cannot have a

breadcrumb from a previous download pointing to v1.

For the induction step, assume that the claim has been proven for a trail of length

k − 1 and now we prove it for the case of length k. v2 forwarded a query upstream

to v1, so obviously v2 does not contain the file. In addition, the query was forwarded

upstream instead of downstream, so the breadcrumb at v2 is invalid. Hypothetically,

there can be two possible causes for this:

• The breadcrumb at v2 has timed out. This, however, is not possible: the bread-

crumb at v1 is valid, and thus the breadcrumb at v2 must have been refreshed

at a later point in time. Since in BECONS we use the same ∆f
j ,∆

q
j for all

nodes, the breadcrumb at v2 can time out only after the breadcrumb at v1 has

timed-out.

• Node v2 has received a request for fj from v3 downstream. By the induction

step, this means the entire trail downstream w.r.t. v2 is obsolete, and since

the breadcrumb at v2 is invalid and v2 does not have the content, this property

holds for the entire downstream trail from v1.

We next prove that BECONS also has the property of trail stability. For any

neighboring nodes vi, vk, let Yf (i, k) and Yq(i, k) be random variables representing

the delays associated with transmitting a file and a request, respectively, from vi to

vk.

Theorem 48. Assume that qj arrived at v1 at time t when the breadcrumb bc1j is

still valid, and assume a (valid) breadcrumb trail exists along nodes v1, ..., vk. Then

1. If t− tfj < ∆f
j , the probability that the remaining trail is stable is bounded from

below by
k−1
∏

i=1

P [Yf (i, i+ 1) ≥ Yq(i, i+ 1)] (5.2)

118

2. If Yq(i, h) for all h are constant, this bound holds as long as there is a valid

breadcrumb at v1.

Proof: 1. Let qj be a request, and w.l.o.g. t = 0 be the time at which it starts

the search downstream along the trail. At time t = 0, we know that v1 has a valid

breadcrumb and t − tfj < ∆f
j . This means fj passed through v1 within the last ∆f

j

time, the earliest time being tfj = −∆f
j . Consequently, the content was cached at

each downstream node vh at the earliest at −∆f
j +
∑h−1

i=1 Yf (i, i+1). The breadcrumb

at vh will thus timeout at
∑h−1

i=1 Yf (i, i + 1). Since the request arrives at time t = 0,

the time for it to reach node vh if no hits occur along the way is
∑h−1

i=1 Yq(i, i + 1),

and we then directly conclude

P

(

h−1
∑

i=1

Yf (i, i+ 1) ≥
h−1
∑

i=1

Yq(i, i+ 1)

)

≥
k−1
∏

i=1

P (Yf (i, i+ 1) ≥ Yq(i, i+ 1)) (5.3)

2. Next we consider the case in which the breadcrumb at v1 was refreshed by a

request at time −∆q
j at the earliest. If this earlier request reached node vh, then,

using the same reasoning as above, we know that this earlier request reached vh no

earlier than time −∆q
j+
∑h−1

i=1 Yq(i, i+1), and the breadcrumb will not timeout before
∑h−1

i=1 Yq(i, i+ 1), by which time the new request will reach this node.

Consequently, there can be no breaks in the trail due to timeouts. What remains

to address is the possibility of a break in the trail due to other types of invalidations

— namely, a request backtracking up the trail. However, as we saw in Theorem 47,

if this happens than all the nodes from node vh until the end of the trail have been

invalidated, so there is no break in the trail, and stability is maintained.

Since requests are likely to be smaller than files, we expect that Yf (i, k) ≥ Yq(i, k)

with high probability, which allows BECONS to enjoy the benefits of trail stability.

A consequence of trail stability is that at every point in time t, each trail has a

single border node. A border node vborder(j,t) is a node on the trail such that:

119

• Requests for fj arriving upstream of vborder(j,t) will be routed towards the content

custodian, as their breadcrumb entries will time-out prior to t.

• Requests for fj arriving downstream of vborder(j,t) will be routed downstream

along the trail, as their breadcrumb entries will be valid at t and remain so

throughout the search.

Stability ensures these properties since otherwise the trail would be broken at some

node along the trail. Note as well that the location of the border node is monotonically-

dependant on the threshold values: the longer it takes for a breadcrumb to timeout,

the closer this border-node is to the custodian, diverting more traffic away from it to

search downstream. Thus, these values can be used as a tuning mechanism for load

distribution within the network.

5.5 Breadcrumbs Evaluation

5.5.1 Comparison Benchmarks

We compare the performance of Breadcrumbs to two alternative cache network

management policies. The first is the standard content search policy of cache net-

works, in which a request is routed along the shortest path to the content custodian,

with caches being inspected along the way. The second is a more stateful caching

system, which relies on explicit coordination among caches, both for content caching

and request routing. This policy, which we refer to here simply as coordinated caching,

and abbreviated as CC, allows each cache to store content and route requests based

on the state of its direct (one-hop) neighbors. For each node vi and file fj, let η(i, j)

be the set of all next-hop nodes when routing qj according to R. Formally,

η(i, j) := {vk : Ri(j, k) > 0}. (5.4)

120

Each node vi keeps track of each fj whether or not it is present at nodes in η(i, j).

This can be achieved either by vi requesting this information periodically or by each

vk ∈ η(i, j) broadcasting state updates. With this state information available, the

following rules are followed:

• If a request qj arrives at vi and fj /∈ vi, vi will check if there is a vk ∈ η(i, j)

s.t. fj ∈ vk. If no such node exists, routing follows according to Ri as usual.

If a single such node exists, qj is routed to it. If there is a set of such nodes

η∗(i, j), |η∗(i, j)| > 1, qj is routed according to vk ∈ η∗(i, j) with probability

proportional to Ri(j, k).

• If fj /∈ vi passes through vi, it is only cached at vi if fj is not in any next-hop

nodes (i.e., if fj /∈ vk for all vk ∈ η(i, j)). In this manner, content replication in

neighboring nodes is avoided (to some degree4).

• If fj /∈ vi passes through vi and is cached at vi, we evict content at vi that

is already present in next-hop neighbors if possible. Specifically, we select for

eviction a fh ∈ vi s.t. fh ∈ vk ∈ η(i, h), if such a file exists in vi. When several

such files exist, we evict according to the replacement policy of the cache. For

example, with LRU we will evict the least-recently used file fh ∈ vi that can be

found in a neighbor in η(i, h).

5.5.2 Simulation Setup

As Breadcrumbs does not assume ZDD, the experiments we ran allowed for con-

stant request and content propagation delay. The request rate was set to 10 requests

per time unit arriving at each node, the rate of content propagation was set to be

equal to this rate, and query propagation was set at double the rate. Also, with tree

4The same content can still be stored in two neighboring nodes since the relationship is directional
- vi does not store a file fj that is in vk ∈ η(i, j), but there is nothing to stop vk from storing content
that is already present in vi.

121

topologies being less interesting in the context of content search, we used the torus

topologies as in Chapter 2. Specifically, we used the same custodian placement and

exogenous request generating statistic as in Section 2.5.

We experiment here using BECONS, and it is to this version of Breadcrumbs that

we refer to in the discussion below when talking about the performance of Bread-

crumbs. We set, in all our experiments, ∆f
j = ∆q

j , and the values shown in the figures

below are in time-units.

5.5.3 Performance Metrics

We consider here several metrics for evaluating Breadcrumbs Cache Networks

(BCN):

Network-wide hit probability (or: reduced custodian load). An improved search

policy is expected to locate a copy of content in some network cache with higher

probability than with alternative policies. We refer to these as cache network

hit probability. As a result of this increase, the load at custodians is reduced.

Search and download distance. We are also interested in the quality of the search

process. One method for evaluating this is to count the number of hops it took

to locate the content copy; the shorter these paths are, the smaller the delay

experienced by a content consumer. Similarly, the distance that the content

must traverse during download should also be minimized.

Search efficiency. We also consider the ratio between the search and download

distance. A low ratio implies that the search was focused, directed early in the

search towards where content was eventually located. Note that with shortest-

path routing as well as Breadcrumbs with DFQ this ratio is always 1.0, as the

search and download paths are identical. This metric is thus of interest only for

Breadcrumbs with DFSP.

122

In what follows, we considered these values both on a per-file basis as well as globally,

for the entire set of requests combined.

5.5.4 Performance Evaluation

We now investigate the performance of Breadcrumbs, beginning with the network-

wide hit probability. Figures 5.5a-5.5b show the fraction of requests satisfied at

some cache (and not a custodian) for Breadcrumbs using both DFSP and DFQ, short-

est path routing (labeled “Greedy” in said figures) and (most interestingly) CC. In

these and all results shown in this section, 90% confidence intervals are shown. Fig-

ures 5.6a-5.6b show these same results, but only for the most popular files. These

results indicate that Breadcrumbs improves upon both shortest path and CC, espe-

cially for the most popular files. The total hit probability for all files combined is also

better with Breadcrumbs, as shown in Fig. 5.7a. We also see in these figures that

DFSP demonstrates slightly better performance than that of DFQ, and so in what

follows we present, at times, simulation results for DFSP only.

These figures show how the margin of improved performance relative to CC in-

creases when the cache size is smaller (compared to the number of files, as we saw

with a-NET). In the examples shown here, Breadcrumbs has 3% more hits than CC

when cache size is 20, but 8% more when cache size is halved to 10. One possible

explanation for this phenomenon is that CC improves performance mainly by having

neighboring caches act as a single cache under central control. When the radius of

such cooperation is finite and does not scale with network size, the gains are thus

bounded by the combined cache size. With Breadcrumbs, on the other hand, there

is no limit to the length of the breadcrumb trail, and so the number of network hits

does not decrease as fast.

With the same reasoning in mind, we consider another feature that can impact

performance - network size. As the scale of the network increases, there are more

123

opportunities for locating content en-route to the custodian, and more opportunities

as well for Breadcrumbs. Fig. 5.7b demonstrates this when scaling from a 10x10 to

a 15x15 torus topology. As we can see, the ratio between Breadcrumbs and shortest

path routing remains at a steady 20%, but compared to CC there is an increase in the

relative gain - from 8% for the smaller network to 10% for the larger one. Thus, as the

network size grows so to do the benefits from Breadcrumbs become more pronounced

compared to coordinated methods with fixed radius.

The effects of the timeout threshold were also investigated. As these thresholds

are increased, Breadcrumbs are allowed to remain valid longer and so the search can

be extended along longer paths, providing additional opportunities to locate content.

The results in Figure 5.8 show that increasing the TTL from 5 to 20 time units

increases the hit probability of Breadcrumbs. We consider the impact of this increase

on the search efficiency below.

We next consider performance regarding the search and download paths. Regard-

ing download paths, in Figures 5.9a-5.9b we find that Breadcrumbs does not only

locate more content within the network, it does so at a location closer to where the

request originated from, when comparing to shortest-path routing. This result il-

lustrates that some degree of load-balancing among the nodes is taking place with

Breadcrumbs, allowing each node to find a content copy closer to it. CC still out-

performs Breadcrumbs in this regard, and additional experimentation is required to

determine how this property scales with network size.

This improved search comes at a price, however, of increased search cost. Figures

5.10a-5.10b show the number of search hops as a function of file popularity. Several

properties can be observed from these results. First, we see that increasing the TTL

threshold of breadcrumb timeout extends the search path length. Of special interest

is the search length increase for semi-popular files in the range f20−f40. In Fig. 5.10a

we can see that, for the benchmark algorithms, the search length is monotonically

124

0 100 200 300 400 500

fid (sorted)

0.0

0.2

0.4

0.6

0.8

1.0

C
N

 h
it

 p
ro

b
a
b
ili

ty

Breadcrumbs

Greedy
Coord
DFQ-20
DFSP-20

(a) c=10.

0 100 200 300 400 500

fid (sorted)

0.0

0.2

0.4

0.6

0.8

1.0

C
N

 h
it

 p
ro

b
a
b
ili

ty

Breadcrumbs

Greedy
Coord
DFQ-20
DFSP-20

(b) c=20.

Figure 5.5: CN hit probabilities, broken down according to file IDs. Popular files
have lower indices. The impact of Breadcrumbs is mainly on the popular files. 90%
confidence intervals shown. See Figure 5.6 for these results but focusing on the popular
files.

125

0 20 40 60 80

fid (sorted)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
N

 h
it

 p
ro

b
a
b
ili

ty

Breadcrumbs

Greedy
Coord
DFQ-20
DFSP-20

(a) c=10

0 10 20 30 40 50 60 70

fid (sorted)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
N

 h
it

 p
ro

b
a
b
ili

ty

Breadcrumbs

Greedy
Coord
DFQ-20
DFSP-20

(b) c=20

Figure 5.6: CN Hit probabilities, broken down according to file IDs, and showing
popular files. Popular files have lower indices. 90% confidence intervals shown.

126

c=10 c = 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
N

 h
it

 p
ro

b
a
b
ili

ty

Total Custodian Load Reduction

Shortest Path
Coordinated
DFQ (ttl=20)
DFSP (ttl=20)

(a) Impact of cache size. For c=10, the values shown are: Shortest path = .448,
Coordinated = .503, DFSP = .543. For c=20, the values shown are: Shortest path
= .580, Coordinated = .633, DFSP = .655

10x10 Torus 15x15 Torus
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
N

 h
it

 p
ro

b
a
b
ili

ty

Total Custodian Load Reduction

Shortest Path
Coordinated
DFSP (ttl=20)

(b) Impact of network scale. For 10x10 torus, the values shown are: Shortest path
= .448, Coordinated = .503, DFSP = .543. For 15x15 torus, the values shown are:
Shortest path = .524, Coordinated = .579, DFSP = .641.

Figure 5.7: CN Hit probabilities, as impacted by cache and network scale. 90%
confidence intervals shown.

127

0 20 40 60 80 100

fid

0.2

0.4

0.6

0.8

1.0

C
N

 h
it

 p
ro

b

Breadcrumbs - CN hits per FID

Shortest Path
Coordinated
DFSP (ttl 5)
DFSP (ttl 20)

Figure 5.8: The impact of the timeout threshold, or time to live (TTL), on perfor-
mance. As we can see, with longer TTL the hit probabilities increase. Popular files
shown.

increasing for all files as their popularity decreases. For Breadcrumbs, however, we

can see that the search length for these semi-popular files is actually longer than for

the unpopular files.

One possible explanation for this phenomenon can be found in Figures 5.11a -

5.11b, which show the ratio of the number of search hops and download hops. Here we

see once again that the search efficiency is worst for the semi-popular files, indicating

a long search path relative to where content is actually found. We conjecture that

this is because popular files are located quickly along breadcrumb trails; unpopular

content is found less often but its breadcrumb trails are also shorter, ending in dead-

ends much quicker; but semi-popular content falls in a middle category, where there

are long breadcrumb trails as a result of multiple downloads but which nonetheless

eventually end in a dead-end.

128

Another important factor that emerges from the increase in both the cache-

network hit probability and the search path length is what might be considered a

local/global tradeoff: while the number of hits within the cache network grows, thus

increasing the network hit probability, the individual caches experience a decrease in

their hit probability (Fig. 5.12).

129

0 100 200 300 400 500

fid

2

3

4

5

6

7

8

9

#
 d

o
w

n
lo

a
d
 h

o
p
s

Breadcrumbs - Search Efficiency

Shortest Path
Coord
DFSP (ttl 20)

(a) Download hops for all files

0 20 40 60 80 100

fid

3

4

5

6

7

8

#
 d

o
w

n
lo

a
d
 h

o
p
s

Breadcrumbs - Search Efficiency

Shortest Path
Coord
DFSP (ttl 20)

(b) Search hops for most popular files

Figure 5.9: Mean search hops, broken down according to file IDs, for a 15x15 torus.
Popular files have lower indices. 90% confidence intervals shown.

130

0 100 200 300 400 500

fid

0

2

4

6

8

10

12

#
 s

e
a
rc

h
 h

o
p
s

Breadcrumbs - search hops

Shortest Path
Coordinated
DFSP (ttl 5)
DFSP (ttl 20)

(a) Search hops for all files

20 40 60 80 100

fid

2

4

6

8

10

12

#
 s

e
a
rc

h
 h

o
p
s

Breadcrumbs - search hops

Shortest Path
Coordinated
DFSP (ttl 5)
DFSP (ttl 20)

(b) Search hops for most popular files

Figure 5.10: Mean search hops, broken down according to file IDs. Popular files have
lower indices. 90% confidence intervals shown.131

0 100 200 300 400 500

fid

0.8

1.0

1.2

1.4

1.6

1.8

2.0

se
a
rc

h
 h

o
p
s/

d
o
w

n
lo

a
d
 h

o
p
s

Breadcrumbs - Search Efficiency

Shortest Path
DFSP (ttl 5)
DFSP (ttl 20)

(a) Ratio for all files

0 20 40 60 80 100

fid

1.0

1.2

1.4

1.6

1.8

se
a
rc

h
 h

o
p
s/

d
o
w

n
lo

a
d
 h

o
p
s

Breadcrumbs - Search Efficiency

Shortest Path
DFSP (ttl 5)
DFSP (ttl 20)

(b) Ratio for most popular files

Figure 5.11: Ratio between search and download hops, broken down according to file
IDs. Popular files have lower indices. 90% confidence intervals shown.

132

0 50 100 150 200 250

Cache ID (sorted)

0.86

0.88

0.90

0.92

0.94

0.96

M
is

s
P
ro

b
a
b
ili

ty

Breadcrumbs impact on local cache misses

Shortest Path
Coord
DFSP (ttl 20)

Figure 5.12: The impact of using Breadcrumbs on local cache miss probabilities. As
we can see, with Breadcrumbs the miss probabilities per cache grow, even though
globally the network satisfies more requests.

133

5.6 Causality analysis - cache contents vs. search policy

As observed in Section 5.5, Breadcrumbs reduces the load on custodians while

reducing the download distance, compared to shortest-path download policies tradi-

tionally proposed for ICNs. The cause for this improvement in performance, however,

has yet to be isolated. In a Breadcrumbs Cache Network (BCN), both routing and

cache contents affect the system behavior. Indeed, each of these two factors - caching

and routing - impacts the state of the other. On the one hand, request routing im-

pacts the eventual content download path, which determines where content will be

stored. On the other hand, the distribution of content determines at what node a

request will be satisfied; with Breadcrumbs, the request path determines those nodes

that will have their breadcrumb entries refreshed during content search.

In this section we are interested in the impact that each of these two factors -

caching and routing - has on the system behavior. We are specifically interested

in answering the question: to what degree does Breadcrumbs reduce custodian load

via effective content search, and to what degree is this a result of improved content

placement?

Taken as phrased here, this question can be construed as meaningless: the per-

formance of any cache network is not the outcome of one of these two factors, but of

interaction between them. We therefore consider two well-defined variations of this

question:

• In the strong version, we limit our focus to network scenarios where content

state is not impacted by the request routing policy. In such scenarios we can

manipulate the routing tables without affecting cache contents, and by observing

the outcome we can determine the impact of the routing policy. We discuss this

approach in Section 5.6.2.

• In the weak version, we limit our investigation into the degree to which Bread-

crumbs takes advantage of the cache state it creates. We do so by considering

134

a system where content caching is governed by Breadcrumbs but content search

follows a static policy such as shortest-path search. We discuss this approach

in Section 5.6.3.

5.6.1 Breadcrumbs Causality Model

Before we move on to considering the strong and weak versions of Breadcrumbs

impact evaluation, let us define the challenge and the solution approaches formally.

To this end we consider the partial DAPER model presented in Fig. 5.13. DAPER

(Direct Acyclic Probabilistic Entity Relationship) models are used to express the

relationships between entities in a system. In the format we adopt here, the entities

are denoted using rectangles and the variable nodes (denoted with ellipses) that are

related to each entity are placed within its rectangle. Directed edges in this model

indicate causal relationships: an arrow from variable node A to B indicates that

manipulating the state of variable A will probabilistically affect the state of variable

B. The model presented here is partial in the sense that it does not show all the

entities and attributes that make up a cache network, only those of interest to us.

One important feature of the model shown in Fig. 5.13, and which sets it apart

from standard DAPER models, is that it replicates variables to reflect the impact of

time on the system. Thus we have two variables for the routing tables and two for

cache contents, to reflect the impact of past states on future states.

Let us now consider Fig. 5.13 in detail. It shows three entity classes - caches,

routers and servers (custodians), and directed links that represent the causal relation-

ships between the classes. Each of the entity classes shown represents all the entities

of that type in the network, and causal edges indicate that each entity of the “cause”

variable affects one or several entities of the “effect” variable.

In order to reflect the differences between a standard cache network (CN) and a

BCN, we use black directed links to represent the causal relationships in a standard

135

Replacement

policy

Routing policy

Routing Table

time T

Routing Table

time T-1

Cache contents

time T

Cache contents

time T-1

Request Rate

time T

Cache Router

Custodian

Figure 5.13: Partial DAPER model of Breadcrumbs system, focusing on custodian
load as affected by routing and cache contents. Each logical entity represents possibly
multiple physical entities in the network.

CN, where content is routed directly to the custodian; for the case of a BCN, the

directed edges in red should also be added to the model.

This model demonstrates the argument presented informally above. For the case

of standard cache networks:

• The routing remains static over time (assuming no changes in the network

structure), and thus there is no causal link between the routing table at different

times, given the routing policy. This can be seen from the lack of a directed

edge from the routing table state at time T −ǫ and to that at time T . Note that

both are affected by the same routing policy, which remains static over time.

• Cache contents at time T is determined by the state of the cache at earlier

points in time, as well as the request stream arriving at it, which is controlled

in part by the routing tables. Thus we have directed edges from both routing

tables and caches from earlier points in time to the state of the cache at the

current time.

136

• Both request routing and cache contents will affect which requests arrive at the

content custodian.

With Breadcrumbs, two additional links are added, shown in red in Fig. 5.13:

• Routing policy supports changes to the routing tables over time. Thus, the

effective routing tables - the combination of both static and breadcrumbs routing

tables - are dependent on those from the past. Thus, we have an edge from past

routing tables to the current ones at time T .

• Cache state can impact routing tables, as the cache state determines where a

request for content will be satisfied, which in turn impacts which breadcrumb

entries are refreshed.

When all the links, both black and red, are present in the model, it is clear

that both cache state and routing tables impact the eventual load at custodians.

However, if we were to conceive of a system where some of these causal links could be

removed, we might be able to make a distinction between caching and routing impact

on performance; and this is what we set out to do in Sections 5.6.2 and 5.6.3.

5.6.2 The impact of Breadcrumbs routing in Random replacement net-

work with limited caching.

In Figure 5.14 we specify the causal model for the effects routing can have on

cache contents. As is evident here, there are two such effects:

• Depending on the replacement policy, when a request arrives at a cache and

generates a cache hit, this can affect the order of future file evictions. For

example, with LRU caches a cache hit impacts the file ordering within the

cache, impacting future evictions and hits.

• Along the download path of fj, the file is stored in caches along the way, chang-

ing their state.

137

Parameter Value
Topology Torus
Dimensions 10-by-10
files 500
File request distribution (each user) Zipfian
File request rate (each user) 10 requests per unit time
File placement in network 4 sources, equally distanced
Propagation delay 0

Table 5.1: List parameter values used for causality investigation.

An example of these effects is demonstrated using the scenario shown in Fig. 5.15,

depicting a portion of a cache network. A request qj originating from node v1 can

be routed along the shortest path to the custodian (path v2 − v4) or to follow the

breadcrumb trail (v5 − v7). Assume that fj can be found either in node v4 or v7, but

not in any intermediate nodes along these paths. Along the path the request follows,

it will affect the state of all nodes along the path either via cache hits (as with LRU)

or by content download and evictions.

Under the assumption of causal completeness - that the model in Fig. 5.14 includes

all the directed causal paths from routing to cache contents - we propose the following

BCN scenario where we show that routing does not affect cache contents:

Replacement Policy. Caches use RND instead of LRU as the replacement policy.

As discussed earlier in this dissertation, cache hits have no impact on the cache

state of a Random replacement cache.

Admission control. Caches only store the contents for requests that arrived at the

cache exogenously - we call this limited placement. In Fig. 5.15, this would cor-

respond to caching fj only at node v1 and not in any of the intermediate nodes

along the download path. With this limited placement policy, the download

path does not affect cache state.

Download Delay. As we have through much of this work, we assume ZDD.

138

Replacement

policy
 Cache Router

Cache contents Routing Table Admission

Control policy

File eviction

order
 Download Path

Network

Figure 5.14: DAPER model for the causal links from routing to cache content. Blue
dotted lines connect one policy variable to one other variable. This (non-standard)
notation indicates that whether or not the attached variable will have any impact on
cache contents will depend on the policy variable.

V1

V2

V4

V3

V5

V6

V7

Figure 5.15: Topology portion, depicting the different paths affected when following
a breadcrumb trail vs. the shortest path to the custodian. The origin of the request
is v1, and fj can be found at both v4, v7, which are circled in green.

139

For such a system, cache state is agnostic to search policy, and a corresponding

causal model would not have an edge from former routing tables to cache contents.

As such the only differentiator between a CN and a BCN is the search policy. We

can therefore compare CNs to BCNs in such systems to determine the impact of

content search policies on custodian load (or any other metric). We simulated such

systems, for 10x10 torus topologies with file popularity following Zipfian distribution,

and content distributed among four custodians as above, with varying cache sizes of

5, 20 and 40, and to see the impact of this search policy routing on performance. The

results are presented in Figure 5.16, using two metrics. Let Q be the total number of

requests that were generated by users in the simulation, hits(CN) and hits(BCN)

are the number of these requests served by the cache network and not by custodians,

for CNs and BCNs respectively.

1. The relative increase in cache hits compared to standard CNs is shown in the

white bars (left), which is computed

hits(BCN)− hits(CN)

hits(CN)
.

2. The increase in hit probability is shown on the right, in the yellow bars, and

computed

hits(BCN)− hits(CN)

Q
.

For example, for the case of caches of size 20 BCN served approximately 10% more

requests than standard CN, which constitutes of an increase of 6% of total requests

that were sent into the system.

Figure 5.16 shows that, as the cache size becomes smaller, the added performance

of Breadcrumbs goes up. This can be explained by noting that as caches become

smaller, the probability of a cache miss goes up, and so more requests follow bread-

crumbs than with bigger caches. This corresponds to what we saw in our evaluation of

140

Breadcrumbs, where a rise in L/c ratio makes the Breadcrumbs improvement margin

grow compared to both shortest-path and CC caching policies.

5.6.3 The utility of Breadcrumbs routing in general BCNs

The approach outlined in Section 5.6.2 is clearly limited to specific instances of

Breadcrumbs systems. For the general case, we limit ourselves to the weaker version

of our analysis, and focus on gaining some insight into the degree to which the search

policy utilizes the content distribution in the network. To this end, we construct

an experiment that will distribute content according to Breadcrumbs, while content

search will be conducted according to a different policy - in our case, by routing

requests according to Ri for all nodes. The resulting simulation is termed here a

quasi-BCN. Since a quasi-BCN shares the same content distribution as a BCN, the

only distinguishing feature is the content search. By comparing the performance of

Breadcrumbs to that of the quasi-BCN, we can thus gain insight into the added benefit

Breadcrumbs request routing brings to the system.

To generate this quasi-BCN, we take each exogenous request and represent it as

two requests that flow through the system, affecting it in distinct ways:

• The request q
(state)
j , and the eventual download of fj, affect the state of the

caches w.r.t. fj. The request follows breadcrumb trails when available, refreshes

content in caches with fj according to the replacement policy, and downloads

content from caches or custodians, wherever found. However, when content is

located, we do not log this event as a custodian or cache download. We refer

to these as state-requests.

• The request q
(log)
j logs the performance of the system in terms of custodian

request rates. This request is routed to the content custodian along the shortest

path. If content is found at some cache, it does not affect cache state, and when

downloading fj from where it was found it does not affect cache or router state.

141

Figure 5.16: The performance increase due to efficient routing with RANDOM re-
placement and limited placement, for caches sizes k = 5, 20, 40. The white bars (left)
represent (hits(BCN)− hits(CN))/hits(CN), the fractional reduction in custodian
load when moving to BCN. The yellow bars (right) show the fraction of requests sent
int o the system that were served by the network due to BCN routing. 95% confidence
intervals are shown.

142

The only impact this request has is on the logged events - cache hits and misses,

as well as custodian request rates, which are logged. We refer to these as log-

requests.

From the definitions above, we know that (a) only state-requests affect cache con-

tents, and (b) at the caches are populated just as they would be for the corresponding

BCN. Log-requests, on the other hand, are routed along the shortest path to the cus-

todians, and thus are impacted by cache state but not by the Rbc routing tables.

Thus, in this quasi-BCN, there are no links between logged routing (which is static)

and each cache content populated using Breadcrumbs.

We now compare the load on the custodian for a BCN and quasi-BCN. The cache

state in both is identical for each point in time, but the request routing differs: BCN

uses Breadcrumbs while the quasi-BCN uses shortest path routing to the custodian.

We can thus observe in comparison how much Breadcrumbs takes advantage of the

specific placement of content generated by Breadcrumbs.

Note that the selection of shortest-path routing is simply one of convenience, and

any static routing scheme can be used for comparison. Indeed, this evaluation process

can be repeated several times with different static routing policies, to determine with

higher certainty the contribution to performance of content search.

We ran several quasi-simulations and compared their performance to that of stan-

dard CNs and to BCNs. Figure 5.17 shows the results for caches of size 20 and Zipfian

popularity distribution. We found that these results held also when making caches

larger and smaller. As can be seen here, the quasi-BCN yields performance slightly

worse than that of a standard CN. These results would indicate that the content

search policy has a strong impact on performance.

143

0 100 200 300 400 500
File ID (descending popularity order)

0.0

0.5

1.0

1.5

2.0

2.5

R
e
q
u
e
st

 r
a
te

 a
t

se
rv

e
r

Standard CN
BCN
Quasi BCN

Figure 5.17: Custodian request rate - comparison with quasi-simulation of BCNs.
k = 20.

5.7 Discussion

In this chapter we presented Breadcrumbs — a method for efficient best-effort

content search within a cache network. We demonstrated its utility for a specific

instance (BECONS) via extensive experimentation, and proved several useful prop-

erties for this system. Our results indicate that much can be achieved with systems

of implicit coordination, and that these can at times match the performance of more

stateful systems using explicit coordination.

The Breadcrumbs architecture we presented here is quite flexible, and offers many

variations to explore. We briefly survey a few notable examples for such directions,

and leave detailed analysis of their properties to future work.

Dynamic Networks and Partial Deployments. The breadcrumb entry as de-

fined above is suitable for networks with topologies that change on a long

time-scale. For these, we can assume that the next and previous hops of a

node remain the same over the period of time that a specific breadcrumb trail

is used. Breadcrumbs can be easily extended to other systems where this as-

144

sumptions does not hold. By substituting the next and previous hops with

the source and destination of the content download, Breadcrumbs can be used

as well in networks where topologies change more frequently, such as mobile

networks. This approach would also allow support for networks where only

a sub-set of nodes supports the Breadcrumbs protocol. In both cases, having

the first and last node in the path can help guide requests even when passing

through nodes that have no breadcrumb entries.

Persistent following of breadcrumbs. In our work here, we allowed a request to

follow a breadcrumb path only as long as no dead-end was reached and no cycle

detected. Once this occurs, the request is routed to the custodian, checking

caches along the way but ignoring Rbc. Alternative policies might allow for Rbc

tables to still be consulted along the way after such an occurrence, once the risk

of repeating the cycle or reaching the same dead-end has been avoided.

Adaptive Thresholds. BECONS relies on a small amount of state-exchange to

determine the threshold values for timing out breadcrumb entries. It is worth

considering, though, implementations where these thresholds are determined

at each cache dynamically. For example, by observing the miss streams of

neighboring caches, v might be able to determine the rate of content eviction

from these neighbors and use this information in determining the threshold after

which content is not likely to be at each neighbor. We have developed an outline

for such a method with Random Replacement caches, and hope to address this

in future work.

In addition to this adaptation, one might want to bound the cost of following

a breadcrumb trail in advance. This is possible, to take one example, when we

assume the distance to the custodian is known from every node in the network.

Assume we wish to bound the increase in search length, compared to routing

145

to the custodian along the shortest path, by a performance parameter α ≥ 1.

Denote the distance from each node vi to the custodian as d(i), then the goal

is to bound the search path at αd(i). This can be done by allowing a request

arriving exogenously at vi to follow a breadcrumb trail for k hops that end at

node vh if αd(i) ≥ k+d(h). The analysis of this approach is left for future work,

and is brought here only to demonstrate the wide range of options available for

using Breadcrumbs.

146

CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

In this dissertation, we examined the emerging architecture of cache networks. We

considered this architecture from multiple perspectives, touching upon both modeling

and management of these new systems. The tools we developed here, especially a-

NET and Breadcrumbs, are easily extendable and can accommodate many variations,

which can be tailored to the interests of the researcher and the additional tools at his

disposal (e.g., an SCA algorithm).

In summary, made the following contributions to the study of cache networks in

this dissertation:

1. We developed an approximation algorithm for cache network performance, called

a-NET, that leverages SCA algorithms to compute an approximation for an

entire network. a-NET can deal with any network topology, and heterogenous

networks where caches use different replacement policies.

2. We conducted an analysis of performance-affecting factors on the approximation

error of a-NET using a specific SCA algorithm for LRU, and demonstrated the

significance of dependencies within the cache miss streams on approximation

precision when using this SCA algorithm.

3. We developed a network calculus for bounding request flows passing through

LRU caches, demonstrating that these bounds are tight in theory, and experi-

mentally explored when the bounds are tight in practice.

147

4. We considered factors that impact the steady-state behavior of a cache network,

specifically showing the possible impact of the initial cache state on long-term

behavior. We also proved that for many cache networks, and specifically for a

class of replacement policies, the initial state does not influence the steady-state

distribution.

5. We described Breadcrumbs, a best-effort content search policy, in which each

cache routes requests dynamically, based solely on local information. Bread-

crumbs fosters an implicit inter-cache coordination of routing, without involving

any (or only a negligible amount of) inter-cache control overhead.

6. For a certain version of Breadcrumbs, called BECONS, we proved the properties

of trail stability and trail obsoleteness detection, and the emergence of a border

node along the downstream trail. We investigated the performance on Bread-

crumbs via simulation, showing that in many cases, Breadcrumbs outperforms

more stateful (and more complex) approaches.

7. We presented an analysis of causal relationships within the network, specifically

between cache state and request routing tables. From this analysis, we devised

experiments to demonstrate the impact that Breadcrumbs-based search has on

custodian load reduction.

The work presented here constitutes one of the first to address directly the chal-

lenges presented by cache networks of arbitrary topologies. While ICN architectures

clearly involve such systems on a large scale, the research community has only just

begun to grapple with the modeling and management complications for these sys-

tems. We hope that, beyond the direct contributions present here, this work can

raise awareness of the need for new methods for designing, modeling and analyzing

such systems.

148

In the spirit of directing such future research, we would like to end by pointing

out two recurring phenomenon that we observed over the course of our work. The

first relates to the impact of cross flows in the network on load balancing between

direct neighbors. The fact that links experience requests for content flowing in both

directions on the link is a feature that distinguishes arbitrary cache networks from

their classic hierarchical counterparts. In our work, we have observed that these cross

flows also generate an implicit form of load balancing between them. This is evidenced

in the following behavior: (a) cache misses from A to B cause B to download files A

requested; (b) B evicts files from its cache, resulting in more cache misses at B; (c)

some of these misses are forwarded to A, where the same process takes place. The

result of this back-and-forth is that neighboring caches store different files. While

this behavior has been observed in the course of our work, we have yet to discover its

exact impact and patterns in large networks.

The second insight we share here is regarding the manner in which cache misses

should be considered. In single-cache systems, a cache miss is generally considered a

negative event; the goal of optimal caching is to reduce these to a minimum. However,

as we have observed in a-NET, when a cache is large, the next hop cache of similar

size will have much lower hit probabilities. In other words, local benefit at one cache

can result in negatively impacting the performance at future hops, perhaps impacting

global behavior to the worse. The reverse was observed with Breadcrumbs, where an

increase in cache misses can result in an overall reduction in custodian load and

download distance. Our interpretation of this phenomenon is currently that, in a

cache network, cache misses are also information streams sent from one node to

the next. Since each cache determines what to cache based on the arrival stream

properties, and the arrival stream includes the miss streams of the neighbors. It can

thus be interesting to consider a system that allows cache misses to propagate for

149

purposes of information flow through the network. The exact manner in which this

could be done effectively is left for future work.

150

APPENDIX

APPROXIMATION ALGORITHMS FOR INDIVIDUAL
CACHES

In this appendix, we present the SCA approximation algorithms referenced in

Chapter 2.

A.1 LRU

The SCA algorithm for LRU we used was developed by Towsley and Dan [14],

which we shall denote a-LRU. a-LRU is designed to compute the probability that a

file exists in a cache at a random point in time, which for IRM requests is the same

as the hit probability, as proven in Lemma 1.

We review briefly some terminology. Let a k-prefix be the top k slots in an LRU

cache, which store the k most recently used files. a-LRU leverages a useful property

of LRU — that the state of the cache at its k-prefix slots can be computed for a given

miss stream without considering the rest of the cache slots. As a result, the content

of the cache can be computed incrementally: given the state of the k-prefix for some

k, we compute for the (k+1)th slot, conditioning on the file not being in the k-prefix.

See the full algorithm here (Algorithm 7).

A.2 RND

We next consider an SCA algorithm for Random replacement. We start with

reviewing some notation:

151

Algorithm 7 Approx-LRU(λ1, ..., λL, L, c).

1: For all 1 ≤ j ≤ L, pj ←
λj∑
k λk

2: pdf1 ← (p1, ..., pL)
3: cdf1 ← pdf1
4: for 2 ≤ i ≤ c do
5: cdfRemainder ← (max{0, 1− cdfi−1,j})1≤j≤L

// Probability content not in
i− 1-prefix

6: weights← (cdfRemainderj ∗ pj)1≤j≤L

7: pdfi ←
(

weightsj∑
h weightsh

)

1≤j≤L
// pdf for the contents of slot i

8: cdfi ← (cdfi−1,j + pdfi,j)1≤j≤L
// Probability that content is in i-prefix

9: end for
10: RETURN cdfL // Probability that content is in the cache

• ej = Pr(existsj) - probability that fj can be found in the cache at a random

point in time. When the request process is IRM, this is also the probability for

a cache hit.

• λ - combined exogenous request rate at the cache.

• µev,j - rate of evictions (= cache misses) from cache given that content fj is in

the cache.

• µev - mean rate of evictions at the cache.

• p1, . . . , pL - request distribution at the cache. Assume IRM.

• c - cache size

• τj,in - mean time that file i spends in the cache before eviction.

• τj,out - mean time that file i spends outside the cache after eviction, before it is

cached again.

152

The solution for a random replacement cache with IRM request probabilities

p1 . . . pL and a overall request rate of λ can be computed from the following equations:

L
∑

j=1

ej = c (A.1)

∀j ∈ [n] ej =
τj,in

τj,in + τj,out
(A.2)

∀j ∈ [n] τj,out = 1/λj := 1/λpj (A.3)

∀j ∈ [n] τj,in = c/µev,j (A.4)

∀j ∈ [n] µev,j = λ
∑

k 6=j

Pr(fk /∈ v|fj ∈ v) · pk (A.5)

We briefly explain the meaning of each equation, in order:

1. The existence probabilities sum up the the cache size, as these probabilities can

be thought of as the mean cache space taken up by each file.

2. The existence probability for fj is the fraction of time it spends in the cache.

3. With IRM, the time spent outside the cache is the inverse of the arrival rate.

4. Since which file is evicted is selected uniformly at random from the content in

the cache, the rate at which fj is evicted is 1
c
× µev,j. The mean time spent in

the cache before eviction is the inverse of this value.

5. The eviction rate when fj is in the cache is the rate of arrivals times the prob-

ability of a miss, given that fj is in the cache. Note that in the last equation,

if j = k we get 0 so we do not need to explicitly denote this case.

We approximate this set of equations by substituting µev,i := µev, which can be

computed with greater simplicity thus:

153

µev = λ
n
∑

j=1

pj(1− ej) (A.6)

Next, we note that any solution to the first four equations must conform to

∑

j

1

c + µev,j/(pjλj)
= 1 (A.7)

and substituting as stated we get

∑

j

1

c + µev/(pjλ)
=
∑

j

pjλ

pjλc + µev

= 1 (A.8)

which we solve for µev. Once this value is known, solving the set of equations above

is straightforward, from which we derive the existence probabilities. Our implemen-

tation did this via binary search, using the fact that the value of the sum is mono-

tonically decreasing with µev.

154

BIBLIOGRAPHY

[1] Ahlgren, Bengt, Dannewitz, Christian, Imbrenda, Claudio, Kutscher, Dirk,
and Ohlman, Börje. A Survey of Information-Centric Networking (Draft). In
Information-Centric Networking (Dagstuhl, Germany, 2011), Bengt Ahlgren,
Holger Karl, Dirk Kutscher, Börje Ohlman, Sara Oueslati, and Ignacio Solis,
Eds., no. 10492 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany.

[2] Ari, Ismail. Design And Management Of Globally Distributed Network Caches.
PhD thesis, UC Santa Cruz, 2004. http://www.soe.ucsc.edu/ ari/Ari-PhD-
Thesis.pdf.

[3] Ari, Ismail, Amer, Ahmed, Gramacy, Robert, Miller, Ethan L., Brandt, Scott A.,
and Long, Darrell D. E. Acme: Adaptive caching using multiple experts. In
Proceedings in Informatics (2002), pp. 143–158.

[4] Babenhauserheide, Arne. GnuFU - Gnututella For Users, 2004.
http://draketo.de/inhalt/krude-ideen/gnufu-en.pdf.

[5] Ballardie, Tony, Francis, Paul, and Crowcroft, Jon. Core based trees (CBT). In
SIGCOMM (1993), pp. 85–95.

[6] Bhide, A.K., Dan, A., and Dias, D.M. A simple analysis of the lru buffer policy
and its relationship to buffer warm-up transient. In Data Engineering, 1993.
Proceedings. Ninth International Conference on (apr 1993), pp. 125 –133.

[7] Borst, S., Gupta, V., and Walid, A. Distributed caching algorithms for content
distribution networks. In INFOCOM, 2010 Proceedings IEEE (march 2010),
pp. 1 –9.

[8] Busari, Mudashiru, and Williamson, Carey L. Simulation evaluation of a het-
erogeneous web proxy caching hierarchy. In MASCOTS (2001), IEEE Computer
Society, pp. 379–388.

[9] Carofiglio, G., Gallo, M., Muscariello, L., and Perino, D. Modeling data transfer
in content-centric networking. In Proceedings of the 23rd International Teletraffic
Congress (2011), ITCP, pp. 111–118.

[10] Chankhunthod, Anawat, Danzig, Peter B., Neerdaels, Chuck, Schwartz,
Michael F., and Worrell, Kurt J. A hierarchical internet object cache. In Proceed-
ings of the USENIX Annual Technical Conference (Berkeley, Jan. 1996), Usenix
Association, pp. 153–164.

155

[11] Chawathe, Yatin, Ratnasamy, Sylvia, Breslau, Lee, Lanham, Nick, and Shenker,
Scott. Making gnutella-like p2p systems scalable. In Proceedings of the 2003 con-
ference on Applications, technologies, architectures, and protocols for computer
communications (New York, NY, USA, 2003), SIGCOMM ’03, ACM, pp. 407–
418.

[12] Che, Hao, Wang, Zhijung, and Tung, Ye. Analysis and design of hierarchical
web caching systems. In IEEE INFOCOM (2001), pp. 1416–1424.

[13] Cruz, R.L. A calculus for network delay. i. network elements in isolation. Infor-
mation Theory, IEEE Transactions on 37, 1 (jan 1991), 114 –131.

[14] Dan, Asit, and Towsley, Donald F. An approximate analysis of the lru and fifo
buffer replacement schemes. In SIGMETRICS (1990), pp. 143–152.

[15] de Souza e Silva, E., Leao, R. M. M., and Figueiredo, D. R. An integrated mod-
eling environment for computer systems and networks. Performance Evaluation
Review 36, 4 (2009), 64–69.

[16] Eum, S., Nakauchi, K., Murata, M., Shoji, Y., and Nishinaga, N. Catt: Potential
based routing with content caching for icn. ICN Sigcomm.

[17] Flajolet, Philippe, Gardy, Danièle, and Thimonier, Loÿs. Birthday paradox,
coupon collectors, caching algorithms and self-organizing search. Discrete Appl.
Math. 39, 3 (1992), 207–229.

[18] Fonseca, Rodrigo, Almeida, Virgilio, Crovella, Mark, and Abrahao, Bruno. On
the intrinsic locality properties of web reference streams. In In Proceedings of
the IEEE INFOCOM (2003).

[19] Fricker, C., Robert, P., and Roberts, J. A versatile and accurate approximation
for lru cache performance. Arxiv preprint arXiv:1202.3974 (2012).

[20] Gallo, M., Kauffmann, B., Muscariello, L., Simonian, A., and Tanguy, C. Per-
formance evaluation of the random replacement policy for networks of caches.
Arxiv preprint arXiv:1202.4880 (2012).

[21] Ghodsi, A., Shenker, S., Koponen, T., Singla, A., Raghavan, B., and Wilcox, J.
Information-centric networking: seeing the forest for the trees. In Proceedings of
the 10th ACM Workshop on Hot Topics in Networks (2011), ACM, p. 1.

[22] Gupta, R., Tokekar, S., and Mishra, D.K. A paramount pair of cache replace-
ment algorithms on l1 and l2 using multiple databases with security. In Emerging
Trends in Engineering and Technology (ICETET), 2009 2nd International Con-
ference on (dec. 2009), pp. 346 –351.

[23] Ioannidis, Stratis, and Marbach, Peter. On the design of hybrid peer-to-peer
systems. In SIGMETRICS (2008).

156

[24] Ioannidis, Stratis, and Marbach, Peter. Absence of evidence as evidence of ab-
sence: A simple mechanism for scalable p2p search. In IEEE INFOCOM (2009).

[25] Jacobson, Van. A new way to look at networking. Internet video, 2007.

[26] Jacobson, Van, Smetters, Diana K., Briggs, Nicholas H., Plass, Michael F., Stew-
art, Paul, Thornton, James D., and Braynard, Rebecca L. Voccn: voice-over
content-centric networks. In Proceedings of the 2009 workshop on Re-architecting
the internet (New York, NY, USA, 2009), ReArch ’09, ACM, pp. 1–6.

[27] Jacobson, Van, Smetters, Diana K., Thornton, James D., Plass, Michael F.,
Briggs, Nicholas H., and Braynard, Rebecca L. Networking named content.
In Proceedings of the 5th international conference on Emerging networking ex-
periments and technologies (New York, NY, USA, 2009), CoNEXT ’09, ACM,
pp. 1–12.

[28] Jelenković, P.R., and Kang, X. Characterizing the miss sequence of the lru cache.
ACM SIGMETRICS Performance Evaluation Review 36, 2 (2008), 119–121.

[29] Jin, Yingwei, Qu, Wenyu, and Li, Keqiu. A survey of cache/proxy for transparent
data replication. In SKG (2006), IEEE Computer Society, p. 35.

[30] Kakida, M., Tanigawa, Y., and Tode, H. Breadcrumbs+: Some extensions of
naive breadcrumbs for in-network guidance in content centric networks. In Ap-
plications and the Internet (SAINT), 2011 IEEE/IPSJ 11th International Sym-
posium on (2011), IEEE, pp. 376–381.

[31] Kansal, Aman, Hsu, Jason, Zahedi, Sadaf, and Srivastava, Mani B. Power man-
agement in energy harvesting sensor networks. ACM Trans. Embed. Comput.
Syst. 6, 4 (Sept. 2007).

[32] Katsaros, K., Xylomenos, G., and Polyzos, G.C. A hybrid overlay multicast
and caching scheme for information-centric networking. In INFOCOM IEEE
Conference on Computer Communications Workshops , 2010 (march 2010), pp. 1
–6.

[33] Katsaros, K., Xylomenos, G., and Polyzos, G.C. Multicache: An overlay ar-
chitecture for information-centric networking. Computer Networks 55, 4 (2011),
936–947.

[34] Kelly, F.P. Blocking probabilities in large circuit-switched networks. Advances
in Applied Probability (1986), 473–505.

[35] Kelly, F.P. Loss networks. The annals of applied probability (1991), 319–378.

[36] Kemeny, John, and Snell, J. Finite Markov Chains. Springer, 1976.

[37] King, W. F. Analysis of paging algorithms. In IFIP Congress (1971), pp. 485–
490.

157

[38] Korupolu, Madhukar R., and Dahlin, Michael. Coordinated placement and re-
placement for large-scale distributed caches. IEEE Transactions on Knowledge
and Data Engineering 14, 6 (2002), 1317–1329.

[39] Krishnan, P., Raz, Danny, and Shavitt, Yuval. Transparent en-route caching in
wans?, 1999.

[40] Krishnan, P., Raz, Danny, and Shavitt, Yuval. The cache location problem.
IEEE/ACM Trans. on Networking 8, 5 (2000), 568–582.

[41] Kumar, A., Xu, J., and Zegura, E.W. Efficient and scalable query routing for
unstructured peer-to-peer networks. In INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings
IEEE (march 2005), vol. 2, pp. 1162 – 1173 vol. 2.

[42] Kunwadee, Sripanidkulchai. The popularity of gnutella queries and its implica-
tions on scalability. http://www.cs.cmu.edu/ kunwadee/research/p2p/paper.html
(2001).

[43] Laoutaris, N., Smaragdakis, G., Bestavros, A., Matta, I., and Stavrakakis, l.
Distributed selfish caching. Parallel and Distributed Systems, IEEE Transactions
on 18, 10 (oct. 2007), 1361 –1376.

[44] Laoutaris, Nikolaos, Che, Hao, and Stavrakakis, Ioannis. The lcd interconnection
of lru caches and its analysis. Performance Evaluation 63 (2006), 609–634.

[45] Le Boudec, J.-Y., and Tomozei, D.-C. Demand response using service curves.
In Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE PES
International Conference and Exhibition on (dec. 2011).

[46] Le Boudec, J.Y., and Thiran, P. Network calculus: a theory of deterministic
queuing systems for the internet. springer-Verlag, 2001.

[47] Levy, Hanoch, and Morris, Robert J. T. Exact analysis of bernoulli superposition
of streams into a least recently used cache. IEEE Trans. Softw. Eng. 21, 8 (1995),
682–688.

[48] Liu, Y., Guo, Y., and Liang, C. A survey on peer-to-peer video streaming
systems. Peer-to-peer Networking and Applications 1, 1 (2008), 18–28.

[49] Lv, Qin, Cao, Pei, Cohen, Edith, Li, Kai, and Shenker, Scott. Search and
replication in unstructured peer-to-peer networks. In Proceedings of the 16th
international conference on Supercomputing (New York, NY, USA, 2002), ICS
’02, ACM, pp. 84–95.

[50] Panagakis, Antonis, Vaios, Athanasios, and Stavrakakis, Ioannis. Approximate
analysis of lru in the case of short term correlations. Comput. Netw. 52, 6 (2008),
1142–1152.

158

[51] Peng, Gang. Cdn: Content distribution network.
http://www.scientificcommons.org/21241169.

[52] Pentikousis, Kostas, and Rautio, Teemu. A multiaccess network of information.
In World of Wireless Mobile and Multimedia Networks (WoWMoM), 2010 IEEE
International Symposium on a (june 2010), pp. 1 –9.

[53] Psaras, Ioannis, Clegg, Richard, Landa, Raul, Chai, Wei, and Pavlou, George.
Modelling and evaluation of ccn-caching trees. In NETWORKING 2011, Jordi
Domingo-Pascual, Pietro Manzoni, Sergio Palazzo, Ana Pont, and Caterina
Scoglio, Eds., vol. 6640 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2011, pp. 78–91.

[54] Psaras, Ioannis, Clegg, Richard G., Landa, Raul, Chai, Wei K., and Pavlou,
George. Modeling and evaluation of ccn-caching trees. In IFIP Networking
(2011).

[55] Ratnasamy, Sylvia, Francis, Paul, Handley, Mark, Karp, Richard, and Schenker,
Scott. A scalable content-addressable network. SIGCOMM Comput. Commun.
Rev. 31, 4 (2001), 161–172.

[56] Raza, M.H., Robertson, B., Phillips, W.J., and Ilow, J. Network calculus
based modeling of anomaly detection. In Performance Evaluation of Computer
and Telecommunication Systems (SPECTS), 2010 International Symposium on
(2010), IEEE, pp. 416–421.

[57] Rodriguez, P.R. Scalable Content Distribution in the Internet. PhD thesis,
Universidad Publica de Navarra, 2000.

[58] Rosensweig, Elisha, and Kurose, Jim. Breadcrumbs: efficient, best-
effort content location in cache networks. In IEEE INFOCOM Mini-
Conference (2009). http://gaia.cs.umass.edu/networks/papers/INFOCOM09-
mini Breadcrumbs.pdf. An extended version can be found in the technical report
UM-CS-2009-005 at http://www.cs.umass.edu/publication/docs/2009/UM-CS-
2009-005.pdf.

[59] Rosnsweig, Elisha J., Kurose, Jim, and Towsley, Don. Ap-
proximate models for general cache networks. In INFO-
COM, 2010 Proceedings IEEE (march 2010), pp. 1 –9.
http://gaia.cs.umass.edu/networks/papers/CacheModels INFOCOM10.pdf.

[60] Rossi, D., and Rossini, G. Caching performance of content centric networks
under multi-path routing (and more). Tech. rep.

[61] Rossini, DRG, and Rossi, D. A dive into the caching performance of content
centric networking. Tech. rep., Technical report, Telecom ParisTech, 2011.

[62] Schmitt, J., and Roedig, U. Sensor network calculus–a framework for worst case
analysis. Distributed Computing in Sensor Systems (2005), 467–467.

159

[63] Starobinski, David, Karpovsky, Mark, and Zakrevski, Lev A. Application of
network calculus to general topologies using turn-prohibition. IEEE/ACM Trans.
Netw. 11 (June 2003), 411–421.

[64] Starobinski, David, and Sidi, Moshe. Stochastically bounded burstiness for com-
munication networks. IEEE Transactions on Information Theory 46 (1999),
206–212.

[65] Tang, X., and Chanson, S. T. Coordinated en-route web caching. IEEE Trans-
actions on Computers 51, 6 (2002), 595 – 607.

[66] Tatsuhiro Tsutsui, Hiroyuki Urabayashi, Miki Yamamoto Elisha J. Rosensweig,
and Kurose, Jim. Performance evaluation of partial deployment of breadcrumbs
in content oriented networks. In IEEE ICC Workshop (2012).

[67] Tewari, S., and Kleinrock, L. Proportional replication in peer-to-peer networks.
In INFOCOM 2006. 25th IEEE International Conference on Computer Commu-
nications. Proceedings (april 2006), pp. 1 –12.

[68] Trossen, Dirk, Sarela, Mikko, and Sollins, Karen. Arguments for an information-
centric internetworking architecture. SIGCOMM Comput. Commun. Rev. 40
(April 2010), 26–33.

[69] Vanichpun, S., and Makowski, A.M. Comparing strength of locality of reference-
popularity, majorization, and some folk theorems. In INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and Communications So-
cieties (2004), vol. 2, IEEE, pp. 838–849.

[70] Wang, K., Ciucu, F., Lin, C., and Low, S.H. A stochastic power network calculus
for integrating renewable energy sources into the power grid. Selected Areas in
Communications, IEEE Journal on 30, 6 (2012), 1037–1048.

[71] Williamson, Carey. On filter effects in web caching hierarchies. ACM Trans.
Internet Technol. 2 (February 2002), 47–77.

[72] Yaron, Opher, and Sidi, Moshe. Generalized processor sharing networks with
exponentially bounded burstiness arrivals. In Journal of High Speed Networks
(1994), pp. 628–634.

[73] Zhou, Y., Chen, Z., and Li, K. Second-level buffer cache management. Parallel
and Distributed Systems, IEEE Transactions on 15, 6 (june 2004), 505 – 519.

[74] Zhu, Yingwu, Yang, Xiaoyu, and Hu, Yiming. Making search efficient on
gnutella-like p2p systems. In Parallel and Distributed Processing Symposium,
2005. Proceedings. 19th IEEE International (april 2005), p. 56a.

160

	On the Analysis and Management of Cache Networks
	Recommended Citation

	tmp.1355330941.pdf.MmESk

