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ABSTRACT OF THE DISSERTATION

On the Analysis of DNA Methylation

by

Michael William Stevens

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2014

Professor Ting Wang, Chair

Recent genome-wide studies lend support to the idea that the patterns of DNA methylation

are in some way related either causally or as a readout of cell-type specific protein binding.

We lay the groundwork for a framework to test whether the pattern of DNA methylation

levels in a cell combined with protein binding models is sufficient to completely describe

the location of the component of proteins binding to its genome in an assayed context.

There is only one method, whole-genome bisulfite sequencing, WGBS, available to study

DNA methylation genome-wide at such high resolution, however its accuracy has not been

determined on the scale of individual binding locations. We address this with a two-fold

approach. First, we developed an alternative high-resolution, whole-genome assay using a

combination of an enrichment-based and a restriction-enzyme-based assay of methylation,

methylCRF. While both assays are considered inferior to WGBS, by using two distinct assays,

this method has the advantage that each assay in part cancels out the biases of the other.

Additionally, this method is up to 15 times lower in cost than WGBS. By formulating the

estimation of methylation from the two methods as a structured prediction problem using a
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conditional random field, this work will also address the general problem of incorporating

data of varying qualities -a common characteristic of biological data- for the purpose of

prediction. We show that methylCRF is concordant with WGBS within the range of two

WGBS methylomes. Due to the lower cost, we were able to analyze at high-resolution,

methylation across more cell-types than previously possible and estimate that 28% of CpGs,

in regions comprising 11% of the genome, show variable methylation and are enriched in

regulatory regions. Secondly, we show that WGBS has inherent resulution limitations in a

read count dependent manner and that the identification of unmethylated regions is highly

affected by GC-bias in the underlying protocol suggesting simple estimate procedures may

not be sufficient for high-resolution analysis. To address this, we propose a novel approach to

DNA methylation analysis using change point detection instead of estimating methylation

level directly. However, we show that current change-point detection methods are not robust

to methylation signal, we therefore explore how to extend current non-parametric methods to

simultaneously find change-points as well as characteristic methylation levels. We believe this

framework may have the power to examine the connection between changes in methylation

and transcription factor binding in the context of cell-type specific behaviors.
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Chapter 1

Introduction

Button-holes! there is something lively

in the very idea of ’em - and trust me,

when I get amongst ’em - you gentry

with great beards - look as grave as you

will - I’ll make merry work with my

button-holes - I shall have ’em all to

myself - ’tis a maiden subject - I shall

run foul of no man’s wisdom or fine

sayings in it.

- Laurence Sterne, The Life and

Opinions of Tristram Shandy,

Gentleman

1.1 Motivation

The mathematician, John von Neumann, approached the problem of designing self-replicating

machines that can evolve. His solution -five years before Watson and Crick [86] proposed a

structure for a DNA molecule with complementary pairs of nucleic acids into which could

be encoded instructions, as the mechanism for inheritance- was to use a tape to encode

information necessary for replicating itself as well as the construction and the execution of

the means of replication [61]. Encoding the self-replication ability as information on a tape

(as opposed to some property of the material or components the machine is made of -such as

1



how crystals grow in a lattice) is critical to the design, because it endowed the machine with

an unbounded capacity to increase in complexity, not just changes in property, simply by

errors in copying of the tape during replication.

We all have a single genome with 3 billion base pairs encoding the information that unfolded

during our development to create who we are [44]. However, we each have over 200 distinct

cell types that respond differently depending on its identity. Each of our cells respond to

some set of stimuli differently. Many of the responses require building proteins and this

requires activating the instructions in our genome. The stimulus, in general, comes to the

genome via a limited set of DNA-binding proteins. Where these proteins bind in the genome,

determines which set of proteins are created in response to which stimulus.

If you believe Darwin [17], then the implication is that our genomes descend from that of a

single-celled organisms. A question then is how does a single genome, evolved for a single

cell, multiplex to support 100’s of different identities? One solution could be to just copy

the ’tape’ for every new cell type. However, while copying does appear to take place, this

doesn’t seem to be an explanation for multi-cellularity. The single-celled Amoeba, dubia, has

670 billion bases in its genome [28]. Instead, it appears that the map itself changes -where a

particular stimulus evokes one gene to express in one cell type, another gene will express in

another.

1.2 Gaps, Directions, and Needs 2

1.2.1 Increasingly changes in DNA methylation are shown to be

related to cell-type specific regulatory regions.

While not required for stem cell survival [82], methylation is required for differentiation [47].

Since methylation of DNA can block some transcription factors from binding [37] and since

methylation is not easily modified, it raises the tantalizing possibility that DNA methylation

could function, at least in part, as a mechanism that allows one genome to provide a variable

set of responses to environmental changes depending on which cell-type it is part of -as

2Non-biologists readers are referred to Chap 2 for biology background
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such, the axiomatization (possibly in terms of a statistical model) of the patterns of DNA

methylation and how it varies could be used to inform a framework that addresses the

definition of cell-type itself by defining cell-type as a mapping of stimulus to response as

apposed to by morphology, apparent function, or lineage. This quantitative definition of

cell-type is both measurable and more robust. It retains coherency in face of growing evidence

of cell-type plasticity. It is also better suited to quantitative models required for synthetic

biology.

However, the role is likely not simple and very little in known. As mentioned, mouse stem

cells without methylation can proliferate and maintain stem cell characteristics [82]. Also,

while some transcription factor binding is prevented by methylation, it is specifically bound

by others [37]. Additionally, for example the transcription factor, CTCF, has been shown

to instead instruct methylation in that it is both necessary and sufficient to de-methylate

transgenic-ally inserted promoters and its binding was not altered in embryonic stem cells

lacking methylation [76]. However, this is not universal as CTCF binding was absent at

a subset of CpG islands (specifically at regions that are known to control genes that are

repressed in a parent-specific manner). Nonetheless, 20% of the variation in methylation

of low-methylation regions between mouse ESCs and neural progenitors was explained by

binding of 126 JASPAR matrices using a linear model taking methylation and sequence-based

prediction of factor binding as input. The predicted activities of the individual transcription

factors were in agreement with their changes in transcription level.

Additionally, even with whole-genome bisulfite-sequencing (WGBS) coverage was low as 8x’s,

300k tissue-specific differently methylated regions (tsDMRs) were found amoung 17 adult

mouse tissues [31]. Known heart-specific factor motifs predicted in p300 binding sites in heart

were more specifically marked by tsDMRs than by chromatin-predicted enhancers, Fig 1.1,

and so the author suggest using tsDMRs as a method to define putative regulatory regions

at high resolution.

Since most cognate sequences of DNA-binding proteins are small, typically 8-20 bp, examining

the potential influence of DNA methylation requires requires high-resolution assays. Since

CpGs can be up to 500 bp apart, accurate CpG methylation estimates are required. The only

methylation assay with this potential is WGBS. However, analysis has only been performed

on the region level, and it is not known whether accurate estimates are possible.

3



1.2.2 Current approaches of assaying DNA methylation are lim-

ited to either high-cost, low resolution, or low coverage.

Figure 1.1: Both p33 and tsDMR have
higher specifity than histone marks to pre-
dicted regulatory elements. Reproduced
from [31]

Current whole genome assays of methylation fall

into three groups: enrichment-based, restriction-

enzyme-based, and bisulfite-based. Enrichment

based methods, such as MeDIP-seq [87, 53], have

low resolution -since the CpG in a read responsible

for binding is unknown- and measure enrichment

rather than methylation directly. Additionally,

MeDIP-seq enrichment is globally sensitive to

experimental conditions and locally sensitive to

CpG density. Restriction-enzyme methods, like

MRE-seq, usually only sample less than a third

of the CpGs in the genome. Of the three com-

mon ways to readout bisulfite treated libraries,

both reduced-representation bisulfite-sequencing

RRBS, and micro-arrays also sample only a fraction of the CpGs in the genome [77]. The

third way, whole genome bisulfite treatment followed by next generation sequencing (NGS),

(WGBS) [49, 14, 46], is often considered the gold standard as it both estimates methylation

directly and potentially covers all CpGs in the genome. However, because every experiment

essentially re-sequences the genome, its application is limited by its high cost. It’s has been

estimated the 70-80% of the information produced by WGBS is wasted as most CpGs do not

change their methylation levels across cell-types. [90]

1.2.3 The leading assay of DNA methylation has not been exten-

sively studied for quality or accuracy in methylation esti-

mates.

WGBS is assumed to be accurate although it has several unique characteristics among NGS

assays that deserve consideration. It is a consensus that as the cost of sequencing goes down,

WGBS will be the preferable and dominant assay of methylation. However, there is a lack
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of evidence that the consensus is founded on an evaluation of the accuracy of WGBS and

is in contrast to some known biases in its methylation estimates. WGBS is a relatively

new method with the breakthrough paper in 2009 [50]. In this method, DNA is treated

with bisulfite which converts unmethylated C’s to T’s (and G’s to A’s for reverse strand

reads) which requires non-standard alignment to the reference genome. This results in reads

with a fundamentally different base distribution creating an alignment problem qualitatively

different than other NGS assays.

Two strategies based on modifications to standard alignment have emerged, wild-card matching

and three letter alignment [6], Fig 1.2. In the former, a C in the reference matches either a T

or C in the read, while in the later, all T’s are converted to C’s in both the read and the

reference before alignment (for reverse strand reads the conversion is from G to A). Because

of the wild-card asymmetry between C and T (read T’s match reference C’s, while read C’s

only match C’s), reads with less methylation can align more places potentially leading to

over-estimates of methylation. While three letter alignment addresses this bias, it does so at

the cost of lower coverage as up to 50% of reads are thrown out due ambiguous mapping or

low quality. See [6] for a fuller treatment of these biases. The effect of either these methods

in terms of alignment methodology has not been characterized.

1.2.4 Analysis of genome-wide DNA methylation has focused on

the change in methylation, either between genomic regions

or between samples, for example, between cell-types or bio-

logical replicates

Although several approaches have been applied, there is no consensus on the best use of the

high-resolution, genome-wide methylation data. The first type of analysis focuses on finding

specific patterns of methylation organized around a characteristic methylation level. For

example, a hidden markov model (HMM ) was used to segment the genome into methylated,

unmethylated, and lowly methylated regions (HMR,UMR,LMR) [76]. LMRs represent about

30% of CpGs in the genome and are located in relatively CpG-poor regions far from protein

coding loci but show histone marks for enhancers and are occupied by cell-type-specific

transcription factors. The second type of analysis defines and identifies windows of differential

5



methylation between two experiments or samples (DMR’s). For example, using 17 adult

mouse tissue methylomes [31], an HMM was able to segment the genome using a χ2 statistic

generated across the samples. The segments generated by the state with the highest χ2

where considered tissue-specific DMRs representing around 7% of the mouse genome. Using

42 WGBS data sets, in another approach the authors first identified dynamic CpGs using

a pair-wise comparison using a beta-difference distribution [90]. In a second step, closely

located dynamic CpGs were merged resulting in DMRs which account for around 19% of the

human genome.

1.3 Contribution

1.3.1 Develop an alternative high-resolution method to WGBS by

integrating MeDIP-seq and MRE-seq assays using a statis-

tical model.

We combined methylation predictions from two relatively cheap measures of DNA methylation

in a statistical model to approximate the high-resolution estimates of the more expensive

method, WGBS. In addition to significant cost-savings, this method will provide an alternative

to compare the accuracy of WGBS, will demonstrate how using two assays provides higher

accuracy, and will demonstrate a general method for combining assays of varying quality into

predictive models.

MeDIP-seq and MRE-seq are independent, yet complimentary, assays of methylation. MeDIP-

seq is a precipitation-based method and so enriches for methylated CpGs, while MRE-seq is

a restriction enzyme-based method and so isolates fragments between pairs of unmethylated

CpGs. MeDIP-seq is proportional to methylation while MRE-seq is inversely proportional,

Fig 1.3. While MeDIP-seq is enrichment-based and MRE-seq is rather sparse (requiring

multiple unmethylated CpGs within the limit of the fragment size), it was shown that the

combination of the two could provide CpG methylation estimates genome-wide. [30]
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Figure 1.2: Approaches to WGBS align-
ment: wildcard versus 3-letter. Repro-
duced from [6]

We used a conditional random field (CRF) [41] for structured prediction of methylation by

using both MeDIP-seq and MRE-seq as input to predict single-CpG methylation genome-wide.

CRFs are discriminately trained graphical models that model the probability of the output,

in this case methylation, conditioned on the global observations, in this case MeDIP-seq and

MRE-seq. In contrast to HMMs which model the joint probability of the observation and
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output, CRFs take the observation as a given and so don’t waste effort modeling dependencies

amongst the observations. As such, they should be able to train and predict efficiently even

as the size of the model increases. Additionally as the number of parameters grow, CRFs

are less prone to over-fitting than traditional HMMs. As HMM parameters are learned with

maximum likelihood estimates using a training data set, with enough random variables an

HMM could effectively memorize its training data. CRFs, on the other hand, are typically

trained by iteratively ascending their gradients and are stopped when performance on a

second, test, data set decreases. In this way, a CRF is in a sense optimized on its training data

until the point where further optimization would result in learning the sample distribution

instead of the desired true distribution.

Figure 1.3: MeDIP/MRE are related to WGBS

Most work on CRFs has been done in the

field of natural language processing and

so model words -which are a discrete type

data. MeDIP-seq and MRE-seq are pseudo-

continuous in that even though they take on

discrete values, the number of unique values

is too large for even a moderate sized CRF.

While a continuous extension for CRFs does

exist, [67], it is well known that discretized

data can do better than continuous data in

Bayesian networks.

CRFs are already known to handle millions

of features [41] and good implementations already exist, so it was not necessary to build our

own. Since CRFs condition on the observations and so don’t need to examine their interaction,

we included additional data likely to effect methylation as observations in the model: CpG

density, the local GC%, and different kinds of genomic features, such as CpG-islands versus

exons. We allowed ℓ1 normalization to perform feature selection for us.

Concordance between methylCRF and WGBS CpGs in a 25% methylation window is within

the range of concordance between two WGBS data sets. The concordance did not appreciably

decrease on a separate cell type. methylCRF is provided as a turn-key application for a
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target audience of bioinformaticians or biologists familar with the standard GNU tool-chain.

methylCRF is up to 15 times cheaper than WGBS.

1.3.2 Show methylCRF methylomes are generally comparable to

WGBS methylomes for biological insight

Using data generated from the Epigenetic Roadmap Consortium [5], we compared 54 methyl-

CRF methylomes and 33 WGBS methylomes -more than doubling the size of previous analyses.

We found that high resolution analysis provides novel biological insights including that an

estimated 28% of CpGs show significant differences between cell types and when clustered

account for 11% of the genome. These regions are suggestive of regulatory potential as

they are enriched for enhancer marks and transcription factor binding in a tissue-dependent

manner.

1.3.3 Joint analysis of methylCRF and WGBS identifies systemic

WGBS biases suggesting limited resolution in both methy-

lation levels and individual CpGs.

On top of a reduced alphabet for alignment, WGBS puts greater demands on NGS than do

enrichment-based assays. Other than genotyping, NGS is mostly used to measure enrichment.

However, the final readout of WGBS is a ratio of converted and unconverted Cs. Seen as

a Bernoulli trial (where the true rate of methylation is the probability of success), several

issues become apparent. The number of converted Cs is subject to random fluctuations due

to among other things sampling of a small number of alleles from a library, PCR-biases, and

sequencing-biases. Therefore one can expect that the computed methylation is a combination

of true methylation and error. Combined with the fact that WGBS non-specifically sequences

the whole genome, this highlights the fundamental trade-off of WGBS cost versus accuracy

due to small-sample size. As an example, even with 100x’s coverage 6% of CpGs will vary

more than 10% from true methylation due solely to error induced by sampling, while at 10x’s

coverage 80% of CpGs will vary more than this and more than 10% of CpGs will vary more

than 25% from true methylation.
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Even on closely related data sets WGBS, shows discordance at levels beyond expectation. We

looked at WGBS generated from embryonic stem cell (ESCs) lines, H1, H9, and HSF1 and

only 45-55% of the CpGs genome-wide were within 10% methylation of each other (75-90%

were within 25%). When we looked at two H1 datasets, these numbers did not increase.

Using two different processing pipelines on the same library, still only 83% of CpGs were

within 10% of each other (97% were within 25%).

These results suggests that WGBS assays require a statistical model for accurate estimation

as well as better comparability with methylCRF. Currently methylation levels are charac-

terized in coarse resolution: methylated, intermediately methylated, lowly methylated, and

unmethylated. Since on a single gemone, a CpG is either methylated or not, there doesn’t

seem to be biological justification for a resolution on the order of, say, 100 distinct levels of

methylation. Additionally as mentioned, there is an inherent small-sampling issues when

calculating methylation from a small sample of reads. Therefore, it should be more accurate to

include an estimate of confidence in a methylation call. Additionally, since methylation levels

are locally correlated [77], we also used an HMM, (Twiposn), to model methylation estimates.

However, we used binomial emission probabilities to vary probabilities for different read count.

Using expectation maximization to learn up to five distinct states, on several data sets, this

model could only distinguish between a highly and one or two lowly methylated states -which

does not even recover known biology. This result suggest that even with standard statistical

models, WGBS can not both simultaneously recover known biology as well as accurately

estimate methylatio.n Additionally, although read-count-based HMM approaches have the

potential to correct for the small-sample issue, it does so as a compromise in two ways. One,

since it borrows information from neighboring CpGs, it effectively reduces the ability to

detect real changes in methylation by mistaking it for noise, and secondly, it does impose a

limitation in the resolution of the dynamic range of methylation.
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1.3.4 TVreductio: a non-parametric statistical method for filtering

WGBS methylation to detect features suitable for DNA-

binding events.

Due to the limitations of both methylCRF and WGBS detailed above, we present a new

representation of a methylome as a signal and focus directly on the problem of detecting

changes in the signal that are potentially associated with factor binding. This is a work

in progress. I propose to do this by co-optimizing 1) the number of distinct changes in

methylation using step-detection via total variance de-noising (TVD) [72] and 2) the likelihood

of the fewest number of known transcription factors binding to either the boundaries or

the interiors of the windows of low-methylation defined by the changes. This method will

only require pre-computed binding potentials of known transcription factors and a genome-

wide, single-CpG resolution assay of methylation -either WGBS or methylCRF. I can use

existing genome-wide assays of transcription factor binding (ChIP-seq) to determine both

the specificity and sensitivity of the method.

I hypothesize that a significant subset of changes in methylation are a result of transcription

factor binding. In this sense, a change in methylation refers to any CpGs that are not

methylated in an experiment and are, as well, not constitutively unmethylated. Specifically,

I will look for changes in methylation best explained by the binding potential of the least

number of transcription factors. Further, since this method only requires one assay, it could

potentially generalize both transcription factor and chromatin mark ChIP-seq thus providing

a single method to determine both the transcription factors binding in a cellular context

as well as their combinatorial relation providing hypotheses as to the causes of changes in

transcription. This could be a general method for the community in order economically study

this relationship in any biological context.

Additionally, this method will extend the use of TVD to a new field and extend the method-

ology of TVD with a new class of constraints.
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1.3.5 Subtext

As a computer scientist working exclusively in biology, I have struggled, seemingly endlessly,

with the question: what am I doing? Is my work data analysis, is it determining which

problems are computable, is it data mining, is it biology, is it statistics or machine learning?

Biology, like many fields, is becoming a big data field in part due to the success of computer

science and engineering and venture capital. This data presents all kinds of new challenges and

there is a gap in the ability and capacity to absorb and cull results of the data it is generating.

Mathematicians, chemists, physicists, statisticians, economists, engineers, computer scientists,

and a new breed of biologists are all converging in these gaps. From the perspective of biology

each one is useful in terms of what they can contribute to biological understanding. Each of

these fields have their own tools, traditions, and communities, though, requiring biologists to

learn all of the in-and-outs, the caveats, and the gotchas for each one individually in order to

incorporate their methods responsibly into their research -which, of course, would leave no

time to study biology. There is a need, then, of some sort of general methodology for big

data biology. It is natural to look to these technical and mathematical fields for guidance.

However, each field has its own focus and concerns. As nominally domain agnostic, I would

root a methodology in machine learning and data mining both of which are a mixture of

fields including math and statistics. It is necessary, then, to first understand what are the

distinct concerns and issues with big data biology to determine what parts of these fields to

take, what to leave, and what to modify. This is the first step in establishing a sub-domain

of these fields as work in it can dually extend biological knowledge as well as insight to the

nature of data itself.

Biology is stupendously complex and different in many ways from the rest of the physical

world and offers many distinctive challenges that have historically driven advances in math

and statistics. For example, in order to study the inheritance of seed size, Galton invented

the regression line and described the concept of regression toward the mean [12]. I propose

these as the core concerns for big data biology:

1. Representation: While machine learning is concerned with representation, it refers to

the form of the data used as input to a method, such as representing a photograph as a

vector of pixel intensities. Here I refer to representation as the form of the result of the

model, for example, a cluster of photographs containing a similar object. This includes
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statistical concepts like point estimates, confidence intervals, and hypothesis tests. It

also includes less well defined things as clusters, change points, graphs, or a smoothed

signals. For example, a kernel smoother applied to a methylation signal would be

represented by a smoothly changing signal with noise filtered out. Trivial information

that could be extracted from this representation are things like point estimates of a

region or a list regions with the highest or lowest values. However, this representation

in itself, can not trivially produce a set of methylated regions in the signal or whether

a dip in the signal is significant or not.

2. Encoded intuition. This is prior knowledge about an object of study that is somehow

encoded in the model. For example, in methylCRF we used the knowledge that close

CpGs are correlated as a first-order state transition distribution in a CRF and an HMM

in Twiposn. We used the same intuition as a regularizer in TVreductio.

3. Generalizability. This is somewhat central to all science. In machine learning it refers

to accuracy on unseen data. In learning theory it is related to justifiable induction. It

refers to whether the accuracy of prediction on future data as well as the likelihood of

results being spurious random events. This is further elaborated in Chapter 3.

4. Interpretability. This is the ultimate goal of any model in biology. This is measure of

how useful a representation and a model is in context to what is known. This involves

the representation of the result as well as the assumptions of the model, the way the

model uses the data, and the confidence in the result. This can be a major portion of

an analysis and often the hardest part. Methods that are simple in these terms are of

great value -even at the expense of accuracy. For example, it was argued that since all

models are approximations using samples (an approximation for the object of interest),

exact learning is not necessary [8]. While this is true, there is a cost in interpretability

as this additional approximation adds another factor to consider in the meaning or the

reliability of results. Additionally, interpretation includes convincing skeptical experts

in the domain.

Since this is very much just a start and beyond the scope of this thesis, I will instead, through

this work, explore and place in context through working examples, these concepts. These

ideas are not new and in some form or another are currently used in practice by most people

in all technical fields but not explicitly focused on as essentials of the quality of biological data
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and for the use in biology. It is my hope that in this era of the emergence of big data, as a

field, by focusing on these core issues, big data biology, will grow into a symbiotic relationship

with math, statistics, and other technical fields where the flow goes in both directions.
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Chapter 2

Biology Background

I regard as quite useless the reading of

large treatises of pure analysis: too

large a number of methods pass at once

before the eyes. It is in the works of

applications that one must study them;

one judges their ability there and one

apprises the manner of making use of

them.

Joseph Louis Lagrange

Since the completion of the draft of the human reference genome in 2001 [44], genomics has

revolutionized the study of biology including allowing the easy association of genomic loci

to disease, the study and effect of genomic diversity, the location of where DNA interacting

proteins bind, a representative catalog of protein coding genes, global analysis of transcript

expression levels, the study of chromosomal modifications in cancer, and the global study of

chemical modifications to chromosomal constituent molecules whose dynamic patterns help

define cell-type specific responses to stimuli [57]. All of these have been facilitated by the

development of the post-reference genome technology of next generation sequencing (NGS).

Where the reference human genome project cost $2.7 billion, NGS-based genomes are now,

for example, publicly available from DNADTC for $7000.

As exemplified by Illumina sequencing, NGS involves first fragmenting large sequences into

smaller fragments, via sonification for example, which are then read out producing 100-150
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nucleotides (or base pairs) long sequences (100-150 bp reads). According the HudsonAlpha’s

latest statistics, a single experiment using Illumina’s newest HiSeq 2500, can produce up to

300 million 100 bp reads passing a basic quality filter. Given the reference genome size of 3

billion bp, an experiment can produce then theoretically on average up to 10 reads covering

every base, referred to as 10x’s coverage. The genome from DNADTC mentioned above

provides 30x’s coverage.

In addition to sequencing genomes, NGS is combined with a host of other molecular biology

techniques to provide a variety of information. In enrichment-based techniques a ’probe’

molecule that has an affinity for another molecule of interest is used to bind to that molecule

and is designed in a such way that it can be isolated from the rest of the milieu of the cell. If

the molecule of interest is associated with DNA, then the DNA isolated with the molecule of

interest can be sequenced to show where in the genome that molecule was associating with

DNA. Versions of this technique allow the determination of the location of DNA-binding

proteins. These are often proteins that are correlated with and widely considered to causally

regulate variously the promotion, enhancement, or inhibition of gene transcription and are

along with their binding partners known as transcription factors or TFs. Additionally, the

molecule of interest can be as specific as a particular chemical modification of a molecule,

commonly referred to as a mark. Individual marks of interest include a large class that

histones are subject to -histones are proteins that DNA is packaged with. These marks,

among other things, can effect which genomic locations transcription factors can bind. And

so, since these marks are reversible, changes in their patterns are potentially one source of

cell-type specific behavior. In enrichment-based techniques, the more reads that align to

a genomic region, the more consistently your molecule of interest occurs at that location.

However, due to variability of many layered experimental factors (in tissue preparation, in

enzyme specificity, in sequencing process, in the analysis process, etc), enrichment values are

not comparable across experiments.

Another NGS-based method utilizes restriction endonucleases -useful because these enzymes

are able to cut DNA in a sequence-specific manner. The specific sequences recognized by

the enzymes are typically around 4-8bp long and so may occur at up to 12 million sites in

the genome. However, only the fragments that are of a certain length can be sequenced, so

the amount of the genome accessible to this technique is limited. DNA itself is subject to

one known chemical modification, the addition of a methyl group to a base, referred to as
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DNA methylation. There are methylation sensitive enzymes that will only cut the DNA if it

is unmethylated. This technique, MRE-seq [53], allows the sequencing of fragments whose

both ends are unmethylated and so gives an estimate of where DNA is not methylated.

DNA exists as a double stranded molecule made of complementary base pairs. Most enzymatic

reactions, like DNA synthesis, are directional, and so the two strands are anti-parallel. In

vertebrates, DNA methylation primarily occurs on a C which is followed by a G, and is termed

a CpG. The human reference genome contains around 28 million CpGs. Whether CpGs

are methylated or not has effects on whether proteins can bind to DNA, gene expression,

the local and global structure of chromosomes, the ability of the cell to defend against

parasitic sequences from duplicating themselves, embryonic development, transcription, sex-

specific chromosome modifications, as well as the ability to control genes based on their

parent-of-origin ([69, 79, 42, 34]).

Transcription refers the process of creating RNA from DNA. According to ideas put forth

in the ’central dogma’ [15], this is the intermediate step in the creation of proteins from

instructions encoded in DNA. Simply put, the initiation of gene transcription is controlled

via the binding of transcription factors in a gene’s promoter which is a region on the genome

preceding the transcription start site. Additionally, transcription factor binding to sites non-

local to the transcription start sites, enhancers, can also effect the decisions for transcription

as well as effect the amount of transcription as measured in a population of cells. It is

widely thought that the identification of transcription factors binding sites, (TFBS’s), the

factors that bind them, and the genes they effect is an essential step in unraveling gene

regulatory networks and thus gene regulation itself. The sequence features that a particular

DNA-binding binds to can be represented as a position-weight-matrix, (PWM ), [78] where

the binding potential of a TFBS to a transcription factor is factorized by the contributions of

the individual bases in the sequence. Databases such as JASPER [66] and TRANSFAC [52]

provide pre-computed estimate PWM’s for a number of transcription factors.
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Chapter 3

Justified Induction

... And then came the grandest idea of

all! We actually made a map of the

country, on the scale of a mile to the

mile!"

"Have you used it much?" I enquired.

"It has never been spread out, yet," said

Mein Herr: "the farmers objected: they

said it would cover the whole country,

and shut out the sunlight! So we now

use the country itself, as its own map,

and I assure you it does nearly as well.

-Lewis Carroll, Sylvie and Bruno

Concluded

3.1 A Story

First let me draw a caricature and gross simplification of the use of large data sets in biology

labs. A graduate student, let’s call him or her (’G’ could be either, of course), G Iwa

Napayper, working in Gottap Ublish’s lab. Both G and Gottap came away from Francy

Slide’s presentation a little slack-jawed. Francy had an unbiased, data driven result about

a pathway related to theirs. There were heatmaps, bar charts with lots of bars, something

called a kernel density plot, a connectivity cloud, and lists of important genes. Interestingly,

18



the list of genes showed enrichment in pathways related to things no one ever considered

would be connected. Gottap was thinking, wow, 1) un-biased and data driven are powerful

arguments, maybe this is the future of biology, and 2) if I don’t get some results like this soon,

my competition will. G was thinking, dang, that looks a lot easier way and a lot faster way

to publish something. So, they agree to broaden G’s project to include an RNA-seq library.

G asks people in the labs around who’ve done it, they order their reagents, set up their model

system, and go for it. After 6 months G has finally submitted and gotten back data and

again checks the tribal knowledge for what others have used -RNA-seq isn’t so rare anymore,

so there are a few options. G picks the easiest. He (shorter to write) tries it but only gets a

couple differentially expressed genes. He runs the program a few more times with the same

results, fear grips him as he wonders whether he screwed up the expensive experiment. He

calms down after re-checking over the weekend, the QC he did. He asks around and gets

told to try this other program. This time it worked he got a many, many more differentially

expressed genes. Some of them are the canonical members of their pathway, so it worked.

Gottap’s smells a headline opportunity and asks G to look for enrichment for the genes they

found. It turns out the genes are enriched in eye development, dna metabolism, and viral

response. Considering they are studying the effect of alcohol on liver enzyme production,

they are blown away by the depth of the possible connections! The connections are solid,

because the enrichment for this gene set has a p-value of 0.0000005, so there’s no way it’s just

spurious. G starts looking in the literature for possible connections and they start formulating

a story on why liver function is connected to eye development. G shows his results to Gottap,

and they plan out experiments to test if one of the eye development genes is necessary for

their phenotype in liver as well as another just as a backup. Three years later G and Gottap

publish on the backup gene. In their discussion they talk about the connections to eye

development and sketch out a new theory incorporating their liver phenotype to some part of

eye development. The reviewers were also microbiologists, so they focused on the controls

used for the experiments on the backup gene.

You may agree or disagree with G’s and Gottap’s approach (it is a caricature after-all).

To some degree this is happening in labs across the world as biologists try to incorporate

the large amount of data they are now generating. A central question in biology today is

how to learn from this data to gain insights about the machinery, processes, and dynamics

of living things. Given limited resources, it would be folly to fund biologists to test all

possible inferences in a trial-and-error random walk. The generation of model systems and
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the design and execution of controlled experiments can take years, many man-hours and

many materials. It is of central important to the field, then, in order to maximize its return

to society, to maximize the likelihood of insights drawn from large data sets. This is the

problem of induction. Similar to the theory of science, learning theory provides a framework

for reasoning about what is justifiable induction.

3.2 Generalizability

Most people are familiar with Ockham’s razor (also referred to as the principle of parsimony)

and most scientists either explicitly or implicitly follow it as a maxim in their approach to

science. Among the many versions and phrasings, the principle can be summarized as: a

simpler explanation that explains the data is preferable to a more complicated one. In biology,

where experiments can be long and costly and where so little is known about the degree

of connection between entities, the idea of simplicity, is in many ways used as a proxy for

repeatability. That is to say that if the inferences from an experiment require little additional

theory or modifications to existing models, then it has some credibility even without being

repeated. In this way, simplicity is used as a heuristic to distinguish the quality of a model

or hypothesis, that is, it is a direct property of the model object.

When applied to specifically to mathematical models, Ockham’s razor is usually interpreted

as the number of variables in the model. A model of one variable is simpler than one of

two. A linear model is simpler than a second-degree polynomial. A simpler model that

describes some set of data as accurately as a more complicated one is more likely to capture

the underlying structure of the data and, so, generalize better in terms of giving similar

accuracy on future data.

The conjecture of a learnable underlying structure is turned inside out by Popper [65], however,

where he equates simplicity to falsafiability. In the extreme, a model or theory that is not

falsifiable is not even scientific. In the example above, then, a linear model is better than a

non-linear model specifically because, given the same domain, the linear model can accurately

represent quantifiably fewer mappings from the domain to the range. He changes the focus

of justifiable induction from a heuristic about a quality of the model to a lower bound on

its applicability in some domain at a given level of accuracy. This change in focus from
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accurately representing the object of induction, to a performance-based criteria, may have

opened the doors to use the parsimony heuristic in new ways to improve generalizability.

In the 1960’s some statisticians started to examine completely different forms of simplicity, ie

other than the number of parameters, and learning theorists provided tools to think about

and evaluate both forms in a unified way. Using a similar lower-bound perspect, Vapnik

formulated the problem of justifiable induction or learning [83], in general, as a problem of

function estimation of some data distribution -presumably representing something of interest.

His estimation model consist of three components:

• G: some generator of random vectors x ∈ R
n from some fixed, but unknown distribution

P (X).

• S: a supervisor which returns a mapping from x → y, according to a, also fixed, but

unknown, conditional probability distribution P (y|x).

• LM : a learning machine capable of implementing a set of functions f(x, α), α ∈ Λ

where Λ is a set of vectors or more generally, a set of functions.

The learning problem, then is to choose a function f from the set of functions that best

predicts S in the best possible way. One notion of the quality of a prediction is the expected

discrepancy between S and f for a given x. The discrepancy function, L is referred to as the

loss whose expectation or risk, R is is given by:

R(α) =
∫

L(y, f(x, α))dP (x, y) (3.1)

Using R, the task then is to learn a function, f(x, α0) that minimizes R(α). However, we

don’t know P (X, Y ) or P (Y |X) and, further, in most cases only a small sample of data from

F (x, y) is available to train with. We can instead, as a proxy for R, use the principle of

induction using empirical risk minimization over the training data we have:

Remp(α) =
1

ℓ

ℓ
∑

i=1

Q(zi, α) (3.2)
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where Q is a generalized loss function -in a form needed to include density estimation- and

zi = (xi, yi). Note that this form of induction does not require any knowledge or explicit

forms of the distributions. How does this work then? -it’s so general Q could just be an

explicit map from every y to an x.

The Key Theorem of ERM learning specifies that to be consistent it is necessary and sufficient

conditions for the proxy, Remp, to uniformly converge in probability to R in the limit as

ℓ → ∞. Here converge in probability is used in a PAC sense, that is, there exists a sample

size m(δ, ǫ) for which P{Remp − R ≤ ǫ} < δ for any ǫ, δ > 0. The condition is essentially

that even in the worst case, Remp converges to R. Specifically:

lim
ℓ→∞

Prob

{

sup
α∈Λ

(R(α) − Remp(α)) > ǫ

}

= 0 , ∀ǫ (3.3)

To describe a constructive formulation of when this equality holds, the notion of capacity is

required. For simplicity, we’ll discuss the case for where Q is an indicator function giving

0 if f(x) = y and 1 otherwise. Consider a pseudo-boolean function of a particular class of

functions, Λ, evaluated on a particular data set, (z1, ...zℓ):

NΛ(z1, ...zi) : Q(z, α)ℓ → Z (3.4)

N(Λ) gives the number of binary vectors possible across all α ∈ Λ. From this we can define

the growth function:

GΛ(ℓ) : ln

{

sup
z1,...zℓ

NΛ(z1, ..., zℓ)

}

(3.5)

Note that if GΛ(ℓ) = ln 2ℓ there exists an α ∈ Λ for every possible combination of (x, y)ℓ and

so Λ has the capacity to learn any configuration, that is, Λ is unfalsifiable for a set of ℓ data

points. If however:

lim
ℓ→∞

GΛ(ℓ)

ℓ
= 0 (3.6)

then Eq. (3.3) holds, and so Eq. (3.6) is necessary and sufficient for justifiable induction

using ERM induction. It turns out that the growth function either grows linearly in ℓ or is

bounded by a logarithmic function. Further, if Eq. (3.6) holds, then the rate of convergence

is also fast. A rate of convergence is fast if for any ℓ > ℓ0:
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P{R(αℓ) − R(α0) > ǫ} < exp−cǫ2ℓ (3.7)

where c > 0 is a constant.

Further, the implication from all this is a bound on the real risk, R, (which uniformly

decreases with ℓ):

R(α) ≤ Remp(α) + (B − A)

√

GΛ,B(2, ℓ)

ℓ
−

ln(η/4)

ℓ
(3.8)

where A and B are the smallest and largest value Q takes over all α ∈ Λ and 1 − η is the

probability that the inequality holds. Note that this is a distribution free bound meaning it

holds for any admissible Q. One important implication from the inequality is that when you

have enough data -’enough’ defined by the growth function, the empirical risk is almost the

same as true risk. The further value of this inequality, then, depends on situations where

data is limited.

In this case, you can see that in order to reduce the risk, R(α), there are only a few options

available. One is to reduce the empirical risk. Since we always minimize, this is only an issue

for classes of functions for which there is no method to find the global optima. Otherwise,

when there are methods to find global optima, there is nothing more to be done method-wise

-except for computational concerns such as memory or time constraints. The other way is

to choose a Λ with a smaller growth function, ie, a smaller VC-dimension -explained below.

The final thing you can do is to get more data. This also shows the trade-off between the

capacity of the class of functions and the amount of data. A final approach is to reduce your

expectation being correct -that is, increasing η also decreases R(α) which indeed seems like a

weird thing to do. However, if, for example, as a meta-approach, multiple models on different

data lead to the same underlying conclusion, your confidence of the results may be high even

if individually each model has a lower probability of generalization. While all of these factors

are intuitively important, this line of learning theory shows that these are the only things

that are important in determining justifiable induction.

Since the growth function is often difficult to derive for a given Λ, the VC dimension is used

instead. The VC dimension for a set of indicator functions, Λ, applied to a data set is the

largest ℓ for which GΛ(ℓ) = 2ℓ. The VC-dimension is infinite if there is not such ℓ, otherwise,
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the VC-dimension is finite and is also necessary and sufficient for Eq. (3.6). It turns out that

the VC-dimension is the point where the growth function switches from linear to logarithm,

so reducing the VC-dimension provides a way to reduce the growth function.

One might ask why this is all necessary. As long as you cross-validate, the model should

generalize well completely independent of any sense of parsimony or capacity. The assumption

of cross-validation, however, is that the training data is representative of G. An almost

universal character of biological data is that 1) it is derived from some technique that is a

proxy for G, and 2) the data has multiple layers of systemic biases due to any number of issues

in biological variance, preparation, sensing, or in analysis. WGBS, for example, originally

had only one sample, and has many biases (detailed in our later chapters). Also, note that G

in this case is methylation on chromosomes, but WGBS measures C-to-T conversion rate

across a population of cells -the two are not the same thing.

I propose, then, that the concept of training error plus capacity is useful -even in the case of

learning a representation of the data.
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Chapter 4

Estimating absolute methylation

levels at single CpG resolution from

methylation enrichment and

restriction enzyme sequencing

methods.

Content appeared in [77].

The art of discovering the causes of

phenomena, or true hypothesis, is like

the art of decyphering, in which an

ingenious conjecture greatly shortens

the road.

Gottfried Wilhelm Leibniz

4.1 Abstract

Recent advancements in sequencing-based DNA methylation profiling methods provide an

unprecedented opportunity to map complete DNA methylomes. These include whole genome
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bisulfite sequencing (WGBS, MethylC-seq, or BS-seq), Reduced-Representation Bisulfite-

Sequencing (RRBS), and enrichment-based methods such as MeDIP-seq, MBD-seq, and MRE-

seq. These methods yield largely comparable results, but differ significantly in extent of

genomic CpG coverage, resolution, quantitative accuracy, and cost, at least while using current

algorithms to interrogate the data. None of these existing methods provides single-CpG

resolution, comprehensive genome-wide coverage, and cost feasibility for a typical laboratory.

We introduce methylCRF, a novel Conditional Random Fields-based algorithm that integrates

methylated DNA immunoprecipitation (MeDIP-seq) and methylation-sensitive restriction

enzyme (MRE-seq) sequencing data to predict DNA methylation levels at single CpG

resolution. Our method is a combined computational and experimental strategy to produce

DNA methylomes of all 28 million CpGs in the human genome for a fraction (<10%) of the

cost of whole genome bisulfite sequencing methods. methylCRF was benchmarked for accuracy

against Infinium arrays, RRBS, WGBS sequencing, and locus specific-bisulfite sequencing

performed on the same human embryonic stem cell line. methylCRF transformation of MeDIP-

seq/MRE-seq was equivalent to a biological replicate of WGBS in quantification, coverage

and resolution. We used conventional bisulfite conversion, PCR, cloning and sequencing to

validate loci where our predictions do not agree with whole genome bisulfite data, and in

11 out of 12 cases methylCRF predictions of methylation level agree better with validated

results than does whole genome bisulfite sequencing. Therefore, methylCRF transformation

of MeDIP-seq/MRE-seq data provides an accurate, inexpensive and widely accessible strategy

to create full DNA methylomes.

4.2 Introduction

The haploid human genome contains approximately 28 million CpGs that exist in methylated,

hydroxymethylated, or unmethylated states. The methylation status of cytosines in CpGs

influences protein-DNA interactions, gene expression, and chromatin structure and stability,

and plays a vital role in the regulation of cellular processes including host defense against

endogenous parasitic sequences, embryonic development, transcription, X chromosome inacti-

vation, and genomic imprinting, as well as possibly playing a role in learning and memory

[34, 42, 69, 79]. Understanding the role of DNA methylation in development and disease

requires accurate assessment of the genomic distribution of these modifications [42]. Recent
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advancements in sequencing-based DNA methylation profiling methods provide an unprece-

dented opportunity to map complete DNA methylomes. Techniques for high throughput

detection of cytosine methylation include bisulfite conversion of unmethylated cytosines to

uracil, immunoprecipitation with antibodies specific for methylated DNA, and cleavage of

CpG containing restriction sites by methylation sensitive or methylation-dependent restriction

endonucleases followed by sequencing or microarray hybridization [6].

The most comprehensive method, bisulfite treatment followed by sequencing, (whole genome

bisulfite sequencing, or WGBS, including MethylC-seq [50] and BS-seq [14, 46], measures

single cytosine methylation levels genome- wide and directly estimates the ratio of molecules

methylated rather than enrichment levels. However this method requires essentially re-

sequencing the entire genome multiple times for every experiment (with up to half the reads

not even covering CpG sites). To obtain a complete DNA methylome, the total sequencing

depth required for adequate coverage of each strand is equivalent to 30X of the human

genome (90Gb) which remains an expensive experiment. In addition to its high cost, bisulfite

converted genomes have lower sequence complexity and reduced GC content. Therefore,

performance of WGBS based methods is also influenced by potential differences in the

efficiency of amplification of methylated and unmethylated DNA copies of the same locus,

and the ability to accurately align bisulfite converted sequencing reads to the genome, which

is more challenging than alignment of conventional reads [39]. As noted, 10% of CpGs in the

mammalian genome remain refractory to alignment of bisulfite-converted reads [42].

Reduced Representation Bisulfite-Sequencing (RRBS) [54] addresses the cost issue by measur-

ing single CpG methylation only in CpG dense regions. For the human genome, it requires

only around 3Gb of sequencing to achieve the same degree of sequencing depth for most

regions of interest. However, RRBS’s ability to interrogate a locus is dependent on its MspI

cut-site (CCGG) density and consequently measures 10-15% of the CpGs in the human

genome [7, 30].

Restriction enzyme methods (e.g. MRE-seq [53]), on the other hand, typically incorporate

parallel digestions with 3-5 restriction endonucleases. Utilizing multiple cut- sites, MRE-seq

can cover close to 30% of the genome and saturates at 3 Gb of sequencing [58]. These

methylation-sensitive enzymes cut only restriction sites with unmethylated CpGs and each

read indicates the status of a single CpG. While methylated CpG’s could be inferred by the
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absence of reads at cutting sites, this would require assuming perfect digestion that is not

typically done in practice.

In contrast to MRE-seq, methods utilizing monoclonal antibodies against 5-methylcytosine

(MeDIP-seq) ([87, 53]) or methylated DNA-binding proteins (MBD-seq, domains of MBD2

alone, or in combination with MBD3L) [74] rich for methylated DNA independent of DNA

sequence have been estimated to saturate at 5 Gb of sequencing [58]. An important advantage

of MeDIP over restriction enzyme methods is a lack of bias for a specific nucleotide sequence,

other than CpGs. However, the relationship of enrichment to absolute methylation levels is

confounded by variables such as CpG density [63]. Another inherent limitation of MeDIP-seq

in its current form is its lower resolution (≈150bp) compared to MRE-seq or bisulfite-based

methods in that one or more of the CpGs in the immunoprecipitated DNA fragment could

be responsible for the antibody binding.

Finally, array-based platforms are widely utilized. Approaches which couple bisulfite con-

versions with hybridization-based arrays (e.g. Illumina’s HumanMethylation450 BeadChip

arrays), while having single base pair resolution, are limited to a priori targeted regions.

For example, the Illumina BeadChip array assesses methylation at 485K targeted CpGs,

averaging 17 CpGs per gene spread across CpG islands and gene loci. (For this analysis we

also utilized the previous BeadChip version which contains 27K CpGs.)

As sequencing costs drop, the number of complete single nucleotide DNA methylome maps is

increasing, however, still only a few are publicly available for human. Barring a disruptive

technological advance, the need for DNA methylome maps to address fundamental biological

questions will likely continue to far outpace the production of new maps for years. In

contrast, many more lower-cost DNA methylomes of either lower resolution or lower coverage

have been generated across diverse biological and disease states. For example, the NIH

Roadmap Epigenomics Project’s current release of the Human Epigenome Atlas [5] contains

8 WGBS datasets, 119 RRBS datasets, 49 MeDIP-seq and 45 MRE-seq datasets. These

methods yield largely comparable results, but differ significantly in extent of genomic CpG

coverage, resolution, quantitative accuracy, and cost, at least using current algorithms to

interrogate the data (Bock et al. 2010; [30]). None of these existing methods provides

single-CpG resolution, comprehensive genome-wide coverage, and a cost that is affordable

for a typical laboratory, particularly when many samples are assayed. To address these
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needs we describe here methylCRF, a novel Conditional Random Fields-based algorithm that

integrates methylated DNA immunoprecipitation (MeDIP-seq) and methylation-sensitive

restriction enzyme (MRE-seq) sequencing data to predict DNA methylation levels at single

CpG resolution.

4.3 Results

4.3.1 Motivation for integrating MeDIP-seq and MRE-seq data

MeDIP-seq and MRE-seq provide complementary readouts of DNA methylation [53]. Their

protocols are simple and differ in important ways from bisulfite treatment methods [30][53].

By using simple heuristics, the combination of these two methods gave promising results

in identifying differentially methylated regions (DMRs) and intermediate or mono-allelic

methylation [30]. Here we further explore the complementary nature of MeDIP-seq and

MRE-seq. All genome-wide DNA methylation profiling methods have their own unique

biases which can lead to errors in assessing methylation states. Observed genome-wide

measurements (MeDIP-seq, MRE-seq, WGBS, etc) are derived from the actual methylation

states of the sample, which is unknown or "hidden" from the investigators. These hidden

methylation states are often inferred from the observed data, which are usually sequencing

reads aligned to the reference genome. Because MeDIP-seq and MRE-seq are independent,

complementary measurements of the same methylation state, our confidence in inferring the

methylation state can be significantly increased when results from these two methods are

integrated. For example, a decrease in MeDIP-seq signal could reflect a biological event

(we infer that this region is unmethylated) or could be a methodological artifact; but if

the inferred unmethylated state is corroborated by an increase of MRE-seq signal, then

the inference of unmethylation is stronger. Thus, integrating MeDIP-seq and MRE-seq is

expected to significantly improve our ability to predict methylation levels accurately.

While MeDIP-seq and MRE-seq data correlate to a certain degree with WGBS measurements

(Fig. 1A, B), their relationship is not well represented by a simple linear translation. It has

also remained technically challenging to infer absolute methylation levels from enrichment

measurements alone [21, 63, 9]. Importantly, existing high-resolution methylomes and prior
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Figure 4.1: Relationship between MeDIP-seq and MRE-seq and MethylC-seq. (A) A kernelized
density plot of per CpG MeDIP-seq normalized read count values as a function of MethylC-seq
methylation levels shows a complex, approximately proportional relationship. (B) MRE-seq
normalized read counts as a function of MethylC-seq methylation levels shows a complex,
approximately inversely proportional relationship.

regional analyses reveal that CpG methylation levels are highly non-random throughout the

genome [50]. The levels vary strongly with local CpG density, display distinct genomic feature-

specific characteristics, and show strong correlation between neighboring CpG sites (Fig.

2A, B, C). These properties motivated us to use a formal statistical model to explore these

complex relationships with the goal of making an accurate, comprehensive, high-resolution

prediction of DNA methylation levels from MeDIP-seq and MRE-seq data.

4.3.2 Summary of the methylCRF algorithm

We chose a Conditional Random Field (CRF) model to integrate MeDIP-seq and MRE-seq

data to predict genome-wide single CpG methylation levels. Like the Hidden Markov Model

(HMM), which has been extensively adopted by the computational biology field[22], CRFs

were initially developed for natural language processing [41] but their application in biological

research has been limited [85]. However, CRFs have several distinct advantages when modeling

data with complex inter-dependencies which is a common feature of biological data.

The primary advantage is due to that CRFs model the conditional probability of the variable

of interest (CpG methylation states) given observed variables (e.g. MRE scores and MeDIP
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Figure 4.2: CpG methylation levels are non-random throughout the genome. (A) A kernelized
density plot of MethylC-seq methylation levels as a function of CpG density. Methylation
varies in a CpG density dependent manner with the majority of CpGs at 0-0.75 density with
75%-100% methylation and a smaller group at 0.75-1.25 density with almost 0% methylation.
(B) CpG methylation levels as a function of their immediately 5’ CpG methylation level (up
to 750bp). (C) Distribution of MethylC-seq methylation levels at CpG islands, exons, and
introns.
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scores), whereas HMMs model the joint probability of all model variables (Fig. 3A). By

conditioning on the observed variables, CRFs are not confounded by correlation between

them. This then allows CRFs to efficiently model more complex relationships between CpG

methylation levels and larger numbers of potentially correlated and distant observations. In

contrast, modeling the full joint probability either requires modeling the inter-dependencies

between the observations (for example, between MeDIP-seq read count and CpG density)

or making the assumption that they are conditionally independent (Fig. 3B) âĂŞ which

in this case, they are not [63]. Since very little is actually known about possible additional

confounding factors in these assays, this construction gives us significant freedom in choosing

what data to use in predicting methylation levels. Considering the number of features

that may influence CpG methylation, we believe this is a critical benefit. This also allows

the dependency of the methylation ratio of a CpG on any single observation or groups of

observations anywhere in the genome to be accounted for with the model complexity growing

only by feature number and not by distance of the dependency as would happen in a HMM.

Long range-interactions are a common problem [19, 89]. Of note, a CpG’s methylation

ratio can depend on observations in both directions which would introduce loops in a HMM.

Additionally, by not having to consider dependencies between observations, the addition of

agglomerative and derivative features is trivial. In our case, this was extremely useful as

we could define features incorporating large windows of MeDIP-seq and MRE-seq scores at

each CpG without increasing the complexity of the inference and without considering their

complicated dependence on individual MeDIP-seq and MRE-seq scores.

An additional, practical benefit of using CRFs is that the specification of the model is created

by defining functions in a way that offers great flexibility. In a typical implementation,

these functions are then instantiated with every combination of assignments of values for its

parameter variables. However, one could instantiate with only one or a subset of the values a

variable can take without requiring the addition of a full probability distribution over all of

the values. In a large model, this can provide a significant reduction in model complexity.

Feature functions can also overlap or use subset of variables of another. While subsetting

does not add any expressiveness to the model, it provides an elegant and automated way to

handle missing observations as well as to take advantage of a more detailed feature for some

configurations of the variables while having a simpler representation for other configurations.
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Figure 4.3: CRF versus HMM. (A) In a HMM, the labels generate the observations, while in
a CRF co-occurrences of the label and observations are associated. (B) HMMs model the
joint probability and must consequently model the dependencies in the observations, while
CRFs only model the dependencies of the label on the data.
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Lastly, since we are only interested in predicting correct methylation levels given our ex-

perimental data and the experimental data is fixed at test time, we do not believe there is

any sacrifice in power by not modeling the full joint probability distribution. Also note that

methylation ratios can be interpreted as a maximum likelihood estimate of the probability of

a particular CpG being methylated and as our results indicate this probabilistic interpretation

appears effective.

Our complete CRF model, methylCRF, is described in detail in the Methods section. Features

include MeDIP-seq and MRE-seq measurements covering individual CpGs, distance between

neighboring CpGs, distribution of MRE sites, and genomic annotations including CpG islands,

genes, repeats, and evolutionary conservation of DNA sequences. We also generated a variety

of derived scores representing averaged experimental measurements in genomic windows

of different sizes. We trained a separate CRF for each genomic feature, and for the final

methylation estimates, we averaged the predictions for any CRF whose predictions overlapped.

Training was performed using MethylC-seq [50] measured methylation levels in randomly

chosen regions representing 20% of the genome Table 6.1. Methylation levels were predicted

genome-wide, and performance was evaluated using CpGs that were not used for training.

4.3.3 High concordance between methylCRF and WGBS predic-

tions

Using methylCRF, we predicted individual methylation levels of 28 million CpGs for Human

H1 Embryonic Stem Cells (ESC) with combined MeDIP-seq and MRE-seq data. Our

predictions are in high concordance with MethylC-seq predictions on the same H1 cells, with a

genome- wide correlation of 0.77 (Fig. 4A). methylCRF recapitulates the bimodal distribution

of methylation levels identified by MethylC-seq (Fig. 4A). Using a previously developed

concordance measurement (defined as the percent of CpGs with a methylation proportion

difference less than 0.1 or 0.25)[30], methylCRF and MethylC-seq are 91% concordant within

a 0.25 difference (Fig. 4B). This high concordance is illustrated by a genome- browser

comparison between methylCRF and MethylC-seq of a representative genomic locus (Fig.

4C).
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Figure 4.5: Comparison between MethylC-seq and methylCRF and other methylation assays.
(A) Concordance of methylCRF, BS-seq, RRBS, and Infinium array with MethylC-seq within
a 25% window broken out by annotated genomic features. Note that BS-seq (H9) is a female
sample, while MethylC-seq (H1) is a male sample. Only CpG’s in common were compared.
(B) The number of CpGs used for each comparison on a log10 scale.

We next compared methylCRF and MethylC-seq on various genomic features (Fig. 5A).

methylCRF and MethylC-seq agreed at an exceptionally high level for CpGs within CpG

islands, promoters, 5’ UTRs, and exons with 93%, 93%, 93%, and 96% respective concor-

dances. The concordance decreased in Repeat-Masker annotated regions and regions with no

annotation (Fig. 5A), possibly reflecting higher mapping errors in these regions, particularly

for the reduced complexity reads from bisulfite conversion.

4.3.4 Benchmarking against other experimental methods

Several additional DNA methylation datasets exist for the H1 ESC line, including data

obtained with RRBS and Infinium methylation array. In addition, a WGBS dataset was

generated for the H9 human embryonic stem cell line (BS-seq) [46]. Data from this closely

related ESC line provides the closest "biological replicate" of the MethylC-seq ESC H1 WGBS

dataset.

When compared to MethylC-seq, methylCRF’s performance is almost indistinguishable

the comparison between MethylC-seq and BS-seq on these ESC cell lines (Fig. 4B, 4C,

5A). Specifically, within a 28% difference window, per-CpG methylation levels between the

MethylC- seq (H1) and BS-seq (H9) are 90% concordant while methylCRF (H1) predictions

reach the same concordance with a window of 23%. These windows decrease to 26% for H9
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and 18% for methylCRF when we limit the comparison to CpGs with high MethylC-seq (H1)

read coverage (e.g. >10 reads) and not in repetitive regions.

RRBS has comparable concordance levels to methylCRF when compared to MethylC-seq.

The Infinium array data appears to have slightly higher concordance, which might be a result

of having many fewer ( 28,000) CpGs for comparison and/or non-random selection of CpGs

on the Infinium platform (Fig. 4C and 5A). The high concordance among these popular

methods is consistent with previous comparisons ([7][30]. However, these methods clearly

interrogate very different fractions of the DNA methylomes, as evidenced by the Genome

Browser view (Fig. 4C) and CpG coverage comparison (Fig. 5B).

4.3.5 Robust performance across a variety of measurements

The strength of WGBS predictions is significantly influenced by sequencing coverage. Previous

analyses suggest that the methylation level of individual CpGs can only be confidently

estimated when sequencing depth is at least 10 [30]. Therefore, typically the minimum

requirement for a WGBS experiment is to sequence the bisulfite converted genome to a depth

of 30X [39]. However, even at this sequencing depth, a significant number of CpGs still

are not covered by enough reads (Fig. 6A). Indeed, we observe increased concordance with

increasing MethylC-seq coverage. For example, with a minimum 10-read coverage level the

concordance within a 0.25 threshold window between methylCRF and MethylC-seq increased

to 93% (from 91%, minimum 1-read coverage)(Fig. 6A).

CpG density is a major confounding factor in analyzing methyl-cytosine enrichment based

methods [21, 63]. For example, inferring methylation levels in CpG-poor regions is thought

to be highly inaccurate or impossible using MeDIP-seq [63]. Therefore, we examined methyl-

CRF’s performance across regions with differing CpG density and found the concordance

between methylCRF and MethylC-seq does not vary significantly based on CpG density (Fig.

6B).

We also compared methylCRF with BATMAN [21], a popular method for analyzing MeDIP-

seq data. Since BATMAN predicts methylation levels in windows of fixed-size and not
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Figure 4.6: Factors Affecting Concordance Between MethylC-seq and methylCRF. (A)
Concordance with MethylC-seq as a function of MethylC-seq read count (CpG coverage)
at 10% and 25% windows for both methylCRF and BS-seq. The right y-axis (blue bars)
indicates the number of CpGs with that coverage. (B) Concordance with MethylC-seq as a
function of CpG density at 25% windows for both methylCRF and BS-seq. (C) Concordance
of methylCRF within a 25% window broken out by annotated genomic features when only
MeDIP-seq, MRE-seq, or genomic features are used. Concordance of BATMAN using MeDIP-
seq is also plotted for comparison. (D) methylCRF accuracy on CGIs with high or low
methylation (as defined by MethylC-seq). The Lo set of CGIs are those with an average CpG
methylation ≤ 0.2, while the Hi set are those with an average methylation ≥ 0.8.
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of single CpGs, we assigned each CpG the methylation level of its window. methylCRF

consistently outperforms BATMAN in all categories (Fig. 6D).

Since our model learns separate CRFs for each genomic feature, we asked if it is possible

that the high correlations between methylCRF and MethylC-seq could be explained by each

CRF capturing the a priori methylation distributions of genomic features instead of using

the experimental data. To examine this relationship, we applied methylCRF: 1) without

MeDIP-seq data, 2) without MRE-seq data, and 3) with neither MeDIP-seq nor MRE-seq

data, i.e. with only genomic features (Fig. 6C). The experimental data does indeed make a

large difference in our predictions. Interestingly, MRE-seq alone performs slightly better than

MeDIP-seq alone. This may be due to the ability of a CRF to incorporate a priori knowledge

that most CpGs are methylated, thus making some MeDIP-seq information redundant.

However, it is important to note that the combination of MeDIP-seq and MRE-seq improves

performance significantly.

To further demonstrate that experimental data, but not the a priori methylation status of

genomic features drives our prediction, we compared the rates of concordance for methylated

and unmethylated CpG islands. Using MethylC-seq scores for H1 ES cells, we defined 17,189

unmethylated and 6,728 methylated CpG islands with an average methylation level of <=0.2

and >= 0.8 respectively. We compared these with the average methylCRF scores for H1 ES

cells for each of these CpG islands (Fig. 6D). Clearly, methylCRF predicts similar sets of

methylated and unmethylated CpG islands as MethylC-seq and it does both equally well.

Furthermore, on a per-CpG level, unmethylated CpG islands concordance is 0.98, while

methylated CpG islands concordance is 0.96. This analysis strongly suggests that while we

take advantage of a priori information, like genomic features, the algorithm clearly integrates

experimental data, relationships within the data, and between data and genomic features to

make accurate predictions. We performed a similar analysis on the subset of CpG islands

located in promoters - that is, a partitioning of CpG islands independent of the model

of the CpG island-specific CRF - and obtained similar results (Supplementary Fig. S1).

Similar results were also obtained when we restricted our analysis to intergenic CpG islands

(Supplementary Fig. S2).
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4.3.6 methylCRF accuracy is robust when applied to a second

sample

Having demonstrated that methylCRF can accurately predict differential DNA methylation

of CpGs independent of the characteristic methylation status of their genomic feature, we

tested whether our model, trained on data from H1 embryonic stem cells, would generalize to

data of other samples. This includes testing whether methylCRF can predict differential DNA

methylation at a genomic locus between different samples. We reason that if methylCRF is

completely dependent on genomic features, or is over-trained with ESC data, we would not

be able to distinguish between datasets generated from other cell or tissue types.

We generated WGBS, Infinium HumanMethylation450 BeadChip, MeDIP-seq and MRE-seq

data profiles of a human fetal neural stem cells (NSCs) culture (Hu-F-NSC-02, neurosphere

cultured cells, ganglionic eminence derived, fetal age of 21 weeks) (Supplementary Table 1).

We generated a single CpG resolution DNA methylome of this sample using methylCRF.

We performed similar concordance analysis between predictions of methylCRF and that of

WGBS, and between methylCRF and Infinium array. The overall concordance is consistently

high for comparison of methylCRF against either WGBS or Infinium arrays (Fig. 7A).

Specifically, methylCRF and WGBS were 88% concordance within a 0.25 difference window,

and 65% concordance within a 0.10 difference window. Additionally, we defined differentially

methylated CpG islands between the H1 ESC and the fetal NSCs using the WGBS data. Out

of 26,845 CpG islands, we identified 233 that have significantly different methylation status

between H1 ESC and fetal NSCs, such that their average methylation levels are less than

0.2 in one sample but greater than 0.8 in the other. These WGBS defined, cell type-specific

differences in CpG island methylation were mirrored by similar differences between H1 ESC

and fetal NSCs estimated by methylCRF (Fig. 7B), suggesting methylCRF can faithfully

predict differential DNA methylation between two samples.

Finally, we evaluated the ability of methylCRF to predict intermediate methylation levels.

We did not include imprinted control regions (ICRs) as a genomic feature in training.

However, when we examined methylation status of known ICRs (obtained from https:

//atlas.genetics.kcl.ac.uk, and summarized in Supplementary Table 2), we found that

majority of the ICRs exhibited intermediate methylation levels based on methylCRF prediction

in both H1 ESC and fetal NSCs (Fig. 8A, B), and the levels were consistent with those
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Figure 4.7: Applying methylCRF to fetal NSCs. (A) Concordances between methylCRF
and WGBS data and between methylCRF and Infinium array broken out by annotated
genomic features. (B) CpG islands were grouped as "indifferent" and "different" based on their
methylation levels in H1 ESC and fetal NSC (Hu-F-NSC-02) assessed by WGBS data. Actual
difference distributions were plotted between H1 ESC (WGBS, red), or H9 ESC (WGBS,
blue), or H1 ESC (methylCRF, green) and fetal NSCs (WGBS).

determined by WGBS based methods (Fig. 8A, B). Genome Browser views of the data were

provided for two exemplar ICRs (Fig. 8C, D).

4.3.7 Experimental validation

For regions where methylCRF and MethylC-seq results were discordant in H1 ESC, we

experimentally validated methylation status by performing PCR amplification of bisulfite

converted DNA, followed by Sanger sequencing of cloned amplicon DNA. Out of 12 regions

that show disagreement, bisulfite validation agreed better with methylCRF in 11 cases, and

agreed better with MethylC-seq in only 1 case. Two of the tested loci are shown in Figure 9,

while the remaining sites are summarized in Table 6.1 and Supplementary Figure S3.

4.4 DISCUSSION

DNA methylation is an epigenetic mark that has important regulatory roles in a broad range

of biological processes and diseases [34]. Understanding the role of DNA methylation in
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Figure 4.8: Comparing methylCRF and WGBS predictions in imprinted control regions. (A)
Known imprinted control regions (ICRs, https://atlas.genetics.kcl.ac.uk, Supplemen-
tary Table 2) were grouped based on WGBS data (H1 ESC, MethylC-seq), as "Lo" (average
methylation <=0.2), "Mid" (average methylation between 0.2 and 0.8), and "Hi" (average
methylation >=0.8). Boxplots represent average methylation levels of these ICRs based on
MethylC-seq and methylCRF. (B) Same as (A), except for fetal NSCs. (C) A genome browser
view of ICR near gene MEST (mesoderm specific transcript, chr7). (D) A genome browser
view of ICR near gene NDN (necdin, chr15).
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Figure 4.8: Experimental validation of regions where there is discordance between MethylC-
seq and methylCRF. Genome browser view and site-specific bisulfite sequencing validation for
each region (open circle: unmethylated CpG; filled circle: methylated CpG). The line graph
shows the methylation levels estimated by MethylC-seq, RRBS, bisulfite validation, and
methylCRF. (A) chr22:19929336-19929659; MethylC-seq predicted on average a methylation
level of 80% methylated, while methylCRF and bisulfite validation agreed on a level of 40%
methylated. (B) chr19: 35068305-35068683; MethylC-seq predicted on average a methylation
level of 60% methylated, while methylCRF and bisulfite validation agreed that the region is
more than 90% to completely methylated.

Fig. Panel Chr Strand Tested Coordinates (hg19) Fwd Primer Rev Primer MethylC-seq RMSE methylCRF RMSE

S2A. chr2 + 233216826-233217069 TTTTTTTAGAATTTAAATTTGGGTGAA ATCCTACCTTAAATAAACACCTACC 0.28 0.12
S2B. chr1 + 146551336-146551644 TTTTTTTTGGTTGAGGTTAGTTTAT CCCAAACTCTAAATCAAAACTTTTT 0.16 0.13
S2C. chr2 + 37571975-37572244 TAGTTTGGTTAGAGGAGAAGGTGAG AACCCAAAAAAAACCAATAACATC 0.52 0.06
S2D. chr10 + 94820761-94821132 TTAGGAGTTAGGAAAAAGTTTTGAG ACTAAACCAAACTAAACAACAAACC 0.44 0.11
S2E. chr15 + 57025677-57025990 TGATTGGAGTTTTGAGGAGGA CCCACATAAAAACAAAACCCTAAC 0.46 0.19
S2F. chr1 + 200343036-200343274 GGAGGGGAAGAATATAAGAAATAATTAGT TCTAAATCCCAATCCCTAACTACAA 0.06 0.82
S2G. chr2 + 228736110-228736500 ATGTAGTTTAGGTTGTGGTTTAGGT CAATCTAAAAACCCAAAATCCC 0.31 0.05
S2H. chr4 + 103940626-103940995 TTAAGAATTTTATTGAATTGAGGGG TAAACAAAAAACACACCAAACAATC 0.2 0.04
8A. chr22 + 19929336-19929659 GTTTTTGGGGTAGTTAGGGTTGT CTCAACTTTCCACAAAAAATCTAAAA 0.4 0.12
S2I. chrX + 48929750-48930067 GTAGGTAGGTTAATGGAGTGGTGAG ACCAAAAAAACAACCAAAACATACT 0.77 0.03
S2J. chr13 + 58208240-58208505 TTTATATTTATGTGTTTGTGAATTTTA ATACTCACCAAATAACCCAAACC 0.53 0.32
8B. chr19 + 35068305-35068683 TTTTGGTTAGAAATTGGTTAATGAT CTAAAATACCACAAACCCCACTAC 0.5 0.05
NA chr16 + 2666554-2666783 GGAGGATTTAGTGTTATTTGTTT TCTTAATTATTACTTAAAATTTTAAATACC NA (no value) 0.24

Table 4.1: Summary of validation results. Validation of 12 targets chosen within windows
where there is discordance between MethylC-seq and methylCRF for H1 ESC. The root-mean-
squared error (RMSE) is shown between MethylC-seq or methylCRF and bisulfite validation
using the listed primers.
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development and disease requires knowledge of the distribution of these modifications in the

genome. The technology is now available for studying DNA methylation genome-wide, at

high resolution and in a large number of samples [6]. Previous comparisons suggest that

many popular methods yield largely comparable results, but they differ significantly in extent

of genomic CpG coverage, resolution, quantitative accuracy, and cost [7, 30], at least using

current algorithms to interrogate the data.

We introduce a combined computational and experimental strategy to produce single CpG

resolution DNA methylomes of all 28 million CpGs in the human genome at a fraction of the

cost of whole genome bisulfite sequencing methods. Our computational model, methylCRF,

is based on Conditional Random Fields, a model similar to the well-known Hidden Markov

Model, initially developed for natural language processing but less applied in biomedicine.

Using this model, we integrated data from two complementary DNA methylation assays

(MeDIP-seq and MRE-seq) to predict methylation at single CpG resolution that were similar

to the results from WGBS on the DNA of the same cell line. However, the cost of our two

assays combined is less than 10% of a whole genome bisulfite sequencing methylome. We

showed that methylation levels assessed by methylCRF from MeDIP-seq/MRE-seq data are

indistinguishable from a biological replicate of whole genome bisulfite sequencing.

A complete genome-wide DNA methylome of a given sample will describe methylation

levels of every CpG in the genome, approximately 28 million in humans. WGBS based

method is considered the only approach capable of producing such single CpG resolution

DNA methylomes. It is perhaps the most celebrated method in DNA methylomics to

date and generally considered superior to enrichment-based methods [39]. One important

reason that WGBS appears conceptually superior to enrichment-based methods is that

transformation of sequencing results to direct estimates of methylation levels of individual

CpGs is straightforward -once data is aligned to the reference genome, one can simply count

converted and unconverted Cs to infer methylation levels. Although WGBS does not directly

measure single CpG methylation levels of a sample, investigators can easily infer methylation

levels based on experimental data (by sequencing alleles from multiple cells) derived from

the true methylation states, i.e., observed counts of converted and unconverted Cs. Such

intuitive heuristics makes WGBS seem straightforward.
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Similarly, enrichment-based data are also derived from true methylation states. However,

current analytical methods for enrichment-based data usually calculate enrichment scores

that are indicative of regional DNA methylation levels corrected by local CpG distribution

[21], [9], but do not predict single CpG methylation levels. Our novel algorithm closes this

gap - we can predict single CpG methylation levels based on MeDIP-seq and MRE-seq data,

two fundamentally different methods. The algorithm represents a fundamental advancement

in statistical modeling over methods currently applied to enrichment-based methods.

There are still significant barriers to individual laboratories adopting WGBS as a routine assay,

mainly the high production cost. Our method costs only a fraction of that of WGBS, yet can

achieve comparable results. Importantly, the cost saving is scalable; any anticipated reduction

in sequencing cost will reduce the cost of WGBS and our method in equal proportions. We

performed saturation analysis of MeDIP and MRE and concluded that 30M MRE reads and

50M MeDIP reads are required to reach saturation for measuring a human DNA methylome

(Supplementary Notes, Supplementary Fig. S4). This translates to 1-1.5X coverage of the

human genome. For WGBS, the requirement is at least 20-30X coverage. This striking

20-fold difference in required coverage will remain unchanged across different next-generation

sequencing platforms. To generate 30X coverage for a human sample is still expensive or

even prohibitive for most labs. Very often investigators need to assay multiple samples to

identify biologically interesting differences with reasonable statistical significance.

Additionally, bisulfite converted genomes have lower sequence complexity. This not only

causes problems in library construction and cluster formation on a sequencing plate, but also

more profoundly affects alignment of bisulfite reads to the genome, i.e. mapping. Several

algorithms have been developed to improve mapping of WGBS data [13, 27, 38, 62, 88], but

the problem remains not entirely solved. The confidence of mapping WGBS reads is generally

lower than mapping standard, non-bisulfite-converted reads. Since CpG methylation calls

are predicted based on aligned reads, how accuracy of methylation calls relates to mapping

quality remains uncharacterized. For example, while the effect of biased (C doesn’t match T)

versus non-biased (C matches T) alignment has been analyzed [39], no one, to our knowledge,

has examined the possibly more critical, alignment biases based on the number of Cs in a

read in either type of alignment.

46



In contrast, MeDIP and MRE protocols produce standard sequencing reads for which existing

statistics were designed. Although two libraries are constructed, the total cost (reagents

and labor) is comparable to constructing one WGBS, according to published protocols

http://www.roadmapepigenomics.org/protocols. Mapping of MeDIP and MRE reads

uses standard mapping tools and is more accurate than mapping of reads from WGBS.

In our experimental validation, we examined 13 loci where MethylC-seq and methylCRF

predictions do not agree in H1 ESC. We used bisulfite conversion, PCR, cloning and sequencing

as our validation method because it is considered the gold-standard for targeted DNA

methylation prediction, and we could exclude the possibility that differences are caused

by bisulfite conversion. Nevertheless, in 11 out of 12 loci the gold-standard approach gave

methylation levels that were closer to those from methylCRF predictions than from WGBS.

Our interpretation of this result is that most errors made by WGBS might be due to

misalignment, however a comprehensive analysis of WGBS mapping is needed to be certain.

Alternatively, these differences may reflect true biological variation. This raises the profound

question again âĂŞ how much of the WGBS predicted DNA methylome is actually incorrect

due to challenges in mapping bisulfite converted reads? We are eager to explore this question

in future studies.

When compared to RRBS and Illumina arrays, our method is obviously much more com-

prehensive. Our method provides 10 to 20 fold more coverage than RRBS or available

methylation arrays. Investigators may want to use array-based assays when their target CpG

sites are directly interrogated by the array. However, many regions of interest, for example,

repeats or cryptic promoters, will not be assessed. There are also a number of examples where

the specific CpG site interrogated by an array does not reflect the true methylation status of

the genomic feature (e.g. a promoter) and may lead to false conclusions. Our method not only

provides a comprehensive method for exploratory studies, but as the cost of WGBS drops

sufficiently for exploratory analysis, the concomitant drop in cost of methylCRF application

on MeDIP-seq and MRE-seq will provide investigators a platform to comprehensively address

biological questions by comparing multiple samples, conditions, or variances genome-wide.

The accuracy of methylCRF was benchmarked against WGBS, RRBS, Infinium array, and

locus specific-bisufite sequencing on H1 human ESCs. In addition, we determined that the high

concordance between methylCRF and WGBS is consistent across most genomic feature sets
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and across all CpG density levels. The power of the method stems from its integrative nature

âĂŞ methylCRF is able to integrate a priori information about the expected methylation

states of various types of genomic features, two complementary and independent experimental

measurements of methylation states, and hidden relationships among neighboring CpG sites.

Genomic sequences and features provide a default expectation of their methylation status.

Indeed, CpG content of the genome reflects germ cell methylation states during the course of

evolution [48] and has been used to estimate methylation levels directly [18]. This is reflected

by the overall concordance of 0.66 when methylCRF makes predictions based on genomic

features alone, which represents an expectation of methylation of a majority of CpGs in a

normal somatic cell. The concordance is significantly improved when either MeDIP-seq or

MRE-seq data are integrated, and the highest concordance is obtained when the datasets

are combined. Importantly, methylation predictions made by methylCRF are conditioned

on both genomic features and experimental data, and not driven by genomic features alone.

This is supported by the accurate separation of methylated CpG islands from unmethylated

ones (Fig. 6D), even when focusing on promoter regions and/or intergenic CpG islands

(Supplementary Fig. 1, 2).

The accuracy of methylCRF was further benchmarked on WGBS and Infinium array data

from a second sample. Here methylCRF trained on H1 ESC data was applied to MeDIP-seq

and MRE-seq of a fetal brain NSCs sample. The concordances between methylCRF and

WGBS, and between methylCRF and Infinium array were at similarly high levels as those

obtained on analyzing H1 ESC data. Moreover, methylCRF can reliably identify differentially

methylated regions between the two samples. This strongly suggests that our model trained

on ESC data can be applied to data of other samples.

In the current implementation of methylCRF we only consider CpG methylation and as-

sume all signals obtained from MeDIP-seq and MRE-seq are results of CpG methylation.

We also assume WGBS produced methylation signal and ignore complications caused by

hydroxymethylation. We note that methylations of cytosines in the context of other than

CpG (i.e., CHG and CHH) are rare in somatic cells but are indeed present in embryonic stem

cells, usually in low levels and are associated with highly methylated CpGs [50]. Biological

significance of CHG and CHH methylation in mammalian cells is yet to be determined. Our

statistical model is general enough to incorporate non-CpG cytosine methylation, but we
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focused on CpG methylation in this study. Our statistical model is also general enough to

incorporate data on hydroxymethylation when they become more and more available.

Our study has several limitations. Because the cell line we used to train, H1 ESC, is male

it is possible that the additional X chromosomes in female samples may not be as accurate.

This is because males will only have one allele aligning the reference X chromosome whereas

a female will have two, resulting in twice as many reads. In fact, this may also effect WGBS

accuracy. The concordance within 0.25 difference window between H1 and H9 on chrX

alone drops to 81% whereas excluding chrX raises the concordance 92%. The concordance

of methylCRF with H9 on chrX is 79% whereas without it is 90%. Note that this also

provides a natural experiment that suggests how methylCRF will perform in cases of large

scale genomic aberrations such as segmental or even chromosomal duplication or deletion,

which is frequently found in cancer. Both WGBS and methylCRF seem to be proportionally

less accurate when alleles and possibly segments are added or deleted. Nevertheless, once

more WBGS data becomes available, we can trivially extend methylCRF to include a field

for structural variations which could be estimated by standard means. Additionally, since

MeDIP-seq and MRE-seq are sequencing based, we can make use of existing tools to add

SNP-based features and to include input (un-enriched sequences). We note that WGBS is at

a disadvantage when considering SNPs, in particular C->T SNP’s will either be reported as

an unmethylated C unless strand- specific alignment is available or even worse will align to

cause false-positive alignments in other locations.

Another potential limitation is that the H1 WGBS (MethylC-seq) and MeDIP-seq and MRE-

seq were performed on separate passages of the H1 ESC line and assayed in separate labs.

This may explain why methylCRF was consistently validated by the bisulfate cloning method

over WGBS. However, if this were true, two important inferences can be drawn. One, notable

changes in methylation can be seen even between passage numbers. Two, these validations

show methylCRF’s sensitivity in detecting DMRs based on experimental data - even in

very similar biological contexts. Additionally, the accuracy on fetal NSCs is slightly lower

than on H1 ESC’s. This may suggest that H1 ESC’s may have differences in their global

methylation than other cell types. While this does not stop methylCRF from detecting

tissue-specific DMR’s, it suggests that the accuracy may improve further if we re-train

methylCRF simultaneously on WGBS from multiple cell-types.
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Finally, because of our use of genomic feature-specific predictions, methylCRF accuracy may

suffer when some part of the methylation machinery breaks down or behaves differently, for

instance as in some cancers. We have indirectly tested this in a sample case, however. Fig.

2C shows CpG islands to have an extremely biased distribution of low methylation. However,

Fig. 6D shows equivalent accuracy in CpG islands that represent a genomic feature with, in

the statistical view of methylCRF, aberrant methylation.

Despite the promise of WGBS based methods, the number of publicly available, complete,

single CpG resolution DNA methylomes is still small in contrast to the number of lower

resolution and/or lower coverage DNA methylomes generated by less expensive methods (e.g.,

MeDIP-seq and MRE-seq generated by individual labs and by the Roadmap Epigenomics

project). Our method can convert these data into single base resolution, complete DNA

methylomes, thus significantly increase the value of such existing datasets.

In summary, our results suggest that methylCRF is an effective statistical framework capable

of integrating two fundamentally different sequencing-based DNA methylation assays, MeDIP-

seq and MRE-seq, to predict genome-wide, single CpG resolution methylome maps. The

concordance of our methylCRF predictions with WGBS falls within the range of concordance

between two WGBS experiments on similar cells. methylCRF will thus significantly increase

the value of high-coverage DNA methylomes produced using much less expensive methods,

and provide a general statistical framework for integrating contributions from various types

of DNA methylation data regardless of their coverage, resolution, and nature of their readout.

4.5 Methods

4.5.1 methylCRF implementation

methylCRF is implemented using the theoretical framework of conditional random fields [41].

This general framework expresses the conditional probability Pr(Y |X) of a series of hidden

states, the random variables, Y , given observed data X:
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P (Y |X) =
1

Z

C
∏

c=1

e
∑

K

k=1
wk∗fk(c,yc−1,yc,X)

Y is the methylation level of every CpG; X is the observations (MeDIP-seq, MRE-seq,

genomic context). The C CpGs are indexed by c, and the K feature functions, f, are indexed

by k. The weights, w1..wk, are learned via gradient ascent of the log likelihood. Z is the

partition function which provides the global normalization and is the sum of all sequences of

methylation levels given X:

Z =
∑

y∈Y

C
∏

c=1

e
∑

K

k=1
wk∗fk(c,yc−1,yc,X)

Our approach to data features was to initially include anything that we thought might in

some way effect methylation. We then let an L1 normalization term during training determine

which features were not important by pushing their weights to 0. Therefore, the choice of

important features was learned from the data. We split the data into different ranges of effect.

We included MeDIP and MRE scores both at the CpG (D0 and M0) and within windows

of 20bp, 200bp, 2kbp, and 20kbp windows. We included whether a CpG was at an MRE

restriction site (ER) and the distance in bp to the previous CpG (PC). From UCSC genome

browser tracks [36] we included a 46-way mammalian phastCons conservation score. We

included GC% in 20bp, 150bp, and 500bp windows, and CpG density in a 150bp window.

We defined one CRF feature for each one of these data features combined with the methylation

level of the current and previous, 5‘, CpG. We also added CRF features for the next two

MeDIP and MRE scores on both the 5‘ and 3‘ sides. We then defined compound features.

We included a feature combining D0 and PC to possibly address the nonlinear relationship

between MeDIP and CpG density. We also included one large feature including factors that

appeared to be interacting (data not shown) including both the current and previous CpG

methylation as well as D0, M0, and PC for the current CpG as well as the two CpGs to

the upstream and downstream of the current. This feature also included MeDIP and MRE

in 20bp and 2kbp windows, ER, and GC in 20bp and 150bp windows for the current CpG

as well as ER for the surrounding two CpG’s. We additionally included four more features
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consisting of subsets of these as a fallback for rare combinations of values. A diagram of the

complete model is illustrated in Supplementary Fig. S5.

The distributions of methylation levels are genomic feature-specific (Fig. 2C), so we reasoned

that the methylation level transitions between neighboring CpGs are also genomic feature-

specific. To address this, we trained a separate CRF for each genomic feature: one for each

of the genomic annotations in RefGene (5‘ UTR, gene body, exon, intron, 3‘ UTR, CGI), for

the derived types (distal promoter, TSS-2kb; proximal promoter, TSS-250bp; core promoter,

TSS +/- 35bp; 1kbp flanking each CpG Island; and 2kbp flanking each CpG Island), one

for each Repeat class (DNA, LINE, LTR, RNA, SINE, low complexity sequence and simple

repeats, and other), and one for the remainder of the genome not covered by any of the

previous CRFs.

Training was performed using MethylC-seq [50] measured methylation levels in randomly

chosen regions representing 20% of the genome. We used only CpGs with at least 10-read

coverage. We performed separate discretization for each CRF. Each of the CRFs were trained

using crfsgd [8] using default settings.

CRFs are typically discriminately trained by iteratively ascending their gradient. While

the function is convex and so converges to a global maximum, the whole CRF must be

evaluated once for every iteration in the ascent which poses performance issues. However,

CRFs have been shown to handily model millions of features [75]. Additionally, the ascent

can be performed online providing two benefits: 1) potentially less over-fitting due to the less

optimal solution, and 2) speed of analysis [8]. Being discriminately trained, though, CRFs

need to be handled carefully so as to ensure their generalizability to future data.

For CpG’s that are annotated with multiple features, we combine the methylation predictions

by averaging the predictions of the corresponding CRF’s and giving each CRF an equal vote.

Performance was evaluated using CpGs that were not used for training.
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4.5.2 Discretization Heuristic

CRFs are rooted in the Natural Language Processing (NLP) community and so model discrete

rather than continuous variables. There has been at least one paper extending CRFs to

rankings which requires developing a continuous CRF [67]. Additionally, in the derivation of

CRFs there is no restriction on the form of the random variables, so continuous predictors

are also an option. However, the theoretical and practical work on modeling and training of

discrete CRFs is very extensive. Additionally, the relationship between the predictors and

the methylation ratios are complex. Finally, Naive Bayes is known to perform better with

discretized variables [20]. We, therefore, decided to follow in this line of work by representing

the relationship between the predictors and methylation ratios as piece- wise constant. The

trade-off in avoiding the choice of the correct family of continuous distributions for the

methylation ratios as well as the predictors in the continuous case, is that we must determine

where to cut the range of a predictor into pieces. This is equivalent to discretization for

which considerable work has been done.

While equal range or equal size discretization is straightforward, they did not perform

very well (data not shown). We instead chose to use supervised discretization using the

methylation ratios to guide the discretization. While good entropy-based methods do exist,

they would require the methylation ratios to already be discretized posing a chicken and the

egg problem for which we could not find an existing solution. This lead us to develop a 2-step

heuristic consisting of clustering to discretize the methylation ratios followed by supervised

discretization of each predictor. In the first step, which we term "order-preserving clustering",

we cluster the predictors and the methylation ratios together. We iteratively up-weight the

methylation ratios and re-cluster until there is an order between clusters such that all of the

methylation values in one cluster are larger than the previous (Supplementary Fig. 6). Given

this as a data model- driven discretization of the methylation ratios, we then use supervised

discretization on each predictor individually. Note that this heuristic can use any pair-wise

distance metric, clustering method, or supervised discretization method. We used k-means

[51] and Euclidean distance for clustering and CAIM [40] for discretization.
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4.5.3 MeDIP-seq, MRE-seq, and WGBS data

All data were obtained from the NIH Roadmap Epigenomics Mapping Centers’ repository

for human reference epigenome atlas [5]. Experiments were performed under the guidelines

of the Roadmap Epigenomics project http://www.roadmapepigenomics.org/protocols.

Specifically, MeDIP-seq and MRE-seq experiments were performed as described previously

[53]. All data have been previously submitted to NCBI, and are listed in Supplementary

Table 1.

The reads were aligned with bowtie [45] to HG19. The MRE reads were normalized to

account for differences in enzyme efficiency and scoring consisted of tabulating reads with

ends at each CpG [53]. To allow for comparison between experiments, the CpG read counts

for MeDIP were scaled so that the 75th percentile of CpGs with at least one read is 10. Since

for each MeDIP read, the CpG that was bound by the antibody cannot be determined, a

fractional count was added to each CpG for the read. The final MeDIP score is the sum of

CpG scores within the specified window.

4.5.4 Genomic features

RepeatMasker annotations, CpG islands, genomic super duplications, 46-way phastCons, and

refGene coding loci features were all downloaded from UCSC Genome Browser [36]. The GC

percent, CpG density, and MRE sites were calculated using HG19.

4.5.5 Training and prediction

For training, we randomly selected both the location and size of genomic fragments of 75kb

to 750kb in length comprising roughly 20% of the genome. We used only CpGs with at

least 10 BS reads. We performed separate discretization for each CRF. For the k-means

step in the discretization of BS methylation values, we arbitrarily chose 10 clusters as this

seemed a reasonable cutoff for the granularity for the measurement of CpG methylation that

we would be interested in. We used Euclidean distance as our metric. Further details on

our discretization method are discussed above. Each of the CRFs were trained using crfsgd
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[8] using default settings. The data for each CRF was split on gaps of greater than 750bp

between consecutive CpG’s.

For prediction, the data was created as for the training data. For the final methylCRF

predictions, we combined the predicted methylation levels of all the CRFs by averaging

the predictions for CpGs that were shared by multiple CRFs. Genome Browser tracks

are available as part of Roadmap Epigenomics Project’s data visualization hub: http:

//VizHub.wustl.edu

4.5.6 Bisulfite treatment and library construction for WGBS

1 to 5ug gDNA was sonicated to an approximate size range of 200-400bp. Size selection is

performed on a PAGE gel to obtain DNA fragments of 200-300bp. DNA are quantified by

fluorescent incorporation (Qubit, Invitrogen). The library preparation includes end-repair and

phosphorylation with NEBNextTM or Illumina Sample Prep Kit reagents, and addition of an

âĂŸA’ base to the 3’ end of the DNA fragments. Methylated adapters are ligated and size

selection is performed to remove excess free adaptors. The ligated DNA is quantified by Qubit,

and approximately 100ng DNA is used for bisulfite conversion. Methylated-adaptor ligated

to unmethylated lambda-phage DNA (NEB) is used as internal control for assessing rate of

bisulfite conversion. The ratio of target library to Lambda is 1600:1. Bisulfite conversion of

the methylated adapter-ligated DNA fragments follows the FFPE Tissue Samples Protocol

from Qiagen’s Epitect Bisulfite Kit. Cleanup of the bisulfite converted DNA is performed,

and a 2nd round of conversion is applied. Enrichment of adaptor-ligated DNA fragments is

accomplished by dividing the template into 5 aliquots followed by 8 cycles PCR with adaptor

primers. Post PCR size-selection of the PCR products from the 5 reactions is performed on

a PAGE gel. Following 100bp paired-end sequencing on a HiSeq2000, sequence reads were

aligned and processed through the Bismark pipeline.

4.5.7 Infinium assay

Bisulfite conversion was performed on 1 ug of genomic DNA using the EZ DNA methylation

kit (Zymo research) as per the manufacturer’s alternative incubation conditions protocol.
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The bisulfite converted DNA was amplified and hybridized to an Infinium HumanMethyla-

tion450 beadchip (Illumina) following the Infinium HD methylation assay protocol at the

UCSF Genomics Core facility. Methylation levels (beta values) were determined using the

Methylation Module of the Illumina GenomeStudio software.

4.5.8 Bisulfite validation

Total genomic DNA underwent bisulfite conversion following an established protocol10 with

the following modifications: incubation at 95 ◦C for 1 min, 50 ◦C for 59 min for a total of 16

cycles. Regions of interest were amplified with PCR primers Table 6.1 and subsequently cloned

using pCR2.1/TOPO (Invitrogen). Individual bacterial colonies were subjected to PCR using

vector-specific primers and sequenced (Quintara biosciences). The data were analyzed with

online software BISMA [70]. Results are summarized in Table 6.1 and Supplementary Fig. 3.

4.6 SOFTWARE AVAILABILITY

methylCRF is complete open source software. The source code, parameter sets, genomic data

sets, as well as instructions are available at: http://methylcrf.wustl.edu
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4.8 Supplemental

1. Additional comparison of MethylC-seq and MethylCRF predictions of differentially

methylated CpGs with the same genomic feature.

We reason that if methylCRF relies more on a priori information of genomic features

than on experimental data, then it would predict that CpGs with the same genomic

features have the same methylation level. In the main text, we examined methylated

and unmethylated CpG islands. Here, we examined only CpG islands that are located

in promoter regions, using both the general CRF model and the CRF model trained on

CpG islands alone. These promoter CGIs, 421 methylated and 11,418 unmethylated,

represent a subset of CGIs with an a priori distribution distinct from the set of all

CGIs (i.e. that of 6,728 methylated and 17,189 unmethylated), Fig. S1. However,

methylCRFs accuracy on this set is equal to that of all CGIs (Fig. 6D). Furthermore,

the predictions from the CGI CRF (i.e. the component CRF that predicts just CGI

methylation - which has no information to distinguish promoter CGIs from the set of

all CGIs), is equally accurate on methylated CGIs, Fig. S2

2. Genome browser views, per-CpG methylation, and line graph of locations validated

by location-specific bisulfite sequencing, Fig. S3 A-J. Two additional locations are

presented in the main text.

3. MeDIP-seq/MRE-seq Saturation Analysis

Both MeDIP and MRE assays approach saturation with less than 50M reads. We plotted

number of CpGs measured by MeDIP or MRE against number of reads. Specifically,

assuming 40 million mappable reads as the total reads for a MeDIP library, 90% of the

total reads can interrogate 98% total CpG sites; similarly, assuming 30 million mappable

reads as the total reads for a MRE library, 90% of the total reads can interrogate

97% total CpG sites (Fig. S4.A). When combined, a saturated MeDIP library and a

saturated MRE library are equivalent to 1 1.5X coverage of the human genome. For
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Figure S1: methylCRF accuracy on methylated (avg MethylC-seq score >= 0.8 and unmethy-
lated (avg MethylC-seq <= 0.2) promoter CpG Islands (CGIs).
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Figure S2: methylCRF accuracy on methylated (avg MethylC-seq score >= 0.8 and unmethy-
lated (avg MethylC-seq <=0.2) intergenic CpG islands (CGIs)
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Figure S3: Additional validation results, A-J

WGBS the standard requirement is 30X coverage. The striking ratio of more than 20

fold difference will remain unchanged across different next-gen sequencing platforms.

In order to determine the depth of MeDIP and MRE required for given accuracies we

ran methylCRF on randomly chosen subsets of reads (Fig. S4.B). We ran three types

of tests, 1) reducing both MeDIP and MRE, 2) reducing MeDIP only, and 3) reducing

MRE only. The model is relatively robust and works well with a range of coverages.

Using only 40% of both MeDIP and MRE reads still gives an overall correlation close

to using 100%, 0.82 vs. 0.85, while reducing either MeDIP or MRE to 40% gives a

correlation around 0.83. Interestingly, using only 60% of the MeDIP reads gave better

results than using over 80%.

4. Complete data model.

5. Order Preserving Clustering Heuristic.

For multivariate clustering, the order preserving heuristic iteratively increases the scale

of a subset of variables, in this case the CpG methylation estimate (labeled Y), until

the clustering algorithm outputs a clustering in which the CpG methylation estimates

within each cluster are contiguous. (A) a two- dimensional example, where there are
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Figure S4: MeDIP-seq/MRE-seq saturation analysis
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Figure S5: Diagram of the complete methylCRF model.

three obvious clusters. Grouping these into two clusters using a distance-based metric

results in two clusters whose projection onto Y, does not suggest a discretization of Y. In

contrast, multiplying Y by some sufficiently large value, w, produces a clustering whose

projection onto Y, partitions Y into single interval clusters. (B) shows psuedo-code for

the heuristic.

6. High methylCRF Concordance with WGBS is Independent of Accuracy Threshold

The concordance of methylCRF methylation levels when compared to MethylC-seq is

similar to that of BS-seq to MethylC-seq (Fig. 1, 2). This similarity is robust across

the whole range of accuracies (Fig S7.A). Interestingly, the performance is actually

rather good even on shuffled methylation values of either BS-seq or methylCRF, which

underscores the critical importance of proper null model choice in methylome analysis.

80% of methylCRF methylation estimates are within ± 18% of the MethylC-seq levels

(19% for BS-seq). To determine if our estimates also have a similar correlation pattern

between neighboring CpGs, we looked at the accuracy of the change in methylation

between neighboring CpGs ( Fig. S7.B). That is, for every threshold and every CpG

we calculate:
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Figure S6: Order preserving heuristic. (a) the scale of Y is increased until a distance measure
partitions X correspond to consistent ranges of Y. (b) psuedo-code
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|methylCRF (CpGi − CpGi−1) − MethylCseq(CpGi − CpGi−1)|

Similar to the methylation estimates in ( Fig. S7.A), 80% of the differences are within

± 17% of differences of MethylC-seq (26% for BS-seq). In fact, the only significant

difference between methylCRF and BS-seq estimates that we noted occur when we

analyze the change in methylation of neighboring CpGs as a function of MethylC-seq

methylation level (instead of by difference threshold). Even at a difference threshold of

Âś 40%, less than 20% of the differences between methylCRF estimates of neighboring

CpGs are concordant with that of MethylC-seq differences greater than 50%, while on

the other hand, BS-seq estimates are more than 50% percent concordant. (Fig. S7.C)

This suggests that methylCRF does not match large changes in methylation between

neighboring CpGs well. However, since the methylation level correlation is, nevertheless,

high between methylCRF and MethylC-seq as well as between neighboring CpGs in

general, this suggests that methylCRF disagrees with the exact location of boundaries

between regions of high and low methylation of MethylC-seq by a few CpGs rather

than completely missing changes in methylation.

7. methylCRF can identify developmental enhancers with lower methylation.

The concordance at human Vista enhancers [64, 84] with positive expression in mouse

embryos is lower than the global concordance, 0.85. However, methylCRF is nevertheless

able to identify which set of enhancers had reduced methylation. To show this we split

the Vista enhancers into two groups: methylated (>0.66) and reduced methylation (≤

0.66) based on their average WGBS methylation. We choose 0.66 to be the cut-off for

the large node in the distribution of methylation values, Fig 4A.

4.8.1 SUPPLEMENTARY TABLES
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Figure S7: methylCRF [top] and BS-seq [bottom] accuracy as compared to MethylC-seq.
Loss refers to the threshold of difference between methylCRF and MethylC-seq methylation
levels to call them concordant. Accuracy refers to the ratio of CpGs within that threshold.
(a) Accuracy by difference between methylation estimates, shuffled methylCRF estimates,
and random methylation values (red lines show 50%, 80%, and 90% accuracy); (b) accuracy
across similarity thresholds of the difference between neighboring CpG’s methylation for
methylCRF, shuffled methylCRF values, and random methylation values; (c) accuracy of 4
concordance thresholds of the difference between neighboring CpG’s methylation by MethylC-
seq methylation level.
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Figure S8: DMR detected at Vista enhancers. (A) methylCRF can identify enhancers with
reduced methylation. (B) Example browser shots of DMR’s at differentially methylated
enhancers identified by the UCSC Genome Browser’s Vista enhancer track. Upper panel:
MGMT loci, associated with gliomas showing demethylation in NSC. Lower panel: LOC647323
loci showing a far upstream enhancer DMR demethylated in ES and an intronic enchancer
DMR demethylated in NSC.

Experiment Sample GEO ID

MeDIP-seq H1 ESC Batch1 GSM543016
H1 ESC Batch2 GSM456941

Fetal Brain HuFNSC02 GSM669613*
MRE-seq H1 ESC Batch1 GSM428286

H1 ESC Batch2 GSM450236
Fetal Brain HuFNSC02 GSM669603*

WGBS H1 ESC GSM432686 GSM429321 GSM429322 GSM429323
H9 ESC GSM491349

Fetal Brain HuFNSC02 GSM941746*

Table 4.2: Complete datasets used in this study
(* denotes unpublished data)
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Chrom Coordinate (hg19) . Imprinted gene

chr4 89618367 89620597 NAP1L5
chr6 144329408 144329947 PLAG1
chr7 50849753 50850871 MEG1
chr7 94286182 94286557 PEG10
chr7 130132066 130132356 MEST
chr8 141107838 141110984 PEG13
chr10 121577530 121578385 INPP5F_V2
chr11 2019368 2023499 HG19/IGF2
chr12 2806850 2808502 KCNQ1OT1
chr13 48892636 48893857 RB1
chr14 101275673 101277556 GTL2
chr15 23931560 23932547 NDN
chr15 25199662 25200343 SNURF
chr18 44554880 44556671 TCEB3C
chr19 57351728 57352173 PEG3
chr19 57630348 57630725 USP29
chr20 30135077 30135292 MCTS2
chr20 36147118 36151058 NNAT
chr20 57464743 57464960 GNAS

Table 4.3: Imprinted control regions used in this study. Adopted from
https://atlas.genetics.kcl.ac.uk.
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Chapter 5

Multiple cell-type DNA methylation

dynamics at single CpG resolution

captured by combinatorial

methylCRF prediction

5.1 Abstract

DNA methylation is an important epigenetic modification involved in many fundamental

biological processes and diseases. Many studies have shown methylation changes associated

with embryogenesis, cell differentiation and cancer at a genome-wide scale. Our understandings

of genome-wide methylation changes in a developmental or disease-related context have been

steadily growing. However, the overarching view and understanding of methylation patterns

in many different normal cell or tissue types are still lacking. Here we present an in-depth

analysis of single-CpG resolution methylomes predicted using methylCRF on 58 cells. We

found that methylCRF can accurately predict dynamic DNA methylation patterns across cell

types. We categorized the 26 million human autosomal CpG based on their methylation level

across all the cells and focused on variably methylated CpGs for further analysis. Among all

the autosomal CpGs, only 28% show significant differences among cell types. We then grouped

these CpGs into variably methylated regions (VMRs) to explore their functional importances.

Overall, there are more than 400 thousand VMRs occupying 11% of the genome. We found

that VMRs enrich enhancer histone modification marks, suggesting their role as regulatory
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enhancers likely during cell differentiation. VMRs enrich transcription factor binding sites in

a tissue-dependent manner; furthermore they enrich SNPs and GWAS variants, suggesting

VMRs could potentially be implicated in disease progression. Taken together, these analyses

demonstrated the power of methylCRF in characterizing CpG methylation and variably

methylated regions, many of which harbor regulatory potentials. Our results highlighted the

link among CpG variation, genetic variation and disease risk in a tissue-specific manner.

5.2 Introduction

DNA methylation refers to the chemical modification of the addition of a methyl group

at the C5 position of cytosine on DNA sequences. Methylation on cytosine can occur in

different genomic contexts but largely in a CpG dinucleotide context(Fazzari and Greally

2004). Proper establishment of DNA methylation early in embryogenesis is vital for normal

development in many organisms(Law and Jacobsen 2010). DNA methylation clearly plays a

role in genomic imprinting and X-chromosome inactivation where methylation of one parental

allele suppresses its expression and leads to monoallelic gene expression(Reik and Lewis

2005). In addition, epigenetic modifications of the chromatin, including DNA methylation

and histone modifications, orchestrate heritable, cell type- and developmental stage-specific

gene expressions in vertebrates(Robertson 2005; Portela and Esteller 2010).

Since the advent and wide adaptation of next-generation sequencing in epigenomic stud-

ies(Harris et al. 2010), insights have been gained over different aspects of the functions of

DNA methylation at a genome-wide scale in various contexts. We now have a catalogue of

the DNA methylomes of many cell types in different organisms(Lister et al. 2010; Kobayashi

et al. 2013; Lister et al. 2013; Shen et al. 2012; Zhang et al. 2013) and discovered while the

majority of the DNA methylation remain stable once the cell is fully differentiated, dynamic

DNA changes occur during embryogenesis, cell differentiation, tissue development, aging

and disease progression and many more(Jiang et al. 2013; Meissner et al. 2008; Laurent et

al. 2010). While the majority of the efforts have been focused on identifying specific DNA

methylation changes induced by specific treatment or environmental stimuli and by disease

progression, little knowledge is known about the systematic pattern of DNA methylation

across many cells types from different tissues under physiologically normal conditions. Among
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the 28 million CpG in the human genome, we still have little idea of what proportion of them

show dynamic difference and could be functionally important.

Through the effort of the Roadmap Epigenomics Project(Bernstein et al. 2010), we now have

a large collection of genome-wide DNA methylation profile spanning multiple tissue and cell

types, in the form of complementary methylated DNA immunoprecipitation (MeDIP-seq)

and methylation-sensitive restriction enzyme (MRE-seq) data(Maunakea et al. 2010). We

recently have introduced a novel conditional random fields-based algorithm, methylCRF,

which combines both MeDIP-seq and MRE-seq data and predicts single-CpG resolution DNA

methylomes(Stevens et al. 2013). Here, we have leveraged the new algorithm and analyzed a

large number of full DNA methylomes across multiple cell and tissue types. We have found

a relatively small percentage of the autosomal CpGs that show dynamic changes among

the cell types we investigated. Merging the dynamic CpGs into dynamic regions, we have

characterized the features of these regions and their co-localization with various regulatory

elements such as enhancer associated histone marks, transcription factor binding sites and

disease associated GWAS hits and uncovered many important functions these dynamic regions

might possess.

5.3 Results

5.3.1 Characterization of autosomal CpG methylation patterns

Through Roadmap Epigenomics Project, we have collected 43 MeDIP-seq and MRE-seq

methylation datasets and together with another 15 normal human DNA methylomes in-house,

we are interrogating the DNA methylomes of 58 normal human primary cell samples including

fetal brain, cortex derived and ganglionic eminence derived neurosphere cells, fibroblast,

keratinocyte, melanocyte of skin, luminal epithelial, myoepithelial and stem breast cells, CD4

memory, CD4 naive, CD14, whole blood, granulocyte and peripheral blood mononuclear cell

(PBMC), and endometrium. For a complete list of cell and tissue types, refer to Supplemental

Table 1.
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We have applied methylCRF to these MeDIP-seq and MRE-seq datasets and generated

58 single CpG resolution complete DNA methylomes. For all the following analysis, only

autosomal CpGs were considered. To test the similarity between the methylation levels of

our methylCRF prediction and those of Whole Genome Bisulfite Sequencing (WGBS)(Ziller

et al. 2013), we calculated their genome-wide concordance (defined as the percent of CpGs

with a methylation level difference less than 0.25) between samples profiled by both methods.

Although the samples were from different sources, the concordance between tested pairs is as

high as 85.3% (Supplemental Table 2).

We first looked at the global pattern of DNA methylation in different cell types. The average

DNA methylation level of each cell type ranges from 75.4% to 81.7% and displays small

variation among tissue types and fairly consistent level of methylation among different cell

types from the same tissue type (Supplemental Table 1). For each cell type, the distribution of

the overall DNA methylation level follows a pattern similar to other known methylomes where

the majority (more than 78% of the total CpGs for every sample) are either highly methylated

or unmethylated (about 11% of the total CpGs for every sample) and a small percentage

(less than 7% for every sample) of CpGs are intermediately methylated (Supplemental Table

1, Supplemental Figure 1a,b).

We next explored the relationships among 58 DNA methylomes and see if there are some

apparent patterns from a global scale. To this end, we binned CpGs into 1kb windows and

used the average methylation of each window for Principle Component Analysis (PCA) and

hierarchical clustering analysis (Figure 1a and Supplemental Figure 1c). Both analyses clearly

showed the separation and clustering of samples by tissue types and loosely by cell types. In

particular, CD4 memory cell and CD4 naive cell methylomes are particularly similar among

each other whereas cells such as breast luminal epithelial cells are not as closely clustered,

reflecting cell-type dependent variability in global DNA methylome patterns. This variability

could be due to inherent epigenomic variability in certain cell types or cell type mixture

during sample harvesting steps.

With regard to the average methylation pattern at different genomic features (promoters,

exons, introns etc.), we found that all the cell types examined shared the known pattern of

relatively low average methylation level in promoter regions compared to gene bodies (exons

and introns) or intergenic regions (Figure 1b).
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Figure 5.1: Characterization of autosomal CpG methylation patterns across 58 sample
datasets. A. Principal component analysis of CpG methylation levels for 1kb genomic bins
across 58 methylCRF datasets. B. Average methylation level of genomic features over 58
samples. C. Categorization of autosomal CpGs based on methylation level across 58 datasets.
M: constitutively methylated CpGs; I: constitutively intermediately methylated CpGs; U:
constitutively unmethylated CpGs; V: variably methylated CpGs; O: others. D. A browser
shot of a genomic region showing different categories of CpGs and the corresponding merged
regions
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5.3.2 Categorization of CpGs

To date, most of the studies on DNA methylation were only focused on a few samples at a

genome-wide scale and there is a lack of understanding of which CpGs are always methylated

or unmethylated, regardless of the cell type being studied. With the availability of samples in

our collection, we thought to categorize all the autosomal CpGs based on their methylation

patterns across a large number of samples. Specifically, we picked 70% and 30% methylation

as cutoffs to categorize CpGs into five categories: constitutively methylated CpGs (M),

constitutively intermediately methylated CpGs (I), constitutively unmethylated CpGs (U),

variably methylated CpGs (V) and the rest (O) (See Methods for detailed explanation on CpG

categorization). Based on this classification scheme, we found that 56% of autosomal CpGs

are constitutively methylated in all the samples we examined, 7% constitutively unmethylated

and less than 1% constitutively intermediately methylated (Figure 1c and Supplemental Table

3). This result suggests that more than half of the autosomal CpGs are stably methylated (>=

70% methylation) in all the samples we looked, in line with the notion that DNA methylation

is a stable epigenetic mark. In addition, nearly 60% of constitutively methylated CpGs are

located in repeats and 64.2% of CpGs in repeats are constitutively methylated (Supplemental

Figure 2a,b). On the other hand, majority (76.1%) of constitutively unmethylated CpGs

are located in CpG islands and furthermore, 68.1% of all the CpGs in CpG islands are

constitutively unmethylated CpGs (Supplemental Figure 2c,d).

5.3.3 Identification and characterization of variably methylated

CpGs and regions

Given the nature of variably methylated CpGs and their potential of playing a role in

regulating gene transcription, we then focused our analysis on the set of variably methylate

CpGs and determined what portion of CpGs shows a dramatic DNA methylation level

difference among cell types. To this end, we calculated the difference between the highest

and lowest methylation score of all samples for each CpG and use 40% difference as an

empirical cutoff (See Methods, Supplemental Figure 3) to define these variably methylated

CpGs (VMCs). After applying the cutoff, 7.5 million CpGs were identified as variably

methylated CpGs that account for 28.2% of all autosomal CpGs in the genome (Supplemental
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Figure 4a). We then merged neighboring CpGs into windows to generate variably methylated

regions (VMRs) based on the merging criteria (described in Methods). This merging leads

to the identification of 560765 VMRs whose base coverage account for 16.9% of the genome

(Supplemental Table 3, Figure 1d).

Next, we used several metrics to characterize these VMRs. The sizes of VMRs vary from

100bp up to 5.3kb (Figure 2, Supplemental Figure 4b). However, majority of the VMRs are

small as 70.7% and 89.3% of VMRs are smaller than 1kb and 2kb, respectively. The number

of variable CpGs covered in VMRs mostly falls within 50 (Supplementary Fig. 4c). Over

65% of CpGs covered in VMRs are methylated (>= 70% methylation) and less than 10%

are unmethylated (<= 30% methylation) on average across samples (Supplementary Fig.

4d). We found that majority of the VMRs are located in intron and intergenic regions and

only a small percentage overlapping promoter or exons (Figure2b). In addition, majority

of VMRs are located far away from annotated transcription start sites (TSSs, Figure 2b),

suggesting they might play a role as distal regulatory elements, specifically, a VMR with

hypomethylation in certain cell types might give access to other cis- or trans- regulatory

elements such as transcription factors or other DNA-binding proteins to modulate nearby

gene expressions. To test this hypothesis, we first determined hypomethylation in each

cell type (see Methods, Figure 2d) and then employed publicly available datasets from

ENCODE(Consortium et al. 2013) on various histone marks and transcription factor binding

sites and gene expression profiles and integrated them to explore the potential functions of

these tissue specific hypomethylated VMRs.

5.3.4 VMRs enrich transcription factor binding sites

We first examined co-localization between VMRs and over 160 transcription factor binding

site (TFBS) ChIP-seq peaks. We found that 40% of the total VMRs overlap with at least

one TFBS peak and 24% with three or more TFBS peaks (Figure 3a). This result suggests

wide spread co-localization between TFBS and identified VMRs even given the currently

limited amount of ChIP-seq data and it’s tempting to postulate that those VMRs that didn’t

overlap with current TFBS peaks might also harbor regulatory potentials through modulating

transcription factor binding. To further pinpoint tissue-specific contribution to these observed

co-localization, we calculated enrichment of TFBS signals over size-matched randomly selected
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Figure 5.3: VMRs enrich transcription factor binding sites. A. Co-localization between
hypomethylated VMRs and transcription factor binding sites. B. Enrichment of specific
transcription factor binding sites in each cell type specific hypomethylated regions

genomic regions (See Methods). We found specific enrichment of certain transcription factor

peaks in VMR that include several interesting examples of known functionally important

transcription factors in particular cell types (Figure 3b). For example, RelA is an important

transcription factor that plays a role in immune responses and its deletion cause defects in

hematopoietic stem cell function(Grossmann et al. 1999; Stein and Baldwin 2013). Through

our enrichment analysis, we found high enrichment over CD8M, CD8N, and CD4N specific

hypomethylated VMRs. The idea is that RelA bind to tissue-specific hypomethylated regions

and participates in the regulation of various RelA target genes.

5.3.5 VMRs co-localize enhancer histone marks and many possess

enhancer potentials and validated enhancer activities

Given the location of the identified VMRs are largely far away from TSSs, we sought to

explore their regulatory potentials by examining their relationships with various histone
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marks assayed on the same cells. We called ChIP-seq peaks of histone mark for each cell

type and found that up to 72% of the cell type specific hypomethylated VMRs overlap with

enhancer histone mark ChIP-seq peaks represented by H3K4me1 (Supplemental Figure 6a)

in the same cell type. Indeed, when we calculated the enrichment of various histone peaks

at VMRs, we found a strong enrichment of peaks for marks that possess enhancer or active

transcription activities, such as H3K4me1, H3K4me3 and H3K9ac (Figure 4a). In contrast,

there is also a depletion of repressive histone marks (H3K36me3 and H3K9me3) at these

VMRs. We also calculated the average signal density of ChIP-seq data over 10 kb regions

centered around VMRs and found in general higher level of enhancer or active transcription

mark in the VMRs compared to its flanking sequences (Figure 4b). These results thus

highlighted that many of the VMRs we identified could have potential enhancer activities in

different cell types.

Next, we analyzed the functional enrichment for genes near the VMRs in each tissue type

and indeed found in cells enrichment of genes whose functions are relevant for that particular

cell types. For example, we found many genes near brain specific hypoVMRs that encode

functions such as axon extension, nerve cell development etc (Figure 4c). This evidence

further supports the hypothesis that hypomethyled VMRs act as enhancers in specific cells

to regulate nearby functionally related genes, possibly through transcriptional regulation

mechanism.

To validate the enhancer hypothesis, we utilized the VISTA enhancer project resources and

determined whether our VMRs could include some validated enhancer regions(Visel et al.

2007). Indeed, we found that 78% of positively validated human VISTA enhancers overlap

with at least one of the VMRs and this overlap is statistically significant (Figure 4d, Fisher’s

exact test). For example, VISTA enhancer hs1546 was validated to have enhancer activity

in mouse forebrain and it overlaps with a VMR hypomethylated in our fetal brain samples

(Figure 4d). Because VISTA enhancer list only have more than 2000 loci validated, we predict

that many more VMR could possess enhancer activities and they could potentially function

during cell differentiation.
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5.3.6 VMRs enrich SNPs and GWAS variants

It was recently shown that genomic variations often co-localize with presumed regulatory

regions (Consortium et al. 2013; Manolio 2013). We hypothesized that VMRs might contain

many functional genomic variations and methylation might play a role in regulating these

genomic variations. Thus, we examined the co-localization and enrichment of dbSNPs and

variants from disease related Genome-wide Association Studies within our VMRs. We found

that VMRs in total encompass 3323 published GWAS variants and there is slightly enrichment

of GWAS variants in each cell type specific hypomethylated VMR (Figure 5b).

To further pinpoint whether methylation could play a role in regulating these genomic

variations, we overlap variants with variably methylated CpGs and indeed we found many

co-localizations. One very interesting example lies at SNP rs1805007. This SNP was located

in the exon of the gene MC1R, the melanocortin 1 receptor. The common allele C resides

in a CpG context and its risk allele is T. Studies have known that risk allele T induces

a nonfunctional MC1R variant that is strongly associated with red hair phenotype and

increased risk to melanoma(Frandberg et al. 1998; Flanagan et al. 2000). And this CpG

was identified to have low methylation specifically in melanocyte and high methylation

in other cell types including keratinocyte and fibroblast in skin. We speculate that this

particular CpG’s unmethylation signature confers a protective function to melanocyte because

methylated Cs have a much higher rate to deaminate into T, especially under the exposure of

UV(Ikehata and Ono 2006; Fryxell 2004). On the other hand, the high methylation level of

this CpG in keratinocyte confers susceptibility of the locus to mutate into T and this discovery

corroborates the fact that the majority of skin cancers are of keratinocyte origin(Albert

and Weinstock 2003). And it’d be reasonable to suspect that methylation of this CpG in

melanocyte might contribute to the progression towards melanoma under excessive sunlight

exposure.
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Figure 5.5: CpG variation is linked to genetic variation and disease risk in a tissue-specific
manner. A. Odds ratio of VMRs overlapping with dbSNP and GWAS variants. B. Enrichment
of GWAS variants in tissue specific hypomethylated VMRs. C. Overlap between non-coding
GWAS variants and VMRs

84



5.3.7 Hypomethylated VMRs correlate with nearby gene expres-

sions

To support that cell type specific hypomethylated VMRs could act as enhancers to mediate

gene expression, we analyzed gene expression data from the same cell type and see whether

we can observe expression differences correlated with methylation differences in VMRs. To

this end, we identified genes near these VMRs and calculated their expression level from

RNA-seq data and compared their levels between two cell types. We found that in general

between two cell types, genes near those hypomethylated VMRs tend to have statistically

significantly higher expression level (Supplemental Figure 8). This supports the hypothesis

that hypomethylated VMRs act as tissue-specific enhancers to drive nearby gene expressions.

5.3.8 Average methylations on VMRs cluster samples by tissue

type

To show the utility of the VMR set, we calculated average methylation level of each sample

at these VMRs and cluster them with hierarchical clustering. Indeed, methylation level at

VMRs can largely cluster the samples by their tissue types (Supplemental Figure 9).

5.3.9 Characterization of other categorical regions

Besides identifying variably methylated CpGs in the genome, we were also interested CpGs

that show consistent methylation levels across all the samples. With the availability of

58 methylomes spanning many cell types, we were able to identify CpGs that are either

constitutively highly methylated (> 70% methylation) or constitutively lowly methylated (<

30% methylation) in every sample. In total, we identified almost 14.9 million constitutively

highly methylated CpGs that account for 56.01% of the total autosomal CpGs. In contrast,

only 1.8 million CpGs (6.74% of all autosomal CpGs) shows constitutively low methylation in

every samples assayed in this study. And the constitutively intermediated CpGs (methylation

levels are between 30% and 70%) only account a tiny fraction (0.16%) of the total CpGs.

There are about 2.4 million CpGs that don’t fall into any of the above categories. Following
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the same rule used to merge variably methylated CpGs, we merged CpGs in other categories

and applied post-merging trimming so the resulting categorical regions are non-overlapping

(See Methods).

To characterize these regions, we also looked at their size distribution, distance to nearest

TSS and genomic distributions. We found that constitutively methylated (MMRs) and

unmethylated regions (UMRs) have a larger median size than VMRs whereas constitutively

intermediately methylated (IMR) and other regions (OR) are smaller in median size yet the

overall distribution agree with that of VMRs (Supplemental Figure 10 a, b). On the distance

of region to nearest TSS, the MMRs and ORs have similar distribution to VMRs and UMRs

have a higher percentage located near TSS and promoters in agreement with the fact that

many of the gene promoter proximal regions are unmethylated (Supplemental Figure 10 c, d).

5.3.10 Comparison with WGBS-based dynamic CpGs and DMRs

Ziller et al. recently published a paper detailing the first dozens of DNA methylomes using

whole genome bisulfite sequencing (WGBS) [90] in normal developmental tissues and cultured

cell lines. They defined a list of differentially methylated regions (DMRs) and we set out to

determine the extent to which their DMRs overlap with our VMRs. First of all, the numbers

of total covered bases are similar (487 million bases for VMRs vs. 492 million bases for

DMRs). We looked at the intersection between bases covered by VMRs and bases covered by

DMRs and we found that 36.4% of VMRs covered bases overlap with 36% of DMR covered

bases. VMRs and DMRs share the similar properties such as small in size yet the number of

DMRs is much larger than that of VMRs (716087 vs. 560765) and further 44.2% of VMRs

overlap with 32.9% of DMRs (Supplemental Figure 11 a, b). To understand where the

discrepancy lies, we looked at the size distribution of DMR-specific and VMR-specific regions.

It appears that VMR-specific regions have slightly larger size than DMR-specific regions

(Supplemental Figure 11 c). We checked how many of DMRs or VMRs are derived from a

single CpG and found that 36.6% of DMRs but only 5.7% of VMRs are single CpG regions

(Supplemental Figure 11 d). This difference could be due to the fact that WGBS relies on

sufficient number of reads to accurately call methylation and some of the single CpG DMRs

could have low coverage and thus inaccurate methylation calls. Indeed we found evidence

suggesting that single CpG DMRs have lower read coverage than the rest of CpGs covered by
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DMRs (Supplemental Figure 11 e). If we only consider the non-single-CpG regions in both

sets, we observed almost the same percentage of covered base overlap and a slightly higher

overlap of regions between VMR and DMRs (Supplemental Figure 11 f). The discrepancy not

explained by single-CpG regions are probably due to either the inherent difference between

WGBS and TFBS or different methods used to define them or both.

5.4 Disscussion

Here we present the first multiple cell type DNA methylomes analysis using methylCRF

predictions. We have previously shown that methylCRF is highly robust in predicting single

CpG methylation level genome-wide with high accuracy in comparison to direct whole genome

bisulfite sequencing but at a much lower cost(Stevens et al. 2013). And in this study, we

applied methylCRF to a total of 58 samples spanning multiple tissue and cell types and we

were able to categorize CpGs based on their patterns across all the samples examined. The

field has known for decades that the majority of the CpGs in the genome are methylated and

this is confirmed in our analysis that about 56% of the autosomal CpGs are constitutively

methylated (>= 70% CpG methylation) regardless of the cell type. In contrast, 7% of the

autosomal CpGs are constitutively unmethylated (<= 30% CpG methylation) and as we

have shown, most of these unmethylated regions located in CpG islands and gene promoter

proximal regions. Focusing on the variably methylated CpGs and subsequently merged

regions, we have identified 28% of the genomic CpGs that show dynamic CpG methylation

across 58 samples. These CpGs could be functioning in different cell types by varying their

methylation level and influence the transcriptional network in a particular cell types.

5.5 Methods

5.5.1 Data processing and methylCRF prediction

MeDIP-seq and MRE-seq data were aligned using BWA (Li and Durbin 2009) against human

hg19 and then processed with methylCRF pipeline to generate single CpG methylation
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predictions for each of the 58 samples(Stevens et al. 2013). For the rest of the analysis, only

autosomal CpGs are considered.

5.5.2 CpG categorization

Each autosomal CpGs was scanned and assigned into one of the five categories: constitutively

methylated CpGs (M), constitutively unmethylated CpGs (U), constitutively intermediately

methylated CpGs (I), variably methylated CpGs (V), and others (O). A CpG is called to

be constitutively methylated if every methylCRF prediction is equal to or greater than 0.7.

Likewise, a CpG is called constitutively unmethylated if every methylCRF prediction is equal

to or smaller than 0.3. And if every methylCRF prediction falls between 0.3 and 0.7, a CpG

is intermediated methylated. To call variably methylated CpGs, we calculated the different

between the maximum and the minimum CpG methylation levels for all the CpGs. If the

difference for a CpG is equal to or greater than 0.4, it is considered a variably methylated

CpG. We estimated the likelihood of identifying false positive variably methylated CpGs

with our method by applying the same calculation to three CD4 memory and three CD4

naÃŕve datasets. Based on the concordance and Pearson correlation among these datasets

(Supplemental Figure 2), we made the assumption that these datasets are similar enough

to be considered as controls for our variably methylated CpG determination and any CpGs

identified from within these datasets would approximate variably methylated CpGs detected

by chance. With 40% methylation difference, the number of variably methylated CpGs

determined from CD4 memory and CD4 naÃŕve data are below 10% of that from 58 samples.

5.5.3 Merging CpGs into regions

We merged CpGs into regions for CpGs in each category by adopting the merging roles from

Ziller et al [90]. For CpGs within 500bp of each other, merge them into one window. For

CpGs more than 500bp away from its closest neighboring CpG, extend the coordinate by

50bp in both directions to get 100bp windows. After the above merging step, if the size of a

region is not greater than 100bp, extend it to 100bp from the center of the region. After CpGs

were merged into regions for each category, we filter out overlapping regions in the following

order. For variably methylated regions (VMRs), keep them as they are and remove those
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overlapping with VMRs from constitutively unmethylated regions (CUMRs). Then filter out

those overlapping with the union of VMRs and UMRs from constitutively intermediately

methylated regions (CIMRs). Next, filter out those overlapping with the union of VMRs,

CUMRs and CIMRs from constitutively methylated regions (CMRs). Lastly, filter out those

overlapping with the union of VMRs, CUMRs, CIMRs and CMRs from other regions. In this

way, all the resulting categorical regions are non-overlapping.

5.5.4 Determining hypomethylation of VMRs

Since we are averaging methylation level of VMRs for samples of the same cell type, we

loosed the cutoff and called a VMR hypomethylated in a cell type if the average methylation

of the region across samples in the cell type is below 40% and hypermethylated if above 70

5.5.5 Browser tracks

All the methylCRF data and custom tracks are displayed using the WashU Epigenome

Browser (Zhou et al. 2011).

5.5.6 Genomic features

Transcription start sites (TSSs) and other genomic feature information were downloaded

from UCSC genome browser (hg19)(Kent et al. 2002).

5.5.7 Histone ChIP-seq peak calling and enrichment calcuation

REMC ChIP-seq data were downloaded from GEO (GEO ID: GSE16368). Processed BED

files were used for each ChIP-seq dataset. Histone peaks were called using SICER using the

default parameters against hg19 genome(Zang et al. 2009). The enrichment of histone peaks

in VMRs were calculated using the number of VMRs overlapping called histone peaks divided
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by the number of size-matched randomly selected regions from the genome overlapping the

same histone peaks.

5.5.8 TFBS ChIP-seq enrichment

TFBS ChIP-seq peak data were downloaded from ENCODE consortium. The enrichment

of TFBS ChIP-seq peaks in VMRs were calculated using the number of VMRs overlapping

peaks divided by the number of size-matched randomly selected regions overlapping the same

TFBS ChIP-seq peaks.

5.5.9 GWAS variants

GWAS variants data were downloaded and processed from GWAS Catalog of National Human

Genome Research Institute (Hindorff et al.).

5.6 Supplemental Figures
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Figure S1: Characterization of CpG methylation across examined samples. A. Density plot of
methylCRF prediction of all 58 samples. B. Distribution of individual CpG methylation level
across 58 samples. C.Clustering of 58 samples based on average methylation level at 1kb bins
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Figure S5: Enrichment of TFBS signal over hypomethylated VMRs.
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Figure S6: Tissue specific hypoVMRs enrich enhancer or active transcription marks. A.
Percentage of tissue specific hypoVMRs overlapping H3K4me1 peaks. B. Mean ChIP-seq
signal over 10kb regions centered on the middle point of VMRs (Row 1: brain_ge, brain_GM,
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Figure S7: Hypomethylated VMRs correlates with elevated nearby gene expressions. A.
RNA-seq RPKM for genes located in 10 kb regions surrounding VMRs B. Same as a. except
genes with no expression in both cell types were excluded
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Figure S8: Clustering of samples based on average methylation of VMRs
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Figure S9: Characterization of each categorical regions. A. Size distribution of different
categories of regions. B. Same as a but shown in size ranges. C. Distribution of distances of
region to nearest TSS. D. Distribution of each categorical region with respect to genomic
features
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Figure S10: Comparison between methylCRF predicted VMRs and WGBS predicted DMRs.
A. Overlap between bases covered by VMRs and those by DMRs. B. Overlap between regions
of VMRs and DMRs. C. Size distribution of VMR-specific and DMR-specific regions. D.
Number of DMR and VMR with single CpG. E. Median read coverage for each WGBS
libraries on CpGs in single CpG DMRs or non-single CpG DMRs. F. Overlap between bases
covered by non-single CpG VMRs and DMRs and overlap between regions of non-single CpG
VMRs and DMRs

99



Chapter 6

Detailed analysis of methylCRF and

WGBS concordance and resolution

(he) was serious; – he was all

uniformity; – he was systematical, and,

like all systemstick reasoners, he would

move both heaven and earth, and twist

and torture every thing in nature to

support his hypothesis. In a word, I

repeat it over again; – he was serious.

-Laurence Sterne, The Life and

Opinions of Tristram Shandy,

Gentleman

6.1 Introduction

methylCRF [77] and WGBS are the only two whole genome, single-CpG assays of methylation

currently available. WGBS is considered the standard for assaying methylation. This was

conveyed consistently in reviewers comments to the methylCRF manuscript. Since methylCRF

is up to 15 times cheaper than WGBS, its widespread use has potential to much more quickly

expand the number of assayed methylomes than WGBS given the same field-wide expenditure.

Interest in DNA methylation continues to increasingly move toward center stage in a variety

of areas including central societal concerns such as epigenetic inheritance, cancer, and many
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environmental factors in disease. As epigenetic editing is starting to become possible, clinical

and pharmaceutical interest in DNA methylation is creating excitement. Therefore it is

critical to asses whether methylCRF and WGBS can be used interchangeable to further our

understanding of methylation.

6.1.1 Review of WGBS

From the reviewer’s responses to the methylCRF manuscript, it appeared to us that our

perspective of WGBS reliability and accuracy was not shared in general. So, we review some

reasons for our concerns. We start by briefly reviewing a few details about the generation of

WGBS libraries and then analyze the possible effects.

Generating WGBS Libraries [6] provides an in-depth analysis of issues involved with

WGBS libraries, we summarize a few of them here:

• A large percentage of high-ranking WGBS DMRs overlap with repetitive regions. This

could indeed reveal a very interesting unexpected aspect of biology. However repetitive

regions are difficult to confidently align next generation sequencing short reads to as

seen by the high percent of reads mapping to multiple locations.

• Spike-in controls show evidence of incomplete bisulphite conversion of unmethylated C’s

to T’s (< 99%)and, surprisingly, over-conversion of methylated C’s (> 1%) as well. This

results in a complicated scenerio resulting in reads where some methylated C’s become

T while some unmethylated C’s remain C. Additionally, bisulphite treatment degrades

DNA preventing their amplification which may provide some unknown selection bias

for some sequence feature.

• Sequencing of constitutively methylated adapter and constitutively unmethylated C’s

added to reads during end-repair.

The authors mention that the second two can be somewhat reduced by "aggressive" adapter

trimming. However, trimming reduces the length of reads which may induce more multi-

mapped reads and thus reduce coverage. It has not yet been examined whether the first point
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is reflective of biological dynamics of methylation or whether it reflects some experimental

artifact of the protocol, the sequencing, or the analysis pipeline.

Variable GC-bias in Illumina Reads The existence of biases due to GC-content (the

ratio of G’s and C’s to A’s and T’s) in sequencing protocols and how it has changed over time

has been well document [1, 29, 71, 2, 10, 16, 11, 59]. Because of the bisulfite induced C to T

conversion prior to PCR amplification of fragments, estimated WGBS methylation values

might be uniquely sensitive to this bias Fig. 6.1(left). Unlike most short read alignment

applications where only the number of reads is used, it is not clear how to correct for this

as WGBS relies on the C to T ratio, and so the GC content, to estimate methylation levels.

However correction methods have been proposed for targeted sequencing [56] suggesting that

it may be possible. The bias appears due to GC content of the fragments rather than the

parts of the fragments that are sequenced, suggesting PCR is the source of bias and both

AT-rich and GC-rich are under-represented [4].

Additionally, after library preparation, reads with high GC content, regardless of their fragment

GC content, may also be depleted due to differential cluster formation on ’sequencing-by-

synthesis’ based sequencing [1]. Illumina’s new TruSeq cBot kit appears to better balance

AT and GC rich regions [32] mediate this bias for newer libraries. However as recent as 2011

using Illuminas TruSeq WGBS kit, GC content maybe be positively correlation with coverage

[55].

6.2 Results

6.2.1 Comparing methylCRF and WGBS

methylCRF has more CpGs with extreme values than WGBS where concordance

is higher

First, we compare our original methylCRF and WGBS data sets[77, 50], we used for the

original manuscript. The concordance across methylation levels shows a pattern of discordance
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Figure 6.1: Effect of GC bias. Left: In the WGBS protocol, fragments are first denatured.
Bisulfite is then applied, converting unmethylated C’s to T’s. The fragments are then
amplified with PCR. If there is GC-bias in amplification, then this may introduce a bias such
that the ratio of methylated and unmethylated chromatids differ from what is sequenced.
Right: GC dense regions, like CpG Islands should show read counts that are proportional to
GC bias and methylation that is inversely proportional to GC bias.
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BS CpG = 0.1 +-0.25

0.0 382k 0.30 0.67 0.68
0.1 138k 0.46 0.73 0.76
0.2 084k 0.04 0.12 0.64
0.3 086k 0.05 0.08 0.38
0.4 146k 0.02 0.05 0.13
0.5 263k 0.02 0.04 0.13
0.6 458k 0.02 0.05 0.35
0.7 1.1M 0.03 0.07 0.93
0.8 4.4M 0.22 0.59 0.99
0.9 8.0M 0.77 0.97 0.99
1.0 2.3M 0.12 0.73 0.99

Table 6.1: methylCRF/WGBS concordance across rounded methylation deciles.

for CpGs with WGBS values, 0.2-0.75, Fig. 6.2. However, the majority of discordance, by

CpG count, is in the WGBS range 0.6-0.8 where methylCRF tends to be 0.8-1.0, Fig. 6.3.C.

For the purpose of this manuscript we refer to these regions as intermediate, shifted, and high

for 0.2-0.75, 0.6-0.8, and 0.8-1.0 methylation respectively as well as another region, low, for

0.0-0.1.

WGBS has 2.8M CpGs in the shifted region, 94.5% of these have methylCRF values outside

of this range. These CpGs tend to sit in regions of high WGBS methylation Fig. 6.4.A.

Note that if this discrepancy was due to methylCRF and WGBS disagreeing on the exact

location of boundaries between regions of high and low methylation -as was suggested in [77]

Supplemental- you would expect the average window methylation to instead be close or lower

than the CpG.

Additionally, 17% of the low methylCRF values have intermediate WGBS values Fig. 6.3.C.

These results show that WGBS has more intermediate methylation than methylCRF. Given

the bi-model distribution of WGBS methylation values and methylCRFs statistical nature,

we were concerned that methylCRF was suffering from a type of class imbalance type issue

in training.
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Figure 6.2: Concordance between methylCRF and WGBS methylation values for H1ES. The
barplot shows the number of WGBS CpGs in each decile. The green line shows the percent
of those with methylCRF in that decile. Purple and blue show the percent with methylCRF
values within a window of 0.10 and 0.25, respectively. Less then 15% of the WGBS CpGs
from 0.2-0.7 have methylCRF values within 0.1, and within a 0.25 window, the concordance
for WGBS CpGs between 0.3-0.6 is below 40%. Interestingly, 25% WGBS CpGs from 0.0-0.2,
have methylCRF values more than 25% greater.
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Figure 6.3: A: per CpG difference between methylCRF and WGBS values shows that the
vast majority of discrepency within 0.2 methylation. B: Kernalized scatterplot of the same
data showing that the discrepancy is tends to be CpGs WGBS calls 0.6-0.8 versus 0.8-1.0 in
methylCRF. C: Left: Density plot of WGBS and methylCRF methylation values across the
genome. Above 0.6, methylCRF tends to concentrate values in the 0.8-1.0 region more than
WGBS. Additionally, this reveals a tendency of methylCRF to concentrate values from 0.0-0.1
closer to 0 than WGBS. Middle/Right: This pattern is robust to choice of kernel width.
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Figure 6.4: A: Density plot of WGBS values between 0.2 to 0.75 on the x-axis and the average
methylation of 1kbp windows centered on each CpG. The majority of these CpGs sit in
1000bp windows of average 0.8 to 1.0 methylation. The two red lines highlight 0.2 and 0.75
methylation and the black line is has slope 1 representing equal values between CpGs and
their 1kbp window. B: Similar plot for CpGs with 2 neighbors within 50bp (24%).
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Low concordance in intermediate methylation between methylCRF and WGBS

A detailed look at the concordance rates with 10% and 25% windows, Table 6.1 supports

that the concordance between methylCRF and WGBS is uniformly the lowest between 0.2

and 0.75 methylation. We chose 0.75 because the bins are rounded.

Majority of intermediate WGBS CpGs are in windows of high WGBS methyla-

tion. In order to examine this region, we make the assumption that intermediate WGBS

CpGs within a 1kbp window centered around them with an intermediate average methylation

are likely intermediately methylated, otherwise, we term them questionable. . There are 2.1M

intermediate CpGs with WGBS values and at least 10 reads [77], of which only 6% are likely.

Note that 98% of the CpGs have 1kbp windows with at least 3 CpGs. 69% of intermediate

CpGs are in windows with high methylation and 1% in windows with ≤ 0.2, Fig. 6.4.A. This

pattern holds when considering CpGs and their neighbors within 50bp, 24%, Fig. 6.4.B

Of the 6% likely intermediate CpGs, 22%, 135k CpGs, have methylCRF values in this range,

we call these MM. We can conclude that according to this definition, the concordance on

determining true intermediate methylation between WGBS and methylCRF is over 20%.

However, note that the positive predictive power of WGBS to predict intermediate methylation

at single-CpG resolution is only 30%.

Low methylCRF CpGs in windows of intermediate WGBS suggest methylCRF

may lack fine resolution. Of the 519K CpGs low methylCRF CpGs (L), 17% are in

windows of intermediate WGBS methylation,(LM ). LM CpGs are more likely to occur in

CGI’s and repeatmasker RNAs and less likely to occur in SINEs, LINES, LTRs, and exons

than MM CpGs, (1.1’x, 1.7’x, 0.2’x, and 0.2’x, 0.5’x, and 0.5’x respectively). The MeDIP-seq

and MRE-seq values suggest that the LM CpGs are a distinct group within the L group,

Fig. 6.5 with consistently higher methylation. Nonetheless, LM CpGs are much closer in

methylation to the L group than the MM group.
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Figure 6.5: Ratio of LM/L and MM/L methylCRF values for methylcRF MeDIP-seq (5 left)
and MRE-seq (5 right). The experimental data supports that the LM are indeed a separate
group from the L group with higher MeDIP values and lower MRE values suggesting these
are CpGs with higher methylation. However, they suggests significantly lower methylation
than CpGs called intermediate by methylCRF.
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Key Sample methylCRF SBS RRBS

E03 Fetal Brain x x
E10 H1 (Cell Line) x x x
E11 H9 (Cell Line) x x
E17 Mobilized CD34 x x
E38 CD184+ (hESC Derived) x x
E41 Neurosphere Ganglion Emenence x x

Table 6.2: Epigenome Consortium Methylome Platform Replicates

At biologically motived features, RRBS, WGBS, and methylCRF show widespread

but minor discordance.

The incredible resource generated by the NIH Roadmap Epigenome Consortium [5] provided

us an opportunity to look at whole genome methylation assays more comprehensively. We

were able to compile 58 methylCRF, WGBS, and RRBS methylomes across a variety of tissues

and cell-types. There are six cases where multiple assays were performed on the same samples

Table 6.2 -one with all three. To focus on critically on regions with potential for the most

biological insight, we used ChromHMM [25] histone mark-based enhancers. ChromHMM

defines enhancers as a characteristic combinatorial histone code by combining any number

of histone ChIP-seq assays. Of the CpGs with values in all of the libraries, we found 50k

CpGs that overlapped a ChromHMM enhancer from any of the libraries with ChromHMM

annotation.

Using this enhancer CpG set, we performed hierarchical clustering across all 58 data sets.

While some of the pairs cluster together (E17, E38), we expected all of them to Fig. 6.6(left).

We next checked the clustering using instead annotated CpG Islands -which show some of

the highest concordance between WGBS and methylCRF in [77]. However, the results were

similar, Fig. 6.6(right).

methylCRF libraries are more self-similar than WGBS. Despite the platform base

clustering of leaf nodes, the branch distance at leaves appeared relatively small suggesting the

result may not be robust to small differences in the distance statistic. In fact, the Neurosphere

(E41) methylCRF and WGBS pair’s closest pair-wise libraries reveal that methylCRF libraries
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Figure 6.6: Hierarchical clustering of 58 methylomes (methylCRF, WGBS, RRBS) reveals
platform bias. Additionally, libraries on the same cell-type using different platforms are not
guaranteed to cluster together, although paired WGBS and RRBS are more likely to cluster
together than either with methylCRF. Left are CpGs in ChromHMM-defined enhancers , and
Right are CpGs within CpG Islands.
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Figure 6.7: Left: the WGBS and methylCRF libraries closest to the E41 WGBS library
using concordance within a 25% window. Right: similarly for the methylCRF E41 library.
Interlibrary distance between methylCRF is in general smaller than between WGBS libraries
which prevents WGBS and methylCRF technical replicates from clustering together.

are in general slightly more self-similar than WGBS libraries are Fig. 6.7. While WGBS

is methylCRFs fifth closest library (third closest for WGBS), they are nonetheless 94%

concordant. A similar pattern is seen between RRBS and methylCRF fetal brain (E03) pair.

The clustering was performed using 25% concordance. Other distant metrics, like correlation

and euclidean distance we tried gave similar results. The clustering result is due to rather

small differences in concordance and may not be the best way to test the quality of these

assays globally.

Highly discordant enhancer CpGs have proportionally higher WGBS values and

lower methylCRF methylation At our enhancer set in the E41 methylCRF/WGBS

pair, the vast majority of discordant CpGs are within 0.1 methylation Fig. 6.8. However, for

CpGs greater than 0.1 discordant, the WGBS methylation values are proportional to the

amount of discordance, while for methylCRF the methylation values are inversely proportional.

Note that as the concordance increases, methylCRF values approach the distribution for all

enhancers while at the highest concordance WGBS values are distinctly methylated. Also note

that CpGs below 0.10 discordance actually have intermediate methylation in both WGBS

and methylCRF. In the case of WGBS, it is even higher than CpGs that are up to 0.25

discordant. The inversely proportional relationship between discordance and methylation for

methylCRF is supported by lower MeDIP-seq values and high MRE-seq values suggesting

that these might be CpGs which are problematic for WGBS.
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Figure 6.8: Comparison of enhancer CpGs assay scores between E41 WGBS and methylCRF
by amount of discordance. A: MeDIP-seq values, discordant CpGs tend to have higher average
values. B: MRE-seq value, CpGs more 25% discordant have slightly higher average values. C:
WGBS methylation values, concordant and slightly discordant have a wide variation of values,
while discordance greater than 10% is proportional to methylation values. D: methylCRF
methylation values, CpG 0-10% discordant are similar to WGBS, however discordance greater
than 10% is inversely proportional to methylation. Note that these CpGs have both higher
MeDIP and MRE value on average. E: the number of CpGs in each discordance bin showing
most CpGs are 0-10% discordant.
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Highly discordant enhancer CpGs are enriched in UTR3, CGI-shores, and un-

annotated regions At these CpGs, discordance is proportional to enrichment in CGI-

shores. Above 0.1 discordance, un-annotated regions are high. While UTR3’s show the

same trend, there is a large drop above 0.5 discordance. SINEs are enriched for less than 0.1

discordance, but depleted in large discordance -suggesting that SINEs are ’noisy’ in some

sense, but large discrepancies between WGBS and methylCRF are relatively few. Intergenic

CpG Islands are enriched for 0.0 methylation in both WGBS and methylCRF and depleted in

large discordance. Note that all enhancer CpGs are enriched in SNPs and are most enriched

in largely discordant CpGs. Also of note, 20% of CpGs in this enhancers set fall in 2kb

regions flanking CpG Islands. This opens a question of whether CpG Island shores are in

fact enhancers or whether it might be advantageous for ChromHMM states to include these

as a sub-type. Also note that due to the large number, these regions might play a large part

in the platform first hierarchical clustering.

WGBS has higher coverage at CpGs where WGBS and methylCRF disagree.

On average, WGBS has 58x’s coverage at enhancers. However, at enhancer CpGs where

methylCRF and its closest four libraries agree on methylation Fig. 6.7, the E41 WGBS has

70x’s coverage at CpG-Islands and 46x’s coverage otherwise. This raises the possibility that

of a relationship between coverage and WGBS methylation estimates.

Higher variance in WGBS than methylCRF at CpG Island shores [33]. Browser

shots of CpG Island shores seem to indicate that neighboring CpGs are less correlated in

WGBS than methylCRF in these regions, Fig. 6.9. In all four cases, methylCRF tends to

call these CpGs uniformly lowly methylated while WGBS shows both higher methylation

and much greater variation in methylation. This is entirely, consistent with the divergent

relationship between methylation and discordance in highly discordant CpGs in Fig. 6.8.C

and D.
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Figure 6.9: Discordant CpGs buy genomic annotation. A: enrichment by annotation feature.
B: percent of discordant CpGs annotated with each feature. SINEs show enrichment for
low discordant CpGs but depletion for highly discordant CpGs suggesting that SINEs are
a source of low discordance. High discordance is also depleted in intergenic CGIs. Highly
discordant CpGs seem to be concentrated in CGI-shores, UTR3, and not annotated CpGs.
Since shores make up a large number of enhancer CpGs, this suggests CGI-shores are the
most problematic in terms of WGBS/methylCRF concordance.
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Figure 6.10: Four CpG Islands showing highly discordant CpGs between WGBS and methyl-
CRF. Generally, WGBS shows less correlation between neighboring CpGs than methylCRF in
these regions. Additionally, methylCRF tends to have lower methylation values than WGBS
which is consistent with divergent methylation patterns in highly discordant CpGs in Figure
7 C and D.

6.2.2 Analyzing WGBS

Extensive analysis of methylCRF is provided in [77]. The above analysis of the differences

between methylCRF and WGBS prompted us to examine WGBS in more detail.

Coverage and GC-bias affect determination of unmethylated regions

For this analysis, we used 33 of the WGBS library set of normal tissue used in [90] from which

the authors estimate that 22% of the CpGs in the human genome have variable methylation.

In order to examine the effect of coverage and GC-bias, we chose to look at unmethylated

regions (UMRs). These represent a small fraction of CpGs Fig. 6.3 and Table 6.1 and tend

to appear in groups [77] and have been the main subject of interest in terms of methylation’s

regulatory potential since DNA methylation was discovered.

3ML conservative estimation of UMRs To identify UMRs, we sought to define a set

that would be robust to modeling choice so as to make the results as generally applicable as
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possible. We therefore looked for a conservative set of UMRs. We developed a method, we

termed Moving Mean/Median Locater (3ML). This is an exceedingly simple and intuitive

model applicable to a wide-range of sequence or time-series-based problems. Conceptually,

we combine benefits of 1) a moving mean filter, as a robust indicator of low-regions of the

signal, and 2) a moving median filter, as a way to compensate for the smoothing effect of the

moving mean to more accurately find the boundaries of regions of low signal. Specifically,

we find all windows of the moving median filtered signal below a given threshold and filter

out any regions which do not contain a CpG from the moving mean filtered signal below the

threshold. For this analysis, we used a threshold of 0.2 methylation and a moving window

size of 1kbp -which corresponds to an average sized differentially methylated region (DMR)

[6]

To give some intuition into the suitability of this approach, we demonstrate the effect of

each component on chromosome 1 of one of the above WGBS sets. Using mean windows

only found 3495 UMRs (3.4Mb), while median windows alone found 5153 UMRs (4.9Mb).

Requiring both to be true, resulted in 3492 UMRs (3.4Mb), while 3ML resulted in 3373

UMRs (4.9Mb). Thus 3ML was able to find fewer UMRs than mean alone but with 35%

larger average UMR size. Note also that the use of the mean criteria significantly reduces the

number of UMRs determined by median alone, suggesting that the median filter only set

includes many short UMRs. Since these are relatively large windows of CpGs with median

values below 0.2 and at least one CpG with a mean below 0.2, we conjecture that any method

used to determine UMRs would include these regions. In this way, we claim that this is a

conservative and so universal set of UMRs.

UMR count is confounded by coverage and GC-bias We ran 3ML on the 33 WGBS

libraries using 1kb moving windows and a threshold of 0.2 to find UMRs in each library. The

number of UMRs ranged from 20-60 thousand showing a 3-fold difference from lowest to

highest UMR count. These libraries range from 3-51x’s coverage. There is strong negative

correlation between UMR count and coverage (r2 0.39), Fig. 6.11 A. Additionally, there is

a correlation between ratio of coverage at UMR’s and over-all coverage (r2 of 0.08), when

corrected for over-all coverage, the r2 rises to 0.09, Fig. 6.11 B. The is a similar correlation

between UMR and GC% within 75bp of each CpG and its read count (r2 0.08), Fig. 6.11 C.

The UMR coverage ratio is very strongly correlated (r2 0.85) with the correlation between
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Figure 6.11: Bias in WGBS libraries. A) UMR count is negatively correlated with library
coverage. B) UMR count corrected for library coverage is correlated with the ratio of
coverage at UMRs and whole coverage. C) UMR count corrected for library coverage is also
correlated with relation between GC% and read coverage. D) UMR read count ratios are
highly correlated with the ratio of GC% and read count. E) UMR count corrected for library
coverage is also the percentage of CpGs with values from 0.6 to 0.8 -although the percentage
of CpGs in this range is not highly associated the ratio of GC% over read count (r2 0.02). F)
The percent of CpGs with methylation 0.2 to 0.75 slightly correlated with the ratio of GC%
over read count.

GC% and read count, Fig. 6.11 D. This suggest that up to 9% of the variation in UMR count

is due to GC% alone, even after coverage affects are accounted for.

Interestingly, the corrected UMR count is additionally associated (r2 0.18) with the percentage

of CpGs in the shift range between methylCRF and WGBS, 0.6-0.8, Fig. 6.11 E. However,

correlation between GC read count bias and percent of CpGs with values in this region is

lower (r2 0.02), suggesting that there are additional factors effecting both UMR count and

the distribution of CpG values. Intermediate regions, 0.2-0.75, show a similar relationship

Fig. 6.11 F.
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6.2.3 Theoretical and Empirical Single CpG, WGBS Variability

The high number shift region WGBS CpGs in windows of high methylation Fig. 6.4 prompted

us to speculate whether we could determine whether these were likely noise or reflective

of methylation in the cell. We were able assemble a group of WGBS datasets performed

on human ES cells providing an interesting framework within which to study sources of

variability at multiple levels. This set includes one methylome from HSFI (F1), one H9 (H9)

[46], and three H1 (H1.1a,H1.1b,H1.2) [49] . For simplicity, we consider all five as methylomes

as biological replicates, Fig. 6.12.A The three H1 methylomes include libraries from two

different labs which we consider technical replicates. H1.1a and H1.1b are from two different

analysis pipelines on the same library which we consider computational replicates. H1.1a is

the methylome from [49] and H1.1b is from the NIH Roadmap Epigenome Consortium [5]

used in the above analysis.

With a 10% threshold of difference in methylation, CpGs across biological replicates, pair-wise,

are discordant on average 52% of the time. Technical replicate CpGs are discordant on

average 44% of the time, while CpGs in the computational replicates are discordant 17% of

the time. With a 25% threshold, the percent of discordant CpGs were 18%, 10%, and 3%,

respectively, Fig. 6.12.B.

To help understand the source of the high discordance, we modeled the estimated methylation

at each CpGs as draws from a binomial distribution. To focus on the effect of sampling, we

make the simplifying assumption that each read has one CpG. Since we remove identical reads

during alignment (likely to be due to over amplification), we can further assume that each

read is from a different allele. As an example, consider a CpG for which 50% of the alleles in

a sample are methylated. The distribution of methylation values if we sample 100 reads has

low variance, Fig. 6.12. In fact, only 6% of such CpGs will have estimated methylation more

than 10% different from the true methylation. However, if we sample only 10 reads, then

75% of CpGs will differ more than 10%. In contrast, short read-based methods that use the

count of reads as their statistic (as opposed to the ratio), such as ChIP-seq or RNA-seq, have

distributions that could be modeled as an expected value with normally distributed error.

For example, then, for bases for which 10 reads corresponds to the true strength of some

signal, in order have similar chances to have a value of 9 or 11 (here equating a 10% change
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Figure 6.12: A) Samples used for this analysis represent three kinds of replicates: 1) biological:
across different ESC cell lines (H1,H9,F1), 2) technical: one cell line across different labs
(Lister, Hudson Alpha), and 3) informatics: across different processing pipelines using the
same library (H1.1a, H1.1b). B) CpG discordance at 10% and 25% threshold for concordance
for all three types of replicates. C) Binomial distribution of the ratio of methylated alleles
from hypothetical CpGs that are 50% methylated, sampled 100 at a time. 6% of the CpGs
are more than 10% discordant from their true value. D) Similar distribution where alleles are
sampled 10 at a time showing that 80% of CpGs are greater than 10% discordant. E) The
ratio of CpGs that have 10 or fewer reads in each library.
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in methylation to a change of one read for a count-based readout), the standard deviation

would have to be close to 4 reads.

On average, these ESC libraries average around 20% CpGs with 10 or fewer reads (except for

F1 which is 70%), Fig. 6.12.E. Additionally, these libraries average roughly 25x’s coverage

-for CpGs with 25 reads, one would expect over 42% would be more than 10% difference.

Note that this is quite close to the 44% average number of discordant CpGs for technical

replicates Fig. 6.12. However, it does not fully explain the 52% for biological replicates and

can not explain the 17% for computational replicates.

Empirical orphan analysis suggests coverage as a potential source of variance.

In order to further examine the effect of rare values in a binomial distribution we focused

on methylation orphans. Since CpG methylation is locally correlated [77], CpGs with

large variation from their true methylation will tend to have neighbors with the same true

methylation, however, they will tend to have smaller variation. That is, the CpGs with

large variation will tend to look like outliers, or orphans, in windows of different average

methylation Fig. 6.13.A. If there are many orphans, than either the local correlation structure

itself varies in some way or these CpGs are bad estimates of their true methylation in the

cell and may help explain the discordance between methylCRF and WGBS in the shifted

range, Fig. 6.3.C.

We define orphans as being at least some threshold of methylation either above or below

both its 5’ and 3’ neighbors as well as the average methylation in 400bp flanking the orphan.

We additionally require the flanking regions to have at least 2 CpGs each and we call all

CpGs with 2 CpGs in their flanking regions, orphan candidates. On average, 73% of CpGs

are candidates. The prevalence of 10% orphans ranges from 10-20% of candidate CpGs, while

25% orphans range from 2-7% of candidates, Fig. 6.13.B In comparison, for methylCRF, only

1% of candidates are 10% orphans. Additionally, in every library 25% orphans had lower

read count than average, Fig. 6.13 -only 56% of read count on average of candidates overall.

Furthermore, the ratio of orphans detected in a library is strongly negatively correlated with

their average read count over the read count of all candidates, (r2 = 0.57). This shows a

strong relationship between CpGs with depletion in read count, relative to average read

count, and their variance in methylation with their neighbors.
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Figure 6.13: A) Criteria for calling orphan CpGs The CpG has ’threshold’ greater methylation
than or less methylation than both its neighbors as well as the average methylation of CpGs
within 400bp on either side. Each 400bp flank must at least 2 CpGs. B) The percentage of
orphan CpGs in each WGBS library, as well as H1 methylCRF, at a difference threshold of
10% and 25%. The right axis shows the ratio of orphan read count over all potential orphan’s
average read count and is for the green line. C) The percentage of discordant orphans, that
is, orphans that are unique to reach library in pair-wise comparisons.
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In pair-wise comparisons, on average 81% of 10% orphans are unique to a biological replicate

(76% and 61% for technical and computational replicates respectively), Fig. 6.13.C. For 25%

orphans the numbers change to 83%, 66%, and 49%. The concordant subset of 25% orphans

have, on average, much higher read count than orphans as a whole, 138%. However, notably,

concordant orphans still have lower read count than candidates overall -only 88% the coverage

on average.

6.2.4 Poisson-based HMM suggests 2 states of methylation

Formulating methylation as a state model Given the discordance between WGBS

and methylCRF, Fig. 6.3, the lower concordance between WGBS libraries at CpGs with

fewer than 10 reads [77], Fig: 6.A., that CpGs with high intermediate methylation sit in

windows of higher methylation, Fig. 6.4, potential discordance between replicates due to

sampling error, Fig. 6.12, the correlation between read count and UMR count as well as

with ratio of read count at UMRs to CpGs overall, and the correlation between orphan read

count and concordance, we sought a method to incorporate read count into the estimation

of methylation using WGBS. The mechanism of the deposition of methylation is known

and it is traditionally thought demethylation occurs passively, ie, the lack of deposition of

methylation on the new strand of forming chromatid during cell replication. However, there

is evidence of non-replication based demethylation and active demethylation mechanisms

have been hypothesized.

Each CpG in a chromatin is either methylated or not. However over a population of chromatin,

CpGs have a distribution of methylation values. These results suggest that, at least in part,

the variation of methylation values across CpGs in a methylome may be an artifact -whether

due to the regulatory mechanisms themselves or to artifacts of measuring methylation. The

shape of the distribution of methylation values across the genome, Fig. 6.4, in combination

with the local correlation between neighboring CpGs, [77], supports the conjecture of an

underlying principle of DNA methylation: the genome, in general, switches between multi-

CpG methylated and unmethylated regions. Further, the above empirical and theoretical

analysis suggests that many of the CpGs with intermediate methylation may be due to random

error and that identified fine structure may be inadequately controlled for artifacts. This

then suggests a model where the methylation values for CpGs in either state are imperfectly
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enforced (and/or assayed), and so when observed across all CpGs in those states, indeed

appear to follow a binomial distribution. That is to say, across a population of cells, at

each ’methylated’ CpG the expected number of unmethylated chromatin follow a binomial

distribution and vice verse for ’unmethylated’ CpGs. We assume chromatin sampling is

i.i.d and that the regulatory mechanisms providing protection from and enforcement of

methylation (and/or artifacts of measuring methylation) have independent error rates. Note

that this is a distinct (although related) approach from assuming, for example, that the

distribution of methylation values in a methylated region follow a particular distribution.

Accordingly, we developed an HMM, Twiposn , with two kinds of states: 1) the methylated

state where the number of T’s gives the number of errors, and 2) the unmethylated state

where instead the number of C’s gives the number of errors. Since errors are somewhat rare,

for convenience, we use Poisson emission probabilities and instead interpret the number of

C’s and T’s as the number of events occurring in an interval of size of the total read count

-and so, both states share the same interval. In order to include CpGs with varying read

counts and to simplify our understanding, we define each state over an interval of 1 read.

Since the sum of C Poisson distributions is Poisson distributed with interval
∑C

i=1 λ_i where

λ_i is the interval for distribution i, we model each state as a family of Poisson distributions,

one for each total read count, that share the same C-to-T ratio.

Incorporating read count in methylation prediction However, given a state with an

expected C-to-T ratio -as the total read count increases- the emission probability (of even

the most likely C-to-T ratio) decreases. This is the opposite of our intuition that higher read

counts leads to more confident estimation! In this way, CpGs with lower read count, ie those

with which we have lower confidence, contribute more probability mass to each potential

state path than those with high read count. However, MAP sequence estimation for HMM’s

uses the Viterbi, dynamic-programming, algorithm which performs an argmax at each step.

While the probability of each state emitting particular C-to-T ratio decreases with increasing

read count, the log odds ratio between methylated and unmethylated state grows (decays)

exponentially in favor of the more likely state thus increasing the odds for that state to

be taken by Viterbi, Fig. 6.14 -thereby correctly encoding our intuition. For example at a

particular CpG with u unmethylated reads, m methylated reads, and u + m = n, the odds
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ratio is:
P (unmethylated state)

P (methylated state)
=

fm(u; n, λm)

fu(m; n, λu)
∼

Binomm(u)

Binomu(m)

where λm and λu are the expected methylated ratio for each state. Then for a given number

of methylated and unmethylated reads, m and u, the odds ratio is:

Binomm(u)

Binomu(m)
=

(

n

u

)

λu
m(1 − λm)u−1

(

n

m

)

λm
u (1 − λu)m−1

which, since n = c + m, reduces to:

λu
m(1 − λm)u−1

λm
u (1 − λu)m−1

Now, say, for a particular c and m, Pm

Pu
> 1, and so,

λu
m(1 − λm)u−1 > λm

u (1 − λu)m−1

Then for any combinations of read counts ur and mr with r ∈ R, and assuming we can use

the gamma function to calculate the factorial for non-integers, this inequality holds, ie

(

λu
m(1 − λm)u−1

)r
>
(

λm
u (1 − λu)m−1

)r

and the odds ratio as a function of r increases (decays) exponentially for all combinations of

counts:

f(r) =

(

Binomm(u)

Binomu(m)

)r

Twiposn defined methylation states. Using Baum-Welch (an adaptation of Expectation

Maximization that uses the forward-backward algorithm to estimate posterior marginals),

we trained the 2-state model on the H1 methylome [49] on which we trained and tested

methylCRF, including all CpG’s with at least one read. Unlike a simple thresholding model

of methylated versus unmethylated, the distribution of methylation in each state can and

does overlap, Fig. 6.14. The overlap ranges from 0.43 - 0.50 methylation which has 478k

CpG’s. Note that this range is much more restricted from the whole intermediate range

where methylCRF and WGBS have low concordance.
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Figure 6.14: For a CpG with only T’s aligned to it, the log odds emission ratio for the
unmethylated over methylated state increases as the read count increases -even though the
probability of emitting all ratios of C-to-T’s decreases as the read count increases. A) Top:
The log probability of emitting all T’s in an unmethylated state (10% C-to-T’s). X-axis is the
number of reads. Middle: The log probability of emitting all T’s in a methylated state (90%
C-to-T’s). Bottom: The log odds ratio for the unmethylated state over the methylated state.
B) CpG methylation distribution for the 2-state Twiposn model. C) State length distribution
for the same model. Lengths are truncated at 50 CpGs.
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There were 23.8M and 2.9M methylated and unmethylated states. The model suggests that

methylated CpGs are 86% methylated in expectation, while unmethylated CpGs are 9%. A

model trained on H9 [46] showed similar levels: 85% and 10%. Unmethylated states have

much fewer CpGs than methylated states Fig. 6.14.C

For Twiposn states we define orphans as states consisting of only one CpG. 10% of the

methylated states were orphans, while 77% unmethylated states were orphans This is

consistent with H9, 11% and 77%. 25% of unmethylated orphans had values less than 0.4

and had less than 10 reads, while 40% had less than 0.4 mC and had at least 10 reads. This

is reversed in H9, with 40% low and 25% high read, respectively.

We next sought to model more states, such as intermediate methylation at imprinted regions.

Accordingly we added a binomial state, since Poisson distributions become worse approxima-

tions to binomial distributions as the λ grows given a constant n. We used Baum-Welch again

on four ES libraries (H1.1a,H1.1b,H2,H9) allowing the methylated state, the unmethylated

state and up to three binomial states with randomly initialized means. Surprisingly, H1.1

and H1.2 resulted in one binomial state having no CpGs, while H1.1b and H9 resulted in

both the binomial states being empty. Suggesting that either, methylation in a population

of cells consists of two states or the Twiposn model is not powerful enough to detect some

states. Interestingly the binomial state in both H1.1a and H2 was a super-low methylation

state with expected 0.6% and 0.002% methylation. This allowed their unmethylated state to

have higher methylation, 18% and 20% versus 14% and 12% for H1.1b and H9. We re-ran

with different initialization 10 times each with similar results.

6.3 Discussion

While we set out to show that methylCRF-based methylomes are as good as WGBS methy-

lomes, we find that it is not a case of whether methylCRF is as good as WGBS. We believe

these results raise a serious question about the quality of WGBS estimates. By characterizing

where methylCRF and WGBS do agree, we believe we can present high confidence results

about methylation, genome-wide. We suggest where they disagree should be considered with

lower confidence.
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Chapter 7

TVreductio

I think that it is a relatively good

approximation to truth – which is much

too complicated to allow anything but

approximations – that mathematical

ideas originate in empirics. But, once

they are conceived, the subject begins

to live a peculiar life of its own and is ...

governed by almost entirely aesthetical

motivations. In other words, at a great

distance from its empirical source, or

after much "abstract" inbreeding, a

mathematical subject is in danger of

degeneration. Whenever this stage is

reached the only remedy seems to me

to be the rejuvenating return to the

source: the reinjection of more or less

directly empirical ideas.

- John von Neumann, "The

Mathematician", in The Works of the

Mind
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7.1 Introduction

Since the majority of the CpGs in the genome are methylated [77], we are mostly interested

in CpG’s where it is not. However, since CpG methylation is estimated over a population, we

do not know how much of a change in methylation is meaningful. In its simplest form, then,

finding these locations of sufficiently lower methylation is an instance change-point detection.

That is, given a series of data points ordered along one or more dimensions, ie, often either

in time or in space (such as pixels in an image), assume there are abrupt changes in the

value when seen along the ordered dimension that are distinct from random fluctuation. The

task is to find whether a change has occurred in the signal and if so where. This is a general

problem with applications in many domains such as manufacturing quality control, intrusion

detection, spam filtering, website tracking, and medical diagnostics. A methylome therefore

could be represented as a set of locations where the methylation value changes.

However, since neighboring CpG’s are highly correlated and global methylation levels are

bi-model [77], DNA methylation can be characterized as a piece-wise constant signal with

the pieces bounded by the change-points. This constraint leads to a special case of change

detection with the additional hypothesis that the change points occur relatively infrequently.

Used in many domains, this has been referred to as step filtering, step smoothing, and shift,

jump, or edge detection.

HMM-based Twiposn is not well suited for WGBS methylation estimation. Our

HMM-based methylation state estimator for WGBS libraries, Twiposn, did not work well for

segmenting the methylome. Twiposn models a methylated and unmethylated with Poisson

distributed emissions and any number of intermediately methylated states with binomial

distributions. However, even when we did Baum-Welch training with the two Poisson states

and three intermediate states, the learned model only used up to one binomial state. The

results were similar in several ES cell methylomes. Further, the binomial state was not even

intermediate, it was a super-lowly methylated stated with an expected methylation below

the unmethylated Poisson state. However, it is well known that DNA at imprinted regions

show intermediate methylation. It is also widely thought methylation might have other such

regions.
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It is possible that each of our hypothesized states are actually a mixture of states. We could

model each state as a mixture of Poisson distributions. While relatively trivial to implement,

this adds a fair amount of complexity to the model, which just defers the cost of any potential

utility to the interpretation of the results and its integration to existing knowledge about

methylation. Without which, all we are doing is adding parameters to the model and thus

potentially fitting the data instead of the unknown dynamics we are trying to model. What

is the relationship between the constituent components between a region of roughly 86%

average methylation versus 40%? If we don’t plan to interpret this, then this starts to suggest

that this modeling framework may not be well suited for what we are looking for out of this

data.

Additionally, HMMs are imbued with an implicit exponential state duration. The probability

of staying in a given state with a self-transition probability, p, state for d is pd−1(1 − p) [68].

Although the authors describe how to generalize an HMM to explicit state durations, these

models require up to D times more storage and O(D2) more computation, where D is the

maximum allowed state length. Additionally, unless parametric densities are used for state

length, the number additional parameters needed to train makes over-fitting more of an issue.

Since some of the methylated states have over 5000 CpGs this could become prohibitive to

model with an HMM.

While there is a possibility to further develop this method, a more fundamental problem

exists. We don’t actually know if methylation states indeed exist, how long they are, or what

distribution they have. Our only estimate is through Twiposn -which, if anything, imposes an

exponential (more specifically, geometric ) length distribution on states. This leaves us with

the possibility of model fishing, guessing, and distribution assumptions. For these reasons

-the lack of distinct states and the inherent limitations in modeling state length, we concluded

that this type of framework was not well suited for our purposes. We sought a fundamentally

different approach to estimating methylation.

Our intuition about local CpG correlation is better encoded as a non-parametric

constriant. We used an HMM to incorporate two intuitions about the methylation data 1)

by observation and analysis, the values don’t change much and small changes could be noise,

and 2) the relative large changes are not likely explained by noise. However, this requires us
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to first hypothesize a small number of ’states’ that stochastically generate the observation.

We then use the data to estimate the states, their transition frequencies, and their emission

frequencies. Non-parametric regression methods provide a more direct way to incorporate

our intuitions without invoking additional hypotheses.

Parametric approaches (such as HMMs), produce simplified representations of data in a

sort of top down fashion by controlling the number of parameters used to describe the data

globally. If we consider an indicator function that returns 1 only if the likelihood is within

some bound, we can frame this in terms of VC-theory [83]. A benefit of controlling the number

of parameters is that it controls -for many types of models- the space of possible signals the

model can convincingly represent, ie within some probability bound. Consider a type of data

of n data points, {y|y ∈ (0, 1]N} and a model with one state with a constant integer emission

probability. The model is only powerful enough to have non-zero posterior probability for 10

signals, {x|x ∈ (0, 1]N , x ∈ Zn}. Roughly, abusing VC-theory, the idea is that the lower the

ratio between the number of possible representations a model can take over the number of

possible signals, the capacity, the better the generalizability of a method is to that class of

signals. From this perspective it is easy to see that controlling the capacity of a model can

be done through intuitions defining relationships such as between neighboring data points.

That is, restricting the type and form of relationships restricts the set of representations.

Using a constrained optimization formalization, the observations about methylation could be

encoded directly as a property of the representation x of methylation y ∈ R
n. Here we seek a

representation that is as simple as possible in terms of the number of times it changes value

but is still arbitrarily close to y:

minimize
xn

n−1
∑

i=1

δ(yi−1 6= yi)

subject to f(y, x) ≤ S

(7.1)

where f is some measure of the distance between y and x and δ is the indicator function.

Clearly as S is increased, the fewer the number of changes can exist in x -which reduces the

combinatorial number of vectors x can take on. While easy to formulate, this is hard to solve.

In fact, it is a variant of the sparse approximate solution which is known to be NP-hard. [60].
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One mathematical approach to characterizing the amount of change of a function of one

variable is to simply add up the total amount of change in the co-domain across the domain.

This sum, the total variation [35] is defined then for function f over the interval [a, b] ⊂ R

as the supremum over the sum of differences across all partitions of [a, b], P = {P = {x1 ≤

x2 ≤ ... ≤ xnP }}:

TV b
a (f) = sup

P

nP −1
∑

i=1

|f(xi+1) − f(xi)| (7.2)

It is easy to see that for functions with discrete domains, that the solution set of partitions

always includes the partition of all data points. If a solution, P , didn’t contain a data point,

xi, xi is either 1) between its neighbors, in which case, you could add it without changing the

total variation, or 2) it is either higher or lower than its neighbors, in which case, you could

add it and increase the total variation contradicting the assumption on P . x0 or xn is always

in P . The total variation across its whole domain is the sum of its first derivative across all

consecutive points. Unless specified, in this manuscript, TV will refer to the discrete case

over its entire domain.

Note that for a constant function, TV (f) = 0, while for a monotonic function, TV (f) =

|f(n) − f(1)| (we will revisit this fact later). In the case of representation, f(x) = x, so for

notational convenience, we borrow from the notation for norms and specify it as the ℓ1-norm

of the discrete first-derivative :

‖x‖T V =
n−1
∑

i=1

|xi+1 − xi|

In the fields of image de-noising and signal processing, a now classic, paper [72] using

partial differential equations as a means, incorporated the TV statistic as a constraint in

the Lagrangian form of an optimization problem in order to separate noise from signal of

an image. The intuition is that most objects in images are covered by multiple pixels, and

so variation in neighboring pixels tends to be ’spurious oscillations’ while large, sharp, and

enduring changes are not. Controlling this variation then provides a tractable approach to

globally remove noise from an image. The problem then is to find values for all pixels in the

image that trades-off fidelity to the image with the total variation between neighboring pixel

values. Termed total variation denoising (regularization), the authors use a quadratic loss for
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the fidelity, here defined as a discrete 1D version:

β̂ ∈ argmin
β∈R

n

1

2

n
∑

i=1

(yi − βi)
2 + λ ‖β‖T V (7.3)

where y has length n, β is the optimal representation, and λ is a tunable parameter varying

the trade-off between the two terms. This approach turned out to be a watershed advance

-over 6500 citations (http://scholar.google.com)- over smoothing methods, because the

constraint tends to reduce the transition between objects to sharp borders as apposed to

smooth transitions. In fact, edge detection is the topic of Rudin’s PhD thesis where he

advocated for the importance of singularities of functions in numerical analysis [73].

The ℓ1 norm has been used extensively in statistics and machine learning to induce simplicity

in terms of the number of explanatory variables needed predict an output variable. Among

other properties it is the closest convex approximation for cardinality-based statistics, for

example the ℓ0 norm, found in combinatorial problems. As a constraint for ordinary least

squares regression, lasso regression, the ℓ1 norm has a tendency to push feature weights to

zero [80]. Within the lasso regression framework, this method of inducing simplicity was

applied to signal regression, where, for example, images or sound files are used as explanatory

variables in regression [43]. The intuition was that for regression, representing the signals by

higher order features -such as curves in an image or phonemes in a spoken language track,

would improve prediction. One could think of this as representation regression to distinguish

it from variable selection-type regression. In the context of regression, the authors refer to the

TV norm regularization as first order variable fusion. This idea was extended and formalized

as the fused lasso which used a combination of both the lasso and TV norms [81]. While

their formulation retains the regression context, they applied it to representation problems.

A method for the full regularization path of the fused lasso, using a modified piece-wise

coordinate descent, was shown to be faster than either convex optimization [26] or LARS

[23] for large problems. This was generalized to arbitrary graph structures with piece-wise

constant signal across adjacent nodes.
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7.2 Results

7.2.1 Fused Lasso, TV Regularization

We applied the fused lasso to a sample of 1000 CpGs of our methylation data. While it does

indeed provide a simplified representation, some limitations became immediately apparent

Fig. 7.1. The orange bars indicate where we would like to have one segment. One the left,

λ = 0.1 gives a reasonable representation here for a fine resolution. However, this same

representation, creates a finely graduated stair-step in the middle of the bar on the right.

This kind is detail hard to interpret. On the other hand, overall, λ = 1.0 gives a much

simpler representation by matching some intuition about the gross segments. However, it

too shows stair-step patterning. The stair-step on the left makes little sense. A seemingly

simple interpretation of this window is that there is a segment with an outlier. Additionally,

the window under the right bar could be considered either 1) one long segment where the

righthand side has an unusual, but arguably random nevertheless, cluster of lower tending

values, or 2) there is in intermediate valued segment starting 2 CpGs right of the segmentation.

Additionally, the one CpG with its own level doesn’t seem justified at all. Note that all

reasonable values of λ fail in this region.

This example highlights one of the limitations of TV normalization: it is myopic. While λ

itself is a global parameter -that controls the weight of the total sum of TV terms, each TV

term is the relationship between only two variables. As such, there is no consideration of the

length of a segment -which certainly is important in understanding the pattern of a signal.

For example, consider whether any of the segmentations are correct for the left orange bar

Fig. 7.1. It would seem the simplest explanation is that 12 data points with similar values

and one outlier -especially when considered in context of all the data. The myopic restriction

leads to several notable limitations.

The TV norm can not enforce any kind of simplicity between monotonic regions. That is,

in these regions, all segmentations have identical TV penalties. Consider, for example, the

regularization path of any set of data {x1, ..., xn|x1 ≤ x2 ≤ ... ≤ xn}. With λ = 0, the

representation will fit the data exactly. As λ increases, the only change to the representation

it will cause is to gradually grow the two ends by fusing variables -which consequentially
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Figure 7.1: Fused lasso run on CpG methylation. The original data for 75 CpGs is in black.
The three lines representations using a λ of 0.2, 0.7, and 1.0. The orange bars mark regions
we would like to be one segment. A λ lower than 0.1 generally fits the data, while higher
than 1.0 approaches the mean of the data set.

reduces the contrast as the end segments (which are the global max and min segments)

approach the mean. This then suggests a scenario where for a given signal, the regularization

path smooths a signal one fusion at a time [26], gradually forming a representation as a series

of gross level minimums and maximums. The segments between these extrema, however

are not regularized. Any further smoothing comes by extending and regressing them to the

global mean until finally, there is one segment at the mean.

Another fundamental limitation of TV normalization is that it can not take into account

local context in its choice of change points. There are limitations to this for the 2D case.

The myopic nature of TV also leads to a problem of interpretation. In general, as n → ∞,

or more likely in this case, as the number of analyzed methylomes increases, there will be

segments of all values in the range. To see this, consider that with even a random distribution

of values, there are finite probabilities of long consecutive segments of equal points everywhere

across the range. This then suggests that our conclusions about characteristic values and

the number of values methylation has is a function of the number of methylomes we analyze

-that is, an artifact of the experiment.
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One way to compensate for the myopic limitation of the TV -norm, could be to post-process

the segmentation by globally clustering the values of the segments. However, the histogram

of values suggests that the clustering would not be justifiable, Fig. 7.2. Additionally, the

bottom histogram demonstrates, the contrast reduction mentioned above. Whereas the data

ranges from 0.0 to 1.0, the TV representation, only ranges from 0.4 to 0.9. Fig. 7.1 shows

that regardless of λ, the TV representation misses the most striking feature -the segments of

0.0 and 1.0 methylation.

7.2.2 Segmental/Structured K-means

Despite its wide success in many fields, the TV norm does not appear robust enough to

represent our data well. An alternative approach to simple representation is through feature

extraction or learning via dimensionality reduction. In this case, we refer to range of

methylation values as the dimensionality of the data. The idea is to create a representation

that is close to the date, but only uses a relatively few number of values. As a central

task in machine learning, methods span many approaches from simple heuristic clustering,

like k-means, to binning and locality-sensitive hashing, to global variance-based methods

like principle component analysis, to local similarity-based manifold learning methods. We

chose to simply try K-means clustering. This simple method allowed a simple to implement

extension to incorporate the observation that methylation values are locally correlated.

Standard k-means is an iterative method. Each iteration consists of two steps, 1) data points

are assigned to their closest mean, ie cluster, and 2) re-estimate the means based on their

membership. We modified the first step by performing Viterbi decoding to find the optimal

global assignments of CpGs to means. The cost to change from one mean to another is tunable

via a hyper-parameter, η. Note that as in HMMs, this not MAP assignment, but maximum

path assignment. Also of interest is connection to the TV norm, in that segmental k-means

regularizes the η ∗ ℓ0 TV norm on the number of changes in value. It thus incorporates our

intuition directly without resorting to a convex relaxation.

Despite the methodological and conceptual simplicity of this method, it performed quite well

on the same 1000 CpGs tested above Fig. 7.3 with five means and η of 0.0, 0.3, and 0.8. Note

that unlike Twiposn, Segmental K-means used all five possible states. Surprisingly, standard

K-means, ie, with η of 0.0, follows the data quite well. Similar to the TV norm with a low λ,
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Figure 7.2: Histogram of CpG methylation values for the 1000 CpGs (top) and their fused
lass segmentation with a λ = 1 (bottom).
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Figure 7.3: Segmental K-mean run on CpG methylation with five means. The original data
for 75 CpGs is in black. The line representations using a η of 0.0, 0.3 and 0,8.

segmental k-means with η of 0.3 adds break points for outliers. However, it has many fewer

break points. As can be seen with in the histograms, Fig. 7.4, areas with very many CpGs

will tend to be split up into much finer clusters. Since the means are randomly initialized, at

each iteration, they will tend to move in the direction of the most CpGs in the re-estimate

step. If most CpGs are within the 0.7-1.0 range, then this region will tend to have more

means. Note that in the assignment step segmental k-means is similar to using the TV norm.

7.2.3 TVreductio

On the far left of Fig. 7.3 is a CpG with a much value in a window of noisy, but higher

level. What information is required to give us some confidence to determine whether this is a

window containing a CpG with one quite unusual value or three windows, two high valued

ones with a short low valued window in between. Information such as 1) the frequency of

short windows, 2) the frequency of large jumps between windows, 3) the frequency of windows

with values similar to the three windows, as well as the 4) variation of values within the

windows. While the TV norm contains 2 and 4 to some degree in its objective, it does not

have the memory required for 3 or 4. The objective for segmental k-means on the other hand,
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Figure 7.4: Histogram of CpG methylation values for the 1000 CpGs (top) and their segmental
k-means segmentation with an η = 0.8 (bottom).
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in some sense contains 3 and 4, however, 2 is not. We propose to combine these two objectives

(ie small number of values and small number of changes) in the hope incorporate as much of

our intuition about this data as we can. We hope to generalize both the parametric HMM

framework to include non-parametric intuitions as well as to extend the non-parametric TV

framework, to include parametric intuitions.

Jointly constraining change points and unique value cardinality

Our modified problem we set out to approach for |y| = n is:

β̂ ∈ argmin
β∈R

n

1

2

n
∑

i=1

(yi − βi)
2 + λ1 ‖β‖T V + λ2 ‖{v|v ∈ β}‖1 (7.4)

That is, we want to find a representation of y that is both segmented into flat segments that

come from constrained number of values.

Total variation of sorted values Possibly the simplest approach would be to sort y and

add an ℓ1 constraint between consecutive variable. In sense, this is the TV norm on the

sorted data. This results in only two additional terms for each parameter during gradient

ascent and so if very efficient. However, this becomes a form of isotonic regression, which

as discussed above, for which the ℓ1 norm (or any pairwise norm) can not sparsify. In fact,

testing this method revealed very little difference, regardless of the regularization parameter.

Total smoothness A possibly better approach would be additionally regularize on the

complete total variation, that is the pair-wise variation among all parameters.

β̂ ∈ argmin
β∈R

n

1

2

n
∑

i=1

(yi − βi)
2 + λ1 ‖β‖T V + λ2

n
∑

i=2

n
∑

j=2

|βi − βj| (7.5)

Similar to TV , increasing the number of an nxn matrix of all pair-wise distances. Note that

this sum indirectly counts the number of unique values in the representation. However, it

adds a penalty between unique value is not what we want. Hopefully, the number of zeros

combined with the other terms would offset this limitation. For the coordinate-wise gradient
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descent [26], this formulation would add 2n additional terms to each partial derivative as well

as additionally checking up to 2n regions between discontinuity points for each of the terms

when the derivative is not minimized. Additionally, [26], noted that the coordinate-wise

ascent sometimes fails where further descent require two parameters to jointly move. They

argue that by updating λ in small enough increments, only one pair of parameters would

require this at any given step. It is not clear whether this could be addressed with the

complete total variation.

However, one way to speed this approach is based on the insight that most of the complete

total variation comparisons are not necessary. In fact, they don’t make sense. A y with value

1 another with value 0, should not be penalized. To account for this one could instead use

a truncated lasso for which values greater than α have no penalty. However, this is not a

convex penalty and becomes combinatorial in nature. An alternative to this is to instead give

values greater than α infinite penalty -which is convex. In order to use this, though, we have

to change the minimization to be over
∑C

i=1 Cn functions where C is the maximum number

of unique values allowed in the representation. Where each function is a unique subset of n2

terms complete total variation. This is, of course, intractable to represent explicitly. However,

that is not necessary. Because of the truncated ℓ1 norm, the majority of functions could not

possibly decrease the function value during coordinate-wise descent. However, the number

of value regions needed to check during coordinate-wise descent could grow substantially.

However, the may be additional heuristics to limit. Regardless, since the problem is convex,

convergence is possible. Still, the problem of variable dependence described above may not

be addressable. Although, the existence of a dual would allow a certificate to know when

convergence is reached.

Reduced resolution Another way to control the number of unique values is to instead

use a discretized representation. For many representations of real-world phenomena, there

is a limit to the resolution that is useful. Often continuous representation are nonetheless

discretized before use. This is the case for methylation -the difference between 3.4% and 3.5%

is not interpretable. For a discrete set of values A, Eq. (7.3) becomes The problem becomes:

β̂ ∈ argmin
β∈An

1

2

n
∑

i=1

(yi − βi)
2 + λ ‖β‖T V (7.6)
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This then is the form of a Markov random field for which graph-cuts can solve for graph

structures of 2 or 3 node cliques. Since Eq. (7.6) contains only 2 nodes cliques, however, we

can use the Viterbi algorithm to it. Then we need to wrap this in another minimization to

regularize the size of A:

β̂ ∈ min
a⊆A

(

argmin
β∈an

1

2

n
∑

i=1

(yi − βi)
2 + λ1 ‖β‖T V

)

+ λ2 ‖a‖1 (7.7)

Since the minimum of a convex functions is itself convex, Eq. (7.7) consists minimizing a

convex plus a modular function. It turns out the convex functions are upper bounded by a

modular function [24] for which the authors develop a majorization-minimization algorithm

that is guaranteed to converge. However convergence is local. Using submodular minimization,

[3], showed how to solve functions of this form taking the Lovasz relaxing of submodular

constraint. However, as [24] pointed out the consistency proofs for Lovasz extensions are

typically given with respect to the relaxation. This leads non-optimal solutions of the original,

non relaxed, objective.

7.3 Discussion

We are left with a choice to solve Eq. (7.7), 1) find a local solution, or 2) find a global solution

to a relaxed form.
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Chapter 8

Conclusion

8.1 Summary

It is the nature of an hypothesis, when

once a man has conceived it, that it

assimulates every thing to itself as

proper nourishment; and, from the first

moment of your begetting it, it

generally grows the stronger by every

thing you see, hear, read, or

understand. This is of great use.

-Laurence Sterne, The Life and

Opinions of Tristram Shandy,

Gentleman

In this thesis, we set out to use DNA methylation as a means of discovering the component

of DNA-binding proteins binding in a cell in the service of understanding how one genome

might provide a polymorphic interface allowing for multiple cell-type identities. Since current

methods of assaying DNA methylation are limited in either resolution or comprehensiveness

or are prohibitively expensive, we first developed an alternative, methylCRF, that is com-

prehensive, and high-resolution. We achieved this by combining two complimentary assays

of methylation using a statistical model. It is concordant within the range of replicates of

WGBS while being 15 times cheaper. A benefit of this price differential is that we were able

to examine methylation across more cell-types than was previously possible. We examined 58
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methylomes to reveal the extent of methylation variation at single-CpG resolution. Results

include that only 28% CpGs vary across these cell-types and that only 11% of the genome

has variably methylated regions and these regions are indeed enriched in potential regulatory

regions. Detailed analysis of methylCRF and WGBS revealed systemic differences between

the two bringing into question whether either are accurate enough to use in helping identify

transcription factor binding and suggests that a statistical model is required WGBS. Addition-

ally, WGBS seems to strongly suffer from GC-bias in the underlying protocol. Given these

limitations, we re-formulated the representation of DNA methylation, from un-methylated

and methylated regions to that of change-point detection. While change-point detection

is a core problem with methods used across wide cross-section of technical fields, through

detailed analysis, we found that current methods are lacking in the ability to represent the

methylation signal as a few change-points between a limited number of methylation levels.

We propose to extend existing total variation method to simultaneously learn the methylation

levels present in a population of cells as well as the change-points of those levels.

As ongoing work, we will use either submodular minimization or a maximization/majorization

approximation framework to implement our proposal. The result of this will be a radical

extension of change-point detection of possible wide applicability across the fields using it.

Specifically, this method can be combined with transcription factor analysis to our goals of

finding a representation for DNA methylation that could lead to understanding of multi-

cellular capability of our genome. Additional ongoing work is the conceptual development and

promotion of a unifying set of objectives, values, and concerns for big data biology to ensure

its vitality, ability to advance biological knowledge and to place it in reciprocal relationships

with other technical fields.
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