
On the Analysis of Genome-Wide Association 
Studies in Family-Based Designs: A Universal, 
Robust Analysis Approach and an Application to 
Four Genome-Wide Association Studies

Citation
Won, Sungho, Jemma B. Wilk, Rasika A. Mathias, Christopher J. O'Donnell, Edwin K. Silverman, 
Kathleen Barnes, George T. O'Connor, Scott T. Weiss, and Christoph Lange. 2009. On the analysis 
of genome-wide association studies in family-based designs: A universal, robust analysis 
approach and an application to four genome-wide association studies. PLoS Genetics 5(11): 
e1000741.

Published Version
doi:10.1371/journal.pgen.1000741

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4881566

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4881566
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=On%20the%20Analysis%20of%20Genome-Wide%20Association%20Studies%20in%20Family-Based%20Designs:%20A%20Universal,%20Robust%20Analysis%20Approach%20and%20an%20Application%20to%20Four%20Genome-Wide%20Association%20Studies&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=f7a7e0a9020904fd5fe6269373e86ac3&department
https://dash.harvard.edu/pages/accessibility


On the Analysis of Genome-Wide Association Studies in
Family-Based Designs: A Universal, Robust Analysis
Approach and an Application to Four Genome-Wide
Association Studies
Sungho Won1,2, Jemma B. Wilk3, Rasika A. Mathias4, Christopher J. O’Donnell5,6, Edwin K. Silverman7,8,9,

Kathleen Barnes10, George T. O’Connor11, Scott T. Weiss7,9,12, Christoph Lange9.12,13*

1 Department of Statistics, Chung-Ang University, Seoul, Korea, 2 Research Center for Data Science, Chung-Ang University, Seoul, Korea, 3 Department of Neurology,

Boston University School of Medicine, Boston, Massachusetts, United States of America, 4 Genometrics Section, Inherited Disease Research Branch, National Human

Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America, 5 National Heart, Lung, and Blood Institute and Framingham

Heart Study, Bethesda, Maryland, United States of America, 6 Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United

States of America, 7 Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 8 Division of

Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 9 Harvard Medical School, Boston, Massachusetts,

United States of America, 10 Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America, 11 Pulmonary Center,

Boston University School of Medicine, Boston, Massachusetts, United States of America, 12 Center for Genomic Medicine, Brigham and Women’s Hospital, Boston,

Massachusetts, United States of America, 13 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America

Abstract

For genome-wide association studies in family-based designs, we propose a new, universally applicable approach. The new
test statistic exploits all available information about the association, while, by virtue of its design, it maintains the same
robustness against population admixture as traditional family-based approaches that are based exclusively on the within-
family information. The approach is suitable for the analysis of almost any trait type, e.g. binary, continuous, time-to-onset,
multivariate, etc., and combinations of those. We use simulation studies to verify all theoretically derived properties of the
approach, estimate its power, and compare it with other standard approaches. We illustrate the practical implications of the
new analysis method by an application to a lung-function phenotype, forced expiratory volume in one second (FEV1) in 4
genome-wide association studies.
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Introduction

During the analysis phase of genome-wide association studies,

one is confronted with numerous statistical challenges. One of

them is the decision about the ‘‘right’’ balance between

maximization of the statistical power and, at the same time,

robustness against confounding. In family-based designs, the

possible range of analysis options spans from a traditional

family-based association analysis [1–4], e.g. TDT, PDT, FBAT,

to the application of population-based analysis methods that have

been adapted to family-data [1–3]. While, by definition, the first

group of approaches is completely immune to population

admixture and model misspecification of the phenotype, and can

be applied to any phenotype that is permissible in the family-based

association testing framework (FBAT [4–6]), the second category

of approaches maximizes the statistical power by a population-

based analysis. The phenotypes are modeled as a function of the

genotype, and population-based methods such as genomic control

[7,8], STRUCTURE [9] and EIGENSTRAT [10], are applied to

account for the effects of population admixture and stratification.

Hybrid-approaches that combine elements of both population-

based and family-based analysis methods, e.g. VanSteen algorithm

[11] and Ionita weighting-schemes [12,13] have been suggested to

bridge between the 2 types of analysis strategies. Contrary to the

other methods that combine family data and unrelated samples

[14–17], such hybrid testing strategies maintain the 2 key features

of the family-based association tests: The robustness against

confounding due to population admixture and heterogeneity, and

the analysis flexibility of the approach with respect to the choice of

the target phenotype. Such 2-stage testing strategies utilize the

information about the association at a population-level, the

between-family component, to prioritize SNPs for the second step
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of the approach in which they are tested formally for association

with a family-based test. The hybrid approaches can achieve

power levels that are similar to approaches in which standard

population-based methods are applied to family-data, but the

optimal combination of the 2 sources of information (the between-

family component and the within-family component) is not

straightforward in the hybrid approaches.

In this communication, we propose a new family-based

association test for genome-wide association studies that combines

all sources of information about association, the between and the

within-family information, into one single test statistic. The new

test is robust against population-admixture even though both

components, the between and the within-family components, are

used to assess the evidence for association. The approach is

applicable to all phenotypes or combinations of phenotypes that

can be handled in the FBAT-approach, e.g. binary, continuous,

time-to-onset, multivariate, etc [4–6,18]. While the correct model

specification for the phenotypes will increase the power of the

proposed test statistic, misspecification of the phenotypic model

does not affect the validity of the approach. Using extensive

simulation studies, we verify the theoretically derived properties of

the test statistic, assess its power and compare it with other

standard approaches. An application to the Framing heart study

(FHS) illustrates the value of the approach in practice. A new

genetic locus for the lung-function phenotype, FEV1 (forced

expiratory volume in the first second) is discovered and replicated

in 3 independent, genome-wide association studies.

Methods

We assume that in a family-based association study, n family

members have been genotyped at m loci with a genome-wide SNP-

chip. For each marker locus, a family-based association test is

constructed based on the offspring phenotype and the within-

family information. The within-family information is defined as

the difference between the observed, genetic marker score and the

expected, genetic marker score, which is computed conditional

upon both the parental genotypes/sufficient statistic [19] under

the assumption of Mendelian transmissions. We denote the family-

based association test for the ith marker locus by FBATi. Such an

FBAT statistic can be the standard TDT, an FBAT for

quantitative/qualitative traits, FBAT-GEE for multivariate traits,

etc [4,6,18,20,21]. Similarly, for the ith marker, the between-

family information can be used to assess the evidence for

association at a population-based level by computing a VanS-

teen-type [11] ‘‘screening statistic’’ Ti. The screening statistic is

computed based on the data for offspring phenotype and the

parental genotypes/sufficient statistic. The statistic Ti can be a

Wald test for the genetic effect size that is estimated based on the

conditional mean model [22], or the estimated power of the

family-based test FBATi [23], either of which is feasible. However,

while the FBATi statistic is robust against population stratification,

the screening statistic Ti is susceptible to confounding. For this

reason, the VanSteen-type testing strategies have restrictively used

the between-family information as weights for p-values of the

FBAT-statistic, but never as a component in the test statistic itself.

Construction of an overall family-based association test
including the population-based and family-based
components

In order to construct a family-based association test that

incorporates both the within and the between-family information,

the Z-statistics that correspond to the p-values of FBATi and Ti are

computed. The statistic Za
* is the a quantile of standard normal

distribution. pFBATi and pTi are the p-value of the FBAT-statistics

and one sided p-value of the screening statistic where the direction

of the one sided screening statistic is defined by the directionality

of FBATi. Based on the statistical independence of FBATi and Ti

[11] under the null-hypothesis, we can obtain an overall family-

based association test statistic Zi by combining both Z-statistics in a

weighted sum,

Zi~wFBAT ZpFBATi

�zwT ZpTi

�

where the parameters wFBAT and wT are standardized weights so

that the overall family-based association test Zi has a normal

distribution with mean 0 and variance 1, i.e. wFBAT
2+wT

2 = 1. In

the literature, this approach of combining two test statistics is

known as the Liptak-method [24]. However, the Liptak-method

varies here from its standard application in that the 2 test statistics

have to be combined so that confounding in the screening statistic

Ti cannot affect the validity of the overall family-based association

test statistic Zi. In the context of a genome-wide association study

(GWAS), we are able to achieve this goal by using rank-based p-

values for the screening statistic Ti instead of their asymptotic

p-values.

The ‘‘screening statistics’’ Ti are sorted based on their evidence

for association so that T(m) denotes the screening statistic with the

least amount of evidence for association and T(1) the screening

statistic with the largest amount of evidence for association. The

rank-based p-value, (i – 0.5)/m, is then assigned to the ordered

screening test statistics T(i). If there is a tie, then the average of the

ranks will be used for the computation of the rank-based p-value

for the ith marker. Since the null-hypothesis will be true for the

vast majority of the SNPs in a GWAS, the rank-based p-values

provide an alternative way to assess the significance of the

population-based screening statistic Ti. The overall association test

Zi is then computed based on the Z-score for the asymptotic p-

value of the FBAT-statistic and the Z-score for the ranked-based p-

value of the screening statistic Ti. In Text S1 we show that the

overall association test Zi maintains the global significance level a,

under any situations including population admixture and

Author Summary

In genome-wide association studies, the multiple testing
problem and confounding due to population stratification
have been intractable issues. Family-based designs have
considered only the transmission of genotypes from
founder to nonfounder to prevent sensitivity to the
population stratification, which leads to the loss of
information. Here we propose a novel analysis approach
that combines mutually independent FBAT and screening
statistics in a robust way. The proposed method is more
powerful than any other, while it preserves the complete
robustness of family-based association tests, which only
achieves much smaller power level. Furthermore, the
proposed method is virtually as powerful as population-
based approaches/designs, even in the absence of
population stratification. By nature of the proposed
method, it is always robust as long as FBAT is valid, and
the proposed method achieves the optimal efficiency if
our linear model for screening test reasonably explains the
observed data in terms of covariance structure and
population admixture. We illustrate the practical relevance
of the approach by an application in 4 genome-wide
association studies.
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stratification. This can be understood intuitively as well. The

smallest rank-based p-value is 0.5/m. Using the Bonferroni-

correction to adjust for multiple testing, the individual, adjusted

significance level is a/m which will always be smaller than the

smallest rank-based p-value, 0.5/m, unless the pre-specified global

significance level a is great than 0.5. This implies that the overall

family-based association test can never achieve genome-wide

significance just based on the rank-based p-values alone. The

FBAT-statistic has to contribute evidence for the association as

well in order for the overall family-based association test to reach

genome-wide significance. Finally, we have to address the

specification of the weights wFBAT and wT in the overall family-

based association test statistic Zi. While any combination of

weights wFBAT and wT will provide a valid test statistic Zi, the most

powerful overall statistic Zi is approximately achieved when the

ratio of the weights is equal to the ratio of the standardized effect

sizes, the expected effect size of the regression coefficient divided

by its (estimated) standard deviation. For quantitative traits in

unascertained samples, one can show that optimal power levels are

achieved for equal weights, i.e. wFBAT = wT. In general, the equal

weighting scheme seems to provide good power levels for any

disease mode of inheritance and for different trait types, e.g. binary

traits, time-to-onset, etc. The theoretical derivation of optimal

weighting schemes for such scenarios is ongoing research and will

be published subsequently.

Furthermore, it is important to note that, instead of the Liptak-

method, Fisher’s method for combining p-values could have been

used as well to construct an overall family-based association test

which would have the same robustness properties as the overall-

test based on the Liptak-method. However, simulation studies

(data not shown) suggest that the highest power levels are

consistently achieved with the Liptak method. We therefore omit

the approach based on Fisher’s method here.

Results

Type I error for 500K GWAS
In the first part of the simulation study, the type-1 error of the

proposed family-based association test denoted as LIP was assessed

in the absence and in the presence of population admixture, and

we use the Wald test based on the conditional mean model [22]

with between-family component for pTi in our all simulations. For

various scenarios, we verified that the proposed overall family-

based association test maintains the a-level.

For simplicity, we assume in the simulation studies that the

random samples are given, i.e. no ascertainment, and that the

parental genotypes are known. Assuming Hardy-Weinberg

equilibrium, the parental genotypes are generated by drawing

from Bernoulli distributions defined by the allele frequencies. The

offspring genotypes are obtained by simulated Mendelian

transmissions from the parents to the offspring. For the jth trio,

the offspring phenotype Yj is simulated from a Normal distribution

with mean aXj and variance 1, i.e. N(aXj, 1), where the parameter a

represents the genetic effect size and the variable Xj denotes the

offspring genotype. Under the null-hypothesis of no association,

the genetic effect size parameter a will be set to 0.

For scenarios in which population admixture is present, we

assume that the admixture is created by the presence of 2

subpopulations whose phenotypic means differ by 0.2. The allele

frequencies for each marker in the two subpopulations are

generated by the Balding-Nichols model [25]. That is, for each

marker, the allele frequency in an ancestral population is

generated from a uniform distribution between 0.1 and 0.9,

U(0.1, 0.9). Then, the marker allele frequencies for the two

subpopulations are independently sampled from the beta distri-

butions (p(12FST)/FST, (12p)(12FST)/FST) for the whole markers

in each replicate of the simulated GWAS. A survey reported FST

estimates with a median of 0.008 and 90th percentile of 0.028

among Europeans, and the corresponding values are 0.027 and

0.14 among Africans, and 0.043 and 0.12 among Asians [26]. The

value for Wright’s FST was assumed to be 0.05, 0.1, 0.2, or 0.3.

Each trio was assigned to the one of the 2 subpopulations with

50% probability.

In the absence and presence of the population stratification

(FST = 0.05, 0.1, 0.2, and 0.3), Table 1 shows the empirical type-1

error rates of the overall association test statistic Zi for a GWAS

with 500,000 SNPs. The estimates for the empirical significance

levels in Table 1 are based on 2,000 replicates. The empirical

genome-wide significance level is calculated as the proportion of

replicates for which the minimum p-values among the 500,000

markers is less than 0.05/500,000. We consider the proposed

equal weights for wFBAT and wT, for genome-wide significance

level 0.05 and Table 1 shows that the type-1 error rate is preserved

well. For different significance levels, we calculate in Table 2 the

empirical proportions of SNPs for which the overall family-based

association test Zi is significant at the a-levels of 0.05, 0.01, 1023,

1024 and 1025. The simulation studies are conducted in the

absence and in the presence of population admixture. Table 2

does not provide any evidence for a departure of the empirical

significance levels from the theoretical levels, both in the absence

and presence of population substructure. These results confirm our

theoretical conclusions that Zi is robust against population

stratification and maintains correct type-1 error.

In the next set of simulation studies, we assess the effects of the

local population stratification on the overall family-based associ-

ation test. We generate local population stratification under the

Table 1. Empirical type-1 error for 500K GWAS at genome-
wide significance level 0.05.

FST Empirical error rate

0.00 0.0505

0.05 0.0395

0.10 0.0425

0.20 0.0450

0.30 0.0445

The number of trios, Ntrio, is assumed to be 1,000 and the empirical type-1 error
of the minimum p-value for GWAS at 500K GWAS is calculated with 2,000
replicates.
doi:10.1371/journal.pgen.1000741.t001

Table 2. Average of empirical proportion at 500K GWAS.

FST c = 561022 c = 161022 c = 161023 c = 161024 c = 161025

0.00 5.0061022 9.9761023 9.9161024 9.8661025 9.6661026

0.05 5.0061022 9.9761023 9.9161024 9.8561025 9.7661026

0.10 5.0061022 9.9661023 9.8861024 9.7861025 9.7961026

0.20 4.9961022 9.9561023 9.8761024 9.7661025 9.6061026

0.30 4.9861022 9.9261023 9.8261024 9.6861025 9.4061026

The number of trios, Ntrio, is assumed to be 1,000 and the empirical proportions
of SNPs whose p-values for Zi are less than c in each replicate for 500K GWAS
are averaged over 2,000 replicates.
doi:10.1371/journal.pgen.1000741.t002
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following assumptions: there are two subpopulations, G1 and G2

which distinguish themselves from each other in 2 marker regions.

We assume that a subject can be from all possible 4 combinations

at the 2 particular regions, e.g. (G1, G1), (G1, G2), (G2, G1) and (G2,

G2). Both regions consist of 10K SNPs and 90K SNPs respectively

and if subjects are from the same subpopulation in each genetic

region, their assumed allele frequencies of the markers in the

corresponding region are equal. For example, the allele frequen-

cies of each marker in the marker region 1 are the same for

samples in (G1, G1) and (G1, G2), but they are different for (G1, G1)

and (G2, G2). In the simulation study, we generate the parental

genotypes based on these allele frequency assumptions and obtain

the offspring genotypes based on simulated Mendelian transmis-

sions. Using the Balding-Nichols model we considered FST’s of

0.001, 0.005, 0.01 and 0.05 in the simulation studies. The

offspring’s phenotype was generated under the null hypothesis, but

we assumed that each sub-population strata had a different

phenotypic mean: 0 for (G1, G1), 0.2 for (G1, G2), 0.4 for (G2, G1)

and 0.6 for (G2, G2). Each replicate consists of 2,000 trios with

equal number of trios for all 4 possible combinations. The data

was analyzed with the proposed overall family-based association

test and with standard linear regression after adjusting population

admixture with EIGENSTRAT [10]. For EIGENSTRAT, we

applied the principal component analysis to the mean of the

paternal and maternal genotypes at each locus because parents of

each offspring are from the same subpopulation, and then the

residuals obtained from regressing offspring genotypes and

phenotypes with eigenvectors respectively are used to calculate

the generalized Armitage trend test [27]. Table 3 provides the

empirical type-1 error for both analysis approaches based on 2,000

replicates. While EIGENSTRAT exhibits an inflated type-1 error,

the proposed overall family test maintains the theoretical

significance level.

Empirical power with simulation for 500K GWA for
quantitative trait

For the analysis of quantitative traits, Table 4 provides the

empirical power for 500K GWAS from 2000 replicates when there

is no population stratification. Under the assumption of an

additive disease model for a quantitative trait, the genetic effect, a,

is given as a function of the heritability, h2, the minor allele

frequency pDı and the phenotypic variance, s2, by: a = sh/

[2p(12p)(12h2) ]0.5. In the simulation study, we assume heritabil-

ities of h2 = 0.001, 0.005, 0.01 and 0.015 for 2,000, 2,500 and

3,000 trios. The allele frequency of the disease locus, pDı, is 0.3 and

the phenotypic variance is 1. We compare the achieved power

levels of the proposed overall family-based association test, Zi, with

the weighting approach by Ionita-Laza et al [12], the original

VanSteen approach [11], the QTDT approach [28] and

population-based analysis, i.e. using linear regression of the

phenotype Y on the genotype X. Bonferroni correction is used to

adjust for multiple testing in the population-based analysis, FBAT,

QTDT and the proposed method. The results in Table 4 suggest

that the proposed association test achieves power levels that

represent a major improvement over the existing methods for

family-based association tests (VanSteen [11] or Ionita-Laza [12]).

Our approach reaches the same power levels as the population-

based analysis. For the power comparisons that are shown in

Figure 1, Figure 2, and Figure 3, the number of trios is assumed to

be 1,000 in 500K GWAS and the empirical powers are calculated

based on 10,000 replicates at an a-level of 0.001 for the all genetic

Table 4. Empirical power for GWAS under no population
stratification.

Ntrio h2 POP FBAT QTDT LIP VAN ION

2,000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.005 0.0200 0.0025 0.0010 0.0185 0.0080 0.0130

0.01 0.2085 0.0125 0.0180 0.1955 0.0990 0.1505

0.015 0.5725 0.0765 0.0150 0.5350 0.3045 0.4515

2,500 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.005 0.0385 0.0030 0.0030 0.0370 0.0155 0.0210

0.01 0.3970 0.0430 0.0430 0.3760 0.2025 0.2960

0.015 0.8135 0.1420 0.1790 0.7995 0.5525 0.7380

3,000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.005 0.0740 0.0020 0.0070 0.0675 0.0325 0.0495

0.01 0.5720 0.0810 0.0855 0.5495 0.3175 0.4710

0.015 0.9175 0.2665 0.3265 0.8980 0.7055 0.8630

Empirical powers are calculated from 2,000 replicates at the genome-wide
significance level 0.05 from Bonferroni method under no population
stratification. LIP stands for the proposed method using Liptak method to
combine pFBATi and pTi.VAN and ION indicate the VanSteen approach
screening top 20 SNPs and Ionita approach using an exponential weighting
scheme with partitioning parameters of K = 7 and r = 2 respectively. FBAT are
the results only from the within-family component and POP is the standard
population-based method.
doi:10.1371/journal.pgen.1000741.t004

Table 3. Average of empirical proportion at 100K GWAS.

Method FST c = 561022 c = 161022 c = 161023 c = 161024 c = 161025

EIGENSTRAT 0.001 5.0761022 1.0261022 1.0461023 1.0561024 1.0261025

0.005 5.4461022 1.1761022 1.3661023 1.7261024 2.4561025

0.01 5.8661022 1.3961022 2.0961023 3.6261024 7.5761025

0.05 8.2061022 3.2461022 1.3261022 6.5861023 3.3961023

LIP 0.001 5.0061022 9.9961023 9.9361024 9.8961025 9.7061026

0.005 5.0061022 9.9961023 1.0061023 1.0161024 1.0061025

0.01 5.0061022 9.9961023 9.9761024 9.9661025 9.9961026

0.05 5.0061022 9.9861023 9.9461024 9.8961025 9.9861026

The number of trios, Ntrio, is assumed to be 1,000. The empirical proportions of SNPs whose p-values for Zi are less than c in each replicate for 500K GWAS are averaged
over 2000 replicates when there is local population stratification. LIP stands for the proposed method using Liptak method to combine pFBATi and pTi.
doi:10.1371/journal.pgen.1000741.t003
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models. The results confirm that the Liptak’s method combining

Ti and FBATi has similar power to the population-based method,

and the choice of equal weights performs well. The simulation

results in Table 4 also suggest that QTDT [28] approach achieves

similar power levels as the standard FBAT approach, which is

consistent with previously reported findings in the literature [29].

However, both standard FBAT and QTDT are still much less

powerful than the proposed overall family-based association test.

Table 5 shows the empirical power for a GWAS with 100,000

SNPs in the presence of population stratification. For the

parameters of this simulation study, we assume FST = 0.001,

0.005, 0.01, and 0.05, and the additive mode of inheritance at the

disease locus with values for the heritability of h2 = 0.005, 0.01 and

0.015. The disease allele frequency pDı in the ancestral population

is assumed to be 0.3. The phenotypic data is simulated so that

their phenotypic means for two subpopulations are 0 and 0.2

respectively. Each individual/trio is assigned to either subpopu-

lation with probability 0.5. The parental genotypes are used to

estimate the ancestry for EIGENSTRAT as before. Various

methods have been suggested to adjust the population stratifica-

tion in a population-based designs and we compare the proposed

methods with the EIGENSTRAT approach [10]. In order to

maximize the power of the proposed method, we apply the

EIGENSTRAT approach to the population-based component Ti

of our approach, i.e. principal component analysis based on the

parental genotypes and the offspring’s phenotype is integrated into

the generalized Armitage test for Ti [27]. To keep the power

comparisons unbiased, the population-based components of the

approaches by VanSteen and Ionita-Laza are also adjusted for

population admixture, using the EIGENSTRAT approach. The

results in Table 5 show that the proposed test statistic Zi is

considerably more powerful than population-based analysis

adjusted with EIGENSTRAT. QTDT is slightly more powerful

than FBAT, but it is much less powerful than LIP as is in Table 4.

This suggests that EIGENSTRAT should be applied only to

between-family component in family-based association studies.

Our unpublished work showed that the proposed approach can be

less powerful than the combination of population-based analysis

and EIGENSTRAT if pTi is calculated from the conditional mean

model [11,22] without adjusting population stratification.

Applications to a genome-wide association in the
Framingham Heart study

For the assessment of the severity of pulmonary diseases, the lung

volume of air that a subject can blow out within one second after

taking a deep breath is an important endo-phenotype. It is referred

to as the forced expiratory volume in one second (FEV1). FEV1 is

an important measure for lung function and we apply the proposed

Figure 1. Empirical power at 0.001 significance level for additive disease. POP is the empirical power of the standard population-based
method. T is the empirical power of the Wald test based on the conditional mean model [22] for between-faimly components. LIP is the empirical
power of the combined p-values with Liptak’s method. In this figure, FBAT and T are completely overlapped.
doi:10.1371/journal.pgen.1000741.g001
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method to a family-based GWAS of FEV1. The proposed method is

applied to 550K GWAS Framingham Heart Study (FHS) data set

for FEV1, and then we confirm whether the selected SNPs are

replicated in the British 1958 Birth Cohort (BBC), another

population sample, as well as two samples of asthmatics in the the

Childhood Asthma management program (CAMP) [30] and an

Afro-Caribbean group of families from Barbados (ACG) [31]. In

FHS, 9,274 subjects were genotyped and 10,816 subjects of those

had at least one FEV1 measurement. Of the 8637 participants with

genotyping and FEV1 measures, only those with a call rate of 97%

or higher were included. We adjusted the covariates, age, sex and

the quadratic term of height that are known to be associated with

FEV1. For within-family components, the FBAT statistic for

quantitative trait was applied. Markers were excluded from the

analysis if the number of informative families was less than 20, or the

minor allele frequency was less than 0.05. In total, 306,264 SNPs

were used for analysis and, based on the number of SNPs, rank-

based empirical p-values, pTi, and the genome-wide significance

level was obtained with Bonferroni correction. When we let n and

ninf be the total number of individuals and the number of

informative trios respectively, ninf: (2n2ninf) are used for the weights

of Zi because some of parental phenotypes are available.

Table 6 shows the p-values for the top 10 SNPs from the

proposed method. In our analysis, the genome-wide significance

level at 0.05 is 1.63661027 and our results show that only the first

ranked SNP, rs805294, is significant at the genome-wide level 0.2

with Bonferroni correction. For rs805294, we also checked the

significance in other data sets, BBC, CAMP [30] and ACG [31].

In CAMP, 1215 subjects in 422 families were genotyped and there

are 488 informative trios for rs809254 and in ACG, there were

only 33 informative trios (Table 7). In the BBC, 1372 unrelated

subjects were genotyped with the Affymetrix chip and 1323

unrelated subjects genotyped with the Illumina chip. In CAMP

and ACG, age, sex and the quadratic terms of heights were

adjusted and in the BBC, age, sex, height, recent chest infection

and nurse were adjusted. Table 7 also shows that rs805294 is

significant and their directions are same for the considered studies

except for the ACG sample. In particular, in the ACG study, the

MAF of the SNP is different from other studies, which indicates a

different local LD structure; The ACG sample is from an Afro-

Caribbean population, contrary to the other studies which only

include Caucasian study subjects. In addition, the ACG sample

lacks statistical power for this particular SNP, i.e. there are only 33

informative trios in this sample. Thus, the inconsistent finding in

the ACG study could be attributable to genetic heterogeneity, i.e.

different local LD structure/flip-flop phenomena [32], or

insufficient statistical power. For meta analysis, the sample sizes

are used as weights for Liptak’s method and we use

Figure 2. Empirical power at 0.001 significance level for dominant disease. POP is the empirical power of the standard population-based
method. T is the empirical power of the Wald test based on the conditional mean model [22] for between-faimly components. LIP is the empirical
power of the combined p-values with Liptak’s method. In this figure, FBAT and T are completely overlapped.
doi:10.1371/journal.pgen.1000741.g002
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Figure 3. Empirical power at 0.001 significance level for recessive disease. POP is the empirical power of the standard population-based
method. T is the empirical power of the Wald test based on the conditional mean model [22] for between-family components. LIP is the empirical
power of the combined p-values with Liptak’s method. In this figure, FBAT and T are completely overlapped.
doi:10.1371/journal.pgen.1000741.g003

Table 5. Empirical power for GWAS under population stratification.

FST h2 FBAT QTDT LIP VAN ION EIG

0.001 0.005 0.0000 0.0010 0.0083 0.0000 0.0000 0.0000

0.010 0.0000 0.0030 0.1157 0.0826 0.1157 0.0579

0.015 0.0000 0.0085 0.3884 0.2975 0.3471 0.2562

0.005 0.005 0.0000 0.0000 0.0083 0.0083 0.0083 0.0083

0.010 0.0000 0.0020 0.0909 0.0579 0.0661 0.0661

0.015 0.0083 0.0080 0.3223 0.2810 0.3140 0.1901

0.01 0.005 0.0000 0.0015 0.0000 0.0000 0.0000 0.0000

0.010 0.0000 0.0010 0.0909 0.0826 0.0579 0.0331

0.015 0.0083 0.0135 0.3636 0.2975 0.3388 0.2645

0.05 0.005 0.0000 0.0000 0.01653 0.0330 0.0248 0.0000

0.010 0.0083 0.0035 0.0992 0.0744 0.0826 0.0165

0.015 0.0165 0.0080 0.3140 0.2645 0.2727 0.2066

The number of trios, Ntrio, is assumed to be 1,000. Empirical powers are calculated from 2,000 replicates at the genome-wide significance level 0.05 from Bonferroni
method under no population stratification. LIP stands for the proposed method using Liptak method to combine pFBATi and pTi. VAN and ION indicate the VanSteen
approach selecting top 20 SNP and Ionita approach using an exponential weighting scheme with partitioning parameters of K = 5 and r = 2 respectively. FBAT indicates
the empirical power only from FBATi and EIG indicates the empirical power from EIGENSTRAT.
doi:10.1371/journal.pgen.1000741.t005
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13:13:5:1 = FHS:BBC:CAMP:ACG as weights because the be-

tween-family information is used only for FHS. If the p-value from

Illumina gene chip in BBC and the p-values from FHS, CAMP

and ACG are combined, then the p-values by Liptak’s method

using proposed weights and Fisher’s method are 1.53461028 and

1.08161027 respectively, and they become 4.62561029 and

3.55461028 if the p-values from one-tailed tests are used for BBC,

CAMP and ACG with the same direction of FHS. If the p-value

from the Affymetrix gene chip in BBC is combined with the other

studies, then they are 3.78761028 (Liptak’s method) and

1.89061027 (Fisher’s method) for two-tailed tests, and

1.09861028 (Liptak’s method) and 6.23661028 (Fisher’s method)

for one-tailed tests. As a result we can conclude that rs805294 is

significantly associated with FEV1 at a genome-wide scale and the

gene, LY6G6C, associated with rs805293 will be investigated in

further studies.

Discussion

Genome-wide association studies have become one of the most

important tools for the identification of new disease loci in the

human genome. However, even though advances in genotyping

technology have enabled a new generation of genetic association

studies that provide robust and replicable findings, population

stratification/genetic heterogeneity and the multiple testing

problems continue to be the major issues in the statistical analysis

that have to be resolved in each study. While family-based

association tests provide analysis results that are completely

robust against confounding due to population-substructures, the

analysis approach is not optimal in terms of statistical power.

Numerous approaches have been suggested to minimize this

disadvantage of family-based association tests but the previous

approaches had to compromise either in terms of robustness or in

terms of efficiency.

In this communication, we develop an approach that efficiently

utilizes all available data, while maintaining complete robustness

against confounding due to population substructure. The proposed

methods combines the p-values of the family-based tests (the

within-component) with the rank-based p-values for population-

based analysis (the between component) to achieve optimal power

levels. The use of rank-based p-values for the population-based

component is similar in spirit to the genomic control approach. In

principle, the genomic control functions as rescaling the variance

inflated due to population stratification under the assumption of

the constant FST. Rank-based p-value directly rescales the statistics

based on their ranks, which always generates the uniformly

distributed p-value and provides validity even for varying FST due

to local population stratification etc.

Although our simulations are limited to independent unascer-

tained samples and quantitative traits, the proposed work can be

easily extended to ascertained samples, large pedigree, or different

trait types, etc. By replacing the parental genotypes with the

sufficient statistics by Rabinowitz&Laird [19], the FBAT-statistic

and the screening-statistic can be adopted straight-forwardly to

designs with extended pedigrees [23]. Similarly, parental pheno-

types can be incorporated into the conditional mean model [23] or

its non-parametric extensions [33] as additional outcome vari-

ables. The optimal weights can vary between the different

Table 6. Applications to forced expiratory volume in one second in Framingham Heart study.

SNP Chrom Position MAF Num. Info. Fam. FBATi pTi Zi

rs805294 6 31796196 0.340 918 4.30061023 2.07361025 5.92961027

rs10863838 1 208750806 0.450 1016 7.40861025 2.53561023 2.55361026

rs6794842 3 119308208 0.331 950 3.22661022 2.40061025 6.65461026

rs804963 14 85918211 0.460 1031 9.78661022 2.77561026 7.06061026

rs525914 11 119200660 0.187 711 9.20461024 1.88861023 2.08161025

rs1886280 10 89347496 0.362 971 1.79761022 2.29761024 2.51161025

rs710469 3 188467212 0.491 1058 3.20261023 1.38861023 2.63961025

rs10799746 1 22497833 0.168 651 1.38861022 3.53861024 2.74861025

rs1225888 20 15972225 0.449 1007 7.51861025 1.73661022 2.99461025

rs4638547 15 71122046 0.377 999 3.45461025 2.76061022 3.54961025

The number of markers is 306,264 and the genome-wide significance level at 0.05 is 1.636 6 1027. The top 10 SNPs from Zi are selected, assuming additive disease
mode of inheritance. For pTi, the estimated powers are used and the weights for LIP are calculated with the number of informative trios.
doi:10.1371/journal.pgen.1000741.t006

Table 7. Descriptive statistics and results of rs805294 in different studies.

FHS British Cohort CAMP BAR

Affy Illumina

Num. Info. Fam. 918 - - 488 33

Sample Size - 1372 1323 - -

MAF 0.34 0.36 0.36 0.33 0.22

P-values 25.92961027 21.23461022 26.53461023 21.37061022 7.8461021

The negative sign of the P-values indicates that the minor alleles are under-expressed in cases.
doi:10.1371/journal.pgen.1000741.t007
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scenarios and further theoretical investigation is currently ongoing,

but limited initial simulation studies suggest that equal weights,

while not always the most powerful choice in such situation, will

always result in more powerful analysis than currently used

methods.

Supporting Information

Text S1 The validity of the proposed method.

Found at: doi:10.1371/journal.pgen.1000741.s001 (0.04 MB

DOC)
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