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We consider the problem of indexing general database 

workloads (combinations of data sets and sets of poten- 

tial queries). We define a framework for measuring the 

efficiency of an indexing scheme for a workload based on 

two characterizations: storage redundancy (how many 

times each item in the data set is stored), and access 

overhead (how many times more blocks than necessary 

does a query retrieve). Using this framework we present 

some initial results, showing upper and lower bounds 

and trade-offs between them in the case of multi-dimen- 

sional range queries and set queries. 

1 Introduction 

The success and ubiquity of the relational data model 

arguably owes much to the B-tree, the access method 

breakthrough that accompanied it with superb timing 

[2]. It seems likely that access methods will continue 

to play an important role in, and largely determine the 

viability of, the novel data models currently under in- 

tense scrutiny in the database research community. The 

B-tree is widely recognized to be an inadequate data 

structure in many of the novel contexts, and no clear 

successor has emerged (or is likely, in view of the diver- 

sity of the applications and requirements). It is there- 

fore important to develop general methodologies and 

tools for the design of new indexing methods, as well as 

mathematical tools and techniques for evaluating their 

performance and pointing out their limitations. 
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A systems approach to this “generalized indexing” 

problem has been proposed and implemented [ll]. The 

need for theoretical tools for the rigorous analysis of 

indexing problems was one of the main conclusions of 

that work. What seems to be needed is a kind of the- 

o y of indexability, a mathematical methodology which, 

in analogy with tractability, would evaluate rigorously 

the power and limitations of indexing techniques in di- 

verse contexts. What differentiates such a theoretical 

approach to indexing from complexity theory and the 

theory of in-memory data structures is its emphasis on 

the secondary storage nature of indexing schemes, and 

on the two aspects that determine their cost and feasi- 

bility: storage utilization and disk accesses. 

In this paper, we lay out a general framework for for- 

mally evaluating the power-and limitations of indexing 

schemes. We identify the salient features of an index- 

ing problem, and define two simple metrics for judg- 

ing the difficulty of the problem. Based on this frame- 

work, we provide some initial results: lower bounds and 

space/time tradeoffs for multidimensional range queries 

and for set inclusion queries. One novelty of our results 

is that they are stated exclusively in terms of a param- 

eter B, the block size. This important technological pa- 

rameter, which is usually ignored in the data structures 

literature, is at center stage in our work. Interestingly, 

the size of the instance does not enter the statements 

of our results at all. 

Related Work 

There is extensive work on data structures (see, for ex- 

ample, [16, 1, 29, 19]), which only occasionally focuses 

on the external memory aspects of the problem. Work- 

loads that can be optimized off-line have also been occa- 

sionally considered in the data structure literature (see, 

for example, [31, 12, 211). A survey of B-trees and their 

variants appears in [4]; the variant in common use in 

database systems is the B-l--tree, which stores all data in 

the leaf nodes, and fits our model well. A variety of ex- 

ternal memory multidimensional data structures exists, 
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including both hash structures (see, for example, [20]) 

and tree structures (see, for example, [lo, 28, 24, 181). 

The Generalized Search Tree (GiST) [ll] is an extensi- 

ble data structure which simplifies the development of 

tree-based indexing schemes. 

Although our framework for studying indexability 

is new, there are some previous results that fit into it 

rather naturally. Analyses along the lines we are sug- 

gesting here have been emerging in the past few years, 

most notably in the work of the late Paris Kanellakis 

and his collaborators [15, 23, 25, 27, 301. Most of this 

work involves upper bounds, and is therefore mainly 

concerned with the analysis of the searching aspect of 

the problem. There are two exceptions. First, in a 

recent version of [15] there is an argument (proof of 

Lemma 2.7) that anticipates our Theorem 1, namely, 

that the access overhead must be fi in the special 

case in which the blocks are restricted to be rectangular. 

Second, in the last section of [27], there is an interesting 

lower bound, where it is shown (by extending a result 

by Chazelle to the case of block accesses) that storage 

redundancy logn/ loglogn is necessary if additive (as 

opposed to our multiplicative) access overhead is to re- 

main polynomial in $. The question of lower bounds 

in multi-dimensional searching has been addressed in 

[19], without, however, our emphasis on block accesses. 

Lower bounds for multidimensional searching are also 

studied in [26], where the bounds are derived in a model 

involving binary trees with certain further restrictions; 

the block size is considered in that paper as a function 

of n, the number of points. 

Finally, in the database literature there have been 

analyses (worst case, expected case, or empirical) of 

many access methods for multi-dimensional searching 

(see, for example, [22, 7, 31). Our emphasis on the 

two ratios (storage and access) as the salient perfor- 

mance parameters of an indexing scheme reflects influ- 

ences from the area of on-line algorithms [13]. 

2 Framework and Definitions 

In this section, we set out a simple framework for defin- 

ing an indexing problem, and for measuring the effi- 

ciency of a particular indexing scheme for the problem. 

2.1 Workload 

Access methods must be evaluated in the context of a 

particular workload. A workload consists of a finite sub- 

set of some domain together with a set of queries. More 

formally, a workload is a triple W = (D, I, Q), where D 

is the domain (a set such as JRd together with methods 

such as x-component, order, etc.), I is a finite subset of 

the domain called an instance, and 8 = {Qr, . . . , Qq}, 

the set of queries, is a set of subsets of I. 

For example, one of the workloads we consider ex- 

tensively (the two-dimensional range queries) consists of 

the domain lR2, the instance I = {(i, j) : 1 5 i, j, < n}, 

and the family of “range queries” &[a, b, c, d] = ((i, j) : 

asisb,c<j_<d}, one for each quadruple (a, 6, c, d) 

with 15 a 5 b 5 n, 15 c < d 5 n. Notice that this is a 

family of workloads, with instances of increasing cardi- 

nality, one for each n > 0. Another family of workloads 

(the set inclusion queries) has as its domain, for each n, 

all subsets of {1,2, . . . , n}, and for each subset I of the 

domain, the set ofqueries & = {Qs : S C_ (1,2,. , . , n)}, 

whereQs=(TEI:TCS}. 

The workload plays & indexability theory the role 

played by languages in complexity theory: it is the unit 

whose complexity must be characterized’. 

2.2 Indexing Schemes 

For each workload we have a space of possible inclex- 

ing schemes, the analog of algorithms that decide the 

language. Intuitively, an indexing scheme is simply a 

collection of blocks, each block containing some large, 

fixed number of objects (typically hundreds of objects 

per block). The union of the blocks exhausts the in- 

stance. Each query is answered by retrieving a set of 

blocks whose union is a superset of the query. 

Formally, an indexing scheme S for a workload W = 

(D, I, Q) is a collection S = (Sr, Sz, . . . , S.,} of blocks, 

where a block is a subset of exactly B elements of I. B 

is a constant called the block size, assumed fixed for each 

workload family, and large. In practice B is typically a 

constant between one hundred and one thousand that 

corresponds to a disk’s block size of 4 to 8 Kbytes, 

2.3 Two Performance Measures 

Given a workload and an indexing scheme, we iden- 

tify two basic performance measures that seem to cap- 

ture the two determining factors of the cost of indexing 

schemes: storage and access costs. 

The storage cost of an index can be expressed as the 

ratio of the number of blocks used by the index, divided 

by the number of blocks that are absolutely necessary 

for storing the instance - the size of the instance di- 

vided by B. More formally, we define the storage redun- 

dancy of an indexing scheme as the maximum number 

of blocks that contain an element of I. We also define 

the average redundancy of the indexing scheme as the 

average number of blocks that contain an element of I, 

that is, sB&l. 

The access cost for queries in an indexing scheme can 

be defined by a similar ratio. Let Q be a query of 0. 

‘More accurately, the analog of a language is a family of work- 
loads, one for each cardinality of the insian& Such growing fam- 
ilies of workloads allow us to focus on asymptotic onolysis and 
ignore additive constants. 



An ideal indexing scheme would require []Q]/B] blocks 

to answer it. However, this is not in general possible. 

The access overhead of the indexing scheme S for Q is 

a measure of how far we are from the ideal situation: it 

is the minimum number of blocks from S that cover Q, 

divided by the ideal cost []Q]/B]. The access overhead 

of the indexing scheme S on workload W = (0, I, 8) is 

the maximum access overhead over all queries in 8. 

Notice that the access overhead is never greater than 

B, which is the worst case, achievable if we can cover a 

large query by blocks containing only one relevant data 

item each. Naturally, in one-dimensional range query 

workloads, B-trees - as well as any access method that 

partitions data items along the linear order - easily 

achieve optimality (one) in both storage and access pa- 

rameters (with an additive constant of one or two in 

access overhead). 

2.4 Notes on the Framework 

Our approach suppresses important aspects of indexing, 

such as the algorithms for determining the partition of 

the instance into blocks (possibly with repetitions), as 

well as the algorithms for determining, given a query, 

the blocks in the index that cover it (e.g. hash lookups, 

or traversal of a tree to its leaf level). Furthermore, we 

ignore the storage and retrieval costs due to auxiliary 

information such as “directories” or “internal nodes”. 

These omissions are justified in three ways. First, we 

are mostly interested in lower bounds, and therefore 

we are free to disregard aspects of the complexity of 

the problem. Second, these aspects do not seem to be 

the source of design difficulties or of complexity - it 

appears that good assignment of data items to blocks 

tend to suggest efficient traversal algorithms, and to 

have low storage overhead. And third, secondary stor- 

age techniques such as buffer management mask and 

absorb many of these auxiliary cost components. 

Though our framework is simple, it captures the 

essence of previous heuristic approaches taken for in- 

dexing complex workloads. For example, a common 

multidimensional index for database systems is the R- 

tree [lo], which has redundancy 1. Three years after 

the initial R-tree paper, the R+tree was proposed as 

an improvement [28]; the main innovation of the R+ 

tree was (in our terms) to lower access overhead by in- 

creasing storage redundancy. This intuition is mirrored 

by the framework in this paper.2 

As another example, many heuristic solutions for in- 

dexing in non-traditional domains have proceeded by a 

process of analogy: rather than designing indices for the 

2The R+-tree has not proved popular, mostly because of the 

apparent complexity of performing updates (insertions and dele- 

tions) in the structure. This motivates a topic which we intend 

to study in future work (Section 4): extending our results here to 

consider dynamic aspects of the indexing problem. 

non-traditional workloads, they have mapped the work- 

loads into well-understood domains. Typically this is 

done by mapping objects to points in an n-dimensional 

space (e.g. based on a binary distance function), and 

mapping ‘%imilarity” queries over the objects to range 

queries or nearest-neighbor queries over the resulting 

space [S]. A similar process of analogy motivates our 

work: by defining a general framework for studying in- 

dexability, we can analyze new workloads by showing 

them to be isomorphic to well-understood workloads. 

Of course this approach harks back to seminal tech- 

niques in complexity theory as well. 

As in complexity theory, one must have some basic 

results in order to drive the analogy process. In the re 

mainder of the paper we present initial results for two 

canonical workloads: range queries in multidimensional 

space, and inclusion queries over set objects. Multidi- 

mensional range queries are quite natural to a variety 

of applications, and hence well worth studying in their 

own right. Set inclusion queries, as we shall see, repro 

sent a worst-case scenario in terms of indexability, and 

hence define the opposite end of the spectrum from the 

simple B-tree workloads. 

3 Lower Bounds and Trade-ofFs 

Two-dimensional queries 

We shall consider here the two-dimensional workload 

with I = ((i, j) : 1 5 i, j, 5 n}, and the range queries 

over this instance. We are interested in determining 

the minimum possible access overhead when the redun- 

dancy r is fixed. 

Proposition 1 FOT each integer r, there is an index- 

ing scheme S, for the &dimensional mnge queries with 

redundancy T and access overhead 2Bk + 2. 

Proof. The main idea for the indexing scheme S, is 

that each query Q of x x y points will be covered by 

disjoint blocks of S, that have “almost” the same aspect 

ratio y/x with Q. The ideal situation is to have blocks 

with aspect ratio y/x, so that the query Q is tiled niceIy 

by these blocks; compare this with the worst case when 

the query Q is “long and narrow” and it is covered by 

“short and wide” blocks. Because of the restriction on 

the redundancy T of the indexing scheme S,, it is not 

possible to have blocks for each aspect ratio. However, 

we can choose blocks so that any aspect ratio can be 

approximated. 

More precisely, for each i = 1,2,. _ ., T, the indexing 

scheme S, contains all Bg x B v blocks that par- 

tition I. The aspect ratios B*, for i = 1,2,. . ., T, of 

these blocks are evenly distributed. It is immediate that 

S, has redundancy T  (maximum as well as average). It 

suffices therefore to show that the access overhead is at 
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most 2B% + 2. Consider a query Q with Bf x B* 

points, for some integer j. Clearly, the best coverage 

of the query is by blocks that have almost the same as- 

pect ratio, that is, by blocks of size B* x Bw 

or by blocks of size Bw x Bar-:?’ . In both cases, 

when the query is “aligned” with the blocks, it requires 

B& blocks (either one row of B& blocks or one column 

of Bh blocks). For non-aligned queries the number of 

blocks needed to cover Q can be as high as 2Bh + 2; 

to see this, consider the case where an aligned query is 

satisfied by a row of B& blocks. If we shift this query 

out of horizontal and vertical alignment, we need two 

rows of blocks instead of one, and at one of the ends 

we need an additional column of two blocks as well. It 

is not difficult to show that these are the worst queries 

for this indexing scheme. ! 

If the access overhead is Q, the above scheme has av- 

erage and maximum redundancy P = @(log B/logo). 

We conjecture that this is the best possible relation 

between P and a. Indeed, in the remainder of this 

section we prove that this is the case when the max- 

imum redundancy is one. For the general case, we show 

that the average - and therefore the maximum - re- 

dundancy is R(log B/(a2 log a)). This establishes the 

conjecture for the most interesting case, when a is a 

fixed constant. It remains an interesting open prob- 

lem to remove the factor a2 from the denominator of 

the above bound. In particular, when the redundancy 

T is a small constant, our lower bound implies a log- 

arithmic lower bound a = n( dog B/ log log B) , while 

the above construction guarantees a polynomial upper 

bound, O(B&). 

The case P = 1 

We will show that up to a constant factor the above 

indexing scheme is optimal when r = 1. The result 

below was implicitly shown for the special case when 

the blocks are restricted to be rectangular, in [15]. 

Theorem 1 Any indexing scheme of redundancy 1 for 

Sdimensional range queries has access overhead at least 

Bi. For the d-dimensional case, the lower bound is 
g-5. 

Sketch of proof. We only sketch the Zdimensional 

case, the general case being a straightforward general- 

ization. 

We will use only the 1 x B and B x 1 queries. Con- 

sider a block S E S that intersects x horizontal lines and 

y vertical lines (by a ‘line” we mean a set of data points 

of the form ((1, j), (2, j), . . ., (n, j)} or {(i, l), (i,2), . . ., 

(i, n)}. Since we must have xy 2 B, we conclude that 

x + y is at least 2B3. Therefore, the block intersects 

at least 2B* of the above queries. The number of pairs 

of intersecting blocks and queries is no less than 2B* 
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Therefore, every t < k must satisfy the inequality art - 

p(i) - 1 < 0. It immediately follows that if a posi- 

tive integer t does not satisfy this inequality, then the 

number k of subsets must be less than t. So, in order 

to upper bound the number k of subsets, we need to 

guarantee that the above inequality is not satisfied by 

at least one positive integer. Obviously, the numbers t 

that do not satisfy the inequality are between the roots 

of the polynomial at -p(i) - 1. We can therefore guar- 

antee that one of them is integer by requiring that the 

two roots differ by more than 1. Since the roots of the 

polynomial are 

a + p/2 f & + Pm2 - 2p 

P 
, 

times the total number of blocks, which is 2Btn2/B. 

Since there are 2n2/B queries in total in the collection 

being considered, the average number of intersecting 

blocks per query is B+ . When the maximum redun- 

dancy is r = 1, all these blocks are needed to cover the 

query. Notice that we showed not only that there exists 

a query with access overhead B*, but that a random 

query (from the above set) has this access overhead. ! 

The redundant case 

To prove a lower bound for the case in which redun- 

dancy is allowed to be greater than one, we will use an 

interesting result from extremal set theory. A similar 

result is given as exercise 13.3 in [17], attributed to I<, 

Corr&li; it is also apparently known in coding theory as 

Johnson’s Lemma (Z. Furedi, private communication). 

We give a simple proof below: 

Lemma 1 Let A be a finite set and Sl, 5’2,. . . , Sk be 

subsets of A, each of size at least CXIAI, such that the 

intersection of any two of them is at most /3IAl. If p < 

(Y~/(~-cY) then th e number of subsets k is at most a//3. 

Proof. Since Sr, Ss, . . . , St, t 5 k, are subsets of A, 

their union Sr U 5’2 U . . . U St is also a subset of A and 

therefore 
t 

It follows that 

j=l 

By the assumptions about the sizes of the subsets and 

their pairwise intersection, the last inequality implies 

that 
‘A\ 

tcxIAl - 
0 
; PI4 5 I4 



it is easy to verify that they differ by more than 1 when 

p < o2/(2 - a). 
But then, the number of subsets is at most equal to 

the minimum root of the above polynomial. Thus 

k< cr+p/2-&+P/2)2-w 

P 

This last inequality implies that k 5 CY/~. u 

Note that the hypotheses of the above lemmacannot 

be improved by a factor more than 2, because when 

p 2 02, the number of possible subsets is unbounded, 

i.e., it is an increasing function of IAI. 

We will use the above lemma to give lower bound 

of the average access overhead a as a function of the 

redundancy T. But first, we need to prove the following 

crucial lemma. 

Lemma 2 Let a be the access overhead. For each x 

and each query Q of dimensions x x (B/x), there is a 

block S and a subset 0 of Q f~ S such that the points 

of 0 belong to exactly x/a vertical lines and each one 

of these vertical lines contains exactly B/(ax) points of 

0. 

Proof. 

Consider a query Q of B points and dimensions x x  

(B/x), for some x. Let L be a vertical line of Q. Since 

the access overhead is a and Q has size B, Q, and conse- 

quently L, is covered by at most a blocks. One of these 

blocks, SL, must contain at least a fraction of l/a of the 

points of L, that is, 5’~ must contain at least B/(ax) 

points of L. Hence, with each vertical line L of Q, we 

can associate a block St that covers at least B/(ax) 

points of the line. Since at most a blocks cover B, there 

is a block S that is associated with at least x/a verti- 

cal lines. Therefore, Q n S contains x/a vertical lines 

and each one of these vertical lines contains (at least) 

B/(ax) points. ! 

For each query Q, there may be many possible sub- 

sets Q, but we can fix once and for all one of them; we 

will denote it by Q. 

We now have all the necessary ingredients for the 

main result of this subsection: 

Theorem 2 The access overhead a and the redundancy 

T  must satisfy T  - a2 log(2a2) 2 $ log B. 

Proof. Let c 1 2 be a parameter to be fixed later. 

For each j = 0, 1, . . .., log, B, we Fan partition the n x n 

space into queries Qi, Q?2, . . . , Q$,B of dimensions ci x 

B/d. We will concentrate on the set of queries a, for 

i=1,2 ,..., n2/Bandj=0,1 ,..., lo&B. Wewantto 

show that “many” blocks are needed to cover all queries 

a. Instead of arguing directly about the queries a, we 

will argue about their subsets a. By Lemma 2, each 

such subset belongs entirely into some block. It suffices 

therefore to show that many blocks are required to have 

all G’s as subsets. To do this, we show that no block 

can contain many sets a. 

Fix a block S and consider all e’s that are subsets 

of S. We will use Lemma 1 to show that the number of 

a’s that are subsets of S is small. Since by Lemma 2 

each such subset has B/(xa) lines and each line has x/a 

points, it follows all subsets have B/a2 points, and we 

only need to upper bound the maximum size of their 

pairwise intersection. We claim that this is at most 

5. To see this, notice first that for all distinct i,i’: 

I@ n @,I = 0, because @ and Q$ are members of a 

partition of the whole space. Furthermore, when j < j’: 

[a n @:I 5 3, because Lemma 2 assures us that a 

has d/a vertical lines and every vertical line of C$ has 

3 points. 

Hence, we can apply Lemma 1 with cr = 3 and 

P = 3. We can now fix the parameter c = 2a2, so that 

the hypotheses of Lemma 1 are satisfied. Therefore, the 

number of q’s that are subsets of block S is at most 

a/p = 2a2. 

There are g (1 + log, B) subsets @, in total. Each 

block includes at most 2a2 of them. Thus, there are 
at le& nll+log, blocks. It follows that the average 

redundanzy iz> .w 2 w = 5=jz. ! 

An implicit assumption in the above calculations 

is that n is sufficiently large: R(B2) (Bd for the d- 

dimensional case). Furthermore, we assumed that cer- 

tain quantities, such as log, B, are integers. It is easy 

to see that this assumption does not affect the results 

by more than a small constant factor when B is a large 

constant. 

Set workloads 

Let us now concentrate on workloads in which the do- 

main is the powerset of (1,2,. . . , n), and we have in- 

clusion queries. We show that these workloads are far 

worse than 2-dimensional queries; in fact, they have 

worst-case access overhead regardless of the redundancy. 

Theorem 3 FOT each redundancy T , there exists a set 

inclusion workload such that the access overhead is B. 

Proof. Let n be an integer larger than rB2 and con- 

sider a workload where I consists of all singletons {l}, 

(21 , . . . , {n} and each query is a subset of {1,2,. . . , n} 

that has exactly B elements. We claim that the access 

overhead is B. To see this notice that each element can 

be in the same block with at most rB other elements. 

Therefore, there are at least n/(rB) 1 B elements such 

that no two of them belong to the same block. So, a 

query of B such elements cannot be covered by less than 

B blocks. •I 
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It is interesting to note that the number of queries 

involved in the proof of Theorem 3 is exponential in the 

size of the instance I. In contrast, the number of range 

queries is polynomial in the size of the instance I, with 

the dimension appearing in the exponent of the polyno- 

mial. It is hardly surprising that the trade-off between 

redundancy and access overhead is, in general, worse 

for workloads with a large number of queries. However, 

it is easy to see that there are workloads with expo- 

nential number of queries that have optimal trade-off. 

Consider, for example, the workload where the queries 

are unions of disjoint sets Sr, SZ, . . . , Sk, each of size B, 

and I = U$‘i. Then the indexing scheme with blocks 

Sl,S2,... ,Sk has redundancy r = 1, access overhead 

a = 1, and the number of queries is CI = 2%. On the 

other hand, notice that the instance I of a workload 

may have elements that do not appear in any query 

and consequently there are workloads with small num- 

ber of queries (compared to the size of the instance) and 

worst trade-off. 

4 Discussion and open problems 

We believe that our framework will result in a useful 

theory of indexability and we provide here a detailed 

research program towards such a theory. This program 

spans the following directions: 

Range queries. In this work, we consider mainly 2- 

dimensional workloads. It seems that there is space for 

improvement in the trade-off of Theorem 2, for large 

access overhead a; we conjecture that the correct trade- 

off is r 1 e. It is also useful to extend the results to 

2-dimensional workloads that are not restricted to the 

lattice. It seems possible that better lower bounds can 

be shown for this case. 

For higher dimensions the problem becomes quali- 

tatively different. Theorem 1 of this paper provides a 

lower bound for the non-redundant case for lattice d- 

dimensional workloads. It is open whether a matching 

upper bound is achievable, even for small d 2 3. Of 

course, the more general problem of characterizing the 

trade-off for the non-redundant case is more important. 

One possible criticism of our lower bounds could be 

that they occur at range queries that are “long and 

narrow,” extreme in their aspect ratio. It seems that 

our results can be extended to the case of queries with 

aspect ratio A, by replacing B with A in the lower and 

upper bound expressions. It will be also very interesting 

to come up with upper bounds for these types of queries. 

Set inclusion workloads. The type of set inclusion 

queries that we consider here is too general and there- 

fore the lower bound of Theorem 3 is only slightly infor- 

mative. An interesting direction for future research is 

to consider set inclusion workloads with restricted type 

of queries. A natural way to do this is either to sim- 

ply restrict the number of queries or to consider queries 

where each element appears in a bounded number of 

them. 

In fact, any workload can be mapped to a set in- 

clusion workload with restricted set of queries. In this 

sense, the class of set workloads is universal. It will be 

therefore very interesting to map the workloads of im- 

portant indexing problems (such as range queries, simi- 

larity queries, k-nearest neighbors queries, and k-closest 

pairs queries) to set workloads and seek hidden common 

characteristics. 

As with any theory of computational limitations, our 

results may help refocus research in indexing towards 

directions such as formally understanding the (statisti- 

cal, geometric, or other) properties of workloads which 

empirically appear to defy our lower bounds. The frac- 

tal dimension has been mentioned as a parameter with 

some explanatory power in this regard [7, 31; however, 

this does not address the impact of the set of queries 

on the performance of indexing schemes. 

Dynamic and on-line workloads. In this work, we 

consider only static workloads. In practice, however, 

the most important type of workloads are dynamic, i.e., 

elements are inserted or deleted from the instance I and 

the set 8 of queries changes respectively. It is an in- 

teresting open problem to extend our framework to the 

dynamic case. 

In practice also, the set of possible queries is not 

completely known in advance. Consider an indexing 

scheme that is allowed to be re-organized in response 

to queries. The goal is to minimize the sum of the 

m-organization cost and the access cost. This on-line 

problem seems to capture the essence of many practical 

indexing problems and it will be very interesting to seek 

competitive algorithms for it 1131. 

Complexity of indexing schemes. Our framework sup- 

presses important aspects of indexing by focusing on 

the trade-off between redundancy and access overhead. 

However, it may also help us to refocus our research on 

the complexity of indexability. More precisely, it allows 

to separate the two sources of complexity of indexing 

schemes. The first one is the complexity of designing 

an indexing scheme: Given a workload, find a set of 

blocks with a given redundancy that have minimum ac- 

cess overhead. The second one is the time and, perhaps 

more importantly, the space complexity of answering a 

query: Given a set of blocks and a query, find a mini- 

mum set of blocks (or a set of Q blocks) that covers the 

query. 

A possible approach to reduce the complexity of in- 

dexing schemes is to use randomization. Consider for 



example a random indexing scheme, i.e, the set of blocks 

are drawn randomly from a given distribution. For such 

a scheme we are interested in the expected redundancy 

and the expected access ratio. Or, we can fix the redun- 

dancy and ask for the expected access overhead. The 

main advantage of using randomized indexing schemes 

is that the complexity of designing them may be sub- 

stantially lower than that of designing a deterministic 

indexing scheme. Similarly, it may sometimes be easier 

to show that a randomized indexing scheme has a good 

trade-off. 

There is also an interesting direction for extending 

our models and results, motivated by some “new com- 

putational paradigms”. One can imagine a situation 

where queries are %zzy; and need not be answered 

exactly. One might have a probabilistic distribution of 

queries, instead of a set, while each query is a weighted 

subset of the dataset, with weights representing rele- 

vance. We are interested in efficient access methods 

that return a large portion of the weight of each query, 

with high probability. 

Varying size B of blocks. Our model of block size 

presupposes that all items of a domain have the same 

storage requirements. This is clearly a simplification 

in the case of set workloads, and indeed even in the 

case of simpler workloads such as those of the B-tree, 

which typically use “key compression” schemes when 

possible [4]. Even if all items require the same storage, 

most structures allow some empty space in the blocks. 

For most index structures, blocks are required to have 

between B/2 and B items. 

An immediate extension of our work is to consider 

workloads where each element of the domain has a an 

associate weight (size), and the sum of weights in each 

block is bounded by some constant B. This gives rise 

to interesting weighted versions even for the problems 

studied in this paper. 
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