
Real-Time Syst (2018) 54:307–388

https://doi.org/10.1007/s11241-017-9295-2

On the analysis of random replacement caches using

static probabilistic timing methods for multi-path

programs

Benjamin Lesage1
· David Griffin1

· Sebastian Altmeyer2
·

Liliana Cucu-Grosjean3
· Robert I. Davis1,3

Published online: 18 December 2017

© The Author(s) 2017. This article is an open access publication

Abstract Probabilistic hard real-time systems, based on hardware architectures that

use a random replacement cache, provide a potential means of reducing the hardware

over-provision required to accommodate pathological scenarios and the associated

extremely rare, but excessively long, worst-case execution times that can occur in deter-

ministic systems. Timing analysis for probabilistic hard real-time systems requires the

provision of probabilistic worst-case execution time (pWCET) estimates. The pWCET

distribution can be described as an exceedance function which gives an upper bound

on the probability that the execution time of a task will exceed any given execution

time budget on any particular run. This paper introduces a more effective static prob-

abilistic timing analysis (SPTA) for multi-path programs. The analysis estimates the

temporal contribution of an evict-on-miss, random replacement cache to the pWCET

distribution of multi-path programs. The analysis uses a conservative join function that

provides a proper over-approximation of the possible cache contents and the pWCET

B Benjamin Lesage

benjamin.lesage@york.ac.uk

David Griffin

david.griffin@york.ac.uk

Sebastian Altmeyer

altmeyer@uva.nl

Liliana Cucu-Grosjean

liliana.cucu@inria.fr

Robert I. Davis

rob.davis@york.ac.uk

1 University of York, York, UK

2 University of Amsterdam, Science Park 904, Room C3.101, 1098 XH, Amsterdam, Netherlands

3 INRIA, Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-017-9295-2&domain=pdf
http://orcid.org/0000-0002-5772-0928

308 Real-Time Syst (2018) 54:307–388

distribution on path convergence, irrespective of the actual path followed during exe-

cution. Simple program transformations are introduced that reduce the impact of path

indeterminism while ensuring sound pWCET estimates. Evaluation shows that the

proposed method is efficient at capturing locality in the cache, and substantially out-

performs the only prior approach to SPTA for multi-path programs based on path

merging. The evaluation results show incomparability with analysis for an equivalent

deterministic system using an LRU cache. For some benchmarks the performance

of LRU is better, while for others, the new analysis techniques show that random

replacement has provably better performance.

Keywords Cache analysis · Probabilistic timing analysis · Random replacement

policy · Multi-path

Extensions

This paper builds upon previous work published in RTSS 2015 (Lesage et al. 2015a)

with the following extensions:

– we introduce and prove additional properties relevant to the comparison of the

contribution of different cache states to the probabilistic worst-case execution

time of tasks in Sect. 3;

– an improved join transfer function, used to safely merge states from converging

paths, is introduced in Sect. 5 and by construction dominates the simple join

introduced in Lesage et al. (2015a);

– we present and prove the validity of path renaming in Sect. 6 which allows the

definition of additional transformations to reduce the set of paths considered during

analysis;

– our evaluation explores new configurations in terms of both the analysis methods

used and the benchmarks considered (see Sect. 7).

1 Introduction

Real-time systems such as those deployed in space, aerospace, automotive and railway

applications require guarantees that the probability of the system failing to meet its

timing constraints is below an acceptable threshold (e.g. a failure rate of less than

10−9 per hour for some aerospace and automotive applications). Advances in hardware

technology and the large gap between processor and memory speeds, bridged by the

use of cache, make it difficult to provide such guarantees without significant over-

provision of hardware resources.

The use of deterministic cache replacement policies means that pathological worst-

case behaviours need to be accounted for, even when in practice they may have a

vanishingly small probability of actually occurring. The use of cache with a random

replacement policy means that the probability of pathological worst-case behaviours

can be upper bounded at quantifiably extremely low levels, for example well below

the maximum permissible failure rate (e.g. 10−9 per hour) for the system. This allows

123

Real-Time Syst (2018) 54:307–388 309

the extreme worst-case behaviours to be safely ignored, instead of always included in

the estimated worst-case execution times.

The random replacement policy further offers a trade-off between performance and

cost thanks to a minimal hardware cost (Al-Zoubi et al. 2004). The policy and variants

have been implemented in a selection of embedded processors (Hennessy and Patterson

2011) such as the ARM Cortex series (2010), or the Freescale MPC8641D (2008).

Randomisation further offers some level of protection against side-channel attacks

which allow the leakage of information regarding the running tasks. While methods

relying solely on the random replacement policy may still be circumvented (Spreitzer

and Plos 2013), the definition of probabilistic timing analysis is a step towards the

analysis of other approaches such as randomised placement policies (Wang and Lee

2007; 2008).

The timing behaviour of programs running on a processor with a cache using a

random replacement policy can be determined using static probabilistic timing analysis

(SPTA). SPTA computes an upper bound on the probabilistic Worst-Case Execution

Time (pWCET) in terms of an exceedance function. This exceedance function gives

the probability, as a function of all possible values for an execution time budget x ,

that the execution time of the program will exceed that budget on any single run. The

reader is referred to Davis et al. (2013) for examples of pWCET distributions, and

to Cucu-Grosjean (2013) for a detailed discussion of what is meant by a pWCET

distribution.

This paper introduces an effective SPTA for multi-path programs running on hard-

ware that uses an evict-on-miss, random replacement cache. Prior work on SPTA for

multi-path programs by Davis et al. (2013) used a path merging approach to com-

pute cache hit probabilities based on reuse distances. The analysis derived in this

paper builds upon more sophisticated SPTA techniques for the analysis of single path

programs given by Altmeyer and Davis (2014, 2015). This new analysis provides

substantially improved results compared to the path merging approach. To allow the

analysis of the behaviour of caches in isolation, we assume the existence of a valid

decomposition of the architecture with regards to cache effects with bounded hit and

miss latencies (Hahn et al. 2015).

1.1 Related work

We now set the work on SPTA in context with respect to related work on both

probabilistic hard real-time systems and cache analysis for deterministic replacement

policies. The methods introduced in this paper belong to the realm of analyses that

estimate bounds on the execution time of a program. These bounds may be classi-

fied as either a worst-case probability distribution (pWCET) or a worst-case value

(WCET).

The first class is a more recent research area with the first work on providing bounds

described by probability distributions published by Edgar and Burns (2000, 2001).

The methods for obtaining such distributions can be categorised into three different

families: measurement-based probabilistic timing analyses, static probabilistic timing

analyses, and hybrid probabilistic timing analyses.

123

310 Real-Time Syst (2018) 54:307–388

The second class is a mature area of research and the interested reader may refer to

Wilhelm et al. (2008) for an overview of these methods. A specific overview of cache

analysis for deterministic replacement policies together with a comparison between

deterministic and random cache replacement policies is provided at the end of this

section.

1.1.1 Probabilistic timing analyses

Measurement-based probabilistic timing analyses (Bernat et al. 2002; Cucu-Grosjean

et al. 2012) collect observations on the execution time of the task under study on

the target hardware. These observations are then combined, e.g. through the use of

extreme value theory (Cucu-Grosjean et al. 2012), to produce the desired worst-case

probabilistic timing estimate. Extreme Value Theory may potentially underestimate

the pWCET of a program as shown by Griffin and Burns (2010). The work of Cucu-

Grosjean et al. (2012) overcomes this limitation and also introduces the appropriate

statistical tests required to treat worst-case execution times as rare events. The sound-

ness of the results produced by such methods is tied to the observed execution times

which should be representative of the ones at runtime. This implies a responsibility on

the user who is expected to provide input data to exercise the worst-case paths, less the

analysis results in unsound estimates (Lesage et al. 2015b). These methods nonethe-

less exhibit the benefits of time-randomised architectures. The occurrence probability

of pathological temporal cases can be bounded and safely ignored provided they meet

requirements expressed in terms of failure rates.

Path upper-bounding (Kosmidis et al. 2014) defines a set of program transformations

to alleviate the responsibility of the user to provide inputs which cover all execution

paths. The alternative paths of conditional constructs are padded with semantic-

preserving instructions and memory accesses such that any path followed in the

modified program is an upper-bound of any of the original alternatives. Measurement-

based analyses can then be performed on the modified program as the paths exercised

at runtime upper-bound any alternative in the original application. Hence, upper-

bounding creates a distinction between the original code and the measured one. It

may also result in paths which are the sum of the original alternatives.

Hybrid probabilistic timing analyses are methods that apply measurement-based

methods at the level of sub-programs or blocks of code and then operations such as

convolution to combine these bounds to obtain a pWCET for the entire program. The

main principles of hybrid analysis were introduced by Bernat et al. (2002, 2003) with

execution time probability distributions estimated at the level of sub-programs. Here,

dependencies may exist among the probability distributions of the sub-programs and

copulas are used to describe them (Bernat et al. 2005).

By contrast, SPTAs derive the pWCET distribution for a program by analysing

the structure of the program and modelling the behaviour of the hardware it runs

on. Existing work on SPTA has primarily focussed on randomized architectures con-

taining caches with random replacement policies. Initial results for the evict-on-miss

(Quinones et al. 2009) and evict-on-access (Cucu-Grosjean et al. 2012; Cazorla et al.

2013) policies were derived for single-path programs. These methods use the reuse

distance of each access to determine its probability of being a cache hit. These results

123

Real-Time Syst (2018) 54:307–388 311

were superseded by later work by Davis et al. (2013) who derived an optimal lower

bound on the probability of a cache hit under the evict-on-miss policy, and showed

that evict-on-miss dominates evict-on-access. Altmeyer and Davis (2014) proved the

correctness of the lower bound derived in Davis et al. (2013), and its optimality with

regards to the limited information that it uses (i.e. the reuse distance). They also showed

that the probability functions previously given in Kosmidis et al. (2013) and Quinones

et al. (2009) are unsound (optimistic) for use in SPTA. In 2013, a simple SPTA for

multipath programs was introduced by Davis et al. (2013), based on path merging.

With this method, accesses are represented by their reuse distances. The program is

then virtually reduced to a single sequence which upper-bounds all possible paths with

regards to the reuse distance of their accesses.

In 2014, more sophisticated SPTA methods for single path programs were derived

by Altmeyer and Davis (2014). They introduced the notion of cache contention, which

combined with reuse distance enables the computation of a more precise bound on the

probability that a given access is a cache hit. Altmeyer and Davis (2014) also introduced

a significantly more effective method based on combining exhaustive evaluation of

the cache behaviour for a limited number of relevant memory blocks with cache

contention. This method provides an effective trade-off between analysis precision and

tractability. Griffin et al. (2014a) introduces orthogonal Lossy compression methods

on top of the cache states enumeration to improve the trade-off between complexity

and precision.

Altmeyer and Davis further refined their approach to SPTA for single path pro-

grams in 2015 (Altmeyer et al. 2015), bridging the gap between contention and

enumeration-based analyses. The method relies on simulation of the behaviour of

a random replacement cache. As opposed to exhaustive state analyses however, focus

is set at each step on a single cache state to capture the outcome across all possible

states. The resulting approach offers an improved precision over contention-based

methods, at a lower complexity than exhaustive state analyses.

In this paper, we build upon the state-of-the-art approach (Altmeyer and Davis 2014),

extending it to multi-path programs. The techniques introduced in the following

notably allow for the identification on control flow convergence of relevant cache

contents, i.e. the identification of the outcomes in multi-path programs. The approach

focuses on the enumeration of possible cache states at each point in the program. To

reduce the complexity of such an approach, only a few blocks, identified as the most

relevant, are analysed at a given time.

1.1.2 Deterministic architectures and analyses

Static timing analysis for deterministic caches (Wilhelm et al. 2008) relies on a two step

approach with a low-level analysis to classify the cache accesses into hits and misses

(Theiling et al. 1999) and a high-level analysis to determine the length of the worst-case

path (Li and Malik 2006). The most common deterministic replacement policies are

least-recently used (LRU), first-in first-out (FIFO) and pseudo-LRU (PLRU). Due to

the high-predictability of the LRU policy, academic research typically focusses on LRU

caches–with a well-established LRU cache analysis based on abstract interpretation

(Alt et al. 1996; Theiling et al. 1999). Only recently, analyses for FIFO (Grund and

123

312 Real-Time Syst (2018) 54:307–388

Reineke 2010) and PLRU (Grund and Reineke 2010; Griffin et al. 2014b) have been

proposed, both with a higher complexity and lower precision than the LRU analysis

due to specific features of the replacement policies. Despite the focus on LRU caches

and its analysability, FIFO and PLRU are often preferred in processor designs due to

the lower implementation costs which enable higher associativities.

Recently, Reineke (2014) observed that SPTA based on reuse distances (Davis et

al. 2013) results, by construction, in less precise bounds than existing analyses based on

stack distance for an equivalent system with a LRU cache (Wilhelm et al. 2008). How-

ever, this does not hold for the more sophisticated SPTA based on cache contention

and collecting semantics given by Altmeyer and Davis (2014). Analyses for deter-

ministic LRU caches are incomparable with these analyses for random replacement

caches. This is illustrated by our evaluation results. It can also be seen by consider-

ing simple examples such as a repeated sequence of accesses to five memory blocks

〈a, b, c, d, e, a, b, c, d, e〉 with a four-way associative cache. With LRU, no hits can

be predicted. By contrast, with a random replacement cache and SPTA based on cache

contention, four out of the last five accesses can be assumed to have a non-zero prob-

ability of being a cache hit (as shown in Table 1 of Altmeyer and Davis 2014), hence

SPTA for a random replacement cache outperforms analysis of LRU in this case.

We note that in spite of recent efforts (de Dinechin et al. 2014) the stateless random

replacement policies have lower silicon costs than LRU, and so can potentially provide

improved real-time performance at lower hardware cost.

Early work (David and Puaut 2004; Liang and Mitra 2008) in the domain of SPTA

for deterministic architectures relied for its correctness on knowledge of the probability

that a specific path would be taken or that specific input data would be encountered;

however, in general such assumptions may not be available. The analysis given in this

paper does not require any assumption about the probability distribution of different

paths or inputs. It relies only on the random selection of cache lines for replacement.

1.2 Organisation

In this paper, we introduce a set of methods that are required for the application of SPTA

to multi-path programs. Section 2 recaps the assumptions and methods upon which

we build. These were used in previous work (Altmeyer and Davis 2014) to upper-

bound the pWCET distribution of a trace corresponding to a single path program.

We then proceed by defining key properties which allows the ordering of cache states

w.r.t. their contribution to the pWCET of a program (Sect. 3). We address the issue of

multi-path programs in the context of SPTA in Sect. 4. This includes the definition of

conservative (over-approximate) join functions to collect information regarding cache

contention, possible cache contents, and the pWCET distribution at each program

point, irrespective of the path followed during execution. Further improvements on

cache state conservation at control flow convergence are introduced in Sect. 5. Section 6

introduces simple program transformations which improve the precision of the analysis

while ensuring that the pWCET distribution of the transformed program remains sound

(i.e. upper-bounds that of the original). Multi-path SPTA is applied to a selection of

benchmarks in Sect. 7 and the precision and run-time of the different approaches

123

Real-Time Syst (2018) 54:307–388 313

compared. Section 8 concludes with a summary of the main contributions of the paper

and a discussion of future work.

2 Static probabilistic timing analysis

In this section, we recap on state-of-the-art SPTA techniques for single path pro-

grams (Altmeyer and Davis 2014). We first give an overview of the system model

assumed throughout the paper in Sect. 2.1. We further recap on the existing methods

(Altmeyer and Davis 2014) to evaluate the pWCET of a single path trace using a col-

lecting approach (Sect. 2.2) supplemented by a contention one. The pertinence of the

model is discussed at the end of this section. The notations introduced in the present

contributions have been summarised in Table 1.

We assume an architecture for which a valid decomposition exists with regards to

the cache, such that its timing contribution can be analysed in isolation from other

components (Hahn et al. 2015). Further, the overall execution time penalty emanating

from cache misses and hits are assumed to be bounded by the latencies assumed by

the analysis. Thus a local worst-case, a miss in the context of the cache, can be added

to the local worst-case for other components to obtain a bound on the global worst

case (Reineke et al. 2006). This enables analysis of the impact of the cache in isolation

from other architectural features.

2.1 Cache model

We assume a single level, private, N -way fully-associative cache with an evict-on-

miss random replacement policy. On an access, should the requested memory block

be absent from the cache then the contents of a randomly selected cache line are

evicted. The requested memory block is then loaded into the selected location. Given

that there are N ways, the probability of any given cache line being selected by the

replacement policy is 1
N

. We assume a fixed upper-bound on the hit and miss latencies,

denoted by H and M respectively, such that H < M. (We note that the restriction

to a fully-associative cache can be easily lifted for a set-associative cache through the

analysis of each cache set as an independent fully-associative cache.)

2.2 Collecting semantics

We now recap on the collecting semantics introduced by Altmeyer and Davis (2014)

as a more precise but more complex alternative to the contention-based method of

computing pWCET estimates. This approach performs exhaustive cache state enu-

meration for a selection of relevant accesses, hence providing tight analysis results

for those accesses. To prevent state explosion, at each point in the program no more

than R memory blocks are relevant at the same time. The relevant accesses are ones

heuristically identified as benefiting the most from a precise analysis.

A trace t is defined as an ordered sequence [e1, . . . , en] of n accesses to memory

blocks, such that ei = e j if accesses ei and e j target the same memory block. If access

123

314 Real-Time Syst (2018) 54:307–388

Table 1 Summary of introduced notations

Notation Description

pWCET Upper-bound on the execution time distribution of a program over all paths

H Upper-bound on the latency incurred by a cache hit

M Upper-bound on the latency incurred by a cache miss

N Cache associativity

E Set of accessed cache blocks

E⊥ Set of accessed cache blocks including non-relevant elements ⊥

t = [e1, . . . , ei] A trace, a sequence of accesses to memory blocks

D Execution time or cache miss probabilistic distribution

D(x) Occurrence probability of execution time x

P(D ≥ x) Likelyhood that distribution D exceeds execution time x

s ∈ CS Analysed cache state

(C, P, D) = s Analysed cache state including:

- C : Cache contents, set of blocks known to be present in cache;

- P: Occurrence probability of the cache state at a specific program point;

- D: Execution time distribution up to a specific program point

Dinit Initial, empty execution time distribution

S ∈ 2CS Set of possible caches states at a specific program point

S ⊎ S′ Weighted merge on cache states, merge probability and distributions for

cache states with identical contents

u(s, e) Update cache state s upon access to element e, replacing a line and

increasing the corresponding distribution D upon a miss

U (S, e) Update each cache state in set S upon access to element e

rd(e, t) Reuse distance of element e in trace t , upper-bound on the number of

evictions since the last access to e

frd(e, t) Forward reuse distance of element e in trace t , upper-bound on the number

of evictions before the next access to e

con(e, t) Cache contention for element e in trace t , bound on the number of blocks

contending for cache space since the last access to e

P̂(ehit
i

) Lower-bound on the probability of access ei to hit in cache

ξ̂i Upper-bound on the execution time probability of element ei , expressed as

a probability mass function

D̂(t) Upper-bound on the execution time distribution of trace t

D(t, s) Execution time distribution of trace t starting from cache state s

D(t, S) Execution time distribution of trace t starting from possible cache states S

D ⊗ D′ Convolution of distributions D and D′

D ⊙ D′ Least upper-bound of distributions D and D′

D ≤ D′ Distribution D′ upper-bounds D, iff ∀x, P(D ≥ x) ≤ P(D′ ≥ x)

G = (V, L , vs , ve) Control flow graph G capturing possible paths in a program, including:

V : Set of nodes in the program, each corresponding to an accessed

element;

L: Set of edges between nodes;

123

Real-Time Syst (2018) 54:307–388 315

Table 1 continued

Notation Description

vs ∈ V : Start node in the program;

ve ∈ V : End node in the program

π = [v1, . . . , vk] Path from node v1 to vk , valid sequence of nodes in a CFG

vi → ∗v j Set of paths from vi to v j

dom(vn) Dominators of node vn , nodes guaranteed to be traversed before vn from

the CFG entry vs

post-dom(vn) Post-dominators of node vn , nodes guaranteed to be traversed after vn to

the CFG exit ve

Π(V) All paths with nodes included exclusively in set of vertices V

Π(G) All paths from the start to the end of CFG G

D̂(π) Upper-bound on the execution time distribution of path π

D̂(G) pWCET of G, upper-bound on the execution time of its paths

rdG (v) Maximum reuse distance of node v across all paths in G leading to v

frdG (v) Maximum forward reuse distance of node v across all paths in G leading to

v

conG (v) Maximum contention of node v across all paths in G leading to v

s ⊑ S Cache state s holds less pessimistic information than the set of cache states

S

S ⊑ S′ The set of cache states S holds less pessimistic information than states in S′

S ⊔ S′ Upper-bound on cache states S and S′, more pessimistic than both S and S′

C ≤rank C ′ Ranking of cache contents C , used for heuristic comparison of contents

based on their expected contribution to execution time distribution

Flush(S) Empty the contents of all cache states in S

ei is relevant, the block it accesses will be considered relevant until the next non-

relevant access to the same block. The precise approach is only applied for relevant

accesses while the contention-based method outlined in Sect. 2.2.1 is used for the

others, identified as ⊥ in the trace of relevant blocks. The set of elements in a trace

becomes E⊥ = E ∪ {⊥}.

The abstract domain of the analysis is a set of cache states. A cache state is a triplet

C S = (C, P,D) with cache contents C , a corresponding probability P ∈ R, 0 <

P ≤ 1, and a miss distribution D : N → R when the cache is in state C . C is a set of at

most N memory blocks picked from E. A cache state which holds less than N memory

blocks represents partial knowledge about the cache contents without any distinction

between empty lines or unknown contents.1 The set of all cache states is denoted by

CS. Miss distribution D captures for each possible number of misses n, the probability

that n misses occurred from the beginning of the program up to the current point in

the program. The method computes all possible behaviours of the random cache with

the associated probabilities. It is thus correct by construction as it simply enumerates

all states exhaustively.

1 This suits evict-on-miss caches which do not prioritize empty lines when filling the cache.

123

316 Real-Time Syst (2018) 54:307–388

The analysis starts from the empty cache state {(∅, 1,Dinit)} where

Dinit(x) =

{

1 if x = 0

0 otherwise
(1)

The update function u describes the update for a single cache state upon access

to element e ∈ E⊥. Upon accessing a relevant element e �= ⊥, if e is present in the

cache, its contents are left unchanged. Otherwise new cache states need to be generated

considering that each element may be evicted with the same probability 1
N

(in the evict

function). A miss is accounted for in the resulting distributions D′ only upon misses

on a relevant access. Formally:

u : CS × E
⊥ → 2CS (2)

u((C, P,D), e) =

{

{(C, P,D)} if e ∈ C ∧ e �= ⊥

evict((C, P,D), e) otherwise
(3)

evict((C, P,D), e) =

{

{(C\{e′} ∪ {e}, P · 1
N

,D′) | e′ ∈C} ∪ {(C ∪ {e}, P · N−|C |
N

,D′)} if e �=⊥

{(C\{e′}, P · 1
N

,D′) | e′ ∈C} ∪ {(C, P · N−|C |
N

,D′)} if e=⊥
(4)

D
′(x) =

⎧

⎨

⎩

D(x) if e = ⊥

0 if x = 0

D(x − 1) otherwise

(5)

The evict(s, e) function creates N different cache states, one per possible evicted

element, some of which might represent the same cache contents. To reduce the state

space, a merge operation
⊎

combines two cache states if they contain exactly the same

memory blocks. If merging occurs, each distribution is weighted by its probability:

⊎

: 2CS → 2CS (6)

⊎

⎛

⎜

⎝

⎧

⎪

⎨

⎪

⎩

(C0, P0,D0)
...

(Cn, Pn,Dn)

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠
=
{

Merge
({

(Ci , Pi ,Di)|Ci = C j

})

∣

∣

∣
0 ≤ j ≤ n

}

(7)

Merge

⎛

⎜

⎝

⎧

⎪

⎨

⎪

⎩

(C0, P0,D0)
...

(Cn, Pn,Dn)

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠
=

(

C0,

n
∑

i=0

Pi ,

n
∑

i=0

Pi
∑n

k=0 Pk

· Di

)

(8)

where p ·D denotes the multiplication of the elements of distribution D, (p ·D)(x) =

p · D(x), and D1 + D2 is the summation of two distributions, (D1 + D2)(x) =

D1(x) + D2(x).

The update function can be defined for a set of cache states using the update function

u for a single cache state and the ⊎ merge operator as follows:

U : 2CS × E⊥ → 2CS (9)

U (S, e) =
⊎

{u(CS, e) | CS ∈ S} (10)

123

Real-Time Syst (2018) 54:307–388 317

Given Sres the set of cache states at the end of the execution of a trace t , the miss

distribution D̂miss of the relevant blocks in t is the sum of the individual distributions

of each cache state weighted by their probability of occurrence:

D̂miss =
∑

{P · D | (C, P,D) ∈ Sres} (11)

The corresponding execution time distribution, D̂, can then be derived, for a trace

of n accesses, as follows:

D̂ (m × M + (n − m) × H) = D̂miss(m) (12)

2.2.1 Non-relevant blocks analysis

One possible naive approach for non-relevant blocks would be to classify them as

misses in the cache and add the resulting latency to the previously computed distribu-

tions. The collecting approach proposed by Altmeyer and Davis (2014) relies on the

application of the contention methods to estimate the behaviour of the non-relevant

blocks in a trace. Each access in a trace has a probability of being a cache hit P(ehit
i),

and of being a cache miss P(emiss
i) = 1 − P(ehit

i). These methods rely on different

metrics to lower-bound the hit probability of each access such that the derived bound

can be soundly convolved.

The reuse distance rd(e) of element e is the maximum number of accesses to

consecutively different blocks since the last access to the same block. It captures an

upper-bound on the maximum number of possible evictions between two accesses to

the same block, similarly to the stack distance for LRU caches. It differs from the stack

distance in that accesses to the same intermediate block may thus be accounted for

multiple times if they may have been evicted during the access sequence. Should there

be no such prior access to the same block, the reuse distance is defined as ∞. Given

the set of all traces T and of all elements E, the reuse distance is formally defined as:

rd : E × T → N ∪ {∞}

rd(ei , [e1, . . . , ei−1]) =

⎧

⎪

⎨

⎪

⎩

|{k| j < k < i ∧ ek �= ek−1}| if ei = e j∧

∀k : j < k < i, ei �= ek

∞ otherwise

(13)

Note that this definition of the reuse distance is a variation of the one proposed in

earlier work. The revised equation (13) computes the same property, but has to discard

successive accesses to the same block. Successive accesses to the same memory block

lead to guaranteed cache hits under an evict-on-miss cache replacement policy. Traces

are thus collapsed in Altmeyer et al. (2015) to remove all successive accesses to the

same memory block. The number of cache misses is not impacted and cache hits can

later be accounted for as an additional contribution to the trace. This last step is not

straightforward for multi-path programs as the number of guaranteed hits varies on

different paths.

123

318 Real-Time Syst (2018) 54:307–388

Conversely, we define the forward reuse distance frd(e) of an element e as the

maximum number of possible evictions before the next access to the same block. If its

block is not reused before the end of the trace, the forward reuse distance of an access

is defined as ∞:

frd : E × T → N ∪ {∞}

frd(ei , [ei+1, . . . , em]) =

⎧

⎪

⎨

⎪

⎩

|{k| j < k < i ∧ ek �= ek−1}| if ei = e j ,

∀k : i < k < j, ei �= ek

∞ otherwise

(14)

The probability of ei being a hit is set to 0 if there are more blocks since the last

access to the same block that contend for cache space than the N available lines. This

is captured by the cache contention con(ei , t) (Altmeyer and Davis 2014) of element

ei in trace t . The definition of P̂(ehit
i) which denotes a lower bound on the actual

probability P(ehit
i) of a cache hit is as follows:

P̂(ehit
i) =

{

0 con(ei , t) ≥ N
(

N−1
N

)rd(ei ,t)
otherwise

(15)

The cache contention con(e) (Altmeyer and Davis 2014) of element e captures

the number of cache blocks which contend with e for space in the cache. It includes

all potential hits and the R relevant blocks, denoted relevant_blocks, since we have

to assume they occupy a separate location in the cache. Contention depends on and

contributes to the potential hits captured by P̂(ehit
j), j < i , and is computed from the

first accesses, where rd(ei , t) = ∞, to the last. The contention also accounts for the

first miss er which follows the previous access to the same memory block as ei and

hence contends with ei . The replacement policy means that er always contends for

space. The cache contention is formally defined as:

con : E × T → N ∪ {∞}

con(ei , t) =

{

∞ if rd(ei , t)=∞

|{ek |k ∈ conS(ei , t) ∧ ek /∈ relevant_blocks}| + R otherwise

(16)

with

conS(ei , t) = { j | e j ∈ t ∧ P̂(ehit
j) �= 0 ∧ k < j < i ∧ ek

= ei ∧ ∀x : k < x < i, ei �= ex }

∪{r | rd(ei , t) �= 0∧

r = min({x | P̂(ehit
x) = 0 ∧ k < x < i ∧ ek

= ei ∧ ∀y : k < y < i, ei �= ey})}

(17)

123

Real-Time Syst (2018) 54:307–388 319

Example We now illustrate the distinction between cache contention and reuse distance

in identifying accesses with a null hit probability in (15). Consider the following

sequence of accesses, on a 4 line fully-associative cache, where the reuse distance of

each access is given as a super-script:

a, b, c, b1, d, f, a5, b3, c5, d4, f 4

All second accesses to blocks a, b, c, d, and f have a non-zero chance to hit when

considered in isolation. However as highlighted in Altmeyer and Davis (2014), those

cannot be simply combined as the hit probability of a block depends on the behaviour

of other blocks; the last 5 accesses of the sequence, each accessing a different block,

cannot hit at the same time assuming a 4 line cache. The hit probability of an access

need to be set to 0 in (15) if enough blocks are inserted in cache since the last access

to the same block. Should the reuse distance be considered to identify whether or not

an access is a potential hit, the last occurrences of a, c, d, and f would be considered

as misses.

Using cache contention, some accesses are assumed to be potential hits, occupy-

ing cache space to the detriment of others. Cache contention captures a specific but

potential hit/miss scenario the occurrence of which is bounded using each access hit

probability in (15). As proven in Altmeyer and Davis (2014), the estimated hit prob-

ability of the overall sequence holds. In our example, contention identifies that a, b,

and c can be kept in the cache simultaneously. Using the contention as a super-script,

we have:

a, b, c, b1, d, f, a2, b2, c3, d4, f 4

c3 implies that c may be present in cache, assuming only three other blocks may

have been kept alongside it, a and b as potential cache hits, and d then replaced by

f . This assumption regarding d and f is an important difference between contention

and the stack distance metric used in LRU cache analysis. Using the stack distance,

i.e. the number of different blocks accessed since the last access to c, d and f would

be regarded as occupying a different line in cache, resulting in a guaranteed miss for

c. d4 is classified as a miss: a2, b2 and c3 have been identified as potential misses, and

f is a miss resulting in the eviction of the fourth and only cache line where d could

be held. f 4 is similarly classified as a miss.

Note that this definition of contention is an improvement on the one proposed in

earlier work. Instead of accounting for each access independently, we account for their

accessed blocks instead. The reasoning behind this optimisation is that if an accessed

block hits more than once, it does not occupy additional lines. In the previous example,

b is only accounted for once in the contention of a2 and c3. The subtle difference lies

in (17) where the blocks e j are accounted for instead of each access j individually

(ei = e j if they access the same block).

The execution time of an element ei can be approximated with the help of the

discrete random variable ξ̂i which has a probability mass function (PMF) defined as:

123

320 Real-Time Syst (2018) 54:307–388

ξ̂i (x) =

⎧

⎪

⎨

⎪

⎩

P̂(ehit
i) if x = H

1 − P̂(ehit
i) if x = M

0 otherwise

(18)

An estimated pWCET (Cucu-Grosjean 2013) distribution D̂ of a trace, is an upper-

bound on the execution time distribution D induced by the randomised cache for the

trace,2 such that ∀v, P(D̂ ≥ v) ≥ P(D ≥ v). In other words, the distribution D̂ is

greater than D (López et al. 2008), denoted D̂ ≥ D.

The probability mass functions Êi are independent upper-bounds on the behaviour

of corresponding accesses ei . An estimate for trace t can be derived by combining the

probability mass function Êi for each of its composing memory accesses ei :

D̂(t) =
⊗

ei ∈t

Êi (19)

where ⊗ represents the convolution of PMFs:

(ξ̂i ⊗ ξ̂ j)(x) =

+∞
∑

k=−∞

ξ̂i (k) · ξ̂ j (x − k) (20)

The resulting distribution for non-relevant accesses is independent of the relevant

blocks considered in the cache during the collecting analysis step. A worst-case is

assumed where the R blocks are always kept in cache. The distributions resulting from

the two analysis steps, collecting and contention, can therefore be soundly convolved

to estimate the execution time of a trace. The pWCET of a trace can then be derived by

convolving the execution time distributions produced by the contention, and collecting

approaches, as derived from D̂miss.

2.3 Discussion: relevance of the model

The SPTA techniques described apply whether the contents of the memory block are

instruction(s), data or both. While address computation (Huynh et al. 2011) may not

be able to pinpoint the exact target of an access, e.g. for data-dependent requests,

relational analysis (Hahn and Grund 2012), introduced in the context of deterministic

systems, can be used to identify accesses which map to the same or different sets, and

access the same or different block. Two accesses which obey the same block relation

can then be replaced by accesses to the same unique element, hence improving the

precision of the analysis.

The methods assume that there are no inter-task cache conflicts due to preemption,

i.e. a run-to-completion semantics with non-preemptable program execution. Concur-

2 Note the precise execution time distribution is effectively that which would be observed by executing the

trace an infinite number of times.

123

Real-Time Syst (2018) 54:307–388 321

rent cache accesses are also precluded, i.e. we assume a private cache or appropriate

isolation (Chiou et al. 2000).

In practice, detailed analysis could potentially distinguish between different laten-

cies for each access, beyond M and H, but such precise estimation of the miss latency

requires additional analysis steps, e.g. analysis of the main memory (Bourgade et

al. 2008). Further, to reduce the pessimism inherent in using a simple bound, partic-

ularly for the miss latency, events such as memory refresh can be accounted for as

part of higher level schedulability analyses (Atanassov and Puschner 2001; Bhat and

Mueller 2011).

3 Comparing cache contents

The execution time distribution of a trace in our model depends solely on the behaviour

of the cache. The contribution of a cache state to the execution time of a trace thus

solely depends on its initial contents. The characterisation of the relation between the

initial contents of different caches allows for a comparison of their temporal contri-

bution to the same trace. This section introduces properties and conditions that allow

this comparison. They are used in later techniques to improve the selection of cache

contents on path convergence, and identify paths with the worst impact on execution

time.

An N -tuple represents the concrete contents of an N -way cache, such that each

element corresponds to the block held by a single line. The symbol _ is used to denote

an empty line. For each such concrete cache s, there is a corresponding abstract cache

contents C which holds the exact same set of blocks. C might also capture uncertainty

regarding the contents of some lines.

Given cache state s = 〈l1, . . . , lN 〉,3 s[li = b] represents the replacement of mem-

ory block or line li in cache by memory block b. Note that b can only be present once

in the cache, b ∈ s ⇒ s[li = b] = s. s[−li] is a shorthand for s[li = _] and identifies

the eviction of memory block li from the cache. s[li = b][l j = e] denotes a sequence

of replacements where b first replaces li in s, then e replaces l j . Two cache states

s and s′ although not strictly identical may exhibit the same behaviour if they hold

the exact same contents, e.g. 〈a, _〉 = 〈_, a〉 are represented using the same abstract

contents {a}. Under the evict-on-miss random replacement policy, there is no correla-

tion between the physical and logical position of a block with respects to the eviction

policy.

We distinguish the execution time distribution of trace t using input cache state s

with the notation D(t, s). The execution time distribution of the sequence [[b], t], the

concatenation of access [b] to trace t , can be expressed as follows:

D([[b], t], s = 〈l1, . . . , lN 〉) =

⎧

⎨

⎩

H + D(t, s) if b ∈ s

M +
∑

i∈[1,N]

1
N

· D(t, s[li = b]) otherwise

(21)

3 We assume a fully-associative cache, but this restriction can be lifted to set-associative caches through

the independent analysis of each set.

123

322 Real-Time Syst (2018) 54:307–388

where the sum of distributions and the product of a distribution with 1
N

are defined as

per (6), and (L + D)(x) = L + D(x) denotes the sum of distribution D with latency

L. Upon a hit, the input cache state s is left unchanged, while evictions occur to make

room for the accessed block upon a miss.

The extension of this definition to the concatenation of traces requires the identifi-

cation of the outcomes of an execution, i.e. the cache state C corresponding to each

possible sequence of events, along with its occurrence probability P and execution

time distribution D:

D([tp, ts], s) =
∑

(C,P,D)∈outcomes(tp,s)

P · (D ⊗ D(ts, C)) (22)

where outcomes(tp, s) is the set of cache states produced by the execution of tp from

input cache state s and ⊗ is the convolution of distributions.

Theorem 1 The eviction of a block from any input cache state s cannot decrease the

execution time distribution of any trace t, D(t, s) ≤ D(t, s[−e]).

Proof See Appendix. ⊓⊔

Corollary 1 In the context of evict-on-miss randomised caches, for any trace, the

empty state is the worst initial state over any other input cache state s, D(t, s) ≤

D(t,∅).

The eviction of a block might trigger additional misses, resulting in a distribution

that is no less than the one where the cache contents is left untouched. This provides

evidence that the assumption upon a non-relevant access that a block in cache is evicted,

as per the update function in (3), is sound. Similarly, the replacement of a block in the

cache might trigger additional misses but might also result in additional hits instead

upon reuse of the replacing block. The impact of such a behaviour is however bounded.

Theorem 2 The replacement of a random block in cache triggers at most one addi-

tional hit.

The distribution for any trace t from any cache state s is upper-bounded by the

distribution for trace t after the replacement of a random block in s and assuming a

single hit turns into a miss.

H + D(t, s) ≤ M +
∑

i∈[1,N]

1

N
· D(t, s[li = e]) (23)

Proof See Appendix. ⊓⊔

The block selected for eviction impacts the likelihood of those additional latencies

suffered during the execution of the subsequent trace. Intuitively, the closer the evicted

block is to reuse, the worse the impact of the eviction. We use the forward reuse distance

of blocks at the beginning of trace t , frd(b, t) as defined in (14), to identify the blocks

which are closer to reuse than others.

123

Real-Time Syst (2018) 54:307–388 323

Theorem 3 The replacement of a block in input cache state s by one which is reused

later in trace t cannot result in a decreased execution time distribution: frd(b, t) ≤

frd(e, t) ≤ ∞ ∧ b ∈ s ∧ e /∈ s ⇒ D(t, s) ≤ D(t, s[b = e])

Proof See Appendix. ⊓⊔

4 Application of SPTA to multi-path programs

In this section, we improve upon the state-of-the-art SPTA techniques for traces (Alt-

meyer and Davis 2014) recapitulated in Sect. 2 and present methods for multi-path

programs, that is complete control-flow graphs. A naive approach would be to com-

pute all possible traces T of a task, analyse each independently and combine their

distributions. However, there are two significant problems with such an approach.

Firstly, while the merge operation (6) could be used to provide a weighted com-

bination given the probability of each path being taken at runtime, such assumptions

about path probability do not hold in general. This issue can however be resolved by

taking the maximum distribution of the resulting execution-time distributions for each

trace:
⊙

t∈T

D(t) (24)

where we define the ⊙ operation as follows

⊙: ((N → R) × (N → R)) → (N → R) (25)

Da ⊙ Db := D
H (26)

with

D
H (x) = max

(

∑

y≥x

Da(y) −
∑

y>x

D
H (y),

∑

y≥x

Db(y) −
∑

y>x

D
H (y), 0

)

(27)

The ⊙ operator computes the least upper-bound of the complementary cumulative

distribution (1-CDF) of all its operands (similar to the upper-bound depicted in Fig. 1),

a maximum of distributions which is valid irrespective of the path executed at runtime.

By construction the following properties hold

Da ⊙ Db ≥ Da ∧ Da ⊙ Db ≥ Db (28)

Da ≤ Db ⇒ Da ⊙ Db = Db (29)

Secondly, the number of distinct traces is exponential in the number of control

flow divergences, conditional constructs and loop iterations, which means that this

naive approach is computationally intractable. A standard data-flow analysis is also

problematic, since it is not possible to assign to each instruction a corresponding

contribution to the execution time distribution.

Our analysis on control-flow graphs resolves these problems. It relies on the collect-

ing and the contention approaches for relevant and non-relevant blocks respectively, as

123

324 Real-Time Syst (2018) 54:307–388

Fig. 1 Relation between the execution time distribution of different paths (pET) and the pWCET of a

program

per the cache collecting approach on traces given by Altmeyer and Davis (2014). First,

the loops in the control-flow graph are unrolled. This allows the implementation of

the following steps, the computation of cache contention, the identification of relevant

blocks and the cache collection, to be performed as simple forward traversals of the

control flow graph. Approximation of the possible incoming states on path conver-

gence keeps the analysis tractable. Finally, the contention and collecting distributions

are combined using convolution.

4.1 Program representation

We represent the possible paths in a program using a control-flow graph (CFG), that

is a directed graph G = (V, L , vs, ve) with a finite set V of nodes, a set L ⊆ V × V

of edges, a start node vs ∈ V and an end node ve ∈ V . Each node v corresponds to

an element in E accessed at node v. A path π from node v1 to node vk is a sequence

of nodes π = [v1, v2, . . . , vk−1, vk] where ∀i : (vi , vi+1) ∈ L and defines a corre-

sponding trace. By extension, [π, π ′] denotes the path composed of path π followed

by path π ′. Given a set of nodes V ′, the symbol Π(V ′) denotes the set of all paths

with nodes that are included exclusively in V ′, and Π(G) ⊆ Π(V) the set of all

paths of CFG G from vs to ve. Similarly to traces, the pWCET D̂(G) of a program is

the least upper-bound on the execution time distributions (pET) of all possible paths.

Hence, ∀π ∈ Π(G), D̂(G) ≥ D(π). Figure 1 illustrates this relation using the 1-CDF

(F(x) = P(D ≥ x)) of different execution time distributions and a valid pWCET.

We say that a node vd dominates vn in the control-flow graph G if every path

from the start node vs to vn goes through vd , vs →∗ vn = vs →∗ vd →∗ vn ,

where vs →∗ vd →∗ vn is the set of paths from vs to vn through vd . Similarly, a

node vp post-dominates vn if every path from vn to the end node ve goes through vp,

vn →∗ ve = vn →∗ vp →∗ ve. We refer to the set of dominators and post-dominators

of node vn as dom(vn) and post-dom(vn) respectively.

We assume that the program always terminates. Bounded recursion and loop itera-

tions are requirements to ensure this termination property of the analysed application.

123

Real-Time Syst (2018) 54:307–388 325

a b

c

d

e f

Fig. 2 Simple do-while loop structure with an embedded conditional. b is the loop head, with its body

comprising {b, c, d, e} and the e to b edge as the back-edge. e and c are both valid exits

The additional restrictions described below are for the most part tied to the WCET

analysis framework (Wilhelm et al. 2008) and not exclusive to the new method. These

are reasonable assumptions for the software in critical real-time systems.

Any cycle in the CFG must be part of a natural loop. We define a natural loop

l = (vh, Vl) in G with a header vh ∈ V and a finite set of nodes Vl ⊆ V . Considering

the example in Fig. 2, b is the head of the loop composed of accesses Vl = {b, d, c, e}.

The header is the single entry-point of the loop, ∀vn ∈ Vl , vh ∈ dom(vn). Conversely,

a natural loop may exhibit multiple exits, e.g. as a result of break constructs. Loop

l contains at least one back edge to vh , an edge whose end is a dominator of its

source ∃vb ∈ Vl , (vb, vh) ∈ L . All nodes in the loop can reach one of its back edges

without going through the header vh . The transition from the header vh of loop l to

one of its nodes vn ∈ Vl begins an iteration of the loop. The maximum number of

consecutive iterations of each loop, iterations which are not separated by the traversal

of a node outside Vl , is assumed to be upper-bounded by max-iter(l, ctx). The value

of max-iter(l, ctx) might change depending on the context ctx, call stack and loop

iteration, of loop l, e.g. to capture triangular loops. This guarantees a finite number of

paths in the program.

Calls are also subject to a small set of restrictions to guarantee the termination

of the program. Recursion is assumed to be bounded, that is cycles or repetitions in

the call graph of the analysed application must have a maximum number of iterations,

similarly for loops in the control flow. Function pointers can be represented as multiple

targets attached to a single call. Here, the set of target functions must be exact or an

over-estimate of the actual ones, so as to avoid unsound estimates which do not take

all valid paths into account.

4.2 Complete loop unrolling

In the first analysis step, we conceptually transform the control-flow graph into a

directed acyclic graph by loop unrolling and function inlining (Muchnick 1997). In

contrast to the naive approach of enumerating all possible traces, analysis through

complete loop unrolling has linear rather than exponential complexity with the number

of loop iterations.

Loop unrolling and function inlining are well-known techniques to improve the

precision of data-flow analyses. A complete physical unrolling that removes all back-

edges significantly increases the size of the control-flow graph. A virtual unrolling

and inlining is instead performed during analysis such that calls and iterations are

processed as required by the control flow. The analysis then distinguishes the different

call and iteration contexts of a vertex. In either case, the size of the graph explored

123

326 Real-Time Syst (2018) 54:307–388

during analysis and its complexity scales with the number of accesses in the program

under consideration.

Unrolling simplifies the analysis and significantly improves the precision. As

opposed to state of the art analyses for deterministic replacement policies (Alt et

al. 1996), the analysis of random caches through cache state enumeration does not

rely on the computation of a fixpoint. The abstract domain for the analysis is by nature

growing with every access since it includes the estimated distribution of misses. Suc-

cessive iterations increase the probability of blocks in the loop’s working set being in

the cache, and in turn increase the likelihood of hits in the next iteration. The exhaus-

tive analysis, if not supplemented by other methods, must process all accesses in the

program.

We assume in the following that unrolling is performed on all analysed programs.

Section 6.4.2 discusses preliminary work to bypass this restriction. The analysis of

large loops, with many predicted iterations, can be broken down into the analysis of a

single iteration or groups thereof provided a sound upper-bound of the input state is

used. The contributions of different segments are then combined to compute that of the

complete loop or program. Such an upper-bound input can be derived as an example

using cache state compression (Griffin et al. 2014a) to remove low value information.

The definition of techniques to exploit the resulting trade-off between precision and

analysis complexity is left as future work.

4.3 Reuse distance/cache contention on CFG

To extend the concept of reuse distance to control-flow graphs, we lift the definition

from a single trace to all traces and take the maximal reuse distance of all possible

traces ending in the node v:

rdG : V → N ∪ {∞} (30)

rdG(v) = max
π=[vs ,...,v]

(rd(v, π)) (31)

The cache contention is extended accordingly:

conG : V → N (32)

conG(v) = max
π=[vs ,...,v]

(con(v, π)) (33)

An upper-bound of both metrics for each access can be computed through a forward

data flow analysis. The reuse distance analysis uses the maximum of the possible values

on path convergence. Similarly, we lift the definition of the forward reuse distance to

control-flow graphs. It can be computed through a backward data flow analysis. The

contention for each block at each point in the program is computed through a forward

data flow analysis. The computation of the contention relies on the estimation of

the set of contending cache blocks. Its analysis domain is more complex than the

reuse distance as different sets of contending blocks may arise on different paths. The

analysis tracks all such sets from incoming paths, as long as they are conclusive to a

123

Real-Time Syst (2018) 54:307–388 327

potential cache hit, i.e. all sets are smaller than the associativity of the cache, and not

included into each other, i.e. one does not upper-bound the other.

We then traverse the unrolled control-flow graph in reverse post-order, compute the

distributions with the contention-based approach, and use the maximum distribution

on path convergence, with the maximum operator ⊙ as the join operator.

4.4 Selection of relevant blocks

The selection of relevant blocks in Altmeyer and Davis (2014) also needs to be modified

to accommodate for a control-flow graph. Cache state enumeration is only performed

for relevant accesses, ensuring more precise analysis results for the selected accesses.

Earlier work (Altmeyer and Davis 2014) relied on an absolute set of R relevant blocks

for the whole trace. Instead, we only restrict ourselves to at most R relevant blocks

at any point in the program. Given a position in the control-flow, the heuristic tracks

the R blocks with the shortest lifespan, i.e. the shortest distance between their last

and next access. Such accesses are among the most likely to be kept in the cache and

benefit from a precise estimate of their hit probability through state enumeration. Note

that this heuristic relies on a lower bound on the lifespan of blocks instead of an upper

bound.

The R blocks with the smallest lifespan are analysed using the collecting semantics,

as they are the most likely to be kept in cache. For each of these blocks b, the access

prior to b must ensure its insertion in the cache during analysis. As such, the access

needs to be marked as relevant, included in the relevant_accesses set, and excluded

from accesses contributing to contention. The computation of cache contention is

modified to account for relevant accesses instead of blocks:

con(ei , t) =

{

∞ if rd(ei , t) = ∞

|{ek |k ∈ conS(ei , t) ∧ k /∈ relevant_accesses}| + R otherwise

(34)

4.5 Approximation of cache states

We assume no information about the probability of taking one path or another, hence

the join operator must combine cache states in such a way that the resulting state is

an over-approximation of all incoming paths, i.e. it contains the same or degraded

information. To capture this property, we introduce the partial ordering ⊑ between a

cache state and a set thereof such that s ⊑ Sb implies that Sb holds more pessimistic

information than s, resulting in more pessimistic timing estimates. We overload this

operator to relate sets of cache states where Sa ⊑ Sb implies that Sb holds more pes-

simistic information than Sa . More formally, the ⊑ notation (Peleska and Löding 2008)

identifies Sb as an upper-bound of Sa in 2CS.

Consider a simple cache state s = ({a, b}, 0.5,D). Intuitively, the information

represented by sa = ({a}, 0.5,D) is more pessimistic than that captured by s, s ⊑ sa .

123

328 Real-Time Syst (2018) 54:307–388

Conversely, sc = ({a, c}, 0.5,D) holds less pessimistic information regarding c, so

s �⊑ sc. The set S = {({a}, 0.25,D), ({b}, 0.25,D)} also approximates s, s ⊑ S; the

knowledge that a and b are both present in the cache (s) is reduced to guarantees only

about the presence of either a or b in S. As a consequence, the sequence of accesses

abab will trigger more misses starting from states in S, than from state s. Assuming

D < D′, then s′ = ({a, b}, 0.5,D′) holds more pessimistic information than s, s ⊑ s′.

The intuition behind the approximation of a cache state is that the information it

captures is further diluted into a single cache state or a set of cache states. The relation

s ⊑ S holds if the set of cache states S approximates cache state s = (C, P,D). In

other words, (i) S is as likely to occur, (ii) all blocks known to be in states of S are

present in s, and (iii) the contribution of S to the pWCET is greater than or equal to

the contribution D of s. We formally define s ⊑ S as follows:

(C, P,D) ⊑ S ⇒

⎛

⎝P =

⎛

⎝

∑

(C ′,P ′,D′)∈S

P ′

⎞

⎠

⎞

⎠∧
(

∀(C ′, P ′,D′)∈ S, C ⊇ C ′ ∧ D ≤ D
′
)

(35)

By extension, the over-approximation of a set of cache states is the composition of

approximations F(s) ∈ 2CS of each element s in the set. We formally define the ⊑

partial ordering between sets of cache states Sa ∈ 2CS and Sb ∈ 2CS as follows:

Sa ⊑ Sb ⇒ ∃F : CS → 2CS, (∀s ∈ Sa, s ⊑ F(s)) ∧ Sb =
⊎

s∈Sa

F(s) (36)

A join function ⊔ is valid if given any set of cache states Sa ∈ 2CS and Sb ∈ 2CS,

Sa ⊑ (Sa ⊔ Sb) and Sb ⊑ (Sa ⊔ Sb). An optimal join function ⊔ should return the least

upper-bound of its parameters, i.e. the smallest state which upper-bounds all its inputs.

Our definition of the ⊑ operator is however independent of the executed path: Sa and

Sb may admit multiple upper-bounds incomparable to each other. The definition of

an optimal join function would require a more complete ordering, taking into account

the upcoming sequence of accesses to order sets of cache states depending on the

likelihood their contents are reused. Optimality would still be challenged in multiple

path applications where different paths stem from the join.

To prove over-approximation results in more pessimistic timing estimates, we derive

the execution time distribution of a trace t using the set of input cache states S from

its definition for a single state and the concatenation of traces respectively in (21)

and (22):

D(t, S) =
∑

(C ′,P ′,D′)∈S

P ′ ·
(

D
′ ⊗ D(t, C ′)

)

(37)

where the sum of distributions and the product of a distribution with P are defined as

per (6), and ⊗ is the convolution of distributions.

The definition of over-approximations and their contribution to the execution time

distribution of a trace relies on the merge ⊎ and convolution ⊗ operators defined

respectively in (6) and (20). Both offer properties used in the evaluation of the con-

123

Real-Time Syst (2018) 54:307–388 329

tribution of their operands. The convolution operator preserves the relative ordering

between its inputs, and the merge operation adds the contribution of its operands.

Lemma 1 The convolution operation preserves the ordering between execution time

distributions:

D ≤ D
′ ⇒ D ⊗ A ≤ D

′ ⊗ A

Proof See Appendix. ⊓⊔

Lemma 2 The contributions of merged sets of cache states S and A is the sum of their

individual contributions:

∀t,D(t, S) + D(t, A) = D(t, S ⊎ A)

Proof See Appendix. ⊓⊔

Theorem 4 The over-approximation Sb of a set of cache states Sa holds more pes-

simistic information than Sa ,

∀t, Sa ⊑ Sb ⇒ D(t, Sa) ≤ D(t, Sb)

Proof The relation between Sb and Sa , defined in (36), implies the existence of an

approximation function F for the cache states in Sa such that:

(∀s ∈ Sa, s ⊑ F(s)) ∧ Sb =
⊎

s∈Sa

F(s) (38)

From (38) and (35), we know that each cache contents C ′ in the approximation

F(s) = (C ′, P ′,D′) is included in the contents C of cache state s = (C, P,D). C ′

can thus be derived by evicting blocks from C . From Theorem 1 we can infer:

∀(C, P,D) ∈ Sa,∀(C ′, P ′,D′) ∈ F((C, P, D)),D(t, C) ≤ D(t, C ′) (39)

From Lemma 1, we can convolve both sides of the inequality with the same distri-

bution D:

∀(C, P,D) ∈ Sa,∀(C ′, P ′,D′) ∈ F((C, P, D)),D⊗D(t, C) ≤ D⊗D(t, C ′) (40)

Approximate distributions D′ in F(s) are also by definition greater than their coun-

terpart D in s. We can similarly factor D(t, C) into both sides of inequality D ≤ D′:

∀(C, P,D) ∈ Sa,∀(C ′, P ′,D′) ∈ F((C, P, D)),D ⊗ D(t, C ′) ≤ D
′ ⊗ D(t, C ′)

(41)

By transitivity of the ≤ operator, we can compare the contribution to the execution

time distribution of s = (C, P,D) and each of the corresponding approximations in

123

330 Real-Time Syst (2018) 54:307–388

F((C, P, D)). That is a comparison between the leftmost term in (40) and rightmost

term in (41) through D ⊗ D(t, C ′):

∀(C, P,D) ∈ Sa,∀(C ′, P ′,D′) ∈ F((C, P, D)),D ⊗ D(t, C) ≤ D
′ ⊗ D(t, C ′)

(42)

We multiply both sides of the inequality by the positive occurrence probability P ′:

∀(C, P,D) ∈ Sa,∀(C ′, P ′,D′) ∈ F((C, P, D)), P ′ · (D ⊗ D(t, C))

≤ P ′ · (D′ ⊗ D(t, C ′)) (43)

The property holds for each approximation in F(s) and can be extended to their

sum:

∀(C, P,D) ∈ Sa,
∑

(C ′,P ′,D′)∈F((C,P,D))

P ′ · (D ⊗ D(t, C))

≤
∑

(C ′,P ′,D′)∈F((C,P,D))

P ′ · D
′ ⊗ D(t, C ′) (44)

From (35) and (38), a state s ∈ Sa has the same occurrence probability as its

approximation F(s):

∀(C, P,D) ∈ Sa, P · (D ⊗D(t, C)) ≤
∑

(C ′,P ′,D′)∈F((C,P,D))

P ′ ·D′ ⊗D(t, C ′) (45)

Both terms of the inequality correspond to the contribution of a set of cache states

to the execution time distribution of trace t as per (37):

∀(C, P,D) ∈ Sa, P · (D ⊗ D(t, C)) ≤ D(t, F((C, P, D))) (46)

The property holds for any cache state s ∈ Sa and can be extended to their sum

such that:
∑

(C,P,D)∈Sa

P · (D ⊗ D(t, C)) ≤
∑

s∈Sa

D(t, F(s)) (47)

From Lemma 2, the inequality also holds for the merge ⊎ across Sa of the approx-

imations F(s):

∑

(C,P,D)∈Sa

P · (D ⊗ D(t, C)) ≤ D

⎛

⎝t,
⊎

s∈Sa

F(s)

⎞

⎠

By definition of Sb in (38) and the application of (37) to Sa , we conclude that:

∀t ∈ T,D(t, Sa) ≤ D(t, Sb)

⊓⊔

123

Real-Time Syst (2018) 54:307–388 331

The ⊑ relation defines a partial ordering between two sets of cache states Sa and Sb.

Namely, Sa ⊑ Sb implies that Sb holds more pessimistic information than Sa . In other

words, the execution of any trace from Sb results in a larger execution time distribution

than the execution of the same trace from Sa . This provides sufficient ground for the

definition of a sound join operation, one that upper-bounds the upcoming contribution

of cache states coming from different paths.

4.6 Join operation for cache collecting

We traverse the (directed acyclic) graph in reverse post-order and compute the set of

cache states at each program point. The join operator
⊔

describes the combination of

two data-flow states from two different sub paths.

Let Sa and Sb be the sets of cache states from the two merging paths. We first define

the set of common memory blocks MSa∩Sb , and then restrict Sa and Sb to this set:

MSa∩Sb =

⎛

⎝

⋃

(Ca ,Pa ,Da)∈Sa

Ca

⎞

⎠ ∩

⎛

⎝

⋃

(Cb,Pb,Db)∈Sb

Cb

⎞

⎠ (48)

S′
a =
⊎

{(Ca ∩ MSa∩Sb , Pa,Da)|(Ca, Pa,Da) ∈ Sa} (49)

S′
b =
⊎

{(Cb ∩ MSa∩Sb , Pb,Db)|(Cb, Pb,Db) ∈ Sb} (50)

S′
a and S′

b are safe over-approximations of Sa and Sb respectively. They only contain

memory blocks common to both sets of cache states, which can therefore be included

in the joined set of cache states.

The set H contains all cache states common to both sets S′
a and S′

b, with the

minimum probability of Pa and Pb, and a miss distribution given by the maximum of

the individual distributions Da and Db:

H = {(C, min(Pa, Pb),Da ⊙ Db)|(C, Pa,Da) ∈ S′
a ∧ (C, Pb,Db) ∈ S′

b ∧ C �= ∅}

(51)

We need to collect the remaining cache states that are (i) contained in S′
a but not in

S′
b, or (ii) are common to both sets, but have a higher probability in S′

a than in S′
b:

Ĥa = {(∅, Pa,Da)|(C, Pa,Da)∈ S′
a ∧C �= ∅ ∧ ∄(Pb,Db), (C, Pb,Db) ∈ S′

b}

⊎ {(∅, Pa −Pb,Da)|(C, Pa,Da)∈ S′
a ∧ (C, Pb,Db)∈ S′

b∧C �=∅∧ Pa >Pb}

⊎ {(∅, P,D)|(∅, P,D) ∈ S′
a}

(52)

Ĥb = {(∅, Pb,Db)|(C, Pb,Db) ∈ S′
b ∧ C �= ∅ ∧ ∄(Pa,Da), (C, Pa,Da) ∈ S′

a}

⊎ {(∅, Pb−Pa,Db)|(C, Pb,Db)∈ S′
b∧(C, Pa,Da)∈ S′

a ∧ C �= ∅∧Pb >Pa}

⊎ {(∅, P,D)|(∅, P,D) ∈ S′
b}

(53)

123

332 Real-Time Syst (2018) 54:307–388

Ĥa and Ĥb both contain exactly one element with the same probability.

Ĥ = {(∅, P,Da ⊙ Db)|(∅, P,Da) ∈ Ĥa ∧ (∅, P,Db) ∈ Ĥb} (54)

H ⊎ Ĥ is a safe over-approximation of both S′
a and S′

b with regards to the ordering

defined in (36). We can define a function Fa , which gives an over-approximation of

each element of S′
a such that (H ⊎ Ĥ) = ⊎sa∈S′

a
Fa(sa), as follows:

Fa(C, Pa, Da) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

{(∅, Pa, Da)} if C = ∅

{(∅, Pa, Da)} if ∄(C, Pb, Db) ∈ S′
b

{(C, Pb, Da ⊙ Db)} ∪ {(∅, Pa − Pb, Da)} if ∃(C, Pb, Db) ∈ S′
b ∧ Pa > Pb

{(C, Pa, Da ⊙ Db)} if ∃(C, Pb, Db) ∈ S′
b ∧ Pa ≤ Pb

(55)

We define the over-approximation function Fb for elements in S′
b analogously:

Fb(C, Pb, Db) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{(∅, Pb, Db)} if C = ∅

{(∅, Pb, Db)} if ∄(C, Pa, Da) ∈ S′
a

{(C, Pa, Da ⊙ Db)} ∪ {(∅, Pb − Pa, Db)} if ∃(C, Pa, Da) ∈ S′
a ∧ Pb > Pa

{(C, Pb, Da ⊙ Db)} if ∃(C, Pa, Da) ∈ S′
a ∧ Pb ≤ Pa

(56)

The join operation is defined as follows:

Sa

⊔

Sb = H ⊎ Ĥ (57)

Example 1 As an illustration, let us consider the state of a 4-way associative cache

upon the convergence of two paths πa = [a, b, c] and πb = [b, c, a, d]. The resulting

set of cache states are denoted by Sa and Sb respectively.

Sa Sb

({a, b, c}, 24/64,D) ({a, b, c, d}, 6/64,D)

({a, b, d}, 12/64, D)

({a, c, d}, 18/64,D)

({b, c, d}, 6/64,D)

({a, c}, 12/64, D) ({a, d}, 12/64,D)

({b, c}, 24/64,D) ({b, d}, 3/64,D)

({c, d}, 6/64,D)

({c}, 4/64,D) ({d}, 1/64,D)

The cache states in Sa and Sb can be reduced to only keep their common blocks

MSa∩Sb = {a, b, c}. Common states are merged together:

123

Real-Time Syst (2018) 54:307–388 333

S′
a S′

b

({a, b, c}, 24/64,D) ({a, b, c}, 6/64,D)

({a, b}, 12/64, D)

({a, c}, 12/64, D) ({a, c}, 18/64,D)

({b, c}, 24/64,D) ({b, c}, 6/64,D)

({a}, 12/64,D)

({b}, 3/64,D)

({c}, 4/64,D) ({c}, 6/64,D)

({}, 1/64,D)

The set of common cache states H , with their minimal, guaranteed probabil-

ity, is defined as H = {({a, b, c}, 6/64,D), ({a, c}, 12/64,D), ({b, c}, 6/64,D),

({c}, 4/64,D)}.

There is no guarantee about the remaining states in S′
a and S′

b or their occurrence

probability, they need to be approximated with the empty cache state:

Ĉa Ĉb

({}, 18/64,D) ({}, 12/64,D)

({}, 6/64,D)

({}, 18/64,D) ({}, 12/64,D)

({}, 3/64,D)

({}, 2/64,D)

({}, 1/64,D)

Hence, the result of the join operation on the convergence of paths πa and πb is given

by:

Sa
⊔

Sb

({a, b, c}, 6/64, D)

({a, c}, 12/64, D)

({b, c}, 6/64, D)

({c}, 4/64, D)

({}, 36/64, D)

5 Improving on the join operation

The basic join operation introduced in the previous section focuses on the conservation

of common cache states. Others, because their contents differ or their occurrence is

bounded on alternative paths, are merged into the empty state. This results in a safe

estimate of the information gathered from different paths. Yet, the method exhibits

some limitations with regards to the information it conserves; the probability of occur-

rence of some blocks in cache, which we refer to as their capacity, is lost during the

join process. We introduce a join function based on conserving this additional capacity

123

334 Real-Time Syst (2018) 54:307–388

of cache states. The function degrades the information about the presence of blocks

in a cache to allocate, in a sound manner, its occurrence probability to a more pes-

simistic state. We first present a ranking heuristic used to identify the cache states to

which capacity should be allocated to in priority in Sect. 5.1. The improved capacity-

conserving join is itself presented in Sect. 5.2.

5.1 Ranking cache states

The ordering ⊑ introduced in Sect. 4.5 allows for the comparison of some cache states

to each other irrespective of the upcoming trace of memory accesses. It is however a

partial ordering and only compares two states with similar or included cache contents.

As illustrated in Theorem 3, ordering the contribution of cache contents which do

not include each other requires the consideration of future accesses as captured by

their forward reuse distance. The definition of an optimal join operation, through the

optimal allocation of capacity to cache states, should ideally minimise the execution

time on the worst-case path. However, multiple, incomparable paths would need to

be considered of which the worst-case is unknown. We instead rely on a heuristic to

prioritise the most beneficial cache states through a ranking system.

The proposed ranking is based on a two sieves approach: (i) the number of useful

blocks in cache are first compared with more blocks ranking higher, (ii) cache states

are then compared based on their expected hit probability. As a result, we can compare

the ranks of two cache states:

C ≤rank C ′ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

true
∣

∣{e|e ∈ C ∧ frdG
min(e) �= ∞}

∣

∣ ≤
∣

∣{e|e ∈ C ′ ∧ frdG
min(e) �= ∞}

∣

∣

true
∑

e∈C P̂(ehit) ≤
∑

e∈C ′ P̂(ehit)∧
∣

∣{e|e ∈ C ∧ frdG
min(e) �= ∞}

∣

∣ =
∣

∣{e|e ∈ C ′ ∧ frdG
min(e) �= ∞}

∣

∣

false otherwise

(58)

The first sieve prioritises cache states whose contents are likely to include others

and hold more information. As per Theorem 1, the loss of information in a cache state

cannot decrease the execution time distribution of an upcoming trace of accesses,

implicitly C ⊆ C ′ ⇒ C ≤rank C ′. The sum of their blocks’ hit probabilities settles

the rank of same-sized cache states, with a higher sum resulting in a higher rank. Each

cache state is reduced to the minimum forward reuse distances of the blocks it holds.

Those are used to estimate the corresponding hit probabilities of upcoming accesses

by adapting the formula proposed in earlier approaches:

P̂(ehit) =

{

0 frdG
min(e) ≥ N

(

N−1
N

)frdG
min(e) otherwise

(59)

It would seem intuitive to rely solely on the reuse distances of the blocks held in a

cache to define its rank. Yet, a block in the cache may have a low minimum forward

reuse distance, increasing its rank, but be reused solely on a path where no other block

is reused. To reduce the complexity of the heuristic, it does not distinguish between

123

Real-Time Syst (2018) 54:307–388 335

the different subsequent paths and so captures and compares only the best possible

reuse patterns, even though in some cases these may be optimistic. The forward reuse

distances of blocks in the two states might interleave, like the upcoming accesses to

these blocks, or vary depending on the considered subsequent path. Theorem 3 on the

impact of a replacement on execution time cannot be used in such a context. Some

cache states may be beneficial on a specific path, but be outranked on others. This

prevents the direct comparison of cache states in the general case.

Our aim is to improve precision in the pWCET estimate, hence the heuristic aims

to preserve capacity for cache blocks that will upon their next access result in a high

probability of a cache hit. This happens, at least on some forward paths, for blocks with

a small forward re-use distance. Preserving capacity for blocks with a larger forward

re-use distance would likely result in a smaller probability of a cache hit and a more

pessimistic overall pWCET estimate. (Note the ranking is only a heuristic and we do

not claim that it makes optimal choices.)

5.2 Capacity conserving join

The join operator introduced earlier may result in lost capacity if the contents of

states on alternative paths do not exactly match. Consider states {a, b, e} and {b, c, e}

respectively in S′
a and S′

b along with others. They both include states {b, e}, {b}, {e}

and ∅ and their capacity could be allocated to whichever is the highest ranking one.

{a, e} on the other hand is a valid approximation of {a, b, e} in which it is included,

but does not approximate {b, c, e}.

The capacity conserving join, to reduce waste, considers the cache states included in

states from either incoming path, S′
a and S′

b, by decreasing rank. Each considered cache

state C is allocated as much of the remaining capacity of the states Ca (respectively

Cb) it approximates in S′
a (resp. S′

b) as possible. The capacity that can be allocated

to C is bounded by the minimum cumulative capacity of the states it approximates in

S′
a and S′

b. We also ensure that the overall contribution of a state Ca or Cb to state C

does not exceed its capacity. This is a requirement for the resulting C to be a valid

approximation as per the ⊑ operator defined in Sect. 4.5. Algorithm 1 outlines the join

process, and we further illustrate it with a simple example.

Example 2 Consider the previous example (Example 1) after the cache states have

been reduced to only their common blocks in lines 1–3. All cache states included

in S′
a ({a, b, c}, {a, b}, {b}, etc.) are present in S′

b (line 4). Assuming the upcoming

sequence of accesses is [a, c, b], the considered states ordered by decreasing rank are:

123

336 Real-Time Syst (2018) 54:307–388

Algorithm 1 Sa

⊔capa
Sb

//Reduce cache states to common blocks, as per (48)

1: blocks := CommonBlocks(Sa , Sb)

2: S′
a =
⊎

{(E ∩ blocks, P,D)|(E, P,D) ∈ Sa}

3: S′
b

=
⊎

{(E ∩ blocks, P,D)|(E, P,D) ∈ Sb}

//Iterate over remaining states

4: R := StatesIncludedIn(S′
a)

5: R := R ∩ StatesIncludedIn(S′
b
)

6: for C in OrderByDecreasingRank(R) do

//Compute available capacity for C

7: capacitya := {(Ca , Pa , Da)|(Ca , Pa , Da) ∈ S′
a ∧ C ⊆ Ca}

8: proba :=
∑

(_,Pa ,_)∈capacitya
Pa

9: capacityb := {(Cb, Pb, Db)|(Cb, Pb, Db) ∈ S′
b

∧ C ⊆ Cb}

10: probb :=
∑

(_,Pb,_)∈capacityb
Pb

//Compute resulting capacity for C

11: p := min(proba , probb)

12: proba := p

13: probb := p

14:

//Pick capacity from states in S′
a (up to p)

15: da := EmptyDistribution()

16: while proba > 0 ∧ (Ca , Pa , Da) in OrderByIncreasingRank(capacitya) do

17: r := min(Pa , proba)

18: da := da + r · Da

19: Pa := Pa − r

20: proba := proba − r

21: end while

//Pick capacity from states in S′
b
(up to p)

22: [...]

23:

//Save resulting state

24: states := states ∪ {C, p, da ⊙ db}

25: end for

//Merge remaining states into the empty state, as per (52)

26: states := states ∪ EmptyAndMerge(S′
a , S′

b
)

27: return states

S′
a S′

b

({a, b, c}, 24/64,D) ({a, b, c}, 6/64,D)

({a, c}, 12/64, D) ({a, c}, 18/64,D)

({a, b}, 12/64, D)

({b, c}, 24/64,D) ({b, c}, 6/64,D)

({a}, 12/64,D)

({c}, 4/64,D) ({c}, 6/64,D)

({b}, 3/64,D)

({}, 1/64,D)

The first iteration of the capacity conserving join focuses on {a, b, c} which no

other state can provide capacity to. As a consequence, after the first iteration, states1 =

{({a, b, c}, 6/64,D)}. In S′
a , the state has a remaining capacity of 18

64
which could be

used to accommodate any of the contents of size 2 or less (i.e. {a, c}, {a, b}, {b, c},

123

Real-Time Syst (2018) 54:307–388 337

etc.). In particular, during the second loop iteration when contributions to the capacity

of {a, c} are gathered from S′
a and S′

b (lines 7–10), we have:

contributiona contributionb

({a, b, c}, 18/64,D)

({a, c}, 12/64, D) ({a, c}, 18/64,D)

The presence of both a and c, captured by state {a, c}, can therefore be guaranteed

with probability 18
64

on both paths. The capacity of states in S′
a and S′

b is decreased

accordingly (lines 15–21). Capacity is first picked from the lowest ranking states, such

that in our example {a, b, c} ∈ Sa still has a remaining capacity of 12
64

(the 18
64

allocated

to {a, c} minus the contribution of the lower ranking {a, c} in Sa , 12
64

).

During this step, the execution time distribution obtained through the combination

of the contributors’ distributions is also computed in da (see line 18) and db respectively

for S′
a and S′

b. An upper-bound of da and db is used when computing the resulting

distribution for the conserved state (line 24). After the second iteration of the algorithm,

states2 = states1 ∪ {({a, c}, 12/64,D)}.

Once all states have been explored, the remaining capacity is gathered into the

empty state (line 26). The conserved contents are:

states = Sa ⊔capa Sb

({a, b, c}, 6/64,D)

({a, c}, 18/64,D)

({a, b}, 12/64,D)

({b, c}, 6/64,D)

({a}, 0/64,D)

({c}, 6/64,D)

({b}, 3/64,D)

({}, 13/64,D)

Keeping only states with a non-null occurrence probability, the capacity conserving

join results in:

states = Sa ⊔capa Sb

({a, b, c}, 6/64,D)

({a, c}, 18/64,D)

({a, b}, 12/64,D)

({b, c}, 6/64,D)

({c}, 6/64,D)

({b}, 3/64,D)

({}, 13/64,D)

123

338 Real-Time Syst (2018) 54:307–388

Compare the resulting contents to that of the previously introduced join operation

repeated for convenience:

Sa
⊔

Sb

({a, b, c}, 6/64, D)

({a, c}, 12/64, D)

({b, c}, 6/64, D)

({c}, 4/64, D)

({}, 36/64, D)

The solution resulting from the application of ⊔capa dominates that of the previously

introduced join operation. Indeed, a state C can only accommodate soundly for itself

or a state it includes. With the proposed ranking heuristic this corresponds to a lower

ranking state which the algorithm explores after C itself. The capacity of C is first

used for C in the algorithm. As a consequence, the capacity allocated to a state is at

least its minimum capacity in Sa or Sb, e.g. 12
64

for {a, c}. This minimum is the capacity

that was allocated to the state in the previous join implementation. Different ranking

heuristics could potentially lose this dominance relation.

The capacity join further keeps the same timing information as the standard ⊔

operation. The combined distributions and their weights are the same, but attached as

a result of the operation to different, less pessimistic cache states. The same fragment

of distribution in the standard operation will account for fewer or the same amount of

misses using the capacity join.

6 Worst-case path reduction

Approximations of the cache contention or the contents of abstract cache states occur

on control flow convergence, when two paths in the control flow graph meet. This

ensures the validity of the bounds computed by SPTA whatever the exercised path at

runtime, while keeping the complexity of the analysis under control. The complete

set of possible paths need not be made explicit; however, the loss of information that

may occur on flow convergence decreases the tightness of the computed pWCET.

In most applications, there exists some redundancy among paths with regards to their

contribution to the pWCET. If a path can be guaranteed to always perform worse than

another (D(πb) ≥ D(πa)), the contribution of the former to the pWCET dominates that

of the latter, D(πb) = D(πb) ⊙ D(πa). In which case, the latter path can be removed

from the set of paths considered by the analysis, hence reducing the complexity of the

control flow, while preserving the soundness of the computed upper-bound.

In this section, we define the notion of inclusion between paths and prove that

path inclusion is a sub-case of path redundancy; the execution time distribution of

an including path dominates that of any paths it includes. Based on this principle, we

introduce program transformations to safely identify and remove from the control-flow

paths that are included in others. This improves the precision of the analysis.

123

Real-Time Syst (2018) 54:307–388 339

Worst-case execution path (WCEP) reduction includes a set of varied modifications:

empty conditions removal, worst-case loop unrolling, and simple path elimination.

They apply on the logical level, during analysis, and unlike path upper-bounding

approaches (Kosmidis et al. 2014) do not require modifications of the object or source

code for pWCET computation.

6.1 Path inclusion

A path is said to include another if it contains at least the same sequence of ordered

accesses, possibly interleaved with additional ones. As an example, consider paths

πa = [a, b, c, e] and πb = [a, b, c, d, a, e] where πa is included in πb. The former

path can be split into sub-paths πS = [a, b, c] and πE = [e], such that πa = [πS, πE].

πb can then be expressed as the interleaving of πS and πE with πV = [d, a], i.e.

πb = [πS, πV , πE]. Similarly, πb includes [a, c, d, e], but not [b, a, c].

Definition 1 (Including path) Let πa and πb be two paths, such that πa is the concate-

nation of two sub-paths πS and πE : πa = [πS, πE]. The inclusion of πa in πb, denoted

πa � πb, is recursively defined as either πb = [πS, πV , πE] or, πb = [πS, πV , π ′
E]

where πE � π ′
E and πE �= π ′

E

Theorem 5 The execution time distribution of a path π prefixed by an access to block

b upper-bounds that of path π , D(π, s) + H ≤ D([[b], π], s).

Proof As per (21), the property trivially holds if [b] is a hit, π executes starting from

the same cache state s in both cases. We focus on the case where [b] is a miss from s.

This results in N possible cache states s[li = b] such that, thanks to Theorem 2:

H + D(π, s) ≤ M +
∑

i∈[1,N]

1

N
· D(π, s[li = b]) (60)

H + D(π, s) ≤ D([[b], π, s) (61)

⊓⊔

For the sake of readability, we omit in the following the cache state s when compar-

ing the execution time distributions of two paths in the following; two paths are always

compared using the same input cache state, D(π) ≤ D(π ′) ⇔ D(π, s) ≤ D(π ′, s).

Theorem 6 The execution time distribution of a path πa prefixed by path πs upper-

bounds that of path πa alone, ∀πs, πa,D(πa) ≤ D([πs, πa]).

Proof From Theorem 5, we know that D(πa) ≤ D([[vn], πa]) which can be

extended to D(πa) ≤ D([[v1, v2, . . . , vn], πa]) since D([[v2, . . . , vn], πa]) ≤

D([[v1, v2, . . . , vn], πa]) and so on. The relation holds for prefixes of arbitrary lengths.

⊓⊔

Theorem 7 (Included path ordering) If πa is included in πb, then the execution time

distribution of πb is greater than or equal to that of πa , πa � πb ⇒ D(πa) ≤ D(πb)

123

340 Real-Time Syst (2018) 54:307–388

if then fi

Fig. 3 Simple if-then conditional structure. The edge from if to f i , through the empty else case, can be

removed for pWCET estimation

Proof We prove this property by induction.

Base case: We need to prove that if πa � πb such that πa = [πS, πE] and

πb = [πS, πV , πE], then D(πa) ≤ D(πb). From Theorem 6, we know that D(πE) ≤

D([πV , πE]).

The execution of πS cannot be impacted by accesses in either πE or πV . It is

therefore the same on both paths πa and πb. As proved in Theorem 6, whatever cache

state is left by the execution of πS , the execution time distribution of [πV , πE] is either

greater than or equal to that of πE . Therefore, D(πa) ≤ D(πb).

Inductive step: Let us assume πa = [πS, πE] and π ′
E is such that πE � π ′

E

and D(πE) ≤ D(π ′
E). We need to prove that for πb = [πS, πV , π ′

E], D(πa) ≤

D(πb). From Theorem 5, we know that D([πV , π ′
E]) ≥ D(π ′

E), and as a conse-

quence D([πV , π ′
E]) ≥ D(πE). Further, the execution time distribution of πS is not

impacted by accesses in either πV , πE , or π ′
E and is the same in πa and πb, hence

D(πa) ≤ D(πb). ⊓⊔

We now extend the notion of path inclusion to sets of paths. A set of paths Π is

a path-included set of Π◦ if each path in Π is included in a corresponding path in

Π◦, Π � Π◦ ⇒ ∀π ∈ Π, ∃π◦ ∈ Π◦, π � π◦. As a consequence, for each path

π ∈ Π , there is a path in Π◦ the actual pWCET of which also upper-bounds the

execution time distribution of π . The actual pWCET of Π◦ is thus an upper-bound

on the execution time distributions of all paths in Π , ∀π ∈ Π,D(Π◦) ≥ D(π).

As the estimated pWCET of a path D̂(π) is an upper-bound on its execution time

distribution, D(π ′) ≤ D̂(π ′), it is sufficient to perform the pWCET analysis of a CFG

G on a reduced set of paths which path-includes the set Π(G).

6.2 Empty conditions removal

Simple conditional constructs may induce paths that are included in others. In partic-

ular, any path that goes through an empty branch or case is included in any alternative

branch which triggers memory accesses. The edges in a CFG which represent such

cases can be safely removed to reduce path indeterminism during pWCET analysis,

improving the precision of the results.

Figure 3 gives an example of this for an if-then construct with an empty else branch.

At point f i in the program, the analysis accounts for the eviction by accesses in then

of blocks present at the end of if. But if the empty edge is kept, any cache block

loaded by the then branch cannot be considered as present by the analysis at f i . This

reduces the knowledge of the cache contents, and the precision of the resulting pWCET

distribution. By removing the edge corresponding to the empty branch we remove this

source of pessimism.

123

Real-Time Syst (2018) 54:307–388 341

An edge from vertex vp to vi corresponds to an empty path if there is an alternative

exit from vp through v j which later reaches vi . The notion of post-dominators, as an

example, can be used to simply capture a subset of those empty branches. In Fig. 3,

any path to the program exit through if or then will traverse f i , which post-dominates

both if and then. More formally:

∀vp ∈ V,∀vi ∈ successors(vp)\{vp},

∃v j ∈ successors(vp)\{vp} ∧ vi �= v j ∧ vi ∈ post-dom(v j)

⇒ Π(L) � Π(L\{(vp, vi)})

(62)

The collecting approach integrates worst-case path computation and cache con-

tribution estimation, referred to as high and low level analyses respectively in prior

WCET estimation approaches (Puschner and Koza 1989), and ignores most feasibil-

ity constraints. This may result in unnecessary pessimism if the infeasible paths are

expensive. Reduction of the different scenarios in the CFG, e.g. by expanding the CFG

to only model feasible paths, allows the capture of some flow constraints at the cost

of an increase in the size of the considered flow.

6.3 Loop unrolling

Natural loop constructs are a source of path redundancy. In particular, paths which

do not exercise the maximum number of iterations of a loop they traverse have an

including counterpart. An iteration of loop l = (vh, Vl) starts with a transition from

its header vh to any of its nodes vn ∈ Vl . Conversely, any iteration, with the exception

of the last, ends with a transition back to the header vh , through a back-edge. The set

of paths Πiter = [Π(Vl\{vh}), [vh]] captures the paths followed during a complete

iteration through loop l.

A valid path which captures n iterations can be expressed as [[vh], π1, . . . , πn−1,

πlast] with ∀i, 1 ≤ i < n, πi ∈ Πiter, and πlast as the last iteration of the loop. πlast is

a path in Π(Vl\{vh}) followed by a node outside the loop. We denote by Πn , the set

of paths which iterate n times through the loop l. A path in Πn+1 can be expressed as

[[vh], π1, . . . , πn−1, πn, πlast] with πn ∈ Πiter, i.e. each path in Πn is included in a

path of Πn+1. By extension, the set of paths Πmax-iter(l) path-includes all other sets of

paths which iterate over l at least once.

As an example, consider the loop l = (b, {b, c, d, e}) in Fig. 4. The path

π1 = [a, b, d, e, f] iterates a single time through l, with πlast = [d, e]. The valid

iteration sequences in this example are [d, e, b] and [c, e, b]. By inserting one iter-

ation before the last in π1, we obtain the valid paths [[a, b], [d, e, b], [d, e, f]] and

[[a, b], [c, e, b], [d, e, f]] respectively. Both paths do indeed include π1.

In our model, we only restrict the maximum number of iterations of a loop. Every

iteration may be the last; there is no guarantee that a loop goes always through the same

number of iteration when it is executed. The loop unrolling algorithm hence operates

without knowledge of the exact number of iterations of the loop. Every unrolled

iteration is connected to the successors of the loop. As per Theorem 7 and the inclusion

property for consecutive loop iterations, it is sufficient for pWCET estimation to only

123

342 Real-Time Syst (2018) 54:307–388

a b

c

d

e f

Fig. 4 Simple do-while loop structure with an embedded conditional. The set of paths which iterate x + 1

times through loop l includes all paths with fewer iterations

a b

c

d

e b

c

d

e b

c

d

e f

Fig. 5 Simple do-while loop structure (Fig. 4) unrolled assuming max-iter(l) = 3. The unrolled (dashed)

back-edges are only kept when a generic loop unrolling algorithm is used. They are removed when

max-iter(l) iterations are enforced

consider paths where each loop, when executed, goes through its current maximum

number of iterations. The unrolling of loop l assumes max-iter(l, ctx) as the exact

iteration count of loop l. In effect, when unrolling any iteration of loop l besides

the last, edges from nodes in the loop to nodes outside l are discarded. Conversely,

unrolling the last iteration implies conserving only the nodes and edges of l which

lead to a loop exit.

This property holds in natural loops as long as any path taken during an iteration can

be taken as well during any other iteration. Complex access patterns or flow constraints,

e.g. if a path can only be executed once per execution of a loop, are a challenge to

this assumption. As discussed in Sect. 6.2, the collecting approach integrates both

worst-case path computation and estimation of the cache contribution, ignoring most

path feasibility constraints. Expansion of the CFG to capture those constraints in its

flow can be applied at the cost of a more complex flow (Fig. 5).

The same principles hold for call inlining. Recursion is also a source of path redun-

dancy. Recursive calls manifest as repetitions in the call stack of an application. Here,

a single source node is attached to the CFG of each procedure, which identifies its start.

The source node therefore behaves similarly to the head of a loop, and is a guaranteed

entry to each call. The same logic applies to both natural loops and recursive calls.

When performing virtual or physical inlining, the analysis forces recursion up to the

defined bound.

6.4 Access renaming

Path inclusion relies on the verbatim sequence of accesses to detect redundancy

between paths. Even the slightest dissimilarity between alternative sequences throws

off the property. Some accesses are known to perform worse than others at a given

point in time. Renaming an access in a sequence to a worse performing target one,

i.e. changing the target of the access, can smooth the differences between paths such

that the renamed path is included in an alternative path of its original counterpart.

The renamed path then acts as an intermediate bound between the original one and

123

Real-Time Syst (2018) 54:307–388 343

the including alternative, hence providing an argument for the removal of the original

path. We now introduce a set of conditions that ensure the dominance of the execution

time distribution of a renamed path over its original counterpart. If all transformations

from the original validate these properties, the renamed path dominates the original.

The renamed path may further be included in an alternative path. The original is then

known to be redundant with this alternative and can be omitted during analysis.

Let π = [v1, v2, . . . , vk−1, vk] be a sequence of k accesses. π(e → b) denotes

the renaming of all accesses to memory block e to b in π , π(e → b) =

[v′
1, v

′
2, . . . , v

′
k−1, v

′
k] where ∀i ∈ [1, k], v′

i = vi if vi �= e and vi = b otherwise. By

definition, renaming e to b has no impact on π if it does not access e. π(e → b)(c → d)

identifies a rename from e to b followed by a rename from c to d on the resulting

sequence. Note that if no destination block is used as a source block, the order of the

renames is irrelevant. For instance π(e → b)(c → d) = π(c → d)(e → b), but

π(e → b)(b → c) �= π(b → c)(e → b).

We identified three conditions to ensure the dominance of the pWCET of a renamed

path π ′ = [πS, πV (e → b), πE] over its original π = [πS, πV , πE], where πV = [e]

or πV = [e, v1, . . . v j , e], and further prove their impact:

– No enclosure There is no access to b over the renamed sequence πV , ∀vi ∈

πV , vi �= b.

– Prefix ordering b is no more likely to be in the cache than e after πS (before πV).

This occurs when the closest access to e before πV , that is the last access to e in

πS , is posterior to the last access to b in πS , rd(e, πS) < rd(b, πS).

– Suffix ordering b is no more likely to trigger a hit than e if present in cache after

πV (before πE). The first access to e after πV , i.e. in πE , is before the first access

to b, frd(e, πE) < frd(b, πE).

Some inputs may result in lower estimated execution time distributions through

analysis for the renamed path over the original one. This is because of the reduced

pessimism in its analysis. Nevertheless, the computed pWCET for the renamed path,

irrespective of the actual input, upper-bounds the exact pWCET for the original path.

Theorem 8 (Renamed path ordering) Given a path π divided into three sub-paths

π = [πS, πV , πE], where πV = [e, v1, . . . , vk, e]. The pWCET of π is smaller than

or equal to that of the renamed sequence πr = [πS, πV (e → b), πE], D(π) ≤ D(πr),

if:

– there is no access to b in πV ;

– the reuse distance of e before πV is smaller than that of b at this point;

– the forward reuse distance of e at the end of πV is smaller than that of b at this

point.

Proof See Appendix. ⊓⊔

6.4.1 Simple path elimination

Access renaming allows for a wide range of transformations between paths within a

program. We aim at reducing the set of paths that need to be considered during the

123

344 Real-Time Syst (2018) 54:307–388

a, e, b

d

f

e2, a3

b3

e1 d f b3

a6, d3

Fig. 6 Embedded conditional structures. The maximum reuse distance of accesses is given as superscript.

[f, b] and [e, a, b] qualify as simple paths from d to b3 and are matched against each other. [d, f, b] and

[e, d, f, b] are not since the control flow may diverge at d

analysis of an application without increasing its pWCET. An ideal solution would

consider each path individually. Each should then be matched against its larger alter-

natives to check for inclusion using rename operations. This approach is impractical in

practice due to the sheer number of paths and the complexity of the matching problem

over large sequences of accesses.

Our initial approach instead matches and eliminates simple paths in conditionals,

that is branches which do not exhibit control flow divergence. Consider the example

in Fig. 6, the branches of conditional d are simple paths. Only the lower branch of the

first enclosing conditional b is a simple path as the upper one diverges at d. Focusing

on simple paths reduces the exploration space, both in terms of considered paths and

their relative size. The considered paths are likely to be similar and match using few

rename operations. This simplifies path elimination in the CFG. Figure 6 however

illustrates the restrictions of this approach. The topmost branch [d, f, b] is redundant

with the bottom one [e, d, f, b], but is only compared with [d, e, a, b] which it does

not match.

We use a simple method outlined in Algorithms 2 and 3 to test inclusion and perform

renaming at the same time. The first algorithm illustrates the traversal of a CFG, and the

identification of the suitable candidates for simple path elimination through renaming.

The successors of each conditional vertex are considered pairwise (lines 5–14). Should

there be a simple path starting from each vertex in the pair to the same node (dom), the

redundant one if any is removed (line 10). Paths may converge inside a simple path,

as the simple path definition only restricts flow divergence. The removal of nodes

subsequent to such a convergence may result in the removal of other non-redundant

paths. The RemovePath method removes at least the edge from vertex to renamed but

may need to conserve other nodes. Using the flow depicted in Fig. 7 as an example,

the middle path [a, b, f, b] is identified as redundant with the top one [e, b, f, b], but

not [b, e, f, b]. Only [a0] and [b1] can effectively be removed. Removing vertices [f]

and [b2] on the lowest branch would remove [b, e, f, b] from the set of possible paths

which is unsafe.

The recursive I s Redundant method, outlined in Algorithm 3, focuses on asserting

the redundancy of two sub-paths of a CFG using renaming. The algorithm progresses

access by access, each call to I s Redundant considers the first access in the renamed

path πv and possible matches in πr . It explores the following options (i) match the

address on the two paths (line 8), (ii) attempt renaming the access on path πv to one

on path πr (line 12), or (iii) skip an access on the longest trace (on line 7, the operation

123

Real-Time Syst (2018) 54:307–388 345

b, a a0 b1

e b2 f b1

b1 e f b2

a, b, e

Fig. 7 Embedded conditional structures. The maximum reuse distance of accesses is given as superscript.

All three paths [e, b, f, b], [a, b, f, b] and [b, e, f, b] qualify as simple paths and are matched against each

other. [a, b, f, b] is captured as redundant with respect to [e, b, f, b], but not [b, e, f, b]

removes the head of path π ′
r). If it reaches the end of path πv , that path is identified

as redundant with respect to πr ; there is a sequence of renames which results in its

inclusion in πr . Conversely, if there are not enough accesses left in π ′
r to match the

ones in π ′
v , the algorithm returns false. Hence, renames only occur on the shortest

path, as it does not hold enough accesses to include the longer one.

The two sub-paths compared in the I s Redundant method may be reached through

multiple paths in the CFG and lead to the execution of different suffixes. To rename

block e to b, the operation must be valid for all prefixes and suffixes of the considered

path π ′
v . Any access to b prior to the renamed segment should always be followed

by an access to e before πV later in the CFG (Prefix ordering condition). Conversely,

an access to e must precede the next access to b on all subsequent paths where b is

accessed (Suffix ordering condition). Using the minimum forward and backward reuse

distance of accesses in the CFG does not yield the required guarantee, only a necessary

condition. Indeed, b may be accessed on a path where e was not accessed and still

have higher minimum reuse and forward reuse distances. However, the reuse distances

can be used to speed up the validation process. Similarly, the first met access to either

block reduces the search space as it validates the property for the current branch (on

e) or proves it does not hold (on b).

6.4.2 Control flow graph segmentation

WCEP reduction methods aim to remove included paths whose contribution to the

execution time distribution is no greater than some alternative worst-case paths. This

reduces the number of accesses to be analysed and impacts the complexity of the

approach. To further reduce this contribution, we present preliminary work towards

the reduction of the analysed program segments through CFG partitioning (Ballabriga

and Cassé 2008). This method has been first explored by Pasdeloup (2014) through

heuristics tailored for SPTA.

Conceptually, the cache is flushed at defined points in the program, on partition

boundaries, to reduce the number of in-flight states. Flushing is in that case an abstrac-

tion of the analysis, the system is not expected to enforce this behaviour at runtime.

Partitions divide the CFG into non-overlapping sections of consecutive nodes. We

select flush points such that a minimum number of M misses occurs between two

flushes. This allows control over the complexity and precision trade-off for the anal-

ysis. The process is sound as the loss of information regarding cache contents cannot

decrease the execution time distribution of a trace as per Theorem 1. The flush oper-

ation relies on the merge defined in (63):

123

346 Real-Time Syst (2018) 54:307–388

Algorithm 2 Remove redundant simple paths from CFG G

1: for vertex in ReversePostOrder(G) do

//Skip non conditional vertices

2: if |Successors(vertex, G)| ≤ 1 then

3: skip to next vertex

4: end if

//Remove redundant simple paths from successors

5: for src in Successors(vertex, G) do

6: for renamed in Successors(vertex, G) do

7: dom := CommonPostDominator(src, renamed)

8: if src �= renamed and IsSimplePath(src →∗ dom) and IsSimplePath(renamed →∗ dom) then

9: if IsRedundant(renamed →∗ dom, src →∗ dom)) then

10: RemovePath(vertex → renamed →∗ dom)

11: end if

12: end if

13: end for

14: end for

//Consider enclosing conditional again after path removal.

15: if |Successors(vertex, G)| ≤ 1 then

16: reset vertex to closest enclosing conditional

17: end if

18: end for

Algorithm 3 IsRedundant(πv, πr)

1: if |πv | is empty then

2: return true

3: end if

//Focus on the first access in πv

4: [[e], π ′
v] := πv

5: π ′
r := πr

//Explore possible matches in πr

6: while |π ′
r | > |π ′

v | do

7: [[b], π ′
r] := π ′

r
8: if e = b then

9: if IsRedundant(π ′
v, π ′

r) then

10: return true

11: end if

12: else if IsRenameValid(π ′
v, e → b) then

13: return true if I s Redundant (π ′
v(e → b), π ′

r)

14: end if

15: end while

16: return false

Flush : 2CS → 2CS (63)

Flush

⎛

⎜

⎝

⎧

⎪

⎨

⎪

⎩

(C0, P0,D0)
...

(Cn, Pn,Dn)

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠
=
⊎

⎛

⎜

⎝

⎧

⎪

⎨

⎪

⎩

(∅, P0,D0)
...

(∅, Pn,Dn)

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠
(64)

Our partition of the CFG focuses on consecutive single-entry single-exit (SESE)

regions (Ballabriga and Cassé 2008). All control flow enters a SESE region through

its single entry and leaves through its exit. Examples of valid SESE regions in a CFG

are highlighted in Fig. 8a. Consecutive SESE regions are connected to at most one

123

Real-Time Syst (2018) 54:307–388 347

a, e, b

d

f

e, a

b

e d f b

a, d

(a)

a, e, b

d

f

e, a

b

e d f b

a, d

(b)

Fig. 8 Decomposition of a CFG into single-entry single-exit regions. a Example of single-entry single-exit

regions. b Example decomposition into consecutive regions

predecessor and one successor SESE region such that all control flow in the application

is captured by a single path through the SESE region. As an example, consider the

decomposition in Fig. 8b corresponding to the CFG in Fig. 8a. There is no cache-

related dependency during the analysis of consecutive SESE regions, each is analysed

assuming an empty initial cache state. Segments can be analysed independently with

regards to the cache and their estimated pWCET convolved to compute that of the

complete CFG.

For a decomposition into consecutive SESE regions to be valid, the nodes that

delimit the segments have to be executed in all paths in the CFG. Alternative paths

stemming from the same branch must be part of the same region. Similarly, all nodes

in a loop nest belong to a same region. Such nodes can be captured by the notion of

post-dominators: a node vp post-dominates vn if every path from vn to the end node

ve goes through vp. All valid candidate nodes have to be post-dominators of the entry

node vs .

Algorithm 4 outlines the general process of selecting the flush points. The common

path of the CFG G, post-dominators of its entry vs , is traversed in control flow order

from the entry to the end of the graph. A new flush point is set if more than M

misses can occur between the current post-dominator and the last selected flush point.

The number of potential misses between two nodes, CountPotentialMisses(vn, ve) is

computed similarly to the maximum reuse distance, accounting for all accesses that

are not guaranteed hits on paths between vn and ve.

123

348 Real-Time Syst (2018) 54:307–388

Algorithm 4 Select flush points for CFG G with at least M interleaved misses

1: flushes = ∅

2: vs = Entry(G)

3: last_flush = vs

4: for v in SortByFlow(post-dom(vs)) do

5: if CountPotentialMisses(last_flush, v) > M then

6: flushes = flushes ∪ {v}

7: last_flush = v

8: end if

9: end for

10: return flushes

7 Evaluation

In this section, we examine the precision and runtime behaviour of the multi-path anal-

ysis introduced in this paper. In order to study the behaviour of the analysis with respect

to different flow constructs, we provide results for a subset of the PapaBench applica-

tion (Nemer et al. 2006), Debie (Holsti et al. 2000), and the Mälardalen benchmarks

(Gustafsson et al. 2010). We present the results for a subset of benchmarks whose

behaviour is representative of the ones observed across all experiments or illustrate

interesting corner cases. Table 2 includes details for each benchmark on the maximum

number of accesses, the distinct number of cache blocks, and the cyclomatic com-

plexity Y of the CFG (without and with WCEP reduction) which lower bounds the

number of paths. Also given are the analysis runtimes with 4 and 8 relevant blocks.

The control-flow graph and address extraction were performed using the Heptane

(Colin and Puaut 2001) analyser, from the compiled MIPS R2000/R3000 executable

obtained using GCC v4.5.2 without optimisations. We used the various different meth-

ods to evaluate the contribution of a 16-way fully-associative instruction cache with

32B lines.

The miss distribution for different benchmarks was computed using either the

contention-based approach, the collection one, using different numbers of relevant

blocks R, or the reuse distance-based path merging method outlined by Davis et

al. (2013). To provide a comparison with methods and replacement policies, a state-

of-the-art analysis (Theiling et al. 1999) was used to determine the single, predicted

worst-case bound on the number of misses for a LRU cache using the same parame-

ters. We also performed a set of 108 simulations of the random cache behaviour to use

as a baseline, effectively providing a lower bound on the pWCET. Here, the succes-

sor to each vertex in the simulated path was picked randomly among all of its valid

successors, thus exploring the possible paths.

All of the WCEP reduction techniques described in Sect. 6 were used for analysis

of the random replacement cache. LRU caches do not exhibit the properties required

by Theorem 7. The pWCET estimates obtained for each configuration of the analysis,

estimation method and number of relevant blocks, were always tighter with WCEP

reduction. Regarding simulation, WCEP reduction reduces the set of paths to one

more representative of the worst-case scenarios, in some cases resulting in a single

worst possible execution path. Yet there is no guarantee that these transformations

123

Real-Time Syst (2018) 54:307–388 349

Fig. 9 Estimated number of misses under LRU and Random replacement caches

are sufficient, here the simulation results are only an indicative means of assessing

the pessimism in our approach. Table 2 covers the impact of WCEP reduction on the

cyclomatic complexity Y of the analysed benchmarks, an indicative lower bound on the

number of paths in a CFG. Table 3 and Figure 9 present the estimated number of misses

for the analysis of LRU and random replacement caches with a cutoff probability of

10−7, i.e. the number of predicted misses exceeded with a probability no greater than

10−7 at runtime. Of the 48 analysed benchmarks, 17, highlighted in Table 3, show

the same or better estimated performance with a random replacement cache while 31

perform better with an LRU cache. Improvements over the LRU analysis tend to be

limited. However as further illustrated for Papabench t4 in Fig. 10c, there is a potential

margin for improvement in the analysis of the random replacement policy to further

tighten its results over the LRU replacement policy.

The capacity-conserving join heuristic which allocates capacity to the cache states

identified as the most valuable dominates the standard implementation. When com-

paring the precision of the different analysis techniques in Sect. 7.1 we therefore rely

on the most favourable configuration, i.e. with WCEP reduction active and using the

capacity-conserving join. The impact of the different mechanisms, joins and WCEP

reduction, is further considered in Sects. 7.2 and 7.3 respectively. Finally, the com-

plexity and runtime for different analysis configurations is evaluated in Sect. 7.4.

7.1 Relative precision of the analysis techniques

We first compare the result for different configurations in Fig. 10a–f. The figures show

the complementary cumulative miss distributions (1-CDF) for a representative subset

of benchmarks and configurations. The contention and path merging approaches are

identified by red circles and blue crosses respectively. The number of relevant blocks R

for the collecting approach is restricted to values of either 4 or 8 (identified by orange

triangles) which is sufficient to capture most of the locality in the considered appli-

cations. The distribution obtained through simulation (identified by green squares) is

123

350 Real-Time Syst (2018) 54:307–388

Table 2 Properties of the analysed benchmarks and analysis runtime with R relevant blocks

Longest path |Blocks| Runtime (s) Y with reduction

(accesses) R = 4 R = 8 Off On

Mälardalen

adpcm 35,010 240 556 3747 6281 3069

bsort100 108,718 20 1545 31,301 9902 101

bs 42 11 < 1 < 1 9 5

cnt 1576 27 1 1 201 101

compress 31,382 86 151 1047 3976 493

crc 27,752 44 478 1023 4173 4169

edn 67,631 166 549 17340 5 1

expint 11,314 31 10 111 404 104

fdct 841 106 < 1 2 1 1

fft 18,409 141 78 432 609 587

fibcall 125 8 < 1 < 1 2 1

fir 992 22 < 1 2 31 11

insertsort 769 16 < 1 1 1 1

jfdctint 1059 96 < 1 4 65 1

lcdnum 233 20 < 1 1 171 61

ludcmp 3950 98 1 24 70 8

matmult 63,839 28 481 5967 801 1

minmax 26 22 1 < 1 9 5

minver 726 167 2 1 7 1

ndes 21,377 121 47 355 4219 1273

nsichneu 2944 1377 107 103 1249 1

ns 4349 20 1 33 2 2

prime 5768 17 3 21 725 5

qurt 1526 77 < 1 4 187 67

select 1721 60 < 1 1 177 17

sqrt 430 26 < 1 1 59 20

statemate 1844 275 49 49 1841 1132

st 67,538 163 127 780 971 221

ud 2984 75 1 12 82 1

Papabench

t1 150 135 < 1 < 1 41 17

t2 57 27 < 1 < 1 6 5

t3 62 57 < 1 1 20 9

t4 215 13 < 1 < 1 47 24

t5 62 55 < 1 < 1 19 13

t6 286 272 < 1 < 1 103 27

t7 52 45 < 1 < 1 9 8

t8 11 9 < 1 < 1 3 2

123

Real-Time Syst (2018) 54:307–388 351

Table 2 continued

Longest path |Blocks| Runtime (s) Y with reduction

(accesses) R = 4 R = 8 Off On

t9 472 324 < 1 < 1 89 11

t10 39,658 1073 2500 4742 16,602 10,513

t11 11 9 < 1 < 1 6 4

t12 33 34 < 1 < 1 18 10

t13 581 675 < 1 < 1 204 26

fly_by_wire 18,723 229 293 358 4355 1930

Debie

acquisition_task 18,664 205 18 490 3829 1273

hit_trigger_handler 3367 83 4 9 671 471

tc_execution_task 3131 417 3 13 368 251

tc_interrupt_handler 77 91 1 1 39 27

tm_interrupt_handler 24 30 2 2 9 7

Table 3 Estimated number of

misses with LRU and random

replacement caches

Number of estimated misses

LRU Random (10−7)

R = 4 R = 8

Mälardalen

adpcm 1570 13,173 6097

bsort100 39,518 41,642 25,319

bs 17 35 32

cnt 239 674 450

compress 3564 7808 4058

crc 248 7138 5693

edn 5608 29,018 22,546

expint 320 1253 1107

fdct 840 842 842

fft 16,847 15,259 15,050

fibcall 8 22 22

fir 33 291 161

insertsort 16 304 91

jfdctint 739 800 748

lcdnum 214 211 209

ludcmp 836 2310 1990

matmult 30 17,812 1665

minmax 24 27 27

minver 171 427 335

ndes 5524 13,101 10,882

123

352 Real-Time Syst (2018) 54:307–388

Table 3 continued
Number of estimated misses

LRU Random (10−7)

R = 4 R = 8

nsichneu 2943 2840 2844

ns 21 1296 145

prime 17 1591 58

qurt 1406 1205 1193

select 856 856 856

sqrt 392 355 351

statemate 1802 1749 1775

st 1740 27,044 26,372

ud 406 1435 1005

Papabench

t1 150 137 137

t2 31 38 38

t3 62 59 59

t4 79 188 158

t5 62 59 59

t6 278 268 268

t7 51 49 49

t8 11 10 10

t9 334 343 343

t10 7421 18,825 14,506

t11 11 11 11

t12 33 32 32

t13 581 559 559

fly_by_wire 12,840 15,126 13,822

Debie

acquisition_task 4033 11,475 10,147

hit_trigger_handler 1345 2534 2529

tc_execution_task 262 1432 1060

tc_interrupt_handler 65 73 73

tm_interrupt_handler 21 27 27

also presented. The number of misses predicted by analyses for the deterministic LRU

configuration is identified by a dark purple vertical line.

In general, the use of the cache collecting method improves the precision of the

analysis over the merging or purely contention-based approaches even on complex

control flows, as illustrated by papabench t4 in Fig. 10c. On simple control flows, the

two approaches behave similarly but the contention method still dominates the path

merging method (see Fig. 10e). The merged path is as long as the longest path in the

application but keeps the worst behaving accesses from shorter paths. When WCEP

123

Real-Time Syst (2018) 54:307–388 353

(a)

(b)

(c)

Estimated miss distribution for qurt, 77 distinct memory blocks, 1526 accesses on the longest path

Estimated miss distribution for insertsort, 16 distinct memory blocks, 769 accesses on the longest path

Estimated miss distribution for papabench t4, 13 distinct memory blocks, 215 accesses on the longest path

Fig. 10 Estimated miss distribution of the different analysis methods under LRU or random replacement

policies and different analysis configurations (Color figure online)

123

354 Real-Time Syst (2018) 54:307–388

(d)

(e)

(f)

Estimated miss distribution for statemate, 275 distinct memory blocks, 1844 accesses on the longest path

Estimated miss distribution for ud, 75 distinct memory blocks, 2984 accesses on the longest path

Estimated miss distribution for jfdctint, 96 distinct memory blocks, 1059 accesses on the longest path

Fig. 10 continued

123

Real-Time Syst (2018) 54:307–388 355

reduction can mostly extract the worst-case execution path, as with qurt in Fig. 10a, the

main difference between the two approaches comes from the more precise estimation

of the hit probability of individual accesses using contention methods.

The precision of the collection methods and the relative performance of LRU and

random caches mostly depends on the size of the working set of tasks w.r.t. to the

cache size or the number of relevant blocks. Similar behaviours were observed whether

WCEP reduction successfully resulted in a single path or not. As the number of relevant

blocks increases from 4 to 8, the estimates computed by the analysis improve. The

gain is important on benchmarks like insertsort (see Fig. 10b) where some nested

loops fit in the number of relevant blocks. However, precision is lost in qurt or ud w.r.t.

the simulation results (see Fig. 10a, e) as the loops almost fit inside the cache but not

within the number of relevant blocks. This also results in decreased performance w.r.t.

LRU. The latter is in this case only subject to cold misses.

Another general observation is that as expected none of the distributions derived

by analysis underestimates simulation. However, the simulation-based distributions

cannot be guaranteed to be precise pWCET estimates. The simulations, lacking repre-

sentative input data, may not exercise the worst-case paths. At best they provide lower

bounds on the pWCET. We note that provision of representative input data is a key

problem for measurement-based methods. There is no general conclusion regarding

the dominance of the analysis of a LRU cache over simulation or analysis results for

a randomised cache. When all iterative structures fit in the cache (see Fig. 10b), the

LRU analysis outperforms the analysis of the random cache. As intra-loop conflicts

grow, the benefits of the random replacement policy emerge and the new methods can

capture such locality, resulting in tighter estimates than the analysis for a deterministic

platform (see Fig. 10f). WCEP reduction reduces the reuse distance considered during

analyses, whereas the stack distance for the LRU analysis remains the same since

Theorem 7 does not apply. The path-merging approach under WCEP reduction may

result in tighter estimates than the analysis of a deterministic replacement policy (see

Fig. 10d).

The analysis results for the t4 and statemate benchmarks (see Fig. 10c, d) indicate

that the cache collecting approach may sometimes compute more pessimistic estimates

than the contention method. This behaviour stems from flow divergence in the control

flow of both benchmarks. Path indeterminism hinders the relevant block heuristic,

different blocks may be deemed as relevant on parallel paths. In such cases, upon flow

convergence, the join function cannot keep blocks of either alternative. Further, the R

relevant blocks are still considered as occupying cache space from the point of view

of the non-relevant ones, effectively reducing the cache size. This illustrates the need

for more sophisticated heuristics which take into account the behaviour of the analysis

on alternative paths, or vary the number of relevant blocks depending on the expected

benefits, and the computational cost.

In summary, our evaluation results show that the approaches to multi-path SPTA

derived in this paper dominate and significantly improve upon the state-of-the-art path

merging approach, determining less than one third as many misses in some instances.

They were also shown to be incomparable with LRU analysis.

123

356 Real-Time Syst (2018) 54:307–388

7.2 Benefits of the join operations to collecting approaches

The selection of relevant blocks is undoubtedly an important factor in the precision of

the cache collecting approach. We compared additional configurations of the analyser,

assuming a fixed number of 8 relevant blocks, to examine the impact of the join

operations on the precision of the analysis. In particular, the experiments presented

from Fig. 11a–f introduce a non state-conserving approach on path convergence. Using

configuration empty (identified by blue pentagons) the cache contents are set to ∅

on path convergence and the miss distribution is the maximum distribution of the

alternative paths. The capacity configuration (identified by orange triangles) on the

other hand corresponds to the use of the improved join operator. The intermediate line

identifies the simple join operation we first introduced in Sect. 4.6 (purple squares).

Benchmarks which exhibit locality across branches of their conditionals benefit

from the join function, as illustrated by crc, lcdnum, expint and compress in Fig. 11a,

b, d and e respectively. The combination of both WCEP reduction and capacity con-

servation on flow convergence leads to tighter pWCET estimates in the case of crc,

lcdnum, expint and compress. Reduction cannot remove all branches as they may not

fall under the required constraints. The lcdnum benchmark is composed of a switch

statement. The later cases share blocks with the conditions of the earlier ones, but add

their own blocks. Hence, the resulting cache states differ but include each other. They

can be captured by the capacity conserving heuristic. By construction, the capacity

conserving join results in the tightest estimates and provides important improvements

over the standard join on the crc application. The benefits of the capacity-conserving

join over the standard one are more marginal on the compress benchmark (see Fig. 11e)

which exhibits few branches with reused blocks not captured by the WCEP reduction.

Some benchmarks see little benefit from the proposed join function. statemate (see

Fig. 11c) is composed of many nested conditional constructs which share few or

no blocks. The cache contents diverge with the flow, and the join operation cannot

assume any block is present. Locality in the statemate benchmark is captured thanks to

the empty conditional approach of WCEP reduction. Some applications like matmult

(see Fig. 11f) are reduced to a single path through WCEP reduction. Such scenarios

obviously do not benefit from any join operation.

7.3 Impact of WCEP reduction on analysis and simulation

WCEP reduction reduces path redundancy through the elimination of selected paths,

such that both the analysis and the simulations are performed on a reduced control flow.

We computed the miss distribution of the benchmarks with both families of methods

with and without WCEP reduction. We present the result for a fixed probability of

10−7, i.e. recording the number of predicted misses that will be exceeded at runtime

with a probability no greater than 10−7. For each of the ludcmp, cnt and compress

benchmarks in Fig. 12a, b, and c respectively, we present the result using the original

CFG, then adding WCEP unrolling (+unroll), empty branch elimination (+branch),

and the renaming-based simple branch elimination (+rename).

123

Real-Time Syst (2018) 54:307–388 357

(a)

(b)

(c)

Estimated miss distribution for crc, 44 distinct memory blocks, 27,752 accesses on the longest path

Estimated miss distribution for lcdnum, 20 distinct memory blocks, 233 accesses on the longest path

Estimated miss distribution for statemate, 275 distinct memory blocks, 1844 accesses on the longest path

Fig. 11 Estimated miss distribution for the random replacement policy under a fixed number of relevant

blocks R = 8 and WCEP reduction, and different join operations (Color figure online)

123

358 Real-Time Syst (2018) 54:307–388

(d)

(e)

(f)

Estimated miss distribution for expint, 31 distinct memory blocks, 11,314 accesses on the longest path

Estimated miss distribution for compress, 86 distinct memory blocks, 31,382 accesses on the longest path

Estimated miss distribution for matmult, 28 distinct memory blocks, 63,839 accesses on the longest path

Fig. 11 continued

123

Real-Time Syst (2018) 54:307–388 359

(a)

(b)

(c)

Fig. 12 Estimated miss counts at a fixed probability of 10−7 under random replacement using different

reduction configurations and R relevant blocks. a Estimated miss count at 10−7 for the ludcmp benchmark.

b Estimated miss count at 10−7 for the cnt benchmark. c Estimated miss count at 10−7 for the compress

benchmark (Color figure online)

123

360 Real-Time Syst (2018) 54:307–388

Given a fixed configuration of the analysis (identified by a symbol and a colour), the

distribution obtained with WCEP reduction is always smaller than the one obtained

without it. In other words, the analysis is more precise when all transformations are

active. Because of path redundancy, an increase in the number of relevant blocks can

sometimes reduce the precision of the resulting estimate. This phenomenon still occurs

when WCEP reduction is applied, but it is less prevalent.

The impact of the different transformations on the precision of the analysis results

depends on the characteristics of the application to which they are applied. All transfor-

mations can be beneficial to benchmarks for the collecting approach. The contention

approach may even benefit from empty path elimination (see Fig. 12a), when a block

is accessed only on the non-empty alternative of a conditional its reuse distance gets

lowered. For other accesses, such paths impact neither the reuse distance nor the con-

tention as they hold no access. The elimination of redundant paths on the other hand

increases the precision of the two methods.

The cnt benchmark, in Fig. 12b, illustrates an interesting scenario. When the empty

branch elimination is used in combination with WCEP unrolling collecting methods

get slightly less precise than when using WCEP unrolling on its own. This illustrates

a limit of the ranking heuristic used by the capacity-conserving join. Empty branches

result in a reduced minimum forward reuse distance for some accesses. This in turn

impacts the allocation of capacity to cache states on path convergence, resulting in a

better allocation without empty branch elimination.

We performed a set of 108 simulations on the control flow graphs of benchmarks

with and without reduction. WCEP reduction results in greater measured execution

time distributions. The transformations proposed in this paper eliminate some but not

all redundant paths and reduce the set of possible paths to a set more focussed on

worst-case scenarios. As for the analyses methods, the impact of each transformation

depends on the benchmark to which it is applied. However, the application of WCEP

reduction in the general case is not sufficient to guarantee the representative character

of the resulting paths. In the case of the expanded compress benchmark, conditionals

within loop structures are kept and there is no guarantee as to which alternation of

paths results in the worst-case. On the other hand, the expanded matmult benchmark

consists of a single trace of accesses.

7.4 Execution time

The runtime of the analysis, using a C++ prototype implementation, is presented in

Fig. 13 using the WCEP reduction method and 0 to 12 relevant blocks. Measurements

were made on an 8-core 64-bit 3.4Ghz CPU using the Ubuntu 12.04 operating system,

with 2 instances of the analyser running in parallel. WCEP reduction was used as it

increases the precision of the estimated cache states, and also the analysis runtime. We

observe a growth in runtime as the number of relevant blocks increases. The runtime

of the analysis is also significantly higher for larger benchmarks, edn, compress, and

ndes, which contain the largest number of nodes.

The abstract cache state representation is partially responsible for the high runtime

on the largest benchmark. The complexity of the update and join operations is tied

123

Real-Time Syst (2018) 54:307–388 361

Fig. 13 Runtime of the analysis for the presented benchmarks

Fig. 14 Runtime of the analysis for repeated accesses to a sequence of n distinct blocks

to both the number of relevant blocks R and the number of potential misses on the

longest path. (Fig. 13 combines the impact of both the program length and number of

relevant blocks whereas Fig. 14 focuses on the number of instructions.) The number

of relevant blocks affects the number of different cache contents which are tracked

by the analysis at each step. Further as the number of analysed accesses increases,

so does the size of the distributions held in the cache states and therefore the cost of

operations such as the merge.

The complexity of the analysis is of the order of O(|S| × m × log(m)), where m is

the number of accesses in the program and |S| upper-bounds the number of possible

cache states. |S| is the number of combinations of N or less elements picked amongst

123

362 Real-Time Syst (2018) 54:307–388

Fig. 15 Runtime of the analysis under CFG partitioning with segments of 1000 potential misses (Color

figure online)

the R relevant blocks, when R < N then |S| = 2R . As demonstrated in the previous

set of experiments, a limited number of relevant blocks is effective for typical cache

associativities.

7.4.1 Reducing the complexity of the approach

The complexity of the introduced approach to SPTA for multi-path programs depends

on both the number of relevant blocks R and the number of accesses m in the program.

This section further examines the contribution of the program size to the runtime of the

analyses and presents preliminary work towards its reduction using CFG partitioning

as presented in Sect. 6.4.2.

The results presented in Fig. 13 focussed on the impact of the number of cache

states through its ties to the relevant blocks R. The number of accesses m in each

benchmark is fixed. We evaluate the impact of m on the complexity of the analysis in

Fig. 14. It presents the runtime of the analysis of a repeated sequence of n accesses

while assuming the same 16-way cache as in our previous experiments. The number

of blocks in the repeated sequence n, the number of relevant blocks R and the cache

associativity N impact the possible number of cache states |S| and therefore the initial

growth of the runtime. Once the set of cache states to consider stabilises, the runtime

for the different configurations follows a similar m × log(m) growth curve.

We defined a simple algorithm to split a program into consecutive SESE with at

least M non-guaranteed hits on their longest path (Sect. 6.4.2). Segments are analysed

independently assuming an empty input cache, and the resulting pWCET convolved

to compute that of the full program. This approach effectively reduces the set of cache

states on region boundaries to the empty state, a safe over-approximation as defined

in Sect. 4.5. The resulting analysis runtime for the largest benchmarks is presented in

Fig. 15 assuming a segment size M of 1000 misses.

123

Real-Time Syst (2018) 54:307–388 363

Fig. 16 Estimated miss distribution for matmult under LRU and random replacement with analysed seg-

ments of M = 1000 potential misses (Color figure online)

Program partitioning reduces the runtime of our method over the analysis of the

program as a single segment (see Fig. 13). As the analysis is applied to same-sized

regions in all cases, the runtime of all benchmarks follow a similar growth with the

number of relevant blocks. The remaining differences in runtime come from several

factors. First, the length of the program impacts the complexity of the final convolution

operation of the pWCET of each segment. Second, the consecutive segments on a

multi-path program may hold more than M misses. Splits can only occur on a restricted

set of vertices, namely those which post-dominate the entry of the CFG. Further, as

shown in Fig. 14, misses and the working set of each segment impact the number of

cache states kept during analysis. Finally, flow complexity also increases analysis time

as more paths need to be considered in a single segment.

Figures 16, 17 and 18 present the distributions computed by the analyses for a

relevant subset of the considered configurations. They present the analyses results for

R = 8 relevant blocks using a single or multiple segments (filled or hollow triangles

respectively). They also include the results for 12 relevant blocks under partitioning

(hollow blue pentagons), as the runtime of this configuration is below that of the

R = 8 single segment one. Simulations and deterministic LRU analyses results are

also included (resp. with green squares and a dark purple line). WCEP reduction is

active in all cases, except LRU.

The approximation of the cache contents on segment boundaries has adverse effects

on the precision of the analysis. Indeed, the first few accesses in a segment may

be classified as misses while the contents of the cache are being reloaded. This is

illustrated for the matmult and edn benchmark respectively in Figs. 16 and 17. matmult

exhibits an important locality at runtime, the impact of segment boundaries is such

123

364 Real-Time Syst (2018) 54:307–388

Fig. 17 Estimated miss distribution for edn under LRU and random replacement with analysed segments

of M = 1000 potential misses (Color figure online)

Fig. 18 Estimated miss distribution for fft under LRU and random replacement policies with analysed

segments of M = 1000 potential misses (Color figure online)

that it overshadows the increase in the number of relevant blocks. Yet, the segmented

analysis with 12 relevant blocks only takes 285 seconds, against more than 7000 for

the single segment with R = 8. The precision gain from the increase in the number

of relevant blocks is much more important for edn, while the runtime of the R = 12

segmented analysis remains lower than that of the R = 8 full program one (2000s vs.

13,000s).

We observed that the fft benchmark (Fig. 18) only marginally benefits from an

increase in the number of relevant blocks. The approximations on segment boundaries

have almost no impact on the precision of the computed estimates given a fixed number

of relevant blocks, R = 8. There is little reuse between the identified SESE regions in

the program.

123

Real-Time Syst (2018) 54:307–388 365

8 Conclusion and perspectives

The main contribution of this paper is the introduction of a more effective approach to

multipath SPTA for systems that use a cache with an evict-on-miss random replace-

ment policy. The methods presented in this paper build upon existing approaches

for analysing single-path programs. We have pointed out where existing techniques

for deterministic or probabilistic analyses could be applied to make improvements

(Pasdeloup 2014; Maxim et al. 2012; Wegener 2012; Theiling et al. 1999).

We introduced conditions for the computation of valid upper-bounds on the possible

cache states on control flow convergence and presented a compliant transfer function

to illustrate the requirements. We further refined this join operation to improve the

precision of the information kept on control flow convergence. This more sophisticated

join operation relies on a heuristic ordering of cache states depending on their expected

benefits in the upcoming accesses.

We also defined path redundancy, identifying path inclusion as a sub-case of

redundancy. Based on these results, we presented worst-case execution path (WCEP)

reduction to reduce the set of paths explored by the analysis, improving the tightness

of the resulting timing estimates. We identified and proved the validity of sufficient

conditions for the application of access renaming. This transformation allows for the

identification of redundant paths beyond simple inclusion.

Our evaluations show that the analysis derived is effective at capturing the cache

locality exhibited by different applications. The new methods significantly outperform

the existing path merging approaches, predicting less than a third as many misses in

one of the benchmarks. More precise results can be attained at the cost of an increased,

user-controlled, complexity. They are also incomparable to estimates for deterministic

LRU caches. The program transformations introduced proved effective at improving

the precision of all SPTA configurations; of the 48 analysed benchmarks, 18 show

the same or better estimated performance with a Random replacement cache while 31

perform better with an LRU cache.

8.1 Perspectives

This research can be extended in many ways. The transfer functions on control flow

convergence compute valid bounds with regards to the ordering of cache states. They

exhibit pessimism, different but more complex ranking heuristics could spread the

capacity of cache states over more appropriate candidates. Second, the complexity of

operations on the abstract domain contributes to the increasing runtime of the analysis

as it traverses deep flow graphs. Future work could look at the interaction between

existing methods to balance the complexity and the precision of the analysis. Another

avenue for improvement is the heuristic for the selection of relevant cache blocks. More

advanced approaches might improve the tightness of the results, or even introduce a

varying number of relevant blocks across the application to focus the analysis effort

on a specified area of the code.

Our approach integrates both cache behaviour and worst-case path estimation. Flow

facts regarding loop iterations can be taken care of during unrolling. We nevertheless

123

366 Real-Time Syst (2018) 54:307–388

intend to take more flow facts into account to increase the applicability of the approach

and further improve the WCEP reduction effect on reducing path complexity. We also

intend to investigate the use of static methods to improve the representative character

of the considered paths, and as a consequence ensure the soundness and improve

the precision of the measurement-based approaches. Finally, the application of static

probabilistic timing analysis to more complex cache configurations, including multiple

levels of cache, remains an open problem (Lesage et al. 2013).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proofs related to cache contents comparison

This appendix provides the mathematical proofs of different properties related to

the comparison of cache contents based on their impact on the execution time of

an access trace. We also demonstrate the validity of the sufficient conditions for the

renaming program transformation. The following lemmas and properties have been

first introduced in Sects. 3, 4.5, and 6 and rely on the definition (21) of the contribution

of a cache state to the execution time of a trace.

Theorem 1 The eviction of a block from any input cache state s cannot decrease the

execution time distribution of any trace t, D(t, s) ≤ D(t, s[−e]).

Proof We focus on the case where the evicted block e is in the input cache state s,

otherwise s[−e] is equal to s and D(t, s) = D(t, s[−e]). We prove the theorem by

induction.

Base case t = [b]: There are two cases to distinguish when the trace comprises a

single access. If b �= e, then the execution time of [b] from s or s[−e] is the same

since the eviction of e does not affect [b]. If b = e, the access [b] may either be

a hit or a miss starting from s, but is guaranteed to be a miss from s[−b]. Hence,

D([b], s) ≤ D([b], s[−e]).

Inductive case t ′ = [[b], t]: Suppose the theorem holds for trace t and any input

cache state s, D(t, s) ≤ D(t, s[−e]). The cases to consider are:

b �= e The behaviour of the first access [b] is the same from both s and s[−e]. If b is

in cache, the access is a hit, the cache state is left unchanged, and the property

holds thanks to the induction hypothesis. Otherwise, this results in N different

outcomes corresponding to the eviction of any one of the N different lines li ,

s[−e][li = b] where e is first evicted from s then b replaces li . If li is the line

which held e, s[−e][li = b] = s[li = b]; the behaviour of trace t is the same

from either state. If one of the N −1 other lines is selected, then the eviction of

e from the cache could take place after or before the replacement by b without

any impact on the resulting cache contents, s[−e][li = b] = s[li = b][−e]. As

defined by the induction hypothesis, the N resulting cache states from s[−e]

123

http://creativecommons.org/licenses/by/4.0/

Real-Time Syst (2018) 54:307–388 367

cannot decrease the execution time distributions over their counterparts for s

thus:

D(t, s[li = b]) ≤ D(t, s[−e][li = b]) (65)

Hence, the sum of these distributions, in (21), cannot result in a decrease of

the execution time distributions from s[−e] over s:

M+
∑

i∈[1,N]

1

N
· (D(t, s[li = b])) ≤ M+

∑

i∈[1,N]

1

N
· (D(t, s[−e][li = b])) (66)

b = e The first access [b] is a hit in s and t executes from input state s. From s[−e] =

s[−b], the first access [b] is a miss. As in the previous case, the resulting cache

states may be the same should the lines selected for eviction and replacement

match, s[−b][l j = b] = s. Alternatively, another block is evicted from the

cache to insert b again and the resulting state s[−b][l j = b] holds the same

contents as s[−l j]. From the induction hypothesis, we know that:

D(t, s) ≤ D(t, s[−l j]) (67)

As a consequence, for any j , s[−b][l j = b] holds the same contents as either

s or s[−l j] and we have:

D(t, s) ≤ D(t, s[−b][l j = b]) (68)

This can be extended to the execution time distribution of t ′ = [[b], t]. Since

the property holds for any j , we expand the equation to a weighted sum across

values of j :

∑

j∈[1,N]

1

N
· D(t, s) ≤

∑

j∈[1,N]

1

N
·
(

D(t, s[−b][l j = b])
)

(69)

Since the selection of j has no impact on the left-hand term, we have:

D(t, s) ≤
∑

j∈[1,N]

1

N
·
(

D(t, s[−b][l j = b])
)

(70)

Because of the ordering between the hit and miss latencies, we can expand the

equation by adding a hit and miss latencies respectively on the left and right

hand-sides:

H + D(t, s) ≤ M +
∑

j∈[1,N]

1

N
·
(

D(t, s[−b][l j = b])
)

(71)

H + D(t, s) corresponds to the execution time of trace t after an initial hit in

cache state s as per (21). Similarly the right hand term corresponds to an initial

123

368 Real-Time Syst (2018) 54:307–388

fist miss from the state s[−b] before the execution of t . An access to b fits these

behaviour and can be incorporated into both terms:

D([[b], t], s) ≤ D([[b], t], s[−b]) (72)

Hence, ∀t,∀s,D(t, s) ≤ D(t, s[−e]) ⊓⊔

Theorem 2 The replacement of a random block in cache triggers at most one addi-

tional hit.

The distribution for any trace t from any cache state s is upper-bounded by the

distribution for trace t after the replacement of a random block in s and assuming a

single hit turns into a miss.

H + D(t, s) ≤ M +
∑

i∈[1,N]

1

N
· D(t, s[li = e]) (23)

Proof The property trivially holds if e is already present in the cache as the replacement

then has no impact on the cache state, s[li = e] = s. We only consider input states s

where e is absent and prove this property by induction.

– Base case t = [b], b �= e: If li �= b, input caches s and s[li = e] result in the same

miss latency M. If e replaces b in the cache, i.e. li = b, then the execution of t is

a miss from s[li = e] and a hit from s. The property trivially holds.

– Base case t = [e]: The replacement of line li by e, absent from the cache, implies

that the execution of t is a hit from s[li = e] and a miss from s:

H + M = M + H (73)

H + D(t, s) = M + D(t, s[li = e]) (74)

The property holds for any i and can be extended to the weighted sum over i :

H +
∑

i∈[1,N]

1

N
· D(t, s) = M +

∑

i∈[1,N]

1

N
· D(t, s[li = e]) (75)

The same distribution is weighted and summed N times on the left-hand term, it

can be simplified as such:

H + D(t, s) = M +
∑

i∈[1,N]

1

N
· D(t, s[li = e]) (76)

– Inductive case t = [[b], t ′]: Assume the property holds for any trace t ′ and any x :

H + D(t ′, s) ≤ M +
∑

j∈[1,N]

D(t ′, s[l j = x]) (77)

123

Real-Time Syst (2018) 54:307–388 369

The execution time distribution of t = [[b], t ′] from either s or one of the s[li = e]

depends first on the presence or absence of the first accessed block b in the cache.

We consider all alternatives and expand the execution time distribution of the trace

as per (21), b = e, b �= e ∧ b ∈ s, and b �= e ∧ b /∈ s.

– b = e: The block is absent from the input cache state s and results in a miss

and the eviction of a line l j :

H + D([[e], t ′], s) = H + M +
∑

j∈[1,N]

1

N
· D(t ′, s[l j = e]) (78)

When e is randomly inserted in the cache before the execution of the same

sequence, its presence in s[li = e] results in a guaranteed hit from any of the

N possible states. The resulting cache states are left unchanged:

M+
∑

i∈[1,N]

1

N
·D([[e], t ′], s[li = e]) = M+H+

∑

i∈[1,N]

1

N
·D(t ′, s[li = e])

(79)

The two expanded distributions (78) and (79) obviously have the same

behaviour. The additional miss and hit latencies respectively balance the guar-

anteed hit and miss, while the resulting cache states are the same. Hence:

H + D([[e], t ′], s) = M +
∑

i∈[1,N]

1

N
· D([[e], t ′], s[li = e]) (80)

– b �= e, b ∈ s: b is present in the input cache state s. The corresponding

execution time distribution from s can simply be expressed as:

D(t, s) = H + D(t ′, s) (81)

From the input state s[li = e], different cases have to be considered depending

on whether e replaced b or not, that is respectively a guaranteed miss or a hit.

Upon a hit in particular, the cache state is left unchanged and replacement of

line li can occur after or before the access without incidence:

D(t, s[li = e]) =

{

M +
∑

j∈[1,N]
1
N

· D(t ′, s[b = e][l j = b]) if li = b

H + D(t ′, s[li = e]) otherwise

(82)

We expand the definition (82) of the contribution of t assuming a line li was

first replaced by e in the cache. We sum the N different terms resulting from

the replacement of b or one of the other block, as follows:

∑

i∈[1,N]

1

N
· D(t, s[li = e]) =

1

N
·

⎛

⎝

∑

j∈[1,N]

1

N
·
(

M+D(t ′, s[b= e][l j = b])
)

⎞

⎠

123

370 Real-Time Syst (2018) 54:307–388

+
∑

i∈[1,N]\b

1

N
·
(

H + D(t ′, s[li = e])
)

(83)

We deduce from the induction hypothesis (77) an upper bound U on the exe-

cution time distribution of t ′ from s:

H + D(t ′, s) ≤ M +
∑

i∈[1,N]

1

N
· D(t ′, s[li = e]) (84)

With the addition of a hit latency H on both sides:

H + H + D(t ′, s) ≤ H + M +
∑

i∈[1,N]

1

N
· D(t ′, s[li = e]) (85)

H+D(t ′, s) is equivalent to the execution time of t from s as expressed in (81):

H + D(t, s) ≤ H + M +
∑

i∈[1,N]

1

N
· D(t ′, s[li = e]) (86)

H + D(t, s) ≤ M + U (87)

We further distinguish in U the cases where e specifically replaces b in the

cache or any other line:

U = H +
∑

i∈[1,N]

1

N
· D(t ′, s[li = e])

=
1

N
·
(

H + D(t ′, s[b = e])
)

+
∑

i∈[1,N]\b

1

N
·
(

H + D(t ′, s[li = e])
)

(88)

Thanks to the induction hypothesis (77), we can define an upper-bound on the

left-most term, where e replaces b in the cache:

H + D(t ′, s[b = e]) ≤ M +
∑

j∈[1,N]

1

N
· D(t ′, s[b = e][l j = b]) (89)

Multiplying both sides by 1
N

, we have:

1

N
·
(

H + D(t ′, s[b = e])
)

≤
1

N
·

⎛

⎝

∑

j∈[1,N]

1

N
·
(

M+D(t ′, s[b= e][l j = b])
)

⎞

⎠

(90)

123

Real-Time Syst (2018) 54:307–388 371

We can then deduce that U is a lower bound on the execution time distribution

of t when e first replaces a random line li in s. From (88) and (90):

U ≤
1

N
·

⎛

⎝

∑

j∈[1,N]

1

N
·
(

M + D(t ′, s[b = e][l j = b])
)

⎞

⎠

+
∑

i∈[1,N]\b

1

N
·
(

H + D(t ′, s[li = e])
)

(91)

From (83), it follows that:

U ≤
∑

i∈[1,N]

1

N
· D(t, s[li = e]) (92)

This can be combined with (87) such that M + U is an intermediate bound

between (81) and (82):

H + D(t, s) ≤ M + U ≤ M +
∑

i∈[1,N]

1

N
· D(t, s[li = e]) (93)

Hence the property holds:

H + D(t, s) ≤ M +
∑

i∈[1,N]

1

N
· D(t, s[li = e]) (94)

– b �= e, b /∈ s: We need to consider two subcases depending on whether the

random insertion of b or e results in the higher execution time distribution for

t ′, i.e. the comparison between Db and De:

Db =
∑

i∈[1,n]

1

N
· D(t ′, s[li = b]) (95)

De =
∑

i∈[1,n]

1

N
· D(t ′, s[li = e]) (96)

• De ≤ Db: We prove the existence of an intermediate bound between

D(t, s) and D(t, s[li = e]) where t = [[b], t ′]. From the induction hypoth-

esis (77), we deduce that:

H + D(t ′, s[l j = b]) ≤ M +
∑

i∈[1,N]

1

N
· D(t ′, s[l j = b][li = e]) (97)

123

372 Real-Time Syst (2018) 54:307–388

Let us define U j such that:

U j =
∑

i∈[1,N]

1

N
· D(t ′, s[l j = b][li = e]) (98)

H + D(t ′, s[l j = b]) ≤ M + U j (99)

The property further holds for any j and extends to the weighted sum over

j of the terms on each side of the inequality:

H +
∑

j∈[1,N]

1

N
· D(t ′, s[l j = b]) ≤ M +

∑

j∈[1,N]

1

N
· U j (100)

Using the definition of U j (98), the right-hand term can be expanded, by

distinguishing the cases where j and i denote the same line, that is when

e replaces the randomly inserted b, s[l j = b][l j = e] = s[l j = e]:

∑

j∈[1,N]

1

N
· U j =

∑

j∈[1,N]

1

N
·

1

N
· D(t ′, s[l j = e])

+
∑

j∈[1,N]

1

N
·
∑

i∈[1,N]\ j

1

N
· D(t ′, s[l j = b][li = e]) (101)

By substituting De (96) we have:

∑

j∈[1,N]

1

N
·U j =

1

N
·De+

∑

j∈[1,N]

1

N
·
∑

i∈[1,N]\ j

1

N
·D(t ′, s[l j = b][li = e])

(102)

Similarly, we distinguish in D([[b], t ′], s[li = e]) the same cases where

the first access to b, a miss, replaces line li or not:

∑

i∈[1,N]

1

N
· D([[b], t ′], s[li = e])

= M +
∑

j∈[1,N]

1

N
·
∑

i∈[1,N]

1

N
· D(t ′, s[li = e][l j = b])

= M +
∑

j∈[1,N]

1

N
·

1

N
· D(t ′, s[l j = b])

+
∑

j∈[1,N]

1

N
·
∑

i∈[1,N]\ j

1

N
· D(t ′, s[li = e][l j = b]) (103)

123

Real-Time Syst (2018) 54:307–388 373

By substituting Db (95) in the above equation we get:

∑

i∈[1,N]

1

N
· D([[b], t ′], s[li = e])

= M +
1

N
· Db +

∑

j∈[1,N]

1

N
·
∑

i∈[1,N]\ j

1

N
· D(t ′, s[li = e][l j = b])

(104)

When lines i and j do not match, the ordering of the replacement of li
and l j by e and b respectively is irrelevant, s[li = e][l j = b] = s[l j =

b][li = e]. Hence the difference between (104) and the sum of U j (102)

depends on the ordering between respectively Db and De. Since De ≤ Db,

it follows from (104) and (102) that:

M +
∑

j∈[1,N]

1

N
· U j ≤

∑

i∈[1,N]

1

N
· D([[b], t ′], s[li = e]) (105)

As a consequence of (105) and (100), it follows that:

H +
∑

j∈[1,N]

1

N
· D(t ′, s[l j = b]) ≤ M +

∑

j∈[1,N]

1

N
· U j

≤
∑

i∈[1,N]

1

N
· D([[b], t ′], s[li = e])

(106)

Adding a miss latency M on both sides of the inequality:

M+H+
∑

j∈[1,N]

1

N
·D(t ′, s[l j = b]) ≤ M+

∑

i∈[1,N]

1

N
·D([[b], t ′], s[li = e])

(107)

The left-hand term collapses to the execution time distribution of t =

[[b], t ′] from s as per (21) as b is absent from the input cache state s.

Hence, the property holds:

H + D([[b], t ′], s) ≤ M +
∑

i∈[1,N]

1

N
· D([[b], t ′], s[li = e]) (108)

• Db ≤ De: The induction hypothesis (77) gives us the following relation-

ship:

H + D(t ′, s[li = e]) ≤ M +
∑

j∈[1,N]

1

N
· D(t ′, s[li = e][l j = b]) (109)

123

374 Real-Time Syst (2018) 54:307–388

We can reduce the right-hand term as per (21) given that b is absent from

the initial cache state s:

H + D(t ′, s[li = e]) ≤ D([[b], t ′], s[li = e]) (110)

The property, valid for any line li , holds for summation below:

H+
∑

i∈[1,N]

1

N
·D(t ′, s[li = e]) ≤

∑

i∈[1,N]

1

N
·D([[b], t ′], s[li = e]) (111)

Substituting De (96), we have:

H + De ≤
∑

i∈[1,N]

1

N
· D([[b], t ′], s[li = e]) (112)

Considering the ordering Db ≤ De between Db (95) and De (96), we

conclude that:

H + Db ≤
∑

i∈[1,N]

1

N
· D([[b], t ′], s[li = e]) (113)

Through the expansion of Db (95) and the addition of a miss latency M

on both sides of the inequality, we have:

M+H+
∑

i∈[1,N]

1

N
·D(t ′, s[li = b]) ≤ M+

∑

i∈[1,N]

D([[b], t ′], s[li = e])

(114)

From (21) and the absence of b from the input cache state s we know that

the left hand term can be expressed as the execution time of t = [[b], t ′]

from s:

H + D([[b], t ′], s) ≤ M +
∑

i∈[1,N]

1

N
· D([[b], t ′], s[li = e]) (115)

The same distribution might not be the dominant one on the whole input

domain; there might be segments where De is greater than Db and the converse

is true on the rest of the input domain. However, the property holds in either

case. Hence the theorem still holds on each segment.

The property holds in all scenarios, whether b = e, or block b is absent or present in

input cache state s. The random replacement of a line li by e can trigger an additional

hit on the first subsequent access to e. The additional miss latency compensates for

this potential hit. From the original cache state, this access is a guaranteed miss. The

resulting cache states, and the behaviour of the rest of the sequence, match whether

this first access to e results in a cache hit (from s[li = e]) or a miss (from s). ⊓⊔

123

Real-Time Syst (2018) 54:307–388 375

Lemma 3 The replacement in input cache state s of a block by another one in trace

t has no impact, timing and cache contents-wise, up to the first access to either block.

The replacement can occur indifferently before trace t or before the first access to

either block.

frd(b, t) ≤ frd(e, t) ≤ ∞ ∧ t = [tp, [b], ts] ∧ b /∈ tp ⇒

D(t, s[b = e]) =
∑

(C ′,P ′,D′)∈outcomes(tp,s[b=e])

P ′ ·
(

D
′ ⊗ D

(

[[b], ts], C ′
))

=
∑

(C,P,D)∈outcomes(tp,s)

P · (D ⊗ D ([[b], ts], C[b = e]))

D(t, s[e = b]) =
∑

(C ′,P ′,D′)∈outcomes(tp,s[e=b])

P ′ ·
(

D
′ ⊗ D

(

[[b], ts], C ′
))

=
∑

(C,P,D)∈outcomes(tp,s)

P · (D ⊗ D ([[b], ts], C[e = b])) (116)

Proof The property trivially holds if the input cache state s holds both b and e or neither

as the replacement are then ineffective. We focus on states which hold either one but

not both. s′ denotes the input cache where the replacement occurred, s′ = s[b = e]

or s′ = s[e = b]

The trace t can be divided as such t = [tp, [b], ts] where [b] is the first reference

to b in t . The subtrace tp holds no reference to b, nor to e as a consequence of the

ordering between their forward reuse distances. The execution time distribution of

trace t as per (21) is:

D(t, s) =
∑

(C,P,D)∈outcomes(tp,s)

P · (D ⊗ D ([[b], ts], C)) (117)

Accesses in tp are not impacted by the presence of either b or e in the input cache.

The sequence of evictions from s which lead to cache state C with probability P and

execution time distribution D is matched starting from s′. It results in cache state C ′

with the same probability P and execution time distribution D. If the replaced block is

absent from C , it has been evicted by accesses in tp and similarly the replacing block

has been evicted in C ′. If the replaced block is still present in C , the replacing block

is similarly present in C ′. The other lines hold the same contents since we consider

the same fixed sequence of evictions on tp from s and s′. ⊓⊔

Theorem 3 The replacement of a block in input cache state s by one which is reused

later in trace t cannot result in a decreased execution time distribution: frd(b, t) ≤

frd(e, t) ≤ ∞ ∧ b ∈ s ∧ e /∈ s ⇒ D(t, s) ≤ D(t, s[b = e])

Proof If there is no reference to memory block e in the considered trace t , the replace-

ment of b by e in input cache state s is equivalent to the eviction of b from the cache,

e /∈ t ⇒ s[b = e] = s[−b]. The theorem then holds as per Theorem 1. We therefore

focus on the case where e is accessed in t , frd(e, t) �= ∞.

123

376 Real-Time Syst (2018) 54:307–388

We cut the trace t into different segments t = [tp, [b], tm, [e], ts] such that tp holds

no reference to b nor e as a consequence of their forward reuse distances. Similarly,

we define tm such that it holds no reference to e. The first reference to b and e in trace

t are respectively located after tp and tm .

Because of Lemma 3, we know that the replacement has no impact on tp which

holds no reference to either the replaced block b or the replacing one e. We focus on

the execution time distribution of the trace t ′ = [[b], tm, [e], ts] from a state Cb, which

holds b but not e. We further prove by induction that:

D(t ′, Cb) ≤ D(t ′, Cb[b = e]) (118)

Base case tm = ts = ∅, t ′ = [b, e]: The property trivially holds as the execution of

t ′ from Cb results in a hit then a miss, D(t ′, Cb) = H + M, whereas it misses then

may hit or miss from input Cb[b = e], D(t ′, Cb[b = e]) ≥ M + H.

Inductive case t ′ = [[b], tm, [e], ts]: Suppose the propertyD(t ′′, C) ≤ D(t ′′, C[x =

y]) holds for any trace t ′′ = [[x], t ′′m, [y], t ′′s] where t ′′m does not access y and any input

state C which does not hold y. From Lemma 3, this hypothesis applies to arbitrary

prefixes t ′′p as long as they hold neither x nor y:

x /∈ t ′′p ∧ y /∈ t ′′p ∧ y /∈ t ′′m ∧ y /∈ C ⇒ D([t ′′p, [x], t ′′m, [y], t ′′s], C)

≤ D([t ′′p, [x], t ′′m, [y], t ′′s], C[x = y]) (119)

The first access to b in t ′ is a guaranteed hit from Cb and a miss from Cb[b = e].

The resulting execution time distributions can be expressed as per (21):

D(t ′, Cb) = H + D([tm, [e], ts], Cb) (120)

D(t ′, Cb[b = e]) = M +
∑

i∈[1,N]

1

N
· D([tm, [e], ts], Cb[b = e][li = b])

(121)

– If b is present in tm , there is an access to b prior to the first access to e in the

remaining trace. [tm, [e], ts] can be further split into [t ′m, [b], t ′′m, [e], ts] such that

tm = [t ′m, [b], t ′′m] and t ′m holds no reference to b nor e. There is a reference to b

before the next access to e. From the induction hypothesis (119), substituting b

for x and e for y, we have:

D([tm, [e], ts], Cb) ≤ D([tm, [e], ts], Cb[b = e]) (122)

From Theorem 2, we know that:

H+D([tm, [e], ts], Cb[b= e]) ≤ M+
∑

i∈[1,N]

1

N
·D([tm, [e], ts], Cb[b= e][li = b])

(123)

123

Real-Time Syst (2018) 54:307–388 377

Hence from (122) and (123) the property trivally holds when b is in tm using

D([tm, [e], ts], Cb[b = e]) as an intermediate bound:

H + D([tm, [e], ts], Cb) ≤ H + D([tm, [e], ts], Cb[b = e])

≤ M +
∑

i∈[1,N]

1

N
· D([tm, [e], ts], Cb[b = e][li = b])

(124)

The leftmost and rightmost terms can be reduced to the property of interest using

respectively (120) and (121):

D(t ′, Cb) ≤ D(t ′, Cb[b = e]) (125)

– Now consider the case where b is absent from the trace tm as is e. We distinguish

the case where the first miss from Cb[b = e] in t ′ = [[b], tm, [e], ts] selects the line

that originally held b, Cb[b = e][li = b] = Cb, from the ones where a different

line is selected. The latter results in a cache state equivalent to Cb[li = e]. By

separating those cases in (21), we have:

D(t ′, Cb[b = e]) = M +
1

N
· D([tm, [e], ts], Cb)

+
∑

i∈[1,N]\b

1

N
· D([tm, [e], ts], Cb[li = e]) (126)

This allows the definition of a lower-bound U of the contribution of the complete

trace from Cb[b = e]:

U =
∑

i∈[1,N]

1

N
· D([tm, [e], ts], Cb[li = e]) (127)

We further distinguish the case where li holds b from the others:

U =
1

N
· D([tm, [e], ts], Cb[b = e]) +

∑

i∈[1,N]\b

1

N
· D([tm, [e], ts], Cb[li = e])

(128)

Since tm holds neither b nor e, we deduce from the induction hypothesis that

replacing b by e in the cache does not degrade the execution time distribution of

the trace [tm, [e], ts] from Cb[b = e]:

D([tm, [e], ts], Cb[b = e]) ≤ D([tm, [e], ts], Cb[b = e][e = b]) (129)

Replacing b by e then e by b has no impact on the cache contents, Cb[b = e][e =

b] = Cb:

D([tm, [e], ts], Cb[b = e]) ≤ D([tm, [e], ts], Cb) (130)

123

378 Real-Time Syst (2018) 54:307–388

Dividing both sides by N we get:

1

N
· (D([tm, [e], ts], Cb[b = e])) ≤

1

N
· (D([tm, [e], ts], Cb)) (131)

We add the same factor, the random replacement of a line other than b, on both

sides:

1

N
· D([tm, [e], ts], Cb[b = e]) +

∑

i∈[1,N]\b

1

N
· D([tm, [e], ts], Cb[li = e])

≤
1

N
· D([tm, [e], ts], Cb) +

∑

i∈[1,N]\b

1

N
· D([tm, [e], ts], Cb[li = e]) (132)

This equation orders the expanded form of M+U in (128) and that of D(t ′, Cb[b =

e]) in (126):

M + U ≤ D(t ′, Cb[b = e]) (133)

From Theorem 2, we can compare the bound U to the execution time distribution

of t ′ from Cb:

H + D([tm, [e], ts], Cb) ≤ M +
∑

i∈[1,N]

1

N
· D([tm, [e], ts], Cb[li = b]) (134)

The rightmost term collapses to M + U from (128):

H + D([tm, [e], ts], Cb) ≤ M + U (135)

Hence, from this equation and (133) the property holds:

H + D([tm, [e], ts], Cb) ≤ M + U ≤ D(t ′, Cb[b = e]) (136)

D(t ′, Cb) ≤ D(t ′, Cb[b = e]) (137)

⊓⊔

Lemma 1 The convolution operation preserves the ordering between execution time

distributions:

D ≤ D
′ ⇒ D ⊗ A ≤ D

′ ⊗ A

Proof Let us first assume that D ≤ D. This relation implies that D′ is greater than D,

more formally:

∀v, P(D ≥ v) ≤ P(D′ ≥ v) (138)

This property applies to the sum of probabilities for all values greater than v:

∀v,

+∞
∑

x=v

D(x) ≤

+∞
∑

x=v

D
′(x) (139)

123

Real-Time Syst (2018) 54:307–388 379

It can be in particular extended to any value (v − k):

∀v,∀k,

+∞
∑

x=(v−k)

D(x) ≤

+∞
∑

x=(v−k)

D
′(x) (140)

As we are considering the sum to infinity of values D(x), k can be subtracted

indifferently from x or its lower bound v:

∀v,∀k,

+∞
∑

x=(v−k)

D(x) =

+∞
∑

x=v

D(x − k) (141)

From the two previous equations, we have:

∀v,∀k,

+∞
∑

x=v

D(x − k) ≤

+∞
∑

x=v

D
′(x − k) (142)

The occurrence probability of any element x in a distribution A is by definition a

positive number, A(k) ≥ 0. We can factor the same both sides of the inequality with

the same values A(k):

∀v,∀k,A(k) ·

+∞
∑

x=v

D(x − k) ≤ A(k) ·

+∞
∑

x=v

D
′(x − k) (143)

∀v,∀k,

+∞
∑

x=v

A(k) · D(x − k) ≤

+∞
∑

x=v

A(k) · D
′(x − k) (144)

As the inequality holds for any element k, it holds for their overall sum over k:

∀v,

+∞
∑

k=−∞

+∞
∑

x=v

A(k) · D(x − k) ≤

+∞
∑

k=−∞

+∞
∑

x=v

A(k) · D
′(x − k) (145)

Thanks to the commutativity of the sum operands, we have:

∀v,

+∞
∑

x=v

+∞
∑

k=−∞

A(k) · D(x − k) ≤

+∞
∑

x=v

+∞
∑

k=−∞

A(k) · D
′(x − k) (146)

Both terms of the inequality correspond to the convolution of distributions as defined

in (20):

∀v,

+∞
∑

x=v

(A ⊗ D)(x) ≤

+∞
∑

x=v

(A ⊗ D
′)(x) (147)

123

380 Real-Time Syst (2018) 54:307–388

This defines an order between the result of the convolution of D and D′ with

distribution A:

∀v, P((A ⊗ D) ≥ v) ≤ P((A ⊗ D
′) ≥ v) (148)

A ⊗ D ≤ A ⊗ D
′ (149)

Per commutativity of the convolution operator ⊗, we have:

D ≤ D
′ ⇒ D ⊗ A ≤ D

′ ⊗ A (150)

⊓⊔

Lemma 2 The contributions of merged sets of cache states S and A is the sum of their

individual contributions:

∀t,D(t, S) + D(t, A) = D(t, S ⊎ A)

Proof S⊎A can be divided into three categories, cache states C that exist only in S, only

A or in both, denoted respectively OnlyS , OnlyA, Com(S,A). The contribution of states

in OnlyS and OnlyA is unchanged by the merge operation. Only states in Com(S,A) are

subject to the weighted merge in (6). We focus on proving the equivalence between the

contribution of Com(S,A) and that of original states from A and S respectively ComA

and ComS , Com(S,A) = ComS ⊎ ComA.

Each state in Com(S,A) is the combination of corresponding states from ComS and

ComA. Without loss of generality, we assume there is a single matching state in ComS

and ComA for each merged one in Com(S,A):

∀(C, P, D)∈Com(S,A), ∃(C, PA, DA)∈ComA ∧ ∃(C, PS, DS)∈ComS ∧ P = PA+PS ∧ D

= (
PA

P
· DA) + (

PS

P
· DS) (151)

We can express the execution time contribution of Com(S,A) as per (37):

D(t, Com(S,A)) =
∑

(C,P,D)∈Com(S,A)

P · (D ⊗ D(t, C)) (152)

By replacing each merged distribution D with the original distributions and prob-

abilities from S and A, we have:

D(t, Com(S,A)) =
∑

(C,P,D)∈Com(S,A)

P ·

(

(
PA

P
· DA) + (

PS

P
· DS)

)

⊗ D(t, C) (153)

By definition, the convolution of distributions and the multiplication of a distribution

by a constant are associative operations, P ·(D⊗D′) = (P ·D)⊗D′. We can therefore

factor P inside the merged distributions:

123

Real-Time Syst (2018) 54:307–388 381

D(t, Com(S,A)) =
∑

(C,P,D)∈Com(S,A)

(

P · (
PA

P
· DA) + P · (

PS

P
· DS)

)

⊗ D(t, C)

(154)

D(t, Com(S,A)) =
∑

(C,P,D)∈Com(S,A)

((PA · DA) + (PS · DS)) ⊗ D(t, C) (155)

This equation can be refined into the contribution of states in ComS and ComA as

follows:

D(t, Com(S,A)) =
∑

(C,P,D)∈Com(S,A)

(PA · DA) ⊗ D(t, C)+ (PS · DS) ⊗ D(t, C)

(156)

D(t, Com(S,A)) =
∑

(C,PA,DA)∈ComA

(PA · DA) ⊗ D(t, C)

+
∑

(C,PS ,DS)∈ComS

(PS · DS) ⊗ D(t, C) (157)

D(t, Com(S,A)) = D(t, ComA) + D(t, ComS) (158)

⊓⊔

Theorem 8 (Renamed path ordering) Given a path π divided into three sub-paths

π = [πS, πV , πE], where πV = [e, v1, . . . , vk, e]. The pWCET of π is smaller than

or equal to that of the renamed sequence πr = [πS, πV (e → b), πE], D(π) ≤ D(πr),

if:

– there is no access to b in πV ;

– the reuse distance of e before πV is smaller than that of b at this point;

– the forward reuse distance of e at the end of πV is smaller than that of b at this

point.

Proof We focus on the behaviour of the execution time distribution of the path π and

its renamed alternative starting from the empty cache state, since is known to result

in the worst execution time distribution over any other input state. Any valid pWCET

must upper-bound this distribution, hence D(∅, π) is a tight pWCET for path π .

The execution of path πS generates an ensemble outcomes(πS,∅) of cache states

C . To each is attached an associated execution time distribution D, corresponding to

the hit and miss latencies of prior accesses, and an occurrence probability P . The

renaming does not impact the behaviour of accesses in πS , therefore outcomes(πS,∅)

is left unchanged.

The execution time distribution of the renamed segment πV (e → b) is no greater

nor smaller than that of πV from those cache states that hold neither b or e, or hold

both, (e ∈ s ∧ b ∈ s) ∨ (e /∈ s ∧ b /∈ s) ⇒ D(πV (e → b), s) = D(πV). States that

hold neither b nor e result in the same hit and miss events on both paths except that b

replaces e on the renamed path. This also produces the same cache states but where

b replaces e after the renamed segment. As for states that hold both b and e, events

123

382 Real-Time Syst (2018) 54:307–388

which impact the line where b is held on the original path are as likely to impact

that of e on the renamed one and vice-versa, e.g. the eviction of b on the original

corresponds to that of e on the renamed one. This also results in the same cache states

where b replaces e on the renamed path. The outcomes on πV then match the ones on

πV (e → b) where b replaces e in the cache.

When both blocks b and e are present in the outcomes on πV they match the ones

on the renamed path πV (e → b). The execution time distribution of the last segment

πS is the same in either case. When e is in the cache without b after πV , it is matched

by a state after πV (e → b) where b replaces e. From the Suffix ordering condition

the first access to e in πS is before the first access to b, frd(e, πS) < frd(b, πS).

Theorem 3 applies; the execution of πS after πV , when e is in cache but not b, results

in an execution time distribution that is no greater than the one after πV (e → b) when

b replaces e in the cache. Note that b cannot be in cache without e after πV since the

last access in πV targets e.

We now focus on the contribution of states which hold one of e or b but not both,

and prove their contribution to the renamed path outweighs that of the original. Re

and Rb respectively distinguish between those states of outcomes(πS,∅) which hold

one of e or b.

Base case πV = [e]: Every state in Rb shares a common ancestor state with a state

in Re such that they hold the same contents but e replaces b. Indeed because of the

condition on Prefix ordering, all states in Rb come from states where b and e were

held in the cache simultaneously, after the last access to e in the prefix πS . There is

then a sequence of events which evicts e from the cache while conserving b, hence

resulting in a state belonging to Rb. There is a matching sequence of events from this

common ancestor which conserves e instead of b. Simply assume that evictions on the

line of e target that of b and vice-versa. The two sequences of events are exactly as

likely to occur as there is no other access to either b or e from their common ancestor

to the renamed segment.

Consider the following four scenarios for a state s of Rb:

1. [e] executes from s, hence resulting in a miss and N output cache states s[li = e].

2. [e] executes from the as likely s[b = e] of Re, hence resulting in a hit and the

output cache state s[b = e].

3. [b], the renamed sequence, executes from s, hence resulting in a hit and an output

cache state s.

4. [b] executes from s[b = e], hence resulting in a miss and N output cache states

s[b = e][li = b].

Scenarios 3 and 2 balance each other, resulting in a worse behaviour on the renamed

sequence. Both suffer from the same execution latency for πV . Because of the Suffix

ordering condition on the ordering between the forward reuse distances of b and e and

Theorem 3, the execution time distribution of πE is worse starting from s than from

s[b = e].

A similar argument can be made for scenarios 1 and 4. Each line li has the same

probability to be selected for eviction in each scenario. If li is the line that held b in s,

the output cache states in cases 1 and 4 respectively are s[b = e] and s[b = e][li =

b] = s[b = e][e = b] = s. As per Theorem 3, it results in execution time distributions

123

Real-Time Syst (2018) 54:307–388 383

that are no lower for the renamed path than for the original one. If li is another line,

the resulting cache states, s[li = e] and s[b = e][li = b], hold the same contents,

s[b = e][li = b] = s[li = e], and result in the same execution time distribution for

πE .

As for the remaining states Ce in Re, the ones which do not mirror a state in Rb

they respectively result in a hit on the original segment and a miss on the renamed

one. On the renamed path, this results in the replacement of a line li by b. In

other words, D([πV , πE], Ce) = H + D(πE , s) and D([πV (e → b), πE], Ce) =

M +
∑

i∈[1,N] D(πE , Ce[li = b]). The execution time distribution of the original

path from Ce is therefore no greater than that of the renamed path according to

Theorem 2.

Overall the execution of the renamed path [b] results in execution time distributions

that are no lower than those obtained through the execution of the original one [e].

General case πV = [e, v1, . . . , vk, e]: The arguments for the basic case can be

extended to the general case where πV holds multiple accesses. The key observation

is that the renaming has no impact on the reuse distance of accesses within πV except

for the first. As in the base case, we focus on the contribution of states which hold

one of b or e. Consider the same four scenarios for input state s ∈ Rb of πV =

[e, v1, . . . , vk, e]:

1. [e, v1, . . . , vk, e] executes from s, hence resulting in a first miss and N cache states

s[li = e].

2. [e, v1, . . . , vk, e] executes from s[b = e] of Re, hence resulting in a first hit and

cache state s[b = e].

3. [b, v1, . . . , vk, b] executes from s, hence resulting in a first hit and cache state s.

4. [b, v1, . . . , vk, b] executes from s[b = e], hence resulting in a first miss and N

cache states s[b = e][li = b].

From scenario 1 to 4, and scenario 2 to 3, b simply replaces e in both cache contents

and trace of accesses πV . The behaviour of the first access in πV is the same in either

the original or the renamed path, and there is no more misses on the original than on

the renamed path since they have the same initial contents and trace where b simply

replaces e. The reuse distance of all accesses but the first is left unchanged between

these pairs of scenarios, D(πV , s) = D(πV (e → b), s[b = e]) and D(πV , s[b =

e] = D(πV (e → b), s).

The resulting cache states after πV (e → b) also match the ones after πV with b

replacing e in cache. Because of the Suffix ordering condition, the first access to b

in πE is preceded by an earlier access to e. Hence from Theorem 3 we have that the

execution of πE after πV results in an execution time distribution that is no greater

than the one starting from the matching input state s′[e = b] after the renamed path

πV (e → b).

For some cache states Ce in Re, the input states of πV which hold e but not b, do not

mirror a state in Rb. The first access in πV (e → b) is a miss from Ce. This intuitively

increases the reuse distance of the remaining accesses in the renamed [πV (e → b), πE]

over the original trace [πV , πE]. We prove by induction that:

D([πV , πE], Ce) ≤ D([πV (e → b), πE], Ce) (159)

123

384 Real-Time Syst (2018) 54:307–388

The base case, when πV holds a single access to e, has already been proved thanks

to Theorem 2. Our induction hypothesis is, assuming π ′
V is a subtrace of πV :

D([π ′
V , πE], Ce) ≤ D([π ′

V (e → b), πE], Ce) (160)

From Theorem 2, we have:

H + D([[v1, . . . , vk, e](e → b), πE], Ce)

≤ M +
∑

i∈[1,N]

D([[v1, . . . , vk, e](e → b), πE], Ce[li = b]) (161)

The left-hand term corresponds to the execution of a trace where the renaming

from block e to b occurs on π ′
V = [v1, . . . , vk, e], after the first access to e in πV . The

right-hand term simply exhibits the first miss on the execution of the renamed trace

[πV (e → b), πE] from Ce as per (21):

H + D([[v1, . . . , vk, e](e → b), πE], Ce) ≤ D([πV (e → b), πE], Ce) (162)

From the induction hypothesis we have:

D([[v1, . . . , vk, e], πE], Ce) ≤ D([[v1, . . . , vk, e](e → b), πE], Ce) (163)

By inserting a hit latency on both sides this equation becomes:

H+D([[v1, . . . , vk, e], πE], Ce) ≤ H+D([[v1, . . . , vk, e](e → b), πE], Ce) (164)

The first access in πV = [e, v1, . . . , vk, e] from Ce is a cache hit and leaves the

cache state unchanged. The term on the left hand side can be expressed as:

D([πV , πE], Ce) ≤ H + D([[v1, . . . , vk, e](e → b), πE], Ce) (165)

Hence, H+D([[v1, . . . , vk, e](e → b), πE], Ce) is an intermediate bound between

the execution time distributions of D([πV , πE], Ce) and D([πV (e → b), πE , Ce).

From (165) and (162), we have:

D([πV , πE], Ce) ≤ H + D([[v1, . . . , vk, e](e → b), πE], Ce)

≤ D([πV (e → b), πE], Ce) (166)

Each possible input cache state s′ to the renamed segment has an as likely match s

in the original trace such that the execution time distribution of the renamed segment

from s′ is no lower than that of the original from s. ⊓⊔

123

Real-Time Syst (2018) 54:307–388 385

References

Al-Zoubi H, Milenkovic A, Milenkovic M (2004) Performance evaluation of cache replacement policies

for the SPEC CPU2000 benchmark suite. In: Proceedings of the 42nd annual Southeast regional

conference. ACM, New York, pp 267–272

Alt M, Ferdinand C, Martin F, Wilhelm R (1996) Cache behavior prediction by abstract interpretation. In:

Science of computer programming. Springer, Heidelberg, pp 52–66

Altmeyer S, Davis RI (2014) On the correctness, optimality and precision of static probabilistic timing

analysis. In: 17th Conference on Design, Automation and Test in Europe (DATE)

Altmeyer S, Cucu-Grosjean L, Davis RI (2015) Static probabilistic timing analysis for real-time systems

using random replacement caches. Real Time Syst 51:77–123

Atanassov P, Puschner P (2001) Impact of DRAM refresh on the execution time of real-time tasks. In:

Proceedings of IEEE international workshop on application of reliable computing and communication,

pp 29–34

Ballabriga C, Cassé H (2008) Improving the WCET computation time by IPET using control flow graph

partitioning. In: 8th International workshop on worst-case execution time analysis (WCET)

Bernat G, Burns A, Newby M (2005) Probabilistic timing analysis: an approach using copulas. J Embed

Comput 1(2):179–184

Bernat G, Colin A, Petters S (2002) WCET analysis of probabilistic hard real-time systems. In: 23rd IEEE

real-time systems symposium (RTSS), pp 279–288

Bernat G, Colin A, Petters S (2003) pWCET: a tool for probabilistic worst-case execution time analysis of

real-time systems. Tech. Report YCS-353-2003, Department of Computer Science, The University of

York

Bhat B, Mueller F (2011) Making DRAM refresh predictable. Real Time Syst 47:430–453

Bourgade R, Ballabriga C, Cassé H, Rochange C, Sainrat P (2008) Accurate analysis of memory latencies

for WCET estimation. In: 16th Conference on real-time and network systems (RTNS)

Burns A, Edgar S (2000) Predicting computation time for advanced processor architectures. In: Proceedings

of the 12th Euromicro conference on real-time systems (Euromicro-RTS’00)

Cazorla F, Quiñones E, Vardanega T, Cucu L, Triquet B, Bernat G, Berger E, Abella J, Wartel F, Houston

M, Santinelli L, Kosmidis L, Lo C, Maxim D (2013) Proartis: probabilistically analysable real-time

systems. ACM Trans Embed Comput Syst 1(2s):1–26

Chiou D, Chiouy D, Rudolph L, Rudolphy L, Devadas S, Devadasy S, Ang BS, Angz BS (2000) Dynamic

cache partitioning via columnization. In: Proceedings of design automation conference

Colin A, Puaut I (2001) A modular and retargetable framework for tree-based WCET analysis. In: 13th

Euromicro conference on real-time systems (ECRTS), pp 37–44

Cortex-R4 and Cortex-R4F Technical Reference Manual (2010) http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.set.cortexr/index.html

Cucu-Grosjean L (2013) Independence—a misunderstood property of and for probabilistic real-time sys-

tems. In: Alan Burns 60th anniversary, York

Cucu-Grosjean L, Santinelli L, Houston M, Lo C, Vardanega T, Kosmidis L, Abella J, Mezzetti E, Quiones

E, Cazorla FJ (2012) Measurement-based probabilistic timing analysis for multi-path programs. In:

24th Euromicro conference on real-time systems (ECRTS), pp 91–101

David L, Puaut I (2004) Static determination of probabilistic execution times. In: 16th Euromicro conference

on real-time systems (ECRTS), pp 223–230, June 2004

Davis RI, Santinelli L, Altmeyer S, Maiza C, Cucu-Grosjean L (2013) Analysis of probabilistic cache

related pre-emption delays. In: 25th Euromicro conference on real-time systems (ECRTS)

de Dinechin BD, van Amstel D, Poulhiès M, Lager G (2014) Time-critical computing on a single-chip

massively parallel processor. In: Conference on Design, Automation & Test in Europe (DATE)

Edgar S, Burns A (2001) Statistical analysis of WCET for scheduling. In: 22nd IEEE real-time systems

symposium (RTSS ’01)

Griffin D, Burns A (2010) Realism in statistical analysis of worst case execution times. In: 10th International

workshop on worst-case execution time analysis (WCET’10), July 2010

Griffin D, Lesage B, Burns A, Davis R (2014a) Lossy compression for static probabilistic timing analysis

of random replacement caches. In: 22st International conference on real-time networks and systems

(RTNS ’14)

123

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.cortexr/index.html

386 Real-Time Syst (2018) 54:307–388

Griffin D, Lesage B, Burns A, Davis RI (2014b) Lossy compression for worst-case execution time analysis

of PLRU caches. In: Proceedings of the 22nd international conference on real-time networks and

systems (RTNS ’14)

Grund D, Reineke J (2010) Precise and efficient FIFO-replacement analysis based on static phase detection.

In: the 22nd Euromicro conference on real-time systems (ECRTS ’10), July 2010

Grund D, Reineke J (2010) Toward precise PLRU cache analysis. In: 10th International workshop on

worst-case execution time analysis (WCET’10), pp 28–39, July 2010

Gustafsson J, Betts A, Ermedahl A, Lisper B (2010) The Mälardalen WCET benchmarks—past, present

and future. In: Proceedings of the 10th international workshop on worst-case execution time analysis

(WCET), pp 137–147

Hahn S, Grund D (2012) Relational cache analysis for static timing analysis. In: 2012 24th Euromicro

conference on real-time systems, pp 102–111

Hahn S, Reineke J, Wilhelm R (2015) Towards compositionality in execution time analysis: definition and

challenges. In: SIGBED Review, vol 12. ACM, New York, pp 28–36

Hennessy JL, Patterson DA (2011) Computer architecture: A quantitative approach, 5th edn. Morgan Kauf-

mann, Burlington

Holsti N, Lngbacka T, Saarinen S (2000) Using a worst-case execution time tool for real-time verification

of the DEBIE software. In: Proceedings of the DASIA 2000 (data systems in aerospace) conference

Huynh BK, Ju L, Roychoudhury A (2011) Scope-aware data cache analysis for WCET estimation. In: 17th

Real-time and embedded technology and applications symposium (RTAS)

Kosmidis L, Abella J, Quiñones E, Cazorla FJ (2013) A cache design for probabilistically analysable real-

time systems. In: 16th conference on Design, Automation and Test in Europe (DATE), pp 513–518

Kosmidis L, Abella J, Wartel F, Quinones E, Colin A, Cazorla F (2014) PUB: path upper-bounding for

measurement-based probabilistic timing analysis. In: 26th Euromicro conference on real-time systems

(ECRTS)

Lesage B, Griffin D, Davis R, Altmeyer S (2013) On the application of static probabilistic timing analysis

to memory hierarchies. In: Real-time scheduling open problems seminar (RTSOPS)

Lesage B, Griffin D, Altmeyer S, Davis R (2015a) Static probabilistic timing analysis for multi-path pro-

grams. In: Real-time systems symposium (RTSS)

Lesage B, Griffin D, Soboczenski F, Bate I, Davis RI (2015b) A framework for the evaluation of

measurement-based timing analyses. In: 23rd International conference on real time and networks

systems (RTNS)

Li YT, Malik S (1997) Performance analysis of embedded software using implicit path enumeration. Trans

Comput Aided Des Integr Circuit Syst 16:1477–1487

Liang Y, Mitra T (2008) Cache modeling in probabilistic execution time analysis. In: Proceedings of the

45th annual design automation conference (DAC), pp 319–324

López J, Díaz J, Entrialgo J, García D (2008) Stochastic analysis of real-time systems underpreemptive

priority-driven scheduling. Real Time Syst 40:180–207

Maxim D, Houston M, Santinelli L, Bernat G, Davis RI, Cucu-Grosjean L (2012) Re-sampling for statistical

timing analysis of real-time systems. In: 20th International conference on real-time and network

systems (RTNS), pp 111–120

MPC8641D Integrated Host Processor Family Reference Manual (2008) http://www.nxp.com/products/

microcontrollers-and-processors/power-architecture-processors/integrated-host-processors/high-

performance-dual-core-processor:MPC8641D?fpsp=1&tab=Documentation_Tab

Muchnick SS (1997) Advanced compiler design and implementation. Morgan Kaufmann, San Francisco

Nemer F, Cassé H, Sainrat P, Bahsoun J.P, Michiel M D (2006) PapaBench: a free real-time benchmark. In:

6th International workshop on worst-case execution time analysis (WCET’06), vol 4 of OpenAccess

Series in Informatics (OASIcs)

Pasdeloup B (2014) Static probabilistic timing analysis of worst-case execution time for random replacement

caches. Tech. Report, INRIA, Rennes

Peleska J, Löding H (2008) Static analysis by abstract interpretation. University of Bremen, Centre of

Information Technology, Bremen

Puschner P, Koza C (1989) Calculating the maximum, execution time of real-time programs. Real Time

Syst 1(2):159–176

Quinones E, Berger ED, Bernat G, Cazorla FJ (2009) Using randomized caches in probabilistic real-time

systems. In: 21st Euromicro conference on real-time systems (ECRTS), pp 129–138

Reineke J (2014) Randomized caches considered harmful in hard real-time systems. LITES 1(1):03:1–03:13

123

http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/integrated-host-processors/high-performance-dual-core-processor:MPC8641D?fpsp=1&tab=Documentation_Tab
http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/integrated-host-processors/high-performance-dual-core-processor:MPC8641D?fpsp=1&tab=Documentation_Tab
http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/integrated-host-processors/high-performance-dual-core-processor:MPC8641D?fpsp=1&tab=Documentation_Tab

Real-Time Syst (2018) 54:307–388 387

Reineke J, Wachter B, Thesing S, Wilhelm R, Polian I, Eisinger J, Becker B (2006) A definition and clas-

sification of timing anomalies. In: 6th International workshop on worst-case execution time (WCET)

analysis

Spreitzer R, Plos T (2013) Cache-access pattern attack on disaligned AES T-tables. In: Proceedings of the

4th international conference on constructive side-channel analysis and secure design (COSADE’13),

pp 200–214

Theiling H, Ferdinand C, Wilhelm R (1999) Fast and precise WCET prediction by separated cache and path

analyses. Real Time Syst 18:157–179

Wang Z, Lee RB (2007) New cache designs for thwarting software cache-based side channel attacks. In:

Proceedings of the 34th annual international symposium on computer architecture (ISCA ’07). ACM,

New York, pp 494–505

Wang Z, Lee RB (2008) A novel cache architecture with enhanced performance and security. In: Proceedings

of the 41st annual IEEE/ACM international symposium on microarchitecture (MICRO 41), pp 83–93

Wegener S (2012) Computing same block relations for relational cache analysis. In: 12th International

workshop on worst-case execution time analysis, pp 25–37

Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C, Heckmann R,

Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenström P (2008) The worst-case execution-time

problem: overview of methods and survey of tools. ACM Trans Embed Comput Syst 7(3):1–53

Benjamin Lesage is a Research Associate in the Real-Time Systems Research Group at the University

of York, UK. Benjamin received his PhD in Computer Science in 2013 from the University of Rennes,

France. He has since been at the University of York as a Research Associate. He is currently working

in the context of a Knowledge Transfer Partnership, in collaboration with industrial partners, to put into

practice his knowledge of real-time systems’ timing analyses.

David Griffin is currently a member of the Real Time Systems

Group at the University of York, UK. His research has primarily been

in the application of non-standard techniques to Real-time problems,

utilising techniques from various other fields such as lossy compres-

sion, statistics and machine learning.

Sebastian Altmeyer is Assistant Professor (Universitair Docent) at

the University of Amsterdam. He has received his PhD in Computer

Science in 2012 from Saarland University, Germany with a thesis on

the analysis of preemptively scheduled hard real-time systems. From

2013 to 2015 he has been a postdoctoral researcher at the University

of Amsterdam, and from 2015 to 2016 at the University of Luxem-

bourg. In 2015, he has received an NWO Veni grant on the timing

verification of real-time multicore systems, and he is program chair

of the Euromicro Conference on Real-Time Systems (ECRTS) 2018.

His research targets various aspects of the design, analysis and veri-

fication of hard real-time systems, with a particular interest in timing

verification and multicore architectures.

123

388 Real-Time Syst (2018) 54:307–388

Liliana Cucu-Grosjean Photograph and Biography not available.

Robert I. Davis is a Senior Research Fellow in the Real-Time Sys-

tems Research Group at the University of York, UK, and an INRIA

International Chair with INRIA, Paris, France. Robert received his

PhD in Computer Science from the University of York in 1995. Since

then he has founded three start-up companies, all of which have suc-

ceeded in transferring real-time systems research into commercial

products. Robert’s research interests include the following aspects

of real-time systems: scheduling algorithms and analysis for single

processor, multiprocessor and networked systems; analysis of cache

related pre-emption delays, mixed criticality systems, and probabilis-

tic hard real-time systems.

123

	On the analysis of random replacement caches using static probabilistic timing methods for multi-path programs
	Abstract
	Extensions
	1 Introduction
	1.1 Related work
	1.1.1 Probabilistic timing analyses
	1.1.2 Deterministic architectures and analyses

	1.2 Organisation

	2 Static probabilistic timing analysis
	2.1 Cache model
	2.2 Collecting semantics
	2.2.1 Non-relevant blocks analysis

	2.3 Discussion: relevance of the model

	3 Comparing cache contents
	4 Application of SPTA to multi-path programs
	4.1 Program representation
	4.2 Complete loop unrolling
	4.3 Reuse distance/cache contention on CFG
	4.4 Selection of relevant blocks
	4.5 Approximation of cache states
	4.6 Join operation for cache collecting

	5 Improving on the join operation
	5.1 Ranking cache states
	5.2 Capacity conserving join

	6 Worst-case path reduction
	6.1 Path inclusion
	6.2 Empty conditions removal
	6.3 Loop unrolling
	6.4 Access renaming
	6.4.1 Simple path elimination
	6.4.2 Control flow graph segmentation

	7 Evaluation
	7.1 Relative precision of the analysis techniques
	7.2 Benefits of the join operations to collecting approaches
	7.3 Impact of WCEP reduction on analysis and simulation
	7.4 Execution time
	7.4.1 Reducing the complexity of the approach

	8 Conclusion and perspectives
	8.1 Perspectives

	Appendix: Proofs related to cache contents comparison
	References

