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ABSTRACT

Doshi, Chinubhai S.; M.S., Rochester Institute of Technology,

Feb. "79. 'On the Analysis of the Timoshenko Beam Theory With and

Without Internal Damping.1 Advisor: R. B. Hetnarski

The Timoshenko beam equation in terms of variable 'w ' is

derived where 'w is the deflection due to the bending of a beam.
D

The equation is used to analyze an infinite beam loaded with

(i) a concentrated transverse load and (ii) an impulse. It is also

shown that the rotatory damping in the equation eliminates the

increasing amplitude in the propagation of the bending moment when an

impulse is applied to an infinite beam. Also the general procedure for

the anlysis of a non-homogeneous equation is explained.
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A = cross -sectional area of a beam, a constant

A. =
arbitrary functions of p
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=

arbitrary constants

E = modulus of elasticity

G = modulus of rigidity

h = height of a beam

I = moment of inertia of a beam cross-section with respect to the

neutral axis of bending

k =
constant, depends on the shape of the cross-section of a beam
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m. = roots of characteristic equation

M(x,t) = bending moment

p
= Laplace transform parameter
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shearing force
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= shear force due to an external load

t = time variable

w = total deflection (both due to bending and shear)

w = deflection due to bending only

w = deflection due to shear only
s

x = variable along the axis of a beam

Y,Z =

arbitrary constants

$0
= constant in linear damping term

3, = constant in rotatory damping term
1
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CHAPTER I

Introduction

While studying papers devoted to modified beam theory - i.e. the

Timoshenko beam theory [l ], some interesting facts were observed which

prompted the undertaking of this work.

The Timoshenko beam theory is a modification of Euler's beam

theory. Euler's beam theory does not take into account the correction

for rotatory inertia or the correction for shear. In the Timoshenko

beam theory, Timoshenko has taken into account corrections both for

rotatory inertia and for shear. Also Timoshenko has shown that the

correction for shear is approximately four times greater than the

correction for rotatory inertia.

The modified theory is useful in performing dynamic analysis

of a beam such as a vibration analysis, stress analysis and the wave

propagation analysis.

Analysis of the Timoshenko beam theory is done in two ways.

(i) Use of two equations, one in rotational motion and the other in

translatory motion, (ii) use of only one equation obtained by combining

equations for rotational motion and translatory motion.

The conclusion was reached after studying the work of Miklowitz

[2], Dangler [3] and Eringen [4], that the one equation derived by

Eringen [4] can be used both in Miklowitz 's [2] and Dangler's [3] work

if some changes are made as required by the problem. This is shown in

Chapter V, part 1 and part 2a.
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It was also noticed that in some problems where particular

types of load, such as impulse load and random load, were applied to

a beam, and when stress analysis was performed using Timoshenko beam

theory, the results obtained led to conclusions which were erroneous

and not compatible with the physical expectations.

Eringen [4] showed that in the case of random load application

to a beam, it was necessary to modify the Timoshenko beam theory by the

introduction of some type of internal damping. Eringen [4] obtained

satisfactory results by the introduction of linear damping into the

translatory motion, and of rotatory damping into the rotatory motion.

In case of impulse load application it was predicted by

Dangler [3] that satisfactory results would be obtained by the use of

internal damping. It was not indicated which type of damping would be

necessary to obtain satisfactory results.

The same problem as the one Dangler [3] had,- is solved

in Chapter V, part 2b by using rotatory damping. The result obtained

is satisfactory and compatible with the experimental expectations.

A method to solve the Timoshenko beam equation is explained,

using variation of parameters, in Chapter V, part 3. The method

explained is applicable to any differential equation in general.
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CHAPTER II

Review of the Literature

S. P. Timoshenko [l], a pioneer in strength of materials,

developed a theory in 1921 which is a modification of Euler's beam

theory. The theory takes into account corrections for shear and

rotatory inertia neglected in Euler's beam theory. The modified

theory is called the 'Timoshenko beam theory.
*

Since the development of this theory in 1921, many researchers

have used it in various problems. Uflyand D>], in 1948, used the

theory to determine the propagation of waves in the transverse vibra

tions of bars and plates. The Laplace transform was used to obtain

the solution of the Timoshenko beam equation.

In 1951, M. A. Danger and M. Gonald [3] used the theory to

determine results of impact loading on long beams . The non-dimensional

form of the equation in conjunction with the Laplace transform and the

Fourier transform was used in the analysis of the theory. Also in

1951, Traill-Nash and Collar [6] used the theory to determine the

effects of shear flexibility and the rotatory inertia on the lateral

vibration of a beam.

In 1953, both Miklowitz [2] and Anderson [7] used the

Timoshenko beam theory. Miklowitz [2] used the theory to obtain the

flexural wave solution of an infinite beam using the Laplace transform.

Anderson [7 J used the theory to find flexural vibrations in a uniform
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beam using a general series solution method as it is used in the

analysis of Euler's beam theory.

B.A. Boley [8,9,10] in 1955-56 showed an approximate analysis

of Timoshenko beams under dynamic loads on the basis of a traveling -wave

approach and the principle of virtual work. He also showed the use of

the Fourier sine transforms in the analysis of the Timoshenko beam

under impact loads .

In 1958 Eringen and Samuel [4] introduced the internal damping

concepts into the Timoshenko beam theory. The equation was modified

by introducing linear and rotatory damping. The modified theory is

used in the stress analysis of a simply supported beam with the applica

tion of a random load. The Laplace transform, Fourier transform, con

tour integration and perturbation procedure are used to obtain the

solution.
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CHAPTER III

Statement of the Problem

The intention of this work is to shed light on the following

points:

(i) To show that the porblems considered by both Miklowitz Wl J and

Dangler [3], can be solved using a simple equation in 'WR'> where

'w '
is the deflection of beam due to bending only. This equation has

D

the form

^"B
.t

pEI. %\ p2I %\ .
*\ .

Miklowitz [2] considered the case of an infinite beam with a

concentrated transverse load applied at x = 0. To arrive at the

solution he used the Timoshenko beam represented by two coupled equations

in terms of 'w
'

and 'w ', where 'w ' is as described above and
D S D

'w
' is the deflection due to shear only. These equations are:

3 w 3w 3 w

3 wR
3 w 3 w

pA f + pA f- - kAG ^- = 0
3t^ 3tZ 3xZ

Dangler [3] considered the case of an infinite beam with an

impulse load applied at x = 0. To arrive at the solution, he used

the Timoshenko equation in 'w', where
'w' is the total deflection
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of a beam due to both bending and shear. The equation is

where P is an external load applied to a
beam.*

(ii) To show that increasing amplitude appears in wave propagation of

the bending moment obtained using the equation without any damping, i.e.,

nT
*\

rnT PEI, 3\ P2I 3\
nA
^B

nEI
r

- (PI + *~)
2 2

+

TS
+ PA j- = 0

3x4 Kb 3xZ3t^ Kb 3t4

3t .

can be eliminated by using the equation derived with the rotatory

damping, i.e.,

*\
rnT PEI, 84wB , *\ P2I S^B

Ti
' c +

^ 7^72
"

61 iir
+ iG"

TT
3x 3x 3t 3x 3t 3t

3 2

pQ1
3
wg

3
wg

+ "kg-

TT
+ pA

T
=

3t 3t

where $, is a constant introduced in the rotatory damping mechanism.

(iii) To show how to use the variation of parameter method for a non-

homogeneous Timoshenko equation when other methods used for particular

cases are not applicable.



CHAPTER IV

Derivation of Equations

Timoshenko Beam Theory:

S. P. Timoshenko was the first to introduce correction for shear

and rotatory inertia in the simple beam theory in 1921 [l]. This is why
*

the equation derived after the introduction of shear correction and rotatory

inertia is called the "Timoshenko Beam
Theory."

Derivation:

M + tt dx
3x

?&*

Figure 1. Element of the beam.

In the above Figure 1, the bending moment is denoted by M and

shearing force is denoted by Q. Let angle <J> be due to bending and

y be due to shear. Deflection is w.

For very small deflections

3w

3x
= 4> + Y (4.1)



and from simple beam theory

M =
-EI || ; Q = kAGY (4.2)

where EI is flexural rigidity; k is a constant depending on the

shape of cross-section of a beam; A is area of cross-section and G

is modulus of rigidity.

The equations of motion are:

For the rotation -

2

- |^dx + Qdx = pi --4dx (4.3)
3x 3t2

where p is density of the material .

For translation in the direction of w -

|| dx = pA 1% dx (4.4)

Now if the value of Q from equation (4.2) is substituted into equations

(4.3) and (4.4) we obtain,

--UGY .pi 4 (4.5,
3t

3 (kAGY) nA
32w

fA
,.

-V-2" =

PA^2 C4.6)

Substituting for y
=
t (j) from equation (4.1) and m =

-EI ^ from
oX dX

equation (4.2) into equations (4.5) and (4.6) we obtain,
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EI fl + kAG(|^
-<(,)

- pllfi- 0 (4.7)
3x2 3x 3t2

pA
l!

.

icAG^
- *> - 0 . (4.8)

3t2 3x2 3x

To eliminate <J> from equations (4.7) and (4.8), we rearrange (4.8) to

read

3x
"

kAG - 2
+

- 2
'

3t 3x

Now differentiating equation (4.7) with respect to x and substituting

for
-p

we get

T3 rpA3w 3wn ,
.

_p
3 w pA3w 3 w,

EI

77 ["^ 77
*^7] *

"*Z
*

&
-

^

3t 3t 3x

Simplifying the above expression we obtain,

CT
i4 ^4 .2 2T ,4 .4

EIp 3w CT3wj/>A3wLpl3w _ 3w .

Therefore,

4 4 2 2 4
r.-r

8 w
,,,

E, 3w . 3 w p I 3 w ~ ,. ...

EI^-pI(1^)^7
+

pA^
+

^^
= 0- C4-9)

This is called the
"Timoshenko"

equation.

v4

In equation (4.9) rotatory inertia is represented by -pi r
*- and

,4. 2T,4..

8*5t

correction due to shear by
pIE

^4

3 w p2i
s4

3 w

kG 2 2
3xZ3t

kG 3t4
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The Euler's Equation is obtained from the Timoshenko equation by

eliminating the corrections due to both shear and rotatory inertia.

EI ^+ pI
A

o . (4.10)
3x4 3tZ

The Timoshenko beam theory can be considered either in the form

of two equations, such as (4.7) and (4.8) or in the form of the one

equation, as (4.9).

Various researchers have used these equations in different ways,

according to their goals.

In the later part of this thesis,, it will be shown that only

one equation in terms of 'w
'
is sufficient to solve most engineering

D

problems where stress is to be found. Here w is deflection due to
D

bending.

Also the equation will be used with internal damping. The most

general equation considering linear and rotatory damping is derived by

Eringen [4]. From the general equation, we can obtain the simple

Timoshenko equation or an equation with either only rotatory damping

or only linear damping.
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Derivation of equation in 'w '
with linear and rotatory damping:

-*- x

M + 3dx

w Figure 2. Element of the beam.

In these equations, linear damping is introduced in the trans

latory motion and rotatory damping is introduced in the rotatory

motion.

The equation for rotatory motion from Figure 2 is,

|f dx + Qdx - |(T1 + T2)dx = pi ^dx
3t^

which yields
,

-&*-5<VV
= PI

32(j)

3t2
(4.11)

The equation for translatory motion in direction of w is,

|| dx + Pdx +

(x2
-

xx)g dx = PA i*. dx + Bn |2- dx
ot

>o at
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which yields,

g*P.CT2-V - **t%- (4.12)

In equations (4.11) and (4.12) M , Q, P are the bending moment,

vertical shearing force, and vertical applied load respectively. T.. , x?

are surface shearing stresses which will play the role of rotatory

damping; h, A, I are the thickness, the cross-section area and the

moment of inertia respectively about the neutral axis; p is the mass

density, <j> is the angle due to bending, w is the deflection and t

is the time.

3w
In equation (4.12) 30

-gr* is the linear damping where 8n is

a constant.

3w
The term (t - t.. ) ?- comes from vertical component of T_

and T.. where small deflection theory is assumed.

Again, consider the following relations,

r> 3wR
= <J> + Y ; where <j> = -^-

(4.13)

"EI H "EI

jr ")
3x

Q = kGAY (4.15)

where 'w ' is the deflection due to bending.
D

Now to introduce rotatory damping we set,
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T = T = I S 21 C4.16)
Tl 2 h Pl 3t

where 3, is a constant. Substituting for
t^

and
t2

from equation

(4.16) into equations (4.11) and (4.12) we obtain,

--<-!c!ifr $ .

t4-17)

g.P . PA0.6O^. (4.18)

Substituting for M and Q from equations (4.14) and (4.15)

we obtain,

EI f+ kGAY -

3X||
=

pl^|
(4.19)

3x 3t

^(kGAV, .P =pA^.B0|^. (4.20)

dt

Introducing Y = |^ - <f> from equation (4.13) and rearranging

the terms we get,

EI l!l _ kGA4 + kGA || = PA ^| +

3, || (4.21)

3x St

kGA |1 = kGA t\ + P - PA t\ -

3Q fe . (4.22)
3x 3x2 at2 3t

To eliminate <j> equation (4.21) is differentiated with respect to

x and then the value of
-r-- is substituted from equation (4.22) into the
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differentiated equation (4.21). This results in the following equation.

E%x2^+kGA-kGA^2-kGA3t^^GA3x2
+ P pA

3,2

0 3wn .. 32w
rtT

a2

r 32w j

P pA 32w
-

3Q
^]+ kGA-T= pI [ + __

3x 3t 3x ot

_^o_3w-,

. JLrlJL p
-Bl ^1. g

-wi
"

kGA 3t
J +

Pl 3t
L

. 2
+ ~

kGA 0.2

"

kGA 3t
J

3x dt

Simplifying the above expression we obtain,

A EI 32P pEI 34w
60EI

35w 3^w a^w

b\ 4 kGA . 2
"

kG . 2a 2
"

kGA . 2a
" KbA

- 2
" F

pi\ 2
3x 3x 3x 3t 8x 3t 3x 3t

i
f2- o4

T *2D 2T y 3npl a3

r
3w ._. 3 w

_ T
3 w pi 3 P p I 3 w 0 3 w

B 9t
+

3x2

= "
3x23t2

+

kGA 3t2

"

kG 3t4

"

kGA 3t3

+

l
3x23t

+

kGA 3t
"

kG 3t3

"

kGA 3t2

keeping all the terms in P on one side and rearranging all other

terms we get,

-4
nT y 3nEI -3 2T .4

_T
3 w

f
PEI, 3 w

f R
3 w p I 3 w

ApI *1P
33w

rn4 Wl, 32w
R

3w
+

cTgF
+

^ ^3
+ CPA +

TgF^
+

3o at

gi ap
_pi_l^. JLlfL

= P +

kGA 3t
+

kGA
3

2
"

kGA 2
" (4.23)

Let the left hand side be equal to Lw; where
'L'

is an operator.
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Then,

Here to get the simple relation between w and wR, equation

(4.21) is integrated with respect to x after substituting for

- 3WB
<j> = -g- from equation (4.13) into equation (4.21). This gives the

following equation,

32w 32w 3w

EI i - kGAw. + kGAw = pi -p
+ 3, -jr- .

3x2 B 3t2 X 3t

Rearranging the above terms we get,

3 w 3w 3 w
-G-C-.,-

.pI-i.Bj^f-EI-^.

3t 3x

Then,

. 3 w 3w 3 w

ws
= <-"-

V
"

kk
<pI
T

+

h -W
' EI TT^ C4'25>

at 3x

where w is deflection due to shear only. From equation (4.25) we

obtain,

i
3

WR 3wr 9 WR
w

wb
+

kk
<pI
IT

+

ei IT
" EI
t^ C4'26)

at 3x

Applying operator L to equation (4.26) results in,

. 3 Lw 3Lw 3 Lw

Lw =

Lwb
+

kGA
<pI
-^r+h -*r

- EI

~^p
C4-27)

The right hand sides of both equations (4.24) and (4.27)
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are equal. Therefore,

2

P
*55C CPI

j^
%- H J) -

LWB .^
(PIl

aLwD 3 LwD

(4.28)

From equation (4.28) we get,

LwB
= P (4.29)

Then the equation in 'w '
with linear and rotatory damping is,

9*wr nPT -V
PnEI 33wn o2t 9*wr

ct ,-t PEIA B ,0 0 -.
Bpl B

EI I?"" ^ +
TB* ^2

" CW+ 3,)
^ Tg"^

Pi30 P3, a3wB
^

303x a2wB awB
+ ( TcT

+
"kG"3 -^T

+ cpA +
Ha* ^T

+

3o TT
= p

(4,30)

To obtain an equation in 'w '
without any internal damping,

put 3n
= 0 and 3, = 0 in equation (4.30). Also take external load

P = 0.

9 WR DEI
3

WR n2T
9 WR

9
WR

EI^-(PI^^^PA^=' ^

Equation (4.31) is the same as the Timoshenko equation except
'w'

is

replaced by 'wr'> This means that the Timoshenko equation can be split
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up into two equations, one in 'w '
and the other in 'w ', without any

B S

difficulty.

The equation with only rotatory damping is obtained by setting

3Q
= 0 in equation (4.30). Also take external load P = 0.

ei^S. fDl + IL JJ!L. e
93wb

,
p2i 34wb

,
pei 3'wb

3x4

" CP
kG

3
3x23t2

"

'
3x2at

at4 kG at3

a2

a
wR

+ pA -5. = 0 . (4.32)
atz

Equations (4.30) to (4.32) are used in the next chapter for the purpose

of conducting the analysis of an infinite beam.
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CHAPTER V

Theoretical Results

In this chapter equations (4.30) to (4-32) are used for the

purpose of obtaining various results. Chapter V is divided into three

parts .

Part 1.

Showing that the same results as Miklowitz [2] are obtained

by using the equation (4.31).

Part 2.

(a) Showing that the same results as Dangler and Gonald [3] are

obtained by using the equation (4.31),

(b) Showing that the problem of increasing amplitude of bending

moment encountered in Part 2a can be eliminated by using rotatory

damping in the analysis via equation (4.32).

Part 5.

Explaining the alternate method of solution, using matrices and

variation of parameters, for the analysis of a non-homogeneous differ

ential equation (i.e., Timoshenko equation with external load P) .
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part 1. Analysis of an Infinite Beam with a Concentrated Traverse

Load Applied.

Showing that the same result is obtained as in Miklowitz [2]

by using equation (4.31) instead of two equations used in [2],

Here a simple case of an uniform infinite beam is considered

with a load applied at x = 0.

A concentrated transverse load is applie'd at the center of

the beam as shown in Figure 3.

s(0,t)

-oo X=0 +co

Figure 3. An infinite beam with load applied at x = 0.

where sC0,t) is half of the load, applied at x = 0. Boundary con

ditions at Ixl = for all t are as follows:

3wB 3
wR

WB
-

> =: TT=0-

dX

Now consider equation (4.31) as the equation of motion. That

is,

9\ OFT d\ n2l *\ *\

Taking the Laplace transform of the equation (5.1.1) we obtain,
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4- 2-

EI *-% - P2(pl + ^L)^ +
p4

^ wB
+

P2PAWB
= 0 (5.1.2)

3x 3x

where p is a transformation variable. Now assume the form of the

solution for differential equation (5.1.2) as follows,

-mx rr . 7,

wB
= e .

_

(5.1.3)

Then, substituting equation (5.1.3) into equation (5.1.2) we get,

2

4nT -mx 2 2
, T

pEI. -mx ,4 pi 2 ... -mx
n

m Ele -

p m (pi + J~) e + (p ^- +
p pA) e =0

2

m4EI - (pi + ^J.) *
(p4 Eji- + p2pA) = 0 . (5.1.4)

Let /I = c /M = c 2L . cLex v

p cx ,
v

p c2 '

1

Substituting the above into equation (5.1.4) we obtain

2
m4

- ( \ ^ -I ) + ( -2-j
+ C) = 0 . (5.1.5)

Cl C2 C1C2

Equation (5.1.5) is the same as equation (7a) in Miklowitz [2].

The roots of the biquadratic equation (5.1.5) are,

\

- - 2 lr, 1 1
,

2 . r , 1 1.24 . y-t

Cl C2 Cl C2 1C2

simplifying the above.
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,.2 lrr1 l>2,r,l 1.2 , 2-A-,

Cl C2 Cl C2

Therefore ,

/?
Cx Cj Cj Cj

To satisfy boundary conditions at infinity we take only positive value

of m into consideration. Therefore,

* u^-^-y^f. v...*,
1/2

cl =2 Cl C2

Then equation (5.1.3) becomes,

-m.x ~m2x

wR
= A e + A2e . (5.1.7)

To solve for A., and A2 we need boundary conditions at x = 0.

Boundary conditions at x=0 are,

3w_(0,t)

(i)
-^

= 0 (5.1.8)

-*5CQ-t)

_

-11-

33E
Tag- C5-1-9)

Boundary condition (ii) needs to be converted into the terms of *w
'
as
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equation is in terms of 'w '
only. From elementary theory

B

s(0,t)
= - EI

3 w(0,t)

3x3

Substituting w = w +w in the above equation we get,
D S

s(0,t) = - EI

33wB(0,t) 33ws(0,t)

From equation (5.1.9)

3x

a ws(o,t)

3x3

= 0 as s(o,t) is constant, therefore,

sC0,t)
= - EI

3 wB(0,t)

ax3

rearranging the equation we obtain,

3 wB(0,t)

3x3

s(0,t)

EI
(5.1.10)

Therefore the boundary conditions are as follows:

(i)

awB(o,t)

3x
= 0 (5,1.8)

(ii)

3 wB(0,t)

ax3

5(0, t)

EI
(5,1.10)

Taking the Laplace transform of equations (5.1.8) and (5.1.10) for

boundary conditions we acquire,
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U) V = 0 (5.1.11)

3wB(0,P)
0

3x

3%(0,P)
i(0,p)

3x
EI

(ii) 2-= = - ^liLL (5.1.12)
3x3 EI

Now applying boundary conditions (5.1.11) and (5.1.12) to equation

(5.1.7) we get,

(5.1.13)

(5.1.14)

m2
Substituting A.. = A from equation (5.1.13) into equation (5.1.14)

-mlAl
-

m2A2
= 0

3A
"miAl

- m3A = -

iC0'P)
m2A2 EI

results in the following,

3, m2
A ,

3. i(0,p)
nlC-57A2)-,,l2A2

=

"EI

Simplifying the above equation we obtain,

a-2 2
, s(0,p)

m2A2(m2
-

mx)
= - -igf-L

which gives,

A2
=

i(0,P)
2 2

EIm2(m2
- m )

Also

Al
=

5(0, p)
2 2

EIm.(m2 -n^)

(5.1.15)

(5.1.16)

The values of A1 and A are the same as in the Miklowitz [2] equation (16)
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Part 2a. Analysis of an Infinite Beam with an Impulse Applied.

To show that the application of the equation (4.31) to an uni

form infinite beam with an impulse A<5(t) applied at x=0 can lead

to the result which is the same as presented in Dangler and Gonald [3] .

The function AS(t) is chosen arbitrarily for convenience, where 6(t)

is a
'Dirac'

function and A is a constant.

A single equation in terms of total deflection 'w' is used by

Dangler and Gonald [3].

Now equation (4.31) from Chapter IV is,

4 4 4 2
9 WR nPT

9 WR n2T
9 WR 9 WR

I 2
Dividing equation (5.2.1) by pA and using notations -r- = r and

----= c, where r = radius of gyration, we obtain,

E 2 9\ 2 9\ 2 3\ ^"b
f r2f- r2Cl + Ec) -5-V

pr2c + I = 0 . (5.2.2)
P 3x4 3x^3t^ 3t4 dtZ

To simplify the mathematical process, equation (5.2.2) is

transformed into non-dimensional form. The same method is used as

in Dangler and Gonald [3]. A quantity is divided by itself to get unity,

F 0
i.e. w

= 1 and
r- = 1. Equation (5.2.2) then becomes,

I4 r>4 .4 fl

,
3 wR 3 wR 3 w 3 wR

r2

- r2(l + c) + r2c 1 + J. = 0 (5.2.3)
3x4 3x^3t^ 3t4 %tZ
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Here the example with the simple case c=l is considered, although in

reality generally c> 1 for a beam. This is necessary to compare the

results with those received by Dangler and Gonald [3].

When c = 1 equation (5.2.3) becomes

2 9\ _ 2 94wB 2 9\ 92wB
nr - 2r + r + =- = 0 . (5.2.4)

3x 3x 3t 3t
3tz

Now taking Laplace transform of equation (5.2.4) we obtain,

34w
32"

B .22 B . 2 4 2 ..
n fr r-,

r j- - 2r p + Cr p +p ) w = 0 . (5,2.5)
3x4 3x^ a

Boundary conditions are the same as in Part 1; both at infinity and at

x = 0 (equations 5.1.11 and 5.1.12). That is,

3wR(0,p)

Ci)
5-j-- = 0 (5.2.6)

(ii)
93V'P)

i(0,p)
3x3

' "

EI

Then the solution is also the same as in Part 1,

-m x -m x

(5.2.7)

where A

wB
= A1e + A2e (5.2.8)

i(0,P)
1 2 2

Elm^m -m^^)
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and
A2

= -

5lf ,

EI m2(m -m.)

Here s(0,p) depends on the applied load and m and nu are determined

from equation (5.2.5). Now the applied load is A6(t) at x=0, where 6(t)

is 'Dirac' function and A is a constant. Therefore,

s(0,t) = | 6(t) .

The Laplace transform of s(0,t) gives

A
s(0,p) =

y
(as Laplace transform of

'5(t)* is '1'.)

Substituting s(0,p) into equations for A., and

A'

we obtain,

A = 2_
(5,2.9)

2EIm1 (m2
-

mp

A2
= '

,2 2,
^5.2,10)

2EIm2(m2
-

mf)

From equation C5.2.5) we obtain, Csubstituting w =
e-mx.)

2 4.222,242.
n ,r in,

rm -2rpm +(rp+p) = 0 (5.2.11)

Then the roots of the biquadratic equation (5.2.11) are,

,
,2

2r2p2
{4r4p4-4(r2p4

+
p2)r2}^

(m.)
=

=
l '

.

1
2r
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Therefore
,

m. = +

1

2r2P2{4r4p4-4Cr2p4

+

p2)rV!

2r

Here only positive values of m are considered to satisfy the boundary

conditions at infinity. Therefore,

m
1,2

2 2
2r p 2irp

2r

m
1,2

= [P2^

which gives,

*!
=

P^[p
+
7l

*
and

m;
Av-^f2

(5.2.12)

Therefore,

m.
2 2

-

m1
=

p[p
- ^-] -

pCp + ^]

Simplifying the above equation gives

2 2

m2
-

ml
2pi
r
r

(5.2.13)

Substituting equations (5.2.9) and (5,2.10) into equation (5.2.8)

results into the following equation,
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-m x -m x

Ae Ae
w

2EIm1
Cm2

-

m2) 2EIm2
Cm2

-

m2)

Therefore,

.

,
-m1x

1
-m_x

*B
=

J
5~-^e "^"e ^ (5.2.14)

B
2EI(m2-m2) ml m2

2 2
Substituting the value of (m_ - m ) from equation (5,2.13) we get,

n
-1.x . -m x

r L L L L-i

W^ =
:
L

e - e J
B

2EI(-2pi) ml m2

Simplifying the above equation we obtain,

. . . -m..x . -m0x

lAr r 1 1 1 2 -i /rir.

rcT- L e e J (5.2.15)
B 4EIp

u
m m

The following relation is known from the basic theory.

a2

3 w

MCx,t)
= -EI

y
3x

Taking the Laplace transform, we obtain,

9
WB

M(x,p) = -EI . (5.2.16)
3x^

Substituting for w from equation (5.2.15) into the equation (5.2.16)
D
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we get,

2 2
_ . m, -m x m -m x

M(x,p) = (-EI) -^-[---e
1
-ie

2
]

4hlp m1 m_

Simplifying the above equation we get,

_
.. -m x -m x

M(x,p) = ^[m2e
l

- n^e
1

] (5.2.17)

Substituting value of m and m from equation (5.2.12) into

equation (5.2.17) and simplifying we obtain,

- iAr r i k I'i(r.-W\ i j--P2(P
+ 7)2x

M(x,p) - ^L[ Cl - ^)2e
P CP r) x

- (l + JL)*e
r

].

This equation is the same as the equation (18) in Dangler and Gonald [3].

Inverse Laplace transform of equation (5.2.18) is given in

Dangler and Gonald [3] as follows:

M(x,t) =0 for t < |x| (5.2.19)

M(x,t) = | {cos .

j^
+lsin.

J^iL)} (5.2.20)

for t > |x|

2 2 k

where u = (t - x ) 2, J and J. are Bessel functions. It is noted

from equation (5.2.19) and (5.2.20) that bending moment at a station

x is zero until t = x, and then jumps to the value (obtained as

the limit of equation (5.2.20) as t
-- |x|)
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li,MU,t)=f{=sM-MsinJxLl

(5.2.21)

From the above equation (5.2.21) it is shown in [3] that there

is an increasing amplitude when t = x in the equation for M(x,t) .

This result is not acceptable in reality.

It is predicted that internal damping used in the equation

would eliminate the increasing amplitude in the solution for M(x,t) .

On the next pages, it is shown how internal damping affects

the outcome.

The result is discussed later in the thesis.
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(b) Same Analysis as in (a) Including Rotatory Inertia.

In Part 2a it was noted that there is an increasing amplitude

in the propagation of the bending moment when t = x. This is contrary to

the physical expectations. It is suggested by Dangler and Gonald [3]

that the increase is attributed to the neglect of the internal damping

in the beam.

It is shown in this part that by using internal damping in the

rotatory mechanism the inci casing amplitude in the propagation of the

bending moment is eliminated.

The problem is the same as in Part 2a except that the Timoshenko

equation is modified to include the rotatory damping.

Take the equation (4.32)

Al
+
pBI. A . A

t
P2I A

+
<*! a

EI 17" CPI
^ 7777

'

Bl 777, ^77 ^77
*2

U W

+ pA j- = 0 . (5.2.22)
3t^

12 1
Dividing (5.2.22) by pA and writing

-j- = r and t-t?
= c we get,

E 2 3\ 2n+F. J\_ h d\
n
2*\

r
j- - r (1 + Ec) - _ _ + per j-

9 dx* 3xZat^ PA
3xZ3t

3t4

3 2
3,c 3 w 3 w

+

-J f + y- = 0 . (5.2.23)
A

dy dy

Now, as it is done in Part 2a, we change the above equation (5.2.23) into
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non-dimensional form and let c = l. Then we get,

2 3S
,

2 3\ Sl 33wB 2 34wB h d\ *\ .

P

T
'

2l>

2 2
"

A
2~+r

+

A
+

T8x4 3x^3t^ A
3x^3t

3t4 A af5

3t

Performing the Laplace transform we obtain,

2 d\ _ 2 2 ^B Sl 3^B 2
4-' 31 3- 2-

nr TT"21? TT
"

X P
T"2" + r P Wb X P WB

+
? WB

=

3x 3x 3x

Therefore,

2 d\ f,22 31
,
3\ , 2 4 31 3 2,-

nr
j-

- (2r p +jp)
j- + Cr p

+

x p + P )WB
=

3x 3x

(5.2.24)

Solution of equation (5.2.24) is the same as in Part 2a. That is,

-m1
x -m.x

wg
= Axe + A2e (5.2.25)

with

A

A

1
2EIm1(m2-m2)

2

2EIm2
(m2

-

m2)

where m1 and nu are different and obtained by substituting

w_ = in equation (5.2.24)
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2 4
r m

2 31 2 4 h
C2r p

+ p)m + (r p
+ -r-

p
+
p ) = 0 . (5.2.26)

Roots of the biquadratic equation (5.2.26) are,

f,
2 2 Sl .

wo 2 2 h ,2 . 2, 2 4 31 3
2,0^

2
(2r P +

X p:> { C2r p X p)
- 4r (r p +

x P + P ) >

(m.) =

2r2

(5.2.27)

Simplify the terms under the root sign as follows

r. 2 2 61 2 2
(

2 4 31 3 2,(2r p +

x P)
" 4r (r p +

x P
+ P )

3,

A

&.
*V ? (~W ?

4r2'^P3

-

4r4p4

-

4r2 ^ r?
a

2 2
4r p

,1.2 2
, 22

Cx> P
- 4r p

p2[(^-)2-4r2]

Substituting back into equation (5.2.27) we get,

3

(mp

fl
A

2r2p2
+^pp[(^.)2

2r'

Therefore,

m
1,2

p

31 61 2

2r2

4r2}^
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Only positive values of m are considered, to satisfy boundary conditions

at infinity. Therefore, g g
r 1 r, 1

mi
=

P P +

r, 1.2 . 2-tHl
X+ {Cx> "4r }

2r

(5.2.28)

and

m
h

p +

3

"A

f]
A

"4- f-y-^p^

2r

(5.2.29)

Let

Y =

31 ,A.2

X+ {-X-
4r2}^

2r

in equation (5.2.28) and

Z =

t
2

2r

12 2 J-

in equation (5.2.29) where (-^-) >4r or 3 > 2(IA)
2
to get Y and

Z real and not complex. Then,

Hr -r

ml
= p2[p + Y]

m2
= p%[p +

if2

(5.2.30)

(5.2.31)

From the above equations (5.2.30) and (5.2.31) we get,
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m2

-

m2

=
p[p+Y] -p[p.+ Z] =

pCZ-Y) C5.2.32)

2 2
Substituting Cnu -

mp from equation C5*2.32) into the equations

for A and A2 we obtain,

and
1 2EIm1pCZ-Y)

*""

2 2EIm2pCZ-Y)

where Z and Y are real and not equal. Substituting for A. and A~

into equation CS . 2
.25)

we get,

-m x -m x

Ae Ae
w
B 2EIm pCZ - Y) 2EIm pCZ - Y)

Therefore,

1 "V 1 ~V\
WB

=
2EIpCZ-Y)ti7e "ij6 /' C5-2'33)

*2-

_

a
wB

Using MCx,p) = -EI
j- from Part 2a and substituting for w

dx
a

from equation C5.2.33) we obtain,

MC*>P> " <-EI)
2EIp(AZ-Y){^

|mi
-mlx

m2 "V
e e

m
2

which gives,

-mx -m..x

MCx'p) =

2p(Z-Y)
\m2e

" mie
I

' (5.2.34)
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Substituting n^
and

m2
from equations (5.2.30) and (5.2.31)

respectively into the equation (5.2.34) we obtain,

M(x.P) . 1HA_{p^p,z)\-*
*z^

-

pVy)V<> **Y>
"}

which gives,

M(x,p) =

f

Q-'Z)**

_

(p^Y)1"2

e-p%(p+Y)%x

P P
(Z-Y)) J*

e

(5.2.35)

For the inverse transform of M(x,p) we use the following formulae from

Roberts and Kaufman
[ll]."

Inverse transforms of

(1) g1(p)g2(p) is / fpt-u)f2(u)du

(2)

(3)

p is 6'(t-u)

is (i) 0 for t < x

t

(ii) e
2

I0[j(t2-x2)J2] for t > x (5.2.36)

where I is a modified Bessel function. Rewriting equation (5.2.35)

we get,

M(x,p) = jt-t-

(Z-Y)
(P+Z)

*---
--\ - (P+Y)

\

2rJ_7^'2

p^p+Z)
2r,v>2

pz(p+Y)

(5.2.37)
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Part of the equation (5.2.37) is considered below for inverse trans

formation

(p+Z)

-p^Cp+Z^x

p^(p.+Z)"2

Rearranging the above expression we obtain,

I pV^2J 1 pVz)52

j
(5.2.38)

Using formulae from equation (5.2.36) to get inverse transform of

equation (5.2.38) we obtain,

Z

6'(t-u){e 2UIn[|(u2-x2)^]}du + Z{e
2
t

ijf-O^-x2)^]}
0L2 '0L2

for u,t > x (5.2.39)

and 0 for t < x.

Now /
6' Cx-a)GCa)da = G'Cx) from Jones [12]. Application of this

-oo

formula to equation CS .2 .39) gives,

It -2-t

^{e 2
I0[|(t2-x2)J2]} + Z{e

2
l^I-Ify} .

Simplifying the above expression gives.
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-it *
.,

4 I0[|(t2-x2)^2] ? i;[|(t2-x2)^] |
<t2-x2)^

2t

-^t

+ Z{e
2

IgCfct2^2)1-2]}

That is,

| .
^
I0[|(t2-x2)^ ? 2t |tt2-.-3

V^
l'[|(t2-x2)^] (5.2.40)

To simplify the second part of the equation (5.2.40) we use the

following formulae from Abromowitz and Stegun [13].

(i) IQCx) = lxCx)

Cii) ijcx) = lQCx) 7

'

,

X 1

(5.2.41)

These are recurrence relations for modified Bessel functions . Using

I_(x) = I1(x) into the equation (5.2.40) we get,

1
""
I0[lCt2-x2)%] + t I

e'jt

Ct2^2)^!^!^2^2)^2] . (5.2.42)

Substituting inverse transform equation (5.2.42) of equation (5.2.38)

into the equation (5.2.37) we obtain,
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M^ =2(TYT[|
e 2t{l0[|ct2-x2)^] + ttS-xY\l^-Sf2l}

2 2.-%, rZr
2 2.%-

St
Y 2 rT rY,^2 2y2 2 2.-32, rY^2

2,*5-

- 1 e
^

{l0[I(t'-xT2] ? tCt'-x^C^-x^]}

for t > x (5.2.43)

M(x,t) = 0 for t < x (5.2.44)

when the limit of M(x,t) as t->-x is calculated we obtain,

lim MCx,t)
t--x

2CZ-Y)

-jX r Xl (0) ^

Y

Y
"2X

2
e 'K (0) +

xI^O)

(5.2.45)

From Abromowitz and Stegun [13] we have,

IQ(0) = 1 and Ix(0) = 0

Thus,

lim

t--x
M(x,t) =

2(Z-Y)

Z

Z
"2X

/. 0
2e 1 +

0

Y

Y "2Xf. 0
26 1 +

0
(5.2.46)

To get the limit of the terms where we have
^ (indeterminate) we use
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L'Hospital's rule. Take the term

VfuOxV*]

(t2-x2)^

applying
L'
Hospital's rule as t--x we get,

^tjc^t-.x-rt i;[2(t2-x2rt|.ict2-x2,-^.2t

^(t2-x2)^ ^-xV*

|i;[|(t2-x2)^]

Using the formula from equation (5.2.41) we obtain,

-| In[|-(t2-x2)^] -|
i -

2
10-2-

Z
(t2_x2^

Therefore after applying L'Hospital's rule when t
-*

x we get,

T
rZr^.2 2.%-i

T rZ,
2 2.%-,

,.

w* -x } ]
.. z/Trzrt2 2>21 2Wi_^L2ilim

,, 0 u
hi y -nL-Ct

- X ) ] -

T , ^-r

t-x
(t2-x2)^

t-x2^02 Z (t2-x2)'

which gives,

,

'l^2-'21"3
,- ZirZff2 2fy^yfzzf- -

fy^
"x,]



-41-

Therefore when t--x we get,

Vfct'-x2)^]
lim
^

t--x (t -xK

Z

4

Substituting back into the equation (5.2.45) we obtain,

lim M(x,t)
t--x

2(Z-Y)

Z "2X/1 A
Z

2e 1+X4

Y

Y "2X/1 Y
2e 1+X4

rewrite equation (5.2.43)

(5.2.47)

M(x,t) =

2(Z -Y)

Z
"2t

2
e {l0[|(t2-x2)^]

? t^-xV^f^-xV2]

Y

Y
~2t

\ T rY^2 2.%

2
e {l0[|(t2-x2rt +

t(t2-x2)-\[|(t2-x2rt};

for t > x (5.2.43)

We want to analyze whether M(x,t) in equation (5.2.43) is

convergent or not. In equation (5.2.43) t>x and so if we find

M(x,t) for x = 0, the result will hold true for any x in general.

Therefore substituting x = 0 in equation (5.2.43) we get,
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M(x,t) =

2(Z-Y)

'

-it,
-

-It

Z
2Xl

2
e

C5.2.48)

From the tables of e"xIQCx) and e^I^x) for different values

given in Abromowitz and Stegun [13], it is evident that both

x x

e Iq(x) and e I,(x) are convergent. Therefore MCx,t) in the

equation C5.2.48) is convergent. Thus M(x,t) for t>x in the

equation (5.2.43) is convergent.

Z
"2X

_ In the equation (5.2.47) there are two basic terms, e and

-yx

x e
,

which are known to be convergent. Therefore M(x,t) is

convergent even when t->-x. Thus it is seen here that the increasing

amplitude in propagation of M(x,t) is eliminated by introduction of

internal rotatory damping in the Timoshenko equation.
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Part 3. Variation of ParametersMethod for a Non-Homogeneous

Differential Equation.

After studying the procedure used by Eringen [4] to analyze

the simply supported beam with application of a random load, the same

procedure was tried to analyze the case of cantilever beam with a

random load.

The procedure was not applicable as we could not find a linear

solution for the fourth order differential equation [i.e., the

Timoshenko equation) that would satisfy boundary conditions, equation

itself, and also would be applicable to the procedure shown in [4] .

The explanation of this difficulty is as follows,

In the case of the simply supported beam considered in [4] ,

only even derivatives of the deflection entered into the equations for

boundary conditions. Therefore, due to the format of applied load,

sine terms on both sides of equation CH) in [4] were cancelled.

Because of cancellation of sine terms, the equation became

simply and contained only arbitrary constants . These constants became

functions of x in the case of a cantilever beam as discussed below.

In the case of a cantilever beam, the boundary conditions are

expressed by odd derivatives of the deflection. Because of this and

due to the format of applied load, sine and cosine terms enter into

the equation. Thus the terms which are constnats in [4] , are

functions of x in case of a cantilever beam.
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Because of this the format obtained for wD is not differ -

entiable with respect to x and the moment could not be found, as

the moment is the second derivative of wD with respect to x.
D

Thus the procedure followed by Eringen [4] is not applicable

to a cantilever beam. After trying some other cases it was concluded

that the procedure followed by Eringen [4] is only applicable to a

particular case of a simply supported beam

Because of the above difficulty the following method is

described which is applicable to all kinds of boundary conditions

in general . Also it is applicable to any differential equation

in general .

Consider the general equation (4.30) from Chapter IV,

*\ f_ PEI, *\
AEI

ft ,
^B p2I 3\

PI30 P3 3% BBl 32wB
+

(W
+

M*-^r
+ (pA +

Tga") -T

3wR
*

eoir
- p . (5.3.D

A solution can be obtained for equation (5.3.1) but to simplify the

process we take 3Q
=

31
= 0. Thus,
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EI

a4

a wT

3xM

' * <>
34w

P2I ^"B
A

3x 3t at

32wr

3t

= P

(5.3.2)

where P is an external load and can be a function of only x or

both x and t.

Consider the case of a fixed beam as shown in the figure,

P

x=0 x=i

Boundary conditions for a fixed beam at x = 0 and x = I are,

(i) wB(0,t)
=
wB(,t) 0

3w_ 3w_

Cii) l^0---)
=

lTCA,t)
=

(5.3.3)

Taking the Laplace transform of equations (5.3.2) and (5.3.3)

we obtain,

ei *-! - (pi ? <g)
P2

"I (#
?

PAP2)B
= P

3x 3x

(5.3.4)



-46-

(i)

(ii)

wB(0,p) =

wR(,p)
= 0

3wT
B

B

3w

3x
(0>P) = ij-

U-p) = 0 J

(5.3.5)

where p is a transformation variable. Equation (5.3.4) is a non-

homogeneous differential equation and therefore tKe solution to the

equation is in two parts (i) a complementary solution and (ii) a partic

ular solution. Therefore,

General Solution = Complementary solution + Particular solution.

Complementary solution is for homogeneous part of the equation (5.3.4),

i.e.
,

(i) EI-

a2-

3
WB

r T pEI, 2
9

WB
T

- CpI +
kG"0 P

3x4 Kb
3x

,p2I 4 . 2. -

2
+ C"kG"

P
+ PAP 5 WB

0

(5.3.6)

Complementary solution is

(Vc
i=l

A.e
l

-m.x

l

(5.3.7)

where A. are constants and

l

m.

(pi ?Si ( (PI ?#)V - 4EICU
P4

* PAP2)
>*

kG kG

2EI
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From above expression m, = -m. and m .
= -m . Therefore from

equation (5.3.7) we obtain,

-m x -m x m x m x

(wB)c
= Axe

i
+ A2e

l
+ A3e + A4e . (5.3.8)

Now to get a particular solution, we use a method called Variation of

Parameters from Ince [14]. In the variation of parameter method, to

get a particular solution we substitute the functions of x in place

of constants in the complementary solution. That is,

-m.x
,

-m-x m-x m2x

Particular Solution =-v1(x)e +v2(x)e + v3(x)e + v4(x)e
'

.

(5.3.9)

To find v.(x), v2(x), v3(x) and v4(x), we have four simultaneous

equations because v and P has a single relationship only, p. 122

Ince [14].

viul
+

V2U2
+

V3U3
+

V4U4
=

If T I It I '

vlul
+

V2U2
+

V3U3
+

V4U4

i m i it i " t it

Vlul
+

V2U2
+

V3U3
+

V4U4
=

I Ml I III I lit I 'I'

V1U1
+

V2U2
+

V3U3
+

V4U4

-m1
x "m2x mlx

where u = e ; u2
= e

'

; u,
= e ; u4

(5.3.10)

m2X

e

'

and dash (
'

)
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denotes the derivative with respect to x.

The four simultaneous equations in (5.3.10) can be solved by

using the matrix method.

t

ul U2 u3 Vl
1

ul
i

U2
i

U3 U4
i

V2

ul
ii

U2
m

U3
it

U4
i

V3
III

ul
Ml

U2
m

U3
in

U4
i

V4

(5.3.11)

From the above matrix equation (5.3.11) we obtain,

r t i

vi

i
1

V3
i

_V4j

u

u

u

u.

1 u2 "3

1

1

i

u2
t

U3

II

1

ii

U2
ti

u3
III m m

u. u.

u

u

u

u

-1

"

0
4

i

4
0

ii

0
4

m

F
4

_,

(5.3.12)

nux

u2
= e

-m2x

u3
= e

m.x

By substituting u. = e

simplifying we get values for v^, v2, v3
and v4.

m2x

u .
= e and
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m.x_
e
l

P

2mx
(m2

-

2.
m2)

mx

e P

2m2(m.. -

2.
m2)

-mx

e F

2mx (m:
-

2^
m2)

"m2X7
e Ir

2 2
2m (m. -

m2)

(5.3.13)

Integrating equation (5.3.13) with respect to x results into,

v:Cx)

v2Cx)

v3(x)

v4(x)

r m..x_
e P(x,p)

2 2
2m. (m. -

m_)

r m2x

P(x,p)
2 2

2m_(m.. -

nu)

r -m.x_

P(x,p)
2 2

2m. (m.. -

nu)

r -m x_
e PCx,p)

2 2
2nu (m^

- m2)

dx

dx

dx

dx

(5.3.14)

We can find y
,
v2, v3

and
v4

which depend on P(x,p).
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The above method is helpful when load applied is complicated

and ready made particular solution is not available.

Once v
, m v_ and v. are known, the particular solution

is also known. The form is

-m..x -mx m..x m_x

v1(x)e + v2(x)e
l

+ v3Cx)e + v4Cx)e

Therefore, a general solution is

-m.x -m_x m..x

wB
= (A1+v1(x)}e +

{A2 + v2(x)}e +

{A3
+ v3(x)}e

mx

+

{A4
+ v4(x)}e (5.3.15)

Now if we apply boundary conditions (5.3.5) to equation (5.3.15) we

get four simultaneous equations in quantities A., A~, A- and A.

which can be solved by using the matrix method as shown before.

Thus wD can be found in the Laplace transform domain. Depend -

B

ing on functions in wR, either available Laplace transform tables

or contour integrations can be used to find wR
.

This shows that it is rather complex to deal with the equation

when boundary conditions involve odd derivatives of deflection since

the equation does not simplify as it does in the case of even derivatives

of the deflection.
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The same method of solution by matrices is also applicable to the

homogeneous differential equation.

The above method is useful especially in numerical problems,

since matrices can be solved by using a computer.
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CHAPTER VI

Discussion of Results.

It is mentioned in the introduction that a single equation

can be used in dealing with the analysis of bending moment and stresses.

It is shown in Chapter V, Part 1 and Part 2a that equation

(4.31) in terms of 'w '
is sufficient to analyze the problem of

both Miklowitz [2] and Dangler [3]. Also a similar equation

is used by Eringen [4] .

In addition, depending on the problem, the external load can be

considered either in the equation itself or in the boundary con

dition. Dangler [3] has used the external load in the equation itself

where as in the Chapter V, Part 2a, it is accounted for in the

boundary condition.

Thus either of the following equations can be used in the

analysis depending on the basic problem and the case of the beam

considered in the analysis, such as the simply supported beam, infinite

beam, fixed beam, cantilever beam, etc.

Equation 1,

~4 ^4

a,
~4 fl

3 WU oCT
9 WTt n2T

9 WU 9 WR

Equation 2,

4 4 4 2
3 wn oCT

3 wtj It 3 wr 9 wr
ei
-

. (pi ?^ -j-Sy>&y
? pay - p
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where P means an external load.

Both equations are simple Timoshenko equations without any

internal damping.

Dangler [3] has shown that an impulse load applied to an

infinite beam without considering an internal damping gives an

increasing amplitude in the propagation of bending moment M(x,t) .

The same case is approached differently in Chapter V, Part 2a and the

same conclusions as those reached by Dangler [3] are obtained.

It is seen from the equation (5.2.21), which corresponds to

equation (20) in [3], that there is an increasing amplitude in the

propagation of M(x,t) when t is equal to x. Also the same

phenomenon is seen in the figure taken from [3] on page 53.

The above mentioned problem is solved in Chapter V, Part 2b

by considering a modified equation (4.32) in the analysis. This

equation is derived by including internal rotatory damping in the

theory.

The result of the inclusion of an internal rotatory damping in

the Timoshenko equation is seen in the equation (5.2.47).

lim M(x,t)

t-*-x
2(Z-Y)

Z

Z
"2X

2
e l +

x4

Y

Y
"2X

f. Y
2e 1+X4

In the above equation all the terms are known to be con-

Y Z Y

vergent. They are e

Z
TX

. , x-e and x*e
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Because the limit of M(x,t) as t - x is convergent, it is

obvious that an increasing amplitude at t = x is eliminated.

Also, it is seen that only rotatory damping is found necessary

to assure the convergence of the solution. Eringer [4] used both linear

and rotatory damping to get the results in the case of a random loading.

In Chapter V- Part 3, the use of variation of parameter method

is explained to get the solution of a non-homogeneous differential

equation. In general, this method is applicable to any differential

equation.
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CHAPTER VII

Suggestions for Further Continuation of the Work

In the case of an impulse load and a random load application to

a beam, Euler's theory is found inadequate as the results obtained for

bending stresses is divergent which is not acceptable in reality. The

Timoshenko beam theory, which takes into account corrections for shear

and rotatory inertia, is not always adequate since it does not include

internal damping.

It is possible to use linear and rotatory damping concepts

as developed and used by Eringen [4]. When both linear and rotatory

damping are used together, the equation becomes too complex to analyze.

However, it is possible to use either only linear or only rotatory

damping in the equation. The inclusion of only one type of damping

leads to somewhat easier analysis.

When solving the problem associated with an impulse load, an

equation with only linear damping was considered before using an

equation with only rotatory damping. The equation with linear damping

became very complex, and a complicated contour integration would have

to be performed in order to get the inverse Laplace transform of the

result. When only rotatory damping was used, the equation became

somewhat easier to analyze.

As it is seen from Chapter V, Part 2b, only rotatory damping

is adequate for the particular case when c= 1. Now the analysis
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can be carried out in a similar fashion for arbitrary c to find out,

if indeed only rotatory damping is sufficient for obtaining satis

factory results.

It is possible to analyze the problem with random load along

the same line as Eringen [4] to find out if only rotatory damping is

adequate in that case.

m

It is possible that the results might be closer to reality

when both linear and rotatory damping are used but to make a decision

about the use of linear damping, the following two questions should be

answered .

Ci) How much. improvement in results is achieved by using linear

damping with rotatory damping over using only rotatory damping.

Cii) Is the improvement significant enough to justify more complicated

analysis .

To answer the above questions, one can perform an analysis

along the same line as Eringen [4]. The problem should be solved two

times, once with only rotatory damping and then with both rotatory

and linear damping. The results obtained can be compared with each

other and it can be found out from the convergence of the equation

for bending moment or bending stress that if there is any significant

improvement .

From the results of the above analysis it will be possible to

decide if the rotatory damping plays a major role in the analysis and

if linear damping is significant at all.
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