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Abstract. A Frobenius-type condition involving d2 is proved for the

analyticity of a distribution on a complex analytic manifold. As a conse-

quence, an invariant condition for the analyticity of a distribution on a

Kahler manifold is derived and used to establish the local reducibility of

some foliate Kahler manifolds with bundle-like metric.

The aim of this note is to derive invariant conditions for a distribution of a

Kahler manifold to be analytic. These conditions will then be used in the study

of some questions concerning complex analytic foliations on Kahler manifolds

which, until now, were described only by the use of local coordinates [7].

1. Let V be a complex analytic manifold of complex dimension n and

[z')(i = 1,... , «)-local complex coordinates on V. A complex m-dimensional

distribution D onV (I < m < «) is a differentiable subbundle of the complex

tangent bundle T(V), with m-dimensional fibres. If we identify T(V) with the

bundle which is locally generated by {3/3z'}, it is obvious that the above

distribution D is defined locally by

(1.1) ua = afdz'= 0        (a = l,...,n- m)

where af are complex valued differentiable functions on V and rank (of)

= n - m. Then, the distribution D is said to be analytic if the system (1.1) is

equivalent to a similar system with complex analytic coefficients af. This

condition is obviously independent of the choice of the local coordinates z'.

A first analyticity condition which can be easily established is the following

Frobenius-type theorem:

1. Theorem. The distribution D above is analytic iff

(1.2) í/ju" = 0       (modulo ua),

i.e.

(1.3) d-zua = tt£ A ub       (a,b = l,...,n - m),

where tt¿ are some locally defined differential forms of type (0,1).

In fact, let (1.1) define an analytic distribution on V. Then we must have
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222 IZU VAISMAN

ua = Xabab where 8* are analytical 1-forms and det(A£) ¥= 0, whence (1.3)

follows by a simple computation.

To prove the converse, suppose that (1.3) is satisfied. Then we remark first

that (1.3) is also satisfied for any equivalent system <sa = p¿co6 (det(/í¿) ^ 0),

which follows by a straightforward computation. Particularly, this is true for

the (obviously existing) equivalent system of the form

(1.4) 9a = dza + tïdz" = 0       (a = l,...,n- m;u = n- m+ \,...,n).

Hence, we have

d-z0a = < A eb

for some forms wg = Trjjcdzc + tr^dz", and the identification of the parts of

the same type gives <nf = 0. It follows that 9" have analytic coefficients, which

obviously proves our theorem.

Remark. Theorem 1 remains valid if D is defined by a system similar to

(1.1) but where a = 1, ..., s > n —m and rank (a?) = n — m. In fact, the

result follows easily by using Theorem 1 for a subsystem of independent

equations.

It is well known that the complex distribution D can also be defined as

D = im À, where À is a projector of T(V), i.e. X: T(V) -> T(V) is a bundle

homomorphism such that

(1.5) À2 = A.

Then, if

(1.6) k = 1 - A,

k is also a projector and one has

(1.7) k2 = k,    kX = Ak = 0,    D = ker k.

In this situation, im k = D' is a supplementary distribution of D.

Now we can give a second condition of analyticity:

2. Theorem. The complex distribution D above is analytic iff, for any local

analytic vector fields v, w on V, one has

(1.8) k([w,Xv]) = 0,

where the bar means complex conjugate and the bracket is formally defined on

T(V) identified with the bundle generated locally by {d/dz1}.

To prove this theorem, let us denote by (Aj) and (kJ) the matrices which

express A and k with respect to the bases [d/dz') (i,j = 1,...,«). Then it is

easy to see that the local equations (1.1) of D are

(1.9) K)dzJ = 0.

They are not all independent, but we can use the remark which follows

Theorem 1, hence we can use the analyticity condition of Theorem 1. This

condition is
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-Jrdzk A dzJ = 0    (modulo K'dzJ = 0).
dzK J

But, from (1.7) one gets that Kjdzj = 0 is equivalent to dzJ = Xjdz' so that

the previous condition becomes

(1.10) XJhdKJ/dzk = 0

or, equivalently, in view of (1.6)

(1.11) X{dX'/dzk = 0,

or, still equivalently, in view of kX = 0,

(1.12) K'dXJh/dzk = 0        (i,j,h,k = 1,...,«).

Now, the equivalence of (1.12) and (1.8) is a matter of straightforward

calculations which we omit here. This proves the theorem.

Let us consider now the usual real structure of T(V). Then the complex

distribution D is also a real subbundle of T(V), hence it is defined as the

image of a real projector

(1.13) F: T(V) -* T(V)

with the supplementary projector Q = 1 — F which defines D'. We have

(1.14) F2 = F,    Q2 = Q,    PQ = QP = 0

and X is the complex representation of F, k is the complex representation of

Q. It is clear that the existence of these complex representations is equivalent

to

(1.15) PJ = JP

and, consequently, to

(1.16) QJ = JQ,

where J denotes the complex structure of T(V) and is such that J2 = —1.

I.e., D can be defined by the real projector F which satisfies (1.14) and

(1.15). For this representation of D we shall prove the following form of the

analyticity condition.

3. Theorem. The distribution D above is analytic iff, for any real vector field X

on V, one has

(1.17) Qo(VJXP-VxPoj) = 0,

where V is an arbitrary hermitian connection on V.

Let us consider on V the local differentiable complex coordinates (z', z' ) so

that the complexification TC(V) has the bases {3/3z',3/3z'} and denote by

/', j, ... and i, 7, ... the indices of the components of the complex tensors on

V with respect to these bases [8].
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Then, the linear extensions of P and Q to TC(V) have the components

3' = xj,     /y=xj,     p> = pj = o,

Q'j^KJ,       Q}=K>,       Q> = g) = 0,

and from (1.12) we get that D is analytic iff

(Lis) e;^T = o, ôh^ = o.
7 32* J dzk

Introduce an arbitrary hermitian metric on V and let V be the correspond-

ing hermitian connection. Since this connection is of type (1, 0) (see for

instance [6]), it is easy to see that (1.18) is equivalent to

(1.19) Q'VkPi = Ql\p{=0.

Now, we see that (1.19) means that QßVyPJß, where a, ß, y, a = 1, ..., 2«

denote indices for tensor components with respect to arbitrary differentiable

coordinate systems on V, is a pure tensor on V, which can be equivalently

expressed, using the conditions of [8], by

(1.20) Qaß(JT"\P/-J^XP/) = 0.

Finally, the equivalence of (1.20) and (1.17) will be derived by a straightfor-

ward calculation, which ends the proof of the theorem.

Remark. From Theorem 3, one deduces that D = im P and D' = im Q

are both analytic iff

(1.21) VJXP-\Poj = Q

for any vector field X on V. This follows from (1.17) and from the similar

condition for D', using P + Q = 1. (1.21) is just the condition that P (and also

Q) be an analytic tensor [8].

In the particular case of a Kahler manifold we shall take for V in (1.17) the

Levi-Civita connection of the Kahler metric and one obtains a simpler form

of the analyticity condition.

4. Theorem. The distribution D = im P defined on the Kahler manifold V is

analytic iff

(1.22) Q([JX,PY]-J[X,PY]) = 0

for any vector fields X, Y on V.

The proof consists of a lengthy but not difficult computation which shows

that, in view of the known properties of P and Q and of the properties

W = 0, T(V) = 0 (i.e. V has no torsion), the condition (1.20) (or, which is

the same thing (1.17)) is equivalent to (1.22). We omit here this computation.

In this proof the condition that V be a Kahler manifold is essential.

Remark. The condition of Theorem 4 can also be expressed in a form which

does not imply the explicit use of P and Q. In fact, this condition is obviously
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equivalent to: the distribution D defined on the Kahler manifold V is analytic iff

for any vector field X on V and any vector field Y of D, the vector field

[JX, Y] - J[X, Y] is in D.

2. In this section, we shall use the condition of Theorem 4 to establish some

results on analytic foliations of a Kahler manifold.

Let F be a Kahler «-dimensional manifold with metric g and let D be an m-

dimensional complex analytic distribution on V. D is said to define a complex

analytic foliation on V if it is also integrable i.e. an involutive distribution.

Then (V,g, D) is said to be a foliate Kahler manifold and the maximal

connected integral manifolds of D are the leaves of the foliation. Since the

complex structure of D is induced by the complex structure J of V, it is clear

that the leaves of D are complex analytic submanifolds of V.

As in §1, F can be defined by a projector F and it is convenient to take for

F the orthogonal projection with respect to g. It is easy to see that this is

equivalent with the condition

(2.1) g(PX,QY) = 0

for any vector fields X, Y on V. (Here, we put again, of course, Q = 1 - P.)

It follows that (V,g,D) is a foliate Kahler manifold if and only if the

following relations hold good:

J2 = -1,       g(JX,JY) = g(X, Y), VXJ = 0,

(2.2) F2 = F, PJ = JP, g(PX,QY) = 0,

Q([JX, PY] - J[X, PY]) = 0,    Q[PX, PY] = 0,

where Q = 1 - F, V is the Levi-Civita connection of g, and X, Y are arbitrary

vector fields on V. Here, the first relations express that g is a Kahler metric

and the last condition expresses the integrability of D. An alternative

description of such manifolds, using local complex coordinates can be found

in [7].
An important particular case is obtained if one asks the metric g to be

bundle-like in the sense of Reinhart [4]. If one uses the characterization

(y$g)(QY,QZ) = 0 of such metrics, where V^ is the so-called second

connection [5], [6], the following condition is obtained:

E(X, Y,Z) = (PX)g(QY,QZ) - g([PX,QY],QZ)
(2.3) -g([PX,QZ],QY) = 0,

or, after some simple transformations based on (2.2),

(2.3')        (PX)g(Y,QZ) - g([PX,Y],QZ) - g([PX,Z],QY) = 0.

A manifold V endowed with a structure characterized by (2.2) and (2.3) will

be called a Kähler-Reinhart space and in the sequel we shall refer to such

spaces.

As a first consequence of the formulas (2.2), (2.3), we can prove the

following result, obtained by calculations with local coordinates in [7]:

5. Theorem. A foliate Kahler manifold (V,g,D) is a Kähler-Reinhart space iff
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the supplementary orthogonal distribution D' is involutive.

In fact, let

(2.4) MX, Y) = g(X,JY)

be the fundamental form of the Kahler metric g, which, as it is well known, is

closed. Then, starting with d$(QX, Q Y, PZ ) = 0 and calculating with (2.2)

one gets, using definition (2.3) of E,

(2.5) g([QX,QY],PJZ) = E(Z,X,JY)

which obviously yields the announced result.

Remark. From the previous theorem it follows that a Kähler-Reinhart

space is locally diffeomorphic with a direct product, but it is not necessarily

holomorphic or isometric with this direct product.

Moreover, one has the following result which is also a consequence of some

more general results of Reinhart [4].

6. Corollary. In a Kähler-Reinhart space, the leaves of the supplementary

foliation D' are totally geodesic submanifolds.

In fact, the second fundamental form of a leaf of D' is given by

g(PX, VqyQZ), and using the usual expression of the Levi-Civita connection,

the condition E = 0, and the involutivity of £>', it follows easily that this

second fundamental form vanishes.

Deeper results about the structure of a Kähler-Reinhart space can be

obtained if supplementary conditions are imposed. Thus, we have

7. Theorem. If(V,g,D) is a Kähler-Reinhart space and if the leaves of D are

totally geodesic submanifolds of V, then V is a reducible Kahler manifold.

In fact, the leaves of D are totally geodesic submanifolds iff g(QX, VPYPZ)

= 0, which, using the expression of the Levi-Civita connection, reduces to

(2.6) (QX)g(PZ,PY) - g(PZ,[QX,PY]) - g(PY,[QX,PZ]) = 0,

i.e. just the condition for g to be a bundle-like metric with respect to D'.

Next, if one starts with the relation d$(PX,PY,QZ) = 0 written in the

developed form, and if one uses (2.6), it follows that this relation implies

g([JPY, QZ] - J[PY, QZ], PX) = 0, which is clearly just the condition for D'

to be analytic.

Hence D and D' are both analytic and have the bundle-like metric g which

proves the announced theorem.

In order to give another result, we recall that a generally local vector field

A' on V is foliate if the corresponding local one-parameter transformation

group sends locally leaves to leaves and that this is equivalent to Q[X, PY]

= 0 for any Y [5], [6]. If, moreover, these are conformai transformations for

the induced metric of the leaves, X is called a foliate-conformal infinitesimal

transformation. Now, if all the foliate local and global vector fields of the form

QX are foliate-conformal infinitesimal transformations,1 we shall say that V

has conformai leaves [3] and we shall prove

The existence of such local vector fields becomes obvious by using local coordinates.
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8. Theorem. A Kähler-Reinhart space with conformai leaves is a reducible

Kahler manifold.

In fact, it is clear that the condition for V to have conformai leaves is

(2.7) (LQXg)(PY,PZ) = pg(PY,PZ),

where L denotes the Lie derivative, Y, Z are arbitrary vector fields and QX is

a foliate field on V.

But (LQXg)(PY,PZ) is just the left-hand side of (2.6), whence it follows

easily that (2.7) is a "pointwise" condition, hence it is valid for arbitrary vector

fields X, Y, Z on V. In fact, let QX be arbitrary and M G V. Imbed QX(M )
in a local foliate field and write (2.7) for this field. This proves the previous

assertion.

Now, calculating as in the proof of Theorem 7, (2.7) is seen to imply

g([PZ,QX]+J[JPZ,QX],PY) = pg(PY,PZ).

If we replace PY, PZ, respectively, by JPY, JPZ, the right-hand side does not

change so that the left-hand side does not change either. But this means

g([PZ,QX] + J[JPZ,QX],PY) = g([JPZ,QX] - J[PZ,QX],JPY)

= -g([PZ,QX] + J[JPZ,QX],PY),

and it follows that

g([PZ,QX] + J[JPZ,QX],PY) = pg(PY,PZ) = 0,

which gives p = 0.

Hence, the leaves are locally isometric and D' is analytic too. Then the

announced theorem follows just like Theorem 7.

Again let F be a Kähler-Reinhart space. This space is said to have affinely

equal leaves if every local foliate vector field of the form QX is an infinitesimal

affine collineation between the leaves endowed with their Levi-Civita connec-

tion. Then we have

9. Theorem. A Kähler-Reinhart space with affinely equal leaves is affinely

reducible. If D' has a simply connected leaf L, then all the nearby leaves are also

simply connected and globally isometric to L.

In fact, from the formulas for the second connection V*2' [6] it follows that

the Levi-Civita connection of the leaves is induced by V^2^. Hence, just like

for the usual characterization of an infinitesimal affine collineation [2], one

sees that the given space has affinely equal leaves iff for any local foliate field

QX and any vector fields Y, Z the following relation holds:

(2.8) LQX V$PZ - V$LQXPZ - V$c>PY]PZ = 0.

Using again the formulas of [6] and the fact that QX is foliate, i.e.

Q[QX, PY] = 0, we get the equivalent condition

(2.9) Fv(2)(f2A,FF)(FZ) = 0,

where F denotes the curvature operator.
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Now, since (2.9) depends only on the value of QX at each point, it follows,

like for (2.7), that (2.9) is true for arbitrary vector fields X, Y, Z.

Next, from the local expressions of the second connection and of its

curvature as given in [5], it follows that (2.9) implies the affine reducibility of

V with respect to V*2' [1]. (It is important that in the cited local expressions

the coefficients /" of [5] may be considered zero because D' is integrable.)

As for the second part of the theorem, we can prove it by a classical

technique of differential topology. In fact, if L is a simply connected leaf of

D', one gets that the parallel translation of a vector PX along the paths of L,

with respect to V'2\ does not depend on the path. So, we are able to construct

a vector field PX along L. Next, consider the geodesies of V*2' which start

from the points of L and are tangent to this vector field PX, and take the

tangent vectors of these geodesies. It is not difficult to see that we get in this

manner a vector field PX defined in a neighbourhood of L and which defines

a local one-parameter group of isometries between the leaves of D'. Clearly,

the assertion of the theorem follows. The necessary calculations are based on

the local formulas of [5].
Remark. The Kählerian nature of the metric was used in the previous

theorem only by the fact that D' is integrable. Hence, Theorem 9 holds, more

generally, for a Riemann manifold carrying two orthogonal foliations D, D'

such that D has bundle-like metric and affinely equal leaves.
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