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Abstract. This article investigates the magnetohydrodynamic squeezing flow of nanofluid between
parallel disks. Governing partial differential equations are converted into ordinary differential
system via similarity transformations. We employ homotopy analysis method (HAM) to construct
analytic expressions of velocity, temperature and nanoparticles volume fraction. Convergence
analysis is performed and optimal values of the convergence-control parameters are determined. The
computations are validated with the built in routine for solving nonlinear boundary value problems
via shooting technique through software Mathematica 8.0. The behaviors of key parameters such
as suction/blowing parameter (A), squeeze parameter (S), Hartman number (M ), Brownian motion
parameter (Nb) and thermophoresis parameter (Nt) are thoroughly examined. It is seen that the
parameters have a great impact on the concentration field for the suction flow when compared with
the blowing case. An intensification in the Brownian motion and thermophoresis effects results in
the appreciable increase in the temperature and nanoparticles concentration.
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1 Introduction

Squeezing flows between parallel disks is an interesting topic of research because it
occurs in many industrial applications which include polymer processing, compression,
injection modeling, transient loading of mechanical components and the squeezed films in
power transmission. The application of magnetic field in such flows allows us to prevent
the unpredictable deviation of lubrication viscosity with temperature in certain extreme
operating conditions. The seminal work on the topic under lubrication approximation
has been studied by Stefan [1]. Theoretical analysis for squeezing flow of power-law
fluid between parallel disks has been performed by Leider and Bird [2]. Domairry and
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Aziz [3] provided the approximate analytic solution for the squeezing flow of viscous fluid
between parallel disks with suction or blowing. Siddiqui et al. [4] discussed the effects of
magnetic field in the squeezing flow between infinite parallel plates due to the normal
motion of plates. Homotopy perturbation method (HPM) has been applied in [3,4] for the
presentation of analytic solutions of the arising nonlinear problems. Two-dimensional and
axisymmetric squeezing flows between parallel plates have been addressed by Rashidi et
al. [5]. Joneidi et al. [6] provided the analytic and numerical solutions for magnetohy-
drodynamic squeezing flow between parallel disks. Squeezing flow of second grade fluid
between parallel disks (one of which is porous) has been analyzed by Hayat et al. [7].
Heat transfer characteristics in the unidirectional squeezing flow between parallel disks
have been studied by Duwairi et al. [8]. Mahmood et al. [9] obtained analytic solutions
for squeezed flow and heat transfer over a porous plate. Local similarity method has
been adopted to obtain the solution valid for all values of dimensionless time. However
perturbation and asymptotic methods have been used to compute the solutions for small
and large values of the dimensionless time. Khaled and Vafai [10] provided numerical
solutions for hydromagnetic unsteady squeezing flow over a porous surface by a well
established Thomas algorithm.

The term “nanofluid” refers to a liquid suspension containing tiny particles having di-
ameter less than 100 nm. Choi [11] experimentally verified that addition of small amount
of nanoparticles appreciably enhances the effective thermal conductivity of the base fluid.
These particles are made up of the metals such as (Al, Cu), oxides (Al2O3), carbides
(SiC), nitrides (AlN, SiN) or nonmetals (graphite, carbon nanotubes). Buongiorno [12]
proposed a mathematical model that considers two significant effects namely the Brow-
nian motion and thermophoretic diffusion of nanoparticles. Kuznetsov and Nield [13]
numerically studied the flow of nanofluid past a vertical flat plate. The Cheng–Minkowcz
problem for natural convective boundary layer flow of a nanofluid occupying a porous
space was considered by Nield and Kuznetsov [14]. Similar attempts in this direction in-
clude those of Nield and Kuznetsov [15,16] and Kuznetsov and Nield [17]. The boundary-
layer flow of nanofluid over a continuously moving surface with a parallel free stream has
been studied by Bachok et al. [18]. Khan and Pop [19] provided numerical solutions for
boundary-layer flow of nanofluid over a stretching sheet. Hassani et al. [20] computed
the analytic solutions for the problem considered in [19] by homotopy analysis method
(HAM). Rana and Bhargava [21] numerically investigated the flow of nanofluid over a
nonlinearly stretching sheet by finite element method (FEM). Makinde and Aziz [22]
examined the flow of nanofluid over a stretching sheet in the presence of convective
surface boundary conditions. Homotopy solutions for boundary layer stagnation-point
flow of nanofluid towards a linearly stretching sheet have been obtained by Mustafa et
al. [23]. Unsteady boundary layer flow of nanofluid over a stretching/shrinking sheet has
been examined by Bachok et al. [24].

Existing information on the topic witnessed that squeezing flow of nanofluid has
never been reported. This is first such study in the literature. The present paper looks
at the time-dependent squeezing flow of nanofluid between two parallel disks where
one is impermeable and the other is porous. The resulting mathematical problems have
been solved by homotopy analysis method (HAM) proposed by Liao [25]. Based on the
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homotopy of topology, HAM reduces the nonlinear differential equation to a set of linear
ordinary differential equations which can be further solved by computational softwares
such as Mathematica or Maple. This method distinguishes it self from other approximate
numerical and analytical methods in a variety of ways. Unlike perturbative methods,
HAM does not depend upon the existence of small/large parameters in the differential
equations. In contrast to non-pertubative schemes HAM provides us a simple way to
adjust and accelerate the convergence of the series solutions in the form of an auxiliary
parameter ~. Moreover it can be efficiently employed to approximate strongly nonlinear
problems by choosing different sets of base functions. The frequently used analytical tools
namely the homotopy perturbation method (HPM), δ-expansion method and Adomian
decomposition method (ADM) can be reduced as special cases of HAM. HAM has been
recently applied to give analytic solutions of variety of nonlinear problems in science and
engineering [26–31]. The expressions of skin friction coefficient, reduced Nusselt number
and reduced Sherwood number are evaluated and discussed. The influences of embedding
parameters on the flow fields are observed by plotting graphs.

2 Mathematical analysis

Consider the incompressible two-dimensional flow of nanofluid between parallel disks
separated by a distance h(t) = H(1 − at)1/2. A magnetic field of strength B(t) =
B0(1 − at)−1/2 is applied perpendicular to the disks (see [7] for physical configuration
and coordinate system). Here Tw and Cw denote the temperature and nanoparticles con-
centration at the lower disk while the temperature and concentration at the upper disk are
Th and Ch respectively. The upper disk at z = h(t) moves towards or away from the
stationary lower disk with the velocity dh/dt. The equations which governing the flow
and mass transfer in viscous fluid are (see [13–24])

∂u

∂r
+

u

r
+

∂w

∂z
= 0, (1)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= − 1

ρf

∂p̂

∂r
+ ν

(

∂2u

∂r2
+

∂2u

∂z2
+

1

r

∂u

∂r
− u

r2

)

, (2)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= − 1

ρf

∂p̂

∂z
+ ν

(

∂2w

∂r2
+

∂2w

∂z2
+

1

r

∂w

∂r

)

, (3)

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z

= α

(

∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

)

+ τ

[

DB

(

∂C

∂r

∂T

∂r
+

∂C

∂z

∂T

∂z

)

+
DT

Tm

[(

∂T

∂r

)2

+

(

∂T

∂z

)2]]

, (4)

∂C

∂t
+ u

∂C

∂r
+ w

∂C

∂z

= DB

(

∂2C

∂r2
+

1

r

∂C

∂r
+

∂2C

∂z2

)

+
DT

Tm

(

∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

)

. (5)

www.mii.lt/NA



Squeezing flow of nanofluid 421

The boundary conditions are (see [3, 6])

u = 0, w =
dh

dt
, T = Th, C = Ch at z = h(t),

u = 0, w = − w0√
1− at

, T = Tw, C = Cw at z = 0,

where u and v are the velocity components in the r- and z-directions respectively, ρ is
the density, µ is the dynamic viscosity, p̂ is the pressure, T is the temperature, C is the
nanoprticles concentration, α is the thermal diffusivity, DB is the Brownian motion coef-
ficient, DT is the thermophoretic diffusion coefficient, Tm is the mean fluid temperature
and k is the thermal conductivity. The last term in the energy equation is the total diffusion
mass flux for nanoparticles, given as a sum of two diffusion terms (Brownian motion and
thermophoresis) (please see [15] for derivation of last terms in Eqs. (4) and (5)). Further
τ is the dimensionless parameter that gives the ratio of effective heat capacity of the
nanoparticle material to heat capacity of the fluid. Thus value of τ will be, therefore,
different for different fluids and nanoparticle materials. Using the following similarity
transformations [3]
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into Eqs. (2) and (3) and then eliminating the pressure gradient from the resulting equa-
tions we finally obtain
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−M2f ′′ = 0. (7)

Now Eqs. (4) and (5) take the following forms:
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where S is the squeeze number, A is the suction/blowing parameter, M is the Hartman
number, Nb is the Brownian motion parameter, Nt is the thermophoretic parameter, Pr is
the Prandtl number and Le is the Lewis number which are defined as
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The continuity equation is identically satisfied. It is worth mentioning here that A > 0
indicates the suction of fluid from the lower disk while A < 0 represents injection flow.
For Nb = Nt = 0, the problem reduces to the case of ordinary fluid (in which Brownian
motion and thermophoretic effects are negligible). The physical quantities of interest are
the skin friction coefficient Cfr, reduced Nusselt number Nur and reduced Sherwood
number Shr which are defined by
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In terms of variables (6) we have
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3 Homotopy analytic solutions

Rule of solution expression and involved boundary conditions direct us to select the initial
guesses and auxiliary linear operators as follows:
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If p ∈ [0, 1] is an embedding parameter and ~1 and ~2 are the non-zero auxiliary parame-
ters then the generalized homotopic equations corresponding to Eqs. (7)–(10) are
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Nf

[

F (η, p)
]

=
∂4F (η, p)

∂η4
− S

(

η
∂3F (η, p)

∂η3
+ 3

∂2F (η, p)

∂η2
− 2F (η, p)

∂3F (η, p)

∂η3

)

−M2 ∂
2F (η, p)

∂η2
,

Nθ

[

F (η, p), Θ(η, p), Φ(η, p)
]

=
∂2Θ(η, p)

∂η2
+ SPr

(

2F (η, p)
∂Θ(η, p)

∂η
− η

∂Θ(η, p)

∂η

)

+ PrNb
∂Θ(η, p)

∂η

∂Φ(η, p)

∂η
+ PrNt

(

∂Θ(η, p)

∂η

)2

,

Nφ

[

F (η, p), Θ(η, p), Φ(η, p)
]

=
∂2Φ(η, p)

∂η2
+ SLe

(

2F (η, p)
∂Φ(η, p)

∂η
− η

∂Φ(η, p)

∂η

)

+
Nt

Nb

∂2Θ(η, p)

∂η2
.

Expanding F , Θ and Φ using the Maclaurin’s series about p we get
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and the final solutions can be retrieved at p = 1. The functions fm, gm and θm can
be obtained through the deformation of Eqs. (11)–(15). Explicit mth-order deformation
equations corresponding to the problems (11)–(15) are
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4 Error analysis and selection of optimal values of convergence-cont-

rol parameters

It is clear that Eqs. (16)–(18) contain the so called auxiliary parameters ℏ1 and ℏ2. As
pointed out by Liao [25], the convergence of the series solutions is highly dependent on
the choice of these parameters. To determine the optimal values of these parameters we
define the averaged residuals errors for the functions f , θ and φ as
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where ∆x = 1/K and K = 20. The above averaged residual errors can be plotted versus
the respective auxiliary parameters to determine the convergence region of the solutions.
For a given order of approximations m, the optimal values of ℏ1 and ℏ2 can be determined
by minimizing the averaged residual error given in Eqs. (19)–(21) using the command
Minimize of the software Mathematica 8.0. In Tables 1 and 2, the optimal values of ℏ1
and ℏ2 for the functions f , θ and φ corresponding to various values of the parameters
are given. Here the corresponding averaged residuals are represented as E∗

m,1, E∗

m,2 and

Table 1. Optimal values of ℏ1 for different values of the parameters.

M S A = 2 A = −2
Optimal value of ℏ1 E∗

m,1 Optimal value of ℏ1 E∗

m,1

0 1 −0.868 3.06×10−14
−0.889 8.32×10−12

2 −0.855 2.23×10−15
−0.833 1.00×10−12

3 −0.856 1.21×10−15
−0.772 9.18×10−14

5 −0.791 1.04×10−11
−0.720 1.64×10−11

1 1/10 −0.904 8.97×10−24
−0.868 6.16×10−24

1/2 −0.916 3.38×10−22
−0.906 1.05×10−20

1 −0.862 1.68×10−14
−0.874 4.92×10−12

2 −0.753 1.75×10−6
−0.906 1.05×10−20
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E∗

m,3 respectively. For a further check at the accuracy of our computations we compared
HAM solutions with the numerical solutions obtained through the command NDSolve of
the software Mathematica 8.0. The results are in excellent agreement as can be seen from
Tables 3 and 4.

Table 2. Optimal values of ℏ2 for different values of the parameters when M = S = 1,
A = 2 and ℏ1 = −0.862.

Nb Nt Optimal value E∗

m,2 Optimal value E∗

m,3

of ℏ2 for θ of ℏ2 for φ

1/10 1/10 −0.908 1.47×10−11
−0.936 2.51×10−10

1/2 −0.915 1.62×10−13
−0.941 1.18×10−12

1 −0.931 9.10×10−13
−0.894 4.11×10−13

3/2 −0.921 4.51×10−12
−0.886 2.86×10−13

1/2 −0.961 2.93×10−10
−0.913 2.87×10−10

1 −1.021 1.21×10−8
−0.953 2.97×10−8

3/2 −0.955 2.37×10−6
−1.027 1.18×10−5

2 −0.820 1.00×10−4
−0.916 4.21×10−4

Table 3. Values of skin friction coefficient f ′′(1) for different values of M and S.

M S f ′′(1)

HAM NDSolve
0 1 7.53316579 7.53316579
2 8.26387231 8.26387230
3 9.09732572 9.09732573
5 11.3492890 11.3492890
1 1/10 8.97552394 8.97552394

1/2 8.34924578 8.34924578
1 7.72194601 7.72194601
2 6.94077326 6.94077334

Table 4. Values of reduced Nusselt number Nur and reduced Sherwood number Shr for
different values of Nb and Nt when A = 2, M = S = Pr = Le = 1 and ℏ1 = −0.862.

Nb Nt Nur Shr

HAM NDSolve HAM NDSolve
1/10 1/10 0.52628540 0.52628539 0.86604666 0.86604666
1/2 0.63433253 0.63433253 0.53012814 0.53012814
1 0.78636385 0.78636384 0.48603919 0.48603919

3/2 0.95569955 0.95569954 0.46986157 0.46986157
1/2 1.17682119 1.17682119 0.40180718 0.40180718
1 1.48581207 1.48581194 0.12619334 0.12619330

3/2 1.82305276 1.82305354 0.39083080 0.39083988
2 2.17915991 2.17922795 1.16777723 1.16800856
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5 Numerical results and discussion

Representative results for velocity, temperature and nanoparticles concentration have been
presented graphically and in tabular form. The values of S > 0 corresponds to the upward
motion of disk while S < 0 indicates that upper disk is moving towards the stationary
lower disk. It is also clear that an increase in S may be either regarded as an increase
in the velocity of the upper disk or the distance between the disks. It is clear from Fig. 1
that velocity decreases initially with an increase in S in the blowing case, however when
η reaches the neighborhood of 0.55 it starts increasing by increasing S. The behavior of
squeeze parameter S for suction flow is opposite to that accounted for the blowing case.
In the case of suction (A > 0), the maxima in the profiles is shifted towards the upper
disk when S is increased. However the profiles are tilted towards the lower disk when S
is increased in the blowing case (A < 0). Fig. 2 plots the effect of Hartman number M
on velocity f ′. The Hartman number M which describes the strength of Lorentz force
due to magnetic field can take any value in the interval [0,∞]. For M = 0 the governing
equations for the hydrodynamic flow are recovered. The velocity increases initially with
an increase in S. Since the same mass flow rate is imposed, in order to satisfy the mass
conservation constraint, with increased M we would expect that the increase in the fluid
velocity in the wall regions will be compensated by a decrease in the fluid velocity near
the central region giving rise to a cross-flow behavior.

Fig. 1. Influence of S on f ′(η). Fig. 2. Influence of M on f ′(η).

The effects of Brownian motion and thermophoresis parameters Nb and Nt on the
temperature field θ are discussed in the Figs. 3 and 4. Here the solid lines indicate the
profiles for suction flow (A > 0) whereas the profiles in the blowing case (A < 0) are
represented by dashed lines. It is seen that θ decreases monotonically from η = 0 to
η = 1. It is important to note that parameters Nb and Nt characterize the strengths of
Brownian motion and thermophoresis effects. The larger the values of Nb and Nt, the
greater will be the strength of the corresponding effects. Thus Nb and Nt can take any
value in the range 0 ≤ Nb, Nt < ∞. It is worth pointing here that the liquid metals are
characterize by small values of Pr (≪ 1), which have high thermal conductivity but low
viscosity, while large values of Pr (≫ 1) correspond to high-viscosity oils. Specifically,
Prandtl number Pr = 0.72, 1.0 and 7.0 correspond to air, electrolyte solution such as
salt water and water, respectively [32]. In our computations we have chosen Pr = 1 to
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retrieve all the graphical results. The temperature θ significantly rises and profiles move
closer to the upper disk as Nb and Nt increase in both the suction and blowing cases.
This results in the larger rate of heat transfer at the upper disk (as evident from Table 2).
The influence of these parameters on the nanoparticles volume fraction φ is illustrated in
the Figs. 5 and 6. An increase in Nb effectively increases the nanoparticles concentration.
This increase is due to the effective movement of nanoparticles from the upper disk to the
fluid. It is interesting to see that the deviation in the profiles only occur for the values of
Nb in the range 0 ≤ Nb ≤ 2. However nanopaticles concentration is negligibly affected
for the values of Nb beyond 2.0. There is an appreciable increase in the concentration
function φ as the thermophoretic effect intensifies. From the physical point of view an
increase in the thermophoretic effect generates the larger mass flux due to temperature
gradient which in turn rises the concentration.

Fig. 3. Influence of Nb on θ(η). Fig. 4. Influence of Nt on θ(η).

Fig. 5. Influence of Nb on φ(η). Fig. 6. Influence of Nt on φ(η).

The combined influence of Brownian motion and thermophoresis parameters on the
reduced Nusselt and Sherwood numbers is depicted from Figs. 7 and 8. We notice that for
a weaker thermophoretic diffusion there is a slight increase in the magnitude of Nur with
an increase in Nb. However this increase is more pronounced for sufficiently stronger
thermophoretic effect. Further we found a significant increase in the reduced Sherwood
number when Nb and Nt are increased. There is hardly any change in Shr for sufficiently
large values of Nb. Tables 3 provides the numerical values of skin friction coefficient for
different values of embedding parameters. For fixed values of S and M , an increase in the
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suction/blowing velocity corresponds to a larger rate of stress at the upper disk. However
larger values of A indicates smaller mass transfer rate from the disk. The magnitude of
skin friction coefficient gradually decreases as the disk moves in the upward direction.
Further it is seen that an increase in the magnetic field strength increases the magnitude
of skin friction coefficient. In Table 4 the numerical values of reduced Nusselt number
and reduced Sherwood number have been tabulated for different values of Nb and Nt .
Tables 3 and 4 also indicate that HAM solutions agrees very well with the numerical
solutions for all the values of the parameters.

Fig. 7. Influence of Nb and Nt on Nur . Fig. 8. Influence of Nb and Nt on Shr .

6 Conclusions

Magnetohydrodynamic (MHD) squeezing flow of nanofluid between parallel disks is
studied. The modeled differential equations are solved by homotopy analysis method
(HAM). A very good averaged residual error is obtained at only 15th-order homotopy
solutions. Moreover homotopy solutions are found in excellent agreement with the nu-
merical solutions. The results indicate an increase in the skin friction coefficient with an
increase in the strength of magnetic field. From the industrial point of view this outcome
is undesirable since the drag force in squeezing the fluid between the disks increases
as the magnetic field strength increases. We found that temperature θ appreciably rises
when Nb and Nt are increased for some fixed values of other parameters. This increase
accompanies with the increasingly steeper profiles which indicate an augmentation in the
rate of heat transfer at the upper disk. On the other hand the nanoparticles volume fraction
at the disk decreases with an intensification in the Brownian motion effect. The behaviors
of parameters on the temperature are similar in both suction and injection cases. However
opposite trend is noticed for the nanoparticles volume fraction. The current analysis for
the case of ordinary fluid can be recovered from the presented series solutions when
Nb = Nt = 0.
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