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Abstract—The role of the push-based architecture in modern
wireless telecommunication systems has been gaining momentum
over the past years. Yet these systems pose a challenging problem:
the creation of the optimal common broadcast schedule that
best fits the needs of the totality of the available clients. To
this end various approaches have been proposed, one of the
most well-known and widely accepted being the Broadcast Disks
method. This method ensures the periodicity and proportionality
attributes of the broadcast schedule, but leaves ample room
for performance optimization, a task traditionally assigned to
heuristic algorithms. This paper presents a mathematical analysis
of the Broadcast Disk method, which establishes a new analytical
performance optimization procedure. Comparison with other
related well-known algorithms yielded better performance in
every client test case. Finally, the analysis showed that even small
deviations from optimal parameter values may lead to significant
performance degradation in terms of clients’ mean waiting time.

Index Terms—Analytical approach, broadcast disks, mean
waiting time, wireless push system.

I. INTRODUCTION

RECENT years have witnessed the wide-spreading use of
wireless push-based systems. Simple in architecture and

implementation, lightweight and energy efficient - especially
from the client’s point of view and both hardware and software
wise - the push-based approach has been adopted for use in a
variety of information dissemination applications and has been
incorporated in almost every single mobile telecommunication
device. Popular uses include airport and hospital informative
systems, instant messaging services, and multimedia on de-
mand over the internet or cellular networks. Consequently, the
on-growing interest of the telecommunications industry has
spurred the research on the performance optimization of these
systems.

The objective of the aforementioned research is easy to
define, yet difficult to achieve. The goal is to produce a
common broadcast schedule that minimizes the mean waiting
time of the totality of the wireless clients. Ideally, a straight-
forward mathematical analysis of the system would evince the
aforementioned procedure, yet it has been proven that this
approach falls into the NP-hard category of problems [1–4],
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rendering it impossible to solve with the current mathematical
tools.

A. Related Work

In order to overcome this dead-end, less constricting ap-
proaches were adopted, one of the most popular and influential
being the Broadcast Disks method [5]. This method can be
briefly described as a generic broadcast scheduling framework
that ensures the periodicity and proportionality of the transmis-
sion schedule of a push-based system: the interval between two
consecutive occurrences of the same data item in the schedule
is held constant and the total number of its appearances pro-
portional to its popularity. These broadcast schedule attributes
have been proven to be very practical and thus the Broadcast
Disks method has constituted the basis for many subsequent
studies involving the pre-fetching, caching [6, 7] and indexing
of data [8, 9], hybrid data delivery [10, 11] and QoS-related
broadcast scheduling strategies [12–15].

Performance enhancement-related research aiming to min-
imize the clients’ waiting time has until recently been epit-
omized by the GREEDY algorithm [16], which superseded
the approaches presented in [17, 18]. These algorithms relied
on empirical observations. On the same notion, Clustering-
driven Wireless Data Broadcasting (CWDB) procedure [19]
surpassed the GREEDY algorithm in the majority of the test
cases. Furthermore, it proved that any performance comparison
between broadcast scheduling algorithms must implicate a
wide range of client cases in order to be credible.

In [20] analytical tools for pinpointing the optimal sys-
tem parameters were presented, a task previously requiring
time consuming simulations [16, 19]. Comparison with
the GREEDY algorithm yielded promising results, with the
analysis-derived procedure outperforming the GREEDY algo-
rithm in the 87% out of a total 54 client cases that were tested.
This initial analysis assumed uniform workload distributions,
a simplification that hindered it from performing better in the
remaining client cases. However, the analysis’ potential was
promising, and thus motivated further research.

B. Contribution

This paper presents a mathematical analysis of the Broad-
cast Disks method, overcoming the simplifications of [20]
i.e. the non-parametrical workload distribution functions. As a
practical application of this analysis, a new broadcast schedul-
ing procedure is presented, namely the Optimization-based
Broadcast Scheduling Procedure (OBSP).
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The new procedure is compared with other well-known
alternatives, namely the GREEDY-based Broadcast Schedul-
ing Procedure (GBSP) and the Clustering-driven Wireless
Data Broadcasting (CWDB) algorithm. To the best of our
knowledge, these are, performance-wise, the most efficient
of the family of algorithms that refer to the Broadcast Disks
method. Furthermore, analytically-derived client waiting times
are compared with their corresponding simulation-derived
values as a means of ensuring the validity of the theoretical
analysis.

Finally, it is shown that even small deviations of the
system’s parameters from their optimal values may lead to
significant performance degradation in terms of clients’ mean
waiting time.

It must be clarified than in the context of this paper the terms
“server’s mean response time” and “client’s mean waiting
time” are equivalent and refer to the mean duration of the
interval between the moment a need for a specific data item
arises in the client, and the moment this item is broadcasted by
the server. This is to compensate for the fact that the concepts
of “client’s query” and “server’s answer” are inexistent in
push-based systems.

C. Roadmap

The remainder of this paper is organized as follows: Sec-
tion II familiarizes the reader with the Network Architecture
and terminology of push-based systems. In Section III the
mathematical analysis of the Broadcast Disks method is pre-
sented, and the OBSP is formulated. Section IV deals with the
comparison between the OBSP, GBSP and CWDB procedure.
Simulation configurations, results and remarks are given in
the appropriate subsections. Finally, conclusion is given in
Section V.

II. THEORETICAL BACKGROUND

A. Network Architecture and Operation

The physical part of the network under discussion-being a
typical push-based system-consists of a server, a database, one
or more clients and an asymmetric communication channel.
The database [21] containing DBSize data items - most
commonly known as pages - is connected to the server. All
pages are considered to be of equal size. The server is properly
equipped (hardware and protocol wise) [14] in order to act as
a central node of a cellular network. Any adequately equipped
portable device can then act as a client.

The server is either assumed to know the clients’ preferences
in advance in case they are static, or capable of acquiring this
information dynamically by means of a lightweight feedback
mechanism [15, 19]. Once sufficient information of the clients’
preferences has been acquired, the server proceeds to create
a fitting broadcast schedule for the DBSize pages. This
schedule is then forwarded to the transmitting device, and
eventually to the clients.

The communication channel is asymmetric, either because
of the electromagnetic properties of the transmission medium
or as a consequence of hardware limitations. From a client’s
point of view this stands for adequate download bandwidth,

Fig. 1. Broadcast Disks method overview

and a very limited - but not zero - upload capability. The as-
sumption that the clients are capable of transmitting data must
not be considered as an aberration from the push prototype. It
is rather a necessary condition for the existence and operation
of any feedback operation, as described above.

Research on feedback systems and learning automata [15,
19] constitutes a closely related yet separate field. In the
context of this paper, it is assumed that the server has already
acquired a sufficient degree of knowledge of the clients’
preferences.

B. The Broadcast Disks Method

The Broadcast Disks method is a generally approved frame-
work for data broadcast scheduling in push-based wireless
network configurations [22]. The method assumes that the
popularity of each data item is known, most commonly in the
form of their request probability. This task is assigned to the
system’s feedback mechanism. The Broadcast Disks method
then intervenes to create a broadcast schedule which complies
with two simple rules. Firstly, the number of occurrences of
each page in a single broadcast schedule must be proportional
to its request probability. Secondly, all instances of the same
page must be uniformly distributed inside the broadcast sched-
ule in order to avoid the famous “bus stop” paradox [23]. This
is accomplished in three steps as depicted in Fig. 1:

1) Grouping: the pages are grouped according to their
popularity in a fixed number of groups called disks. This
scheme can be abstractedly represented as an array of
physical disks, spinning around a common axis.

2) Spinning: each of these disks is then set to spin with an
angular velocity proportional to the aggregate demand
of its contained pages.

3) Broadcasting: finally, an imaginary set of stationary
heads retrieves pages from the disks and forwards them
to the broadcasting system in the same order that they
have been read.

The method does not state how the tasks of Grouping and
Spinning are to be accomplished. Thus, the optimization’s goal
is to define:

1) the optimal number of disks, NoD
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2) the number of pages that each disk contains,
DiskSize(i), i = 1, . . . , NoD

3) the optimal spinning velocity of each disk, Ui, i =
1, . . . , NoD.

However, the method defines how the serialization task of
Broadcasting is to be accomplished, in great detail [5]. More
specifically, it requires the serialization task to take place
according to the Algorithm 1, where Ci,j refers to the jth

chunk of the ith disk. An example of the process described
by Algorithm 1 is illustrated in Fig. 1.

Algorithm 1 The default broadcast schedule constructor algo-
rithm of the Broadcast Disks method.

1: Calculate the max chunks as the Least Common Multi-
ple of the disks’ velocities Ui, where i = 1, . . . , NoD

2: Partition each disk into num chunks(i) =
max chunks/Ui chunks

3: Broadcast the Ci,j chunks in a round robin manner

Finally, it is important to calculate the length L of the
broadcast schedule. It holds that L = max chunks · M ,
where M denotes the length of the minor sequence, as
presented in Fig. 1. Furthermore, it stands that M =∑NoD

1 chunk size(i), where chunk size(i) denotes the size
of each chunk of the ith disk. Thus, since chunk size(i) =
d DiskSize(i)

num chunks(i)e we conclude that:

L = max chunks·
NoD∑

i=1

d DiskSize(i)
num chunks(i)

e (1)

C. Equivalent Client Probabilistic Model

Concerning the client probabilistic model, the present work
is in accordance with the assumptions made in preceding
papers [5, 16]. According to these studies, the push server
has no means of differentiating between the clients, as this
would degrade the system’s architecture into a classic client-
server (pull) scheme. Therefore, for the analysis’ purposes, it
is possible to adopt an equivalent, single-client model [5, 16].
This equivalent client presents the same probabilistic behavior
as the clients that he substitutes.

The equivalent client’s p.d.f. Pp has typically the form of
Fig. 2(a). More specifically, the client is considered to access
only a random subset of the server’s DBSize pages, and
their number will be denoted as Range. These pages are then
organized further in equally sized r groups called Regions.
All RegionSize pages in one Region have equal probability
of being requested by the client. The Regions themselves are
considered to follow the zipfian probability distribution [24],
according to which P (k) ∝ 1

kθ , where k = 1, . . . , r and θ is
the zipfian p.d.f. skewness parameter (and as such θ 6= 1).

Physically the θ parameter can serve primarily as an indica-
tion of the degree of similarity of the clients’ preferences. As
shown in Fig. 2(b), higher θ values indicate the existence of
an increasingly popular team of pages. Therefore, the clients’
preferences converge. From another point of view, θ can
express the degree of correlation of the data items. Highly
correlated data items would result into large teams of pages
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Fig. 2. Client probabilistic model

being accessed per single, initial client query. Thus, highly
selective schemes, as the one depicted in Fig 2(b) for θ = 1.5,
would be less probable to occur. Hence, higher θ values may
indicate less correlated data items.

Finally, with the total number of pages in the server’s
database DBSize being static, the client’s page p.d.f. illus-
trated in Fig. 2(a) is fully defined by the three parameters
{Range,RegionSize, θ}. Thus, each different combination of
these parameters represents a distinct client case.

III. MATHEMATICAL ANALYSIS

Assume that the cyclically repeated broadcast program has
been constructed and that it comprises of L equally sized
transmissions of pages. If a page with index l ∈ [1, DBSize]
originated from a disk with an angular velocity of Ui, (i =
1, . . . , NoD), it will appear exactly Ui times inside the sched-
ule, provided that the velocity of the last and slowest disk
is equal to one unit. Uniform distribution of all same page
appearances inside the schedule is ensured through the use of
the Broadcast Disks method, as stated already. Thus the mean
waiting time of a client expecting a page l belonging to the
ith disk with velocity Ui will, according to [23], be:

D(l) =
L

2Ui
(2)
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Additionally, it is assumed that enough time has elapsed
for the system to acquire an adequate approximation of the
Range, RegionSize and θ (zipf p.d.f.) parameters through
the feedback mechanism described earlier. Thus the server has
sufficient knowledge of the client’s page p.d.f, whose general
form is depicted in Fig. 2(a) and is denoted as PP (l).

The upcoming grouping of pages into a number of NoD
disks is tantamount to choosing the segmentation points de-
noted as di, i = 1, . . . , NoD in Fig. 2(a). After the server
pages have been sorted in descending access probability, these
points signify the last page of each disk. In order to define the
di points, the following approaches will be examined:

1) Perform the grouping at a level of whole regions,
assuming that equiprobable pages should not be split
over different disks. In other words the di segmentation
points can only be placed at the end of a Region.

2) Form the last and slowest moving disk deterministically
by grouping together the pages with null popularity. This
approach derives from the logical assumption that the
useless pages should be separated from the useful ones,
and not be broadcasted more than once per broadcast
period. Thus, dNoD−1 = Range and dNoD = DBSize.

By following or not the above approaches, four analysis
variations can take place:

1) Adopt none of them. This case will be denoted as Non-
Deterministic, Page-Grouping or NDPG-Variant.

2) Adopt only the first of them (Non-Deterministic,
Region-Grouping or NDRG-Variant case).

3) Adopt only the second of them (Deterministic, Page-
Grouping or DPG-Variant case).

4) Adopt both of them (Deterministic, Region-Grouping or
DRG-Variant case).

A. Non-Deterministic, Page-Grouping (NDPG-Variant)
Consider a series of N queries of the equivalent client. Out

of these N queries, exactly:

N1 = N ·
d1∑

l=1

PP (l) (3)

refer to pages that belong to the first disk. By setting:

G(x) =
x∑

l=1

PP (l) (4)

Equation 3 can be rewritten as:

N1 = N ·G(d1) (5)

For the remaining disks we have:

Ni = N · [G(di)−G(di−1)], i = 2, . . . , (NoD − 1) (6)

and

NNoD = N · [G(dNoD)−G(dNoD−1)] =
=N ·[G(dDBSize)−G(dNoD−1)]=N ·[1−G(dNoD−1)] (7)

From (2) is derived that the aggregate waiting time Wi for
pages belonging to the ith disk is:

Wi = Ni · L

2Ui
(8)

Wi will be referred to as the ith disk’s workload. The
client’s mean waiting time can then be calculated as:

D =
∑NoD

i=1 Wi

N
=

∑NoD
i=1 Ni

L
2Ui

N
=

= L
2 ·

[
G(d1)

U1
+ G(d2)−G(d1)

U2
+ · · ·+ 1−G(dNoD−1)

UNoD

]
(10)

A major assumption concerning the disks’ workloads is
that they are not uncorrelated, but instead follow specific
distributions. Thus, since in the most general case stands that

p1 ·W1 =p2 ·W2 = · · ·=pNoD ·WNoD, pi∈R, i=1 . . . NoD
(11)

we assume that the workloads can follow either:
1) the progressively ascending fashion depicted in Fig. 3(a),

and thus:

pASC
i =(1+NoD−i)ϕ, i=1, . . . , NoD, ϕ∈[0,∞) (12)

2) the progressively descending fashion depicted in
Fig. 3(b), and in this case:

pDESC
i = iϕ, i=1, . . . , NoD, ϕ∈[0,∞) (13)

3) the hill-like scheme depicted in Fig. 3(c), where:

pHILL
i =(1+dNoD

2 e−i)ϕ, for i=1 . . . dNoD
2 e or

pHILL
i =(1−dNoD

2 e+i)ϕ, for i=dNoD
2 e+1 . . . NoD

(14)
when NoD is odd and ϕ∈[0,∞), and:

pHILL
i =(1+ NoD

2 −i)ϕ, for i=1 . . . NoD
2 or

pHILL
i =(1−NoD

2 )ϕ, for i= NoD
2 +1 . . . NoD

(15)

when NoD is even and ϕ∈[0,∞).
In all three cases, a parameter ϕ is introduced in order to

control the steepness of the disks’ workload distribution. For
ϕ = 0 all disks have equal workloads (uniform distribution)
and the distributions become progressively more steep as ϕ
increases. It is also clear that pi depends only on ϕ and NoD:

pi = f(ϕ,NoD) (16)

In any case, (3) can be rewritten through (8) as:

p1
L ·N

2
· G(d1)

U1
= p2

L ·N
2

· G(d2)−G(d1)
U2

= . . .

. . . = pNoD
L ·N

2
· 1−G(dNoD−1)

UNoD
(17)

which can be simplified as:

p1
G(d1)

U1
=p2

G(d2)−G(d1)
U2

= . . .=pNoD
1−G(dNoD−1)

UNoD
(18)

Considering the Ui and pi as simple parameters and the
G(di) as unknown variables, (18) represents a linear (NoD−
1) × (NoD − 1) system which can be easily expressed in
matrix form (A ·X = B) as presented in (9).

The parameter matrix A of the linear system expressed by
(9) is a symmetric tridiagonal one. Furthermore it satisfies the
criteria:

|a1,1| ≥ |a1,2|
|ai,i| ≥ |ai,i−1|+ |ai,i+1| i = 2 . . . n− 1
|an,n| ≥ |an,n−1|

(19)
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(a) Ascending workload distribution (b) Descending workload distribution (c) “Hill” workload distribution

Fig. 3. Disks’ workload distributions
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(9)

Thus the system always has a unique solution [25]. In
addition, the convergence to this solution is known to be very
quick, requiring O(NoD) operations [25], with the optimal
NoD parameter itself typically ranging from 1 to 10.

The velocities themselves are usually set as arithmetic
progression terms [16], and as such:

Ui =(NoD−i) ·∆+1, i = 1 . . . NoD (20)

where ∆ denotes the series’ common difference. An alternative
way to accomplish the same task, which was introduced
in [19], is to set UNoD = 1 deterministically, and then
calculate the remaining terms as follows:

Ui =U · [(NoD−1−i) ·∆+1], i = 1 . . . NoD−1 (21)

where U an arbitrarily chosen parameter.
Finally it must be stated that since the velocities Ui all

derive from either (20) or (21). Furthermore, concerning the
workload distribution parameters pi, (16) is in commission.
Thus, the only parameters actually requiring definition are the
common difference ∆ (or the pair {∆, U} in case of (21)) and
the steepness regulator ϕ.

Once the system (9) is solved, the client’s mean waiting time
can be estimated through (10). Furthermore, from the resulting
G(di) values the corresponding di can be easily obtained,
since G(x) is a strictly increasing function and thus one-to-
one and reversible. Calculating the corresponding disk sizes is
then a trivial task.

B. Non-Deterministic, Range-Grouping (NDRG-Variant)

Performing the grouping at a level of whole regions instead
of pages is - as stated earlier - equivalent to placing the di

segmentation points at the end of Regions. No further analysis
is required, except for replacing the di points obtained from

the NDPG variant with their nearest Region end-points in the
following manner:

di→round(
di

RegionSize
)·RegionSize, i=1 . . . NoD−1

(22)
Care must be taken of the new di points in order to meet

the criteria: d1 6= 1, di 6= dj ∀i, j ∈ [1, NoD] and i 6= j,
di < dNoD ∀i

Inability to comply with these criteria yields failure of the
method and a decrease of the NoD parameter by at least one
unit is then imperative.

C. Deterministic, Page-Grouping (DPG-Variant)

In this case, the zero voted pages deterministically form the
last and slowest moving disk. Thus, it stands that dNoD−1 =
Range and dNoD = DBSize. The (NoD− 1)× (NoD− 1)
linear system (9) is then reduced to the (NoD−2)×(NoD−2)
system of (23). The procedure then continues as described in
Section III-A.

D. Deterministic, Region-Grouping (DRG-Variant)

This analysis variation simply uses the di values produced
by system (23) and reassigns them to their nearest Region
end-points, exactly as NDRG does with the results of NDPG.
The same criteria as NDRG must be met as well.

E. Optimization-based Broadcast Scheduling Procedure
(OBSP)

At this point, the client’s mean waiting time optimization
procedure can be fully defined as a series of simple steps
described below:

1) A value set is defined for the ∆ parameter. Typical
choices are the ranges [1, 100] or [1, 150]. If (21) is used
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(23)

to set the disks’ velocities, define a value set for the U
parameter as well. Typical values are [1, 10000].

2) In a similar manner, a range of values is selected for the
NoD parameter, typically [2, 10].

3) A set of values is also defined for the ϕ parameter of
the disk workloads’ distribution, typically 0.0 (uniform
distribution) to 10.0 with steps of 0.1 units.
In each of the above cases much larger value sets may be
used with trivial processing time impact. Actual results
though have indicated the use of values beyond the
aforementioned ranges to be excessive.

4) For every possible set of values (U,∆, NoD, ϕ) the
linear system of every analysis’ variation is constructed
and solved, and through (10) the projected mean waiting
time D of the server is calculated.

The set (U, ∆, NoD,ϕ, Analysis-Variation) achieving the
minimum D is considered to optimize the server’s perfor-
mance. The corresponding disk speeds Ui are calculated
through either (20) or (21). The respective G(di) are also
reduced to their corresponding di. Thus the optimal disk sizes
are set as well and the broadcast schedule is constructed as
described in Section II-B.

Attention must also be paid to the fact that the value of
the parameter L is subjected each time to the current disk
speeds and sizes as implied in Section II-B and thus must be
calculated accordingly when needed, as described by (1).

Finally, it must be stated that the procedure’s execution time
obviously depends on the value ranges of the (U,∆, NoD, ϕ)
parameters, as described in steps 1-3. These ranges define how
many times the linear systems of step 4 will be constructed and
solved. The computational complexity of steps 1-3 is O1 =
O(|U | · |∆| · |NoD| · |ϕ|), where |.| represents the number
of elements in the value set of the corresponding parameter.
The computational complexity of step 4 corresponds to the
construction and solution of a tridiagonal linear system for
every analysis variant, and as such is O2 = 4 ·O(NoD) [25].
As a results, the complexity of the proposed OBSP scheme is
O = O1 ·O2. Notice that the alternative [16, 19] would be to
run O1 whole system simulations, a task which is bound to
be much more time consuming compared to O2.

IV. SIMULATIONS AND RESULTS

A. Configuration

The main goal of the simulation was the validation of the
client’s mean waiting time produced by the OBSP for every
major client case. The term client case refers to any different
combination of the Range, RegionSize and θ parameters, as
it describes a unique client probabilistic model. Amongst them,

the Range parameter is subjected to the total amount of avail-
able server pages (DBSize). However, since the preceding
papers [5, 16] set this parameter to the value 5000, the same
convention will be used in the context of this work as well.
The value sets of the RangeRegionSize and θ parameters
are given in Fig. 4-7 in the corresponding figure captions. The
values for the Range and RegionSize parameters are chosen
in tandem for obvious reasons.

Concerning the θ parameter, values smaller than one unit
correspond to high degree of correlation between regions,
while values in the range (1,∞) suggest the opposite, as
stated in Section II-C. The values 0.5 and 1.5 represent the
two corresponding extremes. The value θ = 1 is not allowed
due to a zipf p.d.f. restriction. Finally, the value 0.95 is the
most commonly used in bibliography [5, 16].

For each of the aforementioned client cases, OBSP’s per-
formance is compared with the most outstanding alternatives,
namely the GBSP and the CWDB procedure. Since the former
employs (20) to set the disks’ velocities while the later uses
(21), two variants of the OBSP must be examined in order to
promote the comparison’s credibility:

1) The OBSP-∆ variant which employs (20) and is thus
more fit to be compared with the GBSP, and

2) the OBSP-U variant which employs (21) and is therefore
more eligible for comparison with the CWDB.

The values’ sets of the parameters of each procedure are given
in Table I.

The server is assumed to have perfect knowledge of the
client’s p.d.f as depicted in Fig. 2(a). For an amount of 30, 000
client queries the client’s mean waiting time is observed and
its mean value is calculated. In order to be in full compliance
with [5] where the Broadcast Disks method was introduced,
the client’s ThinkT ime is taken into account and is set equal
to 2 timeslots. In other words, upon receiving a requested page
the client remains inactive for a period of 2 timeslots. very
distinct simulation was repeated 100 times in order to extract
a reliable mean value of the clients’ mean waiting time.

Finally, it must be stated that through the preceding mathe-
matical analysis, OBSP was able to pinpoint the optimal values
for its parameters in a short time, through the use of (10)
which projects the client’s mean waiting time. These projected
values are presented as well for each client case. On the other
hand, not having a corresponding mathematical background to
support such a task, GBSP and CWDB require a simulation
to be run for every possible combination of the values of the
parameters that comprise their corresponding value sets, an
extremely time-consuming task.
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TABLE I
VALUES’ SETS OF THE PROCEDURES’ PARAMETERS (UNARY STEP IS

ASSUMED WHERE OMITTED)

Parameter name Value Sets
GBSP CWDB OBSP

OBSP-∆ OBSP-U
∆ [1, 100] [1, 100] [1, 100] [1, 100]
NoD [1, 10] [1, 10] [1, 10] [1, 10]
U N/A [1, 10000] N/A [1, 1000]
ϕ N/A N/A 1 : 0.1 : 10 1 : 0.1 : 10

B. Analysis and Simulation Results

The results are depicted in Fig. 4-7, where OBSP, CWDB
and GBSP are compared performance-wise. In the case of
OBSP both the estimated and the simulated values are pre-
sented, for both of the variants OBSP-∆ and OBSP-U . The
goal is to:

1) Compare OBSP-U with CWDB performance-wise.
2) Compare OBSP-∆ with GBSP also performance-wise.
3) Compare the analytically projected values of OBSP-

U and OBSP-∆ with their corresponding simulation-
derived counterparts.

4) Compare OBSP with CWDB and GBSP overall.
Each algorithm’s performance corresponds to the mean

client waiting time achieved by it, and is measured in “time
units”. One time unit corresponds to the time interval required
to broadcast one single page. It is reminded that all pages are
of equal size.

C. Remarks

Concerning the performance of GBSP and the OBSP-∆
variant, the results have shown the latter to be dominant
in all of the examined cases. The behavior of OBSP in
general was uniform and somewhat expected, while GBSP’s
performance was in several cases erratic, as depicted in Fig. 4.
In contrast with all other algorithms, the performance of GBSP
suddenly rises and then begins to decline. Examination of the
corresponding optimal parameters showed this phenomenon to
occur when three-disk configurations begin to outperform the
simple two-disk ones. The explanation for this phenomenon
lies in the effect of the zipfian θ parameter on the client’s
p.d.f. which is depicted in Fig. 2(b). Low θ values produce a
more uniform probability distribution. In this case the optimal
solution is obvious: split the pages into two disks, one con-
taining the useful pages and one containing the useless ones.
GBSP successfully detects this fact, and thus both GBSP and
OBSP-U behave similarly for θ ∈ [0.5, 0.8]. From that point
and on though, the distribution’s aberration from uniformity
becomes more and more dominant, and thus more refined,
multi-disk configurations must be employed. Not relying on a
strict mathematical analysis, GBSP fails to detect the optimal
disk sizes, and thus a sudden increase in waiting time is
observed which then follows the common declining scheme
of all other cases.

From the comparison between CWDB and the OBSP-U
variant, it is clear that the OBSP continues to outperform its
rival in all examined cases. The K-means based grouping of

0.5 0.6 0.7 0.8 0.95 1.1 1.2 1.3 1.4 1.5
400

500

600

700

800

900

θ

C
lie

nt
’s

 m
ea

n 
w

ai
tin

g 
tim

e

0.5 0.6 0.7 0.8 0.95 1.1 1.2 1.3 1.4 1.5
300

350

400

450

500

550

600

θ

C
lie

nt
’s

 m
ea

n 
w

ai
tin

g 
tim

e

OBSP−U Simulated

OBSP−U Estimated

CWDB

OBSP−∆ Simulated

OBSP−∆ Estimated

GBSP

Fig. 4. Client’s mean waiting time as a function of θ parameter for
Range = 1000 and RegionSize = 50
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Fig. 5. Client’s mean waiting time as a function of θ parameter for
Range = 2000 and RegionSize = 50

pages into disks performed by CWDB does perform satisfac-
tory to a degree, as was observed in [19] as well. However,
the grouping process - as the mathematical analysis indicates
- is closely bound to the selection of the disks’ velocities.
CWDB’s page grouping is completely uncorrelated from the
velocities’ selection task. OBSP on the other hand, takes this
fact into consideration through the mathematical analysis, and
is thus enabled to perform better.

OBSP, and more specifically OBSP-U , outperforms all
alternative approaches. Concerning the optimal accompanying
parameters for each case, the ascending disk workload distri-
bution was found to be dominant, with the steepness factor ϕ
usually being equal to 0.5 or 1.0 units. Uniform distributions
(ϕ = 0) also made their appearance sporadically. The DRG-
Variant was also dominant in the vast majority of the cases. For
high values of the Range and θ parameters, mainly the NDRG
but also the NDPG-Variants were proven superior. This is due
to the fact that in these cases, inserting some useful pages in
the last and slowest rotating disk forces the system to produce
smaller optimal broadcast schedules in order for these pages
to be broadcasted as more frequently as possible. Thus the
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Fig. 7. Client’s mean waiting time as a function of θ parameter for
Range = 4000 and RegionSize = 50

clients’ mean waiting time decreases as expected.
Another observation is that all algorithms tend to perform

better as the zipfian θ increases. The explanation for this
phenomenon lies on the effect of the θ parameter on the
client’s p.d.f. demonstrated in Fig. 2(b). High values of θ mean
that a group of pages becomes increasingly more popular than
the others. To compensate, all algorithms group this pages into
increasingly smaller, faster rotating disks which obviously is
in favor of the overall performance.

The values of the performance obtained through simulation
and the mathematical analysis are almost in full accordance.
Slight variations are attributed to the fortuity factors implicated
in the simulations.

Finally, it became evident through the initial experimenta-
tion with the system’s parameters that slight deviations from
their optimal values could make or break its performance
in an unpredictable way. In order to investigate this phe-
nomenon more thoroughly, several random client cases were
tested over a wide range of parameters’ combinations and
for every one of the GBSP, CWDB, OBSP-∆ and OBDP-U
algorithms. In the end all yielded results identical to those

0

20

40

60

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

x 10
8

Number of Disks (NoD)

∆

C
lie

n
t’

s 
m

ea
n

 w
ai

ti
n

g
 t

im
e

(a) The client’s mean waiting time as a function of the number
of disks (NoD) and ∆

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Number of Disks (NoD)
O

p
ti

m
al

 ∆
 v

al
u

e

(b) The optimal ∆ value per NoD value

0 10 20 30 40 50
0

2

4

6

8

10

12
x 10

4

Number of Disks (NoD)

C
o

rr
es

p
o

n
d

in
g

 c
lie

n
t’

s 
m

ea
n

 w
ai

ti
n

g
 t

im
e 

fo
r 

o
p

ti
m

al
 ∆

(c) The client’s mean waiting time for each optimal
∆ value, per corresponding NoD value

Fig. 8. Illustrations of the system’s erratic behavior.

of Fig. 8. In Fig.8(a) the performance of the system for
{DBSize = 5000, Range = 1000, θ = 0.95, RegionSize =
50, algorithm =“OBSP-∆”} and NoD ∈ [2, 50] × ∆ ∈
[1, 100] is illustrated. While performance tends to improve
with the adoption of multi-disk, fast-rotating schemes, it
nonetheless presents great fluctuations. In Fig.8(b), for each
of the 50 NoD values, the ∆ achieving the best performance
is recorded and shown. The performance itself for these cases
is illustrated in Fig.8(c).

It is readily obvious that no easily comprehendible relation
connects the systems parameters with the systems’ perfor-
mance. Moreover, slight deviation of the parameters from
their optimal values, as in the case of ∆ in Fig.8(c), may
downgrade the system’s performance. It is thus imperative that

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on November 20, 2009 at 08:54 from IEEE Xplore.  Restrictions apply. 



Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

these parameters be defined through analytical tools.

V. CONCLUSION

Optimizing the performance of wireless broadcast-based
systems is not a trivial task. The goal is to construct a
common broadcast schedule that best fits the needs of a
wide variety of clients. To this end, the Broadcast Disks
method constitutes a popular broadcast schedule construction
framework. This paper presented a mathematical analysis of
this method and defined an analytical procedure aiming at
minimizing the clients’ mean waiting time. Comparison with
other approaches yielded not only better performance in every
one of the client cases, but faster processing times as well,
since the optimal system parameters were pinpointed through
the analysis rather than heuristically. Finally, it was shown that
due to the system’s erratic nature, one can define the optimal
parameters’ values in a credible way only through analytical
methods.
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