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Abstract.

We investigate an angular dependence of the photoemission time delay in helium

measured by the RABBITT (Reconstruction of Attosecond Beating By Interference of

Two-photon Transitions) technique. The measured time delay τa = τW + τcc contains

two distinct components: the Wigner time delay τW and the continuum-continuum

(CC) correction τcc. In the case of helium with only one 1s → Ep photoemission

channel, the Wigner time delay τW does not depend on the photoelectron detection

angle relative to the electric field vector. However, the CC correction τcc shows a

noticeable angular dependence. We illustrate these findings by performing two sets

of calculations. In the first set, we solve the time-dependent Schrödinger equation for

the helium atom ionized by an attosecond pulse train and probed by an IR pulse. In

the second approach, we employ the lowest order perturbation theory which describes

absorption of the XUV and IR photons. Both calculations produce close results. These

findings are significant as they will guide the next generation of the angular resolved

RABBITT experiments which now become feasible.
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1. Introduction

The recently developed RABBITT technique (Reconstruction of Attosecond Beating By

Interference of Two-photon Transitions) (Muller 2002, Toma and Muller 2002) opened

an access to processes taking place on the unprecedentedly short time scale of few tens

to few hundreds of attoseconds (1 as = 10−18 s). The technique was first employed to

measure the duration of attosecond pulses created by high-order harmonic generation

(HHG) (Paul et al 2001). Then followed a successful application of the RABBITT

technique to probe atomic photoionization on its native attosecond time scale. As a

first example, the RABBITT technique was used to demonstrated a significant time

delay difference between photoemission from the 3s and 3p shells of argon (Klünder et

al 2011, Guénot et al 2012). In further developments, the relative time delay between

the outer shells of the atomic pairs (He vs. Ne and Ne vs. Ar) has been determined

owing to active stabilization of the RABBITT spectrometer (Guénot et al 2014). Similar

measurement has been performed in heavier noble gas atoms relative to the time delay

in the 1s sub-shell of He (Palatchi et al 2014). In conjunction with the HHG, the

RABBITT technique has also been used to determine the time delay in Ar (Schoun

et al 2014).

The RABBITT technique exploits an interference of the two ionization channels

leading to the same photoelectron state. It is either absorbing an XUV photon from

an odd 2q − 1 harmonic added by absorption of an IR photon ω or ionization by

the neighbouring 2q + 1 harmonic followed by emission of the IR photon. Both

ionization channels lead to appearance of a side band (SB) in the photoelectron spectrum

corresponding to an even 2q harmonic. The sideband amplitude oscillates with the

relative time delay between the XUV and IR pulses

S2q(τ) = α+ β cos(2ωτ − ∆φ2q − ∆θ2q) (1)

The delay, τ , denotes a time delay that is used in the RABBITT scheme to delay the

IR probe relative to the XUV pump. The term ∆φ2q denotes the phase difference

between the two neighbouring odd harmonics 2q ± 1 which can be converted to the

group delay of the attosecond pulse as τ
(GD)
2q = ∆φ2q/2ω . The quantity τ − τ

(GD)
2q is

the delay between the maxima of the IR electric field oscillation and the arrival of the

XUV pulse. The additional term ∆θ2q arises from the phase difference of the atomic

ionization amplitude corresponding to the XUV energies different by 2ω. This phase

difference can be converted to the atomic delay τa = ∆θ2q/2ω. Thus defined quantity

can be represented theoretically as the sum of the two distinct components τa = τW +τcc
(Dahlström et al 2013). Here τW is the Wigner-like time delay associated with the XUV

absorption and τcc is a correction due to the IR photon absorption via the continuum-

continuum (CC) transition.

The attosecond streak-camera method (Itatani et al 2002) is in many regards similar

to the RABBITT method, the main difference being that ‘streaking’ relies on isolated

attosecond pulses corresponding to a continuum of XUV frequencies rather than the

discrete odd high-harmonics of the RABBITT method (Dahlström, Huillier and Maquet
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2012, Pazourek et al 2013). The target electron is first ejected by the isolated XUV

pulse and it is then streaked: accelerated or decelerated by the IR dressing field. In this

technique, the photoelectron is detected in the direction of the joint polarization axis

of the XUV and IR fields. So a possible dependence of the atomic time delay on the

photoelectron direction is not detected in this technique. The RABBITT measurement is

very different in this respect because the photoelectrons are collected from all directions.

Hence a possible angular dependence of the time delay may become an issue. Because of

the known propensity rule (Fano 1985), the XUV photoionization transition nili → El is

dominated by a single channel l = li+1. In this case, the Wigner time delay is simply the

energy derivative of the elastic scattering phase in this dominant channel τW = dδl/dE.

However, if the nominally stronger channel goes through a Cooper minimum, the weaker

channel with l = li−1 becomes competitive. The interplay of these two photoionization

channels leads to a strong angular dependence of the Wigner time delay because these

channels are underpinned by different spherical harmonics. The hint of this dependence

was indeed observed in a joint experimental and theoretical study (Palatchi et al 2014)

near the Cooper minimum in the 3p photoionization of argon. This effect was seen as

a much better agreement of the angular averaged atomic calculations in comparison

with angular specific calculations. That is why the measured Wigner time delay in

this experiment was termed an effective time delay. In subsequent theoretical studies,

this effect was investigated with more details and an explicit angular dependence was

graphically depicted (Wätzel et al 2014, Dahlström and Lindroth 2014).

In the case of a single atomic photoionization channel, like 1s → Ep channel

in He, the interchannel competition is absent and the Wigner time delay is angular

independent. The early investigations of the τcc correction (Dahlström, Guénot,

Klünder, Gisselbrecht, Mauritsson, Huillier, Maquet and Täıeb 2012) showed no angular

dependence of this component on the time delay either. Hence one may think that the

RABBITT measured time delay in He should be angular independent. This assumption

was challenged in a recent experiment by Keller (2014) and her group in which the

RABBITT technique was supplemented with the COLTRIMS (Cold Target Recoil Ion

Momentum Spectroscopy) apparatus. This combination made it possible to relate the

time delay to a specific photoelectron detection angle relative to the polarization axis of

light. The findings of Keller (2014) is significant because the helium atom is often used

as a convenience reference to determine the time delay in other target atoms. If the

RABBITT measurement is not angular resolved, like in the experiment by Palatchi et al

(2014), the angular dependence of the time delay in the reference atom may compromise

the accuracy of the time delay determination in other target atoms.

This consideration motivated us to investigate theoretically the angular effects in

the time delay of helium measured by the RABBITT technique. We perform our

investigation by combining the two completely independent approaches. In the first

approach, we solve the time-dependent Schrödinger equation (TDSE) which describes

the evolution of the helium atom driven by an attosecond pulse train (APT) and an IR

dressing field with the single-active electron approximation. After the field is switched
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off, we project the solution of the TDSE on the field-free Coulomb states and get the

photoelectron spectrum in various directions. We repeat this calculation for various

time delays τ between the APT and IR fields and fit the SB intensity oscillations with

Equation (1). Because the group delay of the harmonics is known in our calculation,

we can extract the atomic time delay and determine its angular dependence for each

specific side band. In the second approach, we apply the lowest order perturbation

theory (LOPT) which describes the two-photon XUV and IR ionization. Although

this method may be less accurate then a non-perturbative TDSE approach concerning

the interaction with more substantial field intensities, it is physically very transparent,

much less time consuming and while including many-electron screening effects of the

XUV photon it allows for inclusion of correlation corrections by infinite-order many-body

perturbation theory. The angular dependence of the time delay can be easily interpreted

in the LOPT as a competition of the CC transitions Ep → E ′d and Ep → E ′s driven

the the IR absorption. This competition may become particularly intense near the

geometric node of the d-spherical wave at the magic angle θm = acos(1/
√

3) = 54.7◦.

We compare results of these two calculations and draw conclusions.

2. Theory and numerical implementation

2.1. LOPT approach

The RABBITT process can be described using perturbation theory with respect to the

interaction with the XUV and IR fields. The dominant lowest-order contributions are

given by two-photon matrix elements from the initial electron state i to the final state

f by absorption of one XUV photon, ωx, followed by exchange of one IR photon, ω,

M(f, ω, ωx, i) =
1

i
E(ω)E(ωx) lim

ε→0+

∑

p

∫ 〈 f | z | p 〉〈 p | z | i 〉
ǫi + ωx − ǫp + iε

, (2)

where both fields are linearly polarized along the nz-axis. The single-electron states

are expressed as partial wave states 〈 r | i 〉 = Rni,ℓi
(r)Yℓi,mi

(nr) and 〈 r | f 〉 =

Rkf ,ℓf
(r)Yℓf ,mf

(nr) for bound initial state and continuum final state with corresponding

single-particle energies ǫi and ǫf , respectively. Energy conservation of the process is

given by ǫf − ǫi = ωx ± ω, where +(−) corresponds to absorption (emission) of an IR

photon. All intermediate unoccupied states, 〈 r | p 〉 = Rnp,ℓp
(r)Yℓp,mp

(nr), are included

in the integral sum in Eq.(2). Angular momentum conservation laws applied to the 1s2

ground state in helium require that ℓi = 0, ℓp = 1 and ℓf = 0, 2 and mi = mp = mf = 0.

The two-photon matrix element in Eq. (2) can be re-cast as a one-photon matrix element

between the final state and an uncorrelated perturbed wave function (PWF)

M(q, ω, ωx, a) =
1

i
E(ωx)E(ω)〈 f | z | ρ(0)

ωx,i 〉. (3)

The PWF is a complex function that describes the outgoing photoelectron wave packet,

with momentum k′ corresponding to the on-shell energy ǫ′ = ǫi +ωx, after absorption of

one XUV photon creating a hole in the atomic state i (Aymar and Crance 1980, Toma
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and Muller 2002, Dahlström et al 2013). Correlation effects due to the screening by

other electrons can be systematically included by substitution of the uncorrelated PWF

with the correlated PWF based on the Random-Phase Approximation with Exchange

(RPAE): | ρ(0)
ωx,a 〉 → | ρ(RPAE)

ωx,a 〉. Details about the implementation of such correlation

corrections were recently given in Ref. (Dahlström and Lindroth 2014).

Using Eq. (2) and Eq. (14) we construct the complex amplitude for absorption of

two photons ωx = (2q − 1)ω and ω

M(abs)
kf

= (8π)3/2
∑

lf=0,2

i−lf eiδfYlf ,0(nf)M(f, ω, ωx, i) (4)

and for absorption of one photon ωx = (2q + 1)ω followed by emission of ω

M(emi)
kf

= (8π)3/2
∑

lf=0,2

i−lf eiδfYlf ,0(nf)M(f,−ω, ωx, i) (5)

both leading to the same final state with photoelectron momentum, kf = kfnf with

kf =
√

2ǫf =
√

2(2qω + ǫi). The probability for directed photoemission is proportional

to

S2q(kf) = 2
∣

∣

∣
M(emi)

kf
exp[i(φ2q+1 − ϕ)] + M(abs)

kf
exp[i(φ2q−1 + ϕ)]

∣

∣

∣

2

, (6)

where we write explicitly the phases of the fields: ϕ = ωτ of the ω field and φ2q+1 and

φ2q−1 of the ωx 2q+1 and ωx 2q−1 fields so that the field amplitudes, E, inside M (and M)

are real. The different signs of ϕ in the terms on the right side of Eq.(6) arise due to the

IR photon being either absorbed of emitted in the process, E(ω) = |E(ω)|eiϕ = E∗(−ω).

In connection with Eq. (1) we then obtain the angle-resolved atomic delay

τa(kf) = ∆θ2q(kf)/2ω = arg[M(emi)
kf

M∗(abs)
kf

]/2ω. (7)

2.2. TDSE approach

We solve the TDSE for a helium atom described in a single active electron

approximation:

i∂Ψ(r)/∂t =
[

Ĥatom + Ĥint(t)
]

Ψ(r) , (8)

where Ĥatom is the Hamiltonian of the field-free atom with an effective one-electron

potential (Sarsa et al 2004). The Hamiltonian Ĥint(t) describes the interaction with the

external field and is written in the velocity gauge:

Ĥint(t) = A(t) · p̂ , A(t) = −
∫ t

0

E(t′) dt′ (9)

As compared to the alternative length gauge, this form of the interaction has a numerical

advantage of a faster convergence.

The electric field in the IR pulse is modeled as

EIR(t) = ẑ E0 f(t) cosωt (10)
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with the envelope function

fIR(t) =











3(t/T )2 − 2(t/T )3 t < T

1 T < t < (N − 1)T N = 25

3[(NT − t)/T ]2 − 2[(NT − t)/T ]3 (N − 1)T < t < NT

(11)

Here T = 2π/ω ≃ 2.67 fs with ω = 1.55 eV being the IR frequency. The electric field in

the APT is modelled according to Lee et al (2012):

EAPT(t) = ẑ E0

15
∑

ξ=−15

(−1)ξ sin[ωx(t
′ − ξT/2)] (12)

× exp

[

−2 ln 2

(

t′ − ξT/2

τx

)2
]

exp

[

−2 ln 2

(

t′

τT

)2
]

, t′ = t− ∆ .

The constants τx = 0.3 fs and τT = 25 fs determine the length of an XUV pulse and

the APT train, respectively. The APT is shifted relative to the IR pulse by a variable

delay ∆ ∈ [12T : 13T ]. An increasing delay ∆ > 0 corresponds to the APT moving

away from the beginning of the IR pulse towards its end. The amplitudes of the IR and

XUV fields were 0.002928 a.u. and 0.000119 a.u. respectively, which corresponds to the

field intensity of 3 × 1011 W/cm2 for the IR and 5 × 108 W/cm2 for the XUV field.

The APT (12) is visualized in Figure 1 (left) along with its spectral content (right)

for the the XUV frequency ωx = 32.5 eV chosen to match the 21st harmonic.
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Figure 1. (Color online) The electric field in the APT (red solid line) and the IR

pulse (blue dashed line). The XUV frequency ωx = 32.5 eV in Equation (12) is chosen

to match the 21st harmonic. The APT/IR delay ∆ = 12T .

To solve the TDSE, we follow the strategy tested in our previous works (Ivanov

2011, Ivanov and Kheifets 2013). The solution of the TDSE is presented as a partial

wave series

Ψ(r, t) =
Lmax
∑

l=0

fl(r, t)Yl0(θ, φ) (13)

with only zero momentum projections retained for the linearly polarized light. The

radial part of the TDSE is discretized on the grid with the stepsize δr = 0.05 a.u. in
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a box of the size Rmax = 400 a.u. The number of partial waves in Equation (13) was

limited to Lmax = 4 which ensured convergence in the velocity gauge calculations.

Substitution of the expansion (13) into the TDSE gives a system of coupled

equations for the radial functions flµ(r, t), describing evolution of the system in time.

To solve this system, we use the matrix iteration method Nurhuda and Faisal (1999).

The ionization amplitudes a(k) are obtained by projecting the solution of the TDSE at

the end of the laser pulse on the set of the ingoing scattering states of the target atom,

ψ
(−)
k (r) ∝

Lmax
∑

l=0

ile−iδlY ∗

lµ(k̂)Ylµ(r̂)Rkl(r) . (14)

Squaring of the amplitudes a(k) gives the photoelectron spectrum in a given direction

k̂ determined by the azimuthal angle θk. An example of such spectra in the ẑ direction

θk = 0 and θk = 60◦ is shown in Figure 2
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Figure 2. (Color online) The photoelectron spectra detected at the angles θk = 0◦

(left) and θk = 60◦ (right)

After collecting the photoelectron spectra in various directions, the SB intensity

oscillation with the variable time delay between the APT and IR fields is fitted with the

cosine function A +B cos[2ω(∆ − 3T ) + C] using the non-linear Marquardt-Levenberg

algorithm. The quality of the fit is very good with the errors in all three parameters not

exceeding 1%. Several examples of the fit for the SB20 at the photoelectron detection

angles θk = 0◦, 60◦ and 90◦ are shown in Figure 3.

The angular dependence of parameters A, B and C for the SB20 is shown in

Figure 4. To highlight the partial wave composition of the sideband signal, we plot on

the left panel of Figure 4 the squared spherical harmonic |Y20(k̂)|2 ∝ |P2(cos θk)|2. We

see that for small angles θk < 30◦, this component reflects the angular dependence of

the SB amplitude rather well but then, when approaching the ”magic angle”, there is a

noticeable deflection of the SB intensity which means that there is a strong competition

between the s- and d-waves and hence an angular dependence of the time delay. We also

note that the sideband intensity vanishes at θk = 90◦ due to destructive interference of

the s− and d−partial waves.

The corresponding data from the LOPT calculation are shown in the same figure.

The LOPT A-parameter is normalized to the same parameter in the TDSE calculation.
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Figure 3. (Color online) The SB20 intensity oscillation as a function of the time delay

∆/T − 3 for the photoelectron detection angles θk = 0◦, 60◦ and 90◦
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Figure 4. (Color online) Angular dependence of the fitting parameters A, B, and C

for the SB20. The TDSE and LOPT calculations are shown with the solid (red) line

and dashed (blue) line, respectively. The LOPT calculation is normalized to the TDSE

in the maximum of the A parameter. The insets show the variation of the A and B

parameters near 90◦.

The same cross-normalization is retained for the B-parameter. The C parameter is

plotted on the absolute scale. All the three parameters agree very well between the

TDSE and LOPT calculations.

The group delay of the ATP is zero in our model since all the harmonics have the

same phase of π/2 at their spectral maxima. Hence the parameter C can be converted

directly into the atomic time delay as τa = C/2ω according to Equation (1). Thus

obtained atomic time delay in the zero direction is given in Table 1 where we show the

atomic time delay τa in both calculations and its breakdown into the Wigner time delay

τW and the CC correction τcc. Again the agreement between the two calculations is

excellent.

3. Discussion

Within the 0 to 40◦ range, where the RABBITT signal is largest, the angular variation

of the time delay is rather small, typically of several attoseconds. In the experimentally

accessible range up to 60◦, only the SB18 displays a noticeable angular dependence of the

time delay. Larger angular variation of time delay is observed for larger detection angles
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E τa (as) τW (as) τcc (as)

SB eV TDSE LOPT RPAE [1] [2]

18 3.3 -92 -93 231 -324 -315

20 6.4 -66 -63 60 -123 -129

22 9.5 -50 -48 30 -78 -83

[1] Atomic delay minus Wigner delay

[2] Fit to exact hydrogen calculation by Richard Täıeb

(Dahlström, Guénot, Klünder, Gisselbrecht, Mauritsson, Huillier,

Maquet and Täıeb 2012)

Table 1. Atomic time delay τa and

its various components τW and τcc

in the ẑ direction for various side

bands.
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Figure 5. (Color online) Variation of the time delay relative to the fixed angle

∆τa = τa(θk) − τa(θ0) for the SB18 (left), SB 20 (center) and SB22 (right). The

TDSE results are shown with the dashed green line. The LOPT calculations shown

with the blue open circles.

where the intensity is falling off exponentially. Because the largest angular variation of

the time delay falls into the region of small SB intensity, it plays very little role in

angular averaged RABBITT experiments. Hence the helium atom can be safely used

as the reference atom.

The present non-perturbative TDSE calculation agrees very well the LOPT

calculation. An analogous TDSE calculation performed at IAPT = 5 × 108W/cm2

and IAPT = 5 × 108W/cm2 returned very similar results (Alvaro Jiminez Galán and

Luca Argenti 2014). This indicates that the XUV field intensity of the order of several

units of 108 W/cm2 is still in the linear perturbative regime. Hence the measured time

delay should not depend on the exact value of the field intensity. Because the pulse

parameters are noticeably different between the present calculation and that of Alvaro

Jiminez Galán and Luca Argenti (2014), we expect that their influence on the measured

time delay is insignificant.
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R 2012 Theory of attosecond delays in laser-assisted photoionization Chem. Phys. 414, 53–64
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R 2013 Theory of attosecond delays in laser-assisted photoionization Chem. Phys. 414, 53 – 64

Dahlström J M and Lindroth E 2014 Study of attosecond delays using perturbation diagrams and

exterior complex scaling J. Phys. B 47(12), 124012

Dahlström J M, Huillier A L and Maquet A 2012 Introduction to attosecond delays in photoionization

J. Phys. B 45(18), 183001

Fano U 1985 Propensity rules: An analytical approach Phys. Rev. A 32, 617–618
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