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Abstract— Existing research on privacy-preserving data pub-
lishing focuses on relational data: in this context, the objec-
tive is to enforce privacy-preserving paradigms, such as k-
anonymity and �-diversity, while minimizing the information loss
incurred in the anonymizing process (i.e. maximize data utility).
However, existing techniques adopt an indexing- or clustering-
based approach, and work well for fixed-schema data, with
low dimensionality. Nevertheless, certain applications require
privacy-preserving publishing of transaction data (or basket
data), which involves hundreds or even thousands of dimensions,
rendering existing methods unusable.

We propose a novel anonymization method for sparse high-
dimensional data. We employ a particular representation that
captures the correlation in the underlying data, and facilitates
the formation of anonymized groups with low information loss.
We propose an efficient anonymization algorithm based on this
representation. We show experimentally, using real-life datasets,
that our method clearly outperforms existing state-of-the-art in
terms of both data utility and computational overhead.

I. INTRODUCTION

The problem of privacy-preserving data publishing has re-
ceived a lot of attention in recent years. Most of existing work
is formulated in the following context: Several organizations,
such as hospitals, publish detailed data (also called microdata)
about individuals (e.g. medical records) for research or statisti-
cal purposes. However, sensitive personal information may be
disclosed in this process, due to the existence in the data of
quasi-identifying attributes, or simply quasi-identifiers (QID),
such as age, zipcode, etc. An attacker can join the QID with
external information, such as voting registration lists, to re-
identify individual records.

Existing privacy-preserving techniques focus on anonymiz-
ing personal data, which have a fixed schema with a small
number of dimensions. Through generalization or suppres-
sion, existing methods prevent attackers from re-identifying
individual records.

However, anonymization of personal data is not sufficient
in some applications. Consider, for instance, the example of
a large retail company which sells thousands of different
products, and has numerous daily purchase transactions. The
large amount of transactional data may contain customer
spending patterns and trends that are essential for marketing

and planning purposes. The company may wish to make the
data available to a third party which can process the data
and extract interesting patterns (e.g. perform data mining
tasks). Since the most likely purpose of the data is to infer
certain purchasing trends, characterized by correlations among
purchased products, the personal details of the customers are
not relevant, and are altogether suppressed. Instead, only the
contents of the shopping cart is published for each transaction.
Still, there may be particular purchasing habits that disclose
customer identity and expose sensitive customer information.

A. Motivation

Consider the example in Fig. 1a, which shows the con-
tents of five purchase transactions (the customer name is not
disclosed, we include it just for ease of presentation). The
sensitive products (items), which are considered to be a privacy
breach if associated to a certain individual, are shown shaded.
The rest of the items, which are non-sensitive, can be used
by an attacker to re-identify individual transactions, similarly
to a quasi-identifier, with the distinctive characteristic that the
number of potentially identifying items is very large in practice
(hence, the QID has very high dimensionality). Consider the
transaction of Claire, who has bought a pregnancy test. An
attacker (Eve) may easily learn about some of the items pur-
chased by Claire on a certain day, possibly from a conversation
with her, or from knowing some of her personal preferences.
For instance, Claire may treat her guests, including Eve, with
fresh cream and strawberries, and Eve can therefore infer that
Claire must have purchased these items recently. Joining this
information with the purchase transaction log, Eve can re-
identify Claire’s transaction, and find out that Claire may be
pregnant.

The privacy breach occurs because Eve was able to identify
with certainty the purchase transaction of Claire, and hence
associate her with the sensitive item pregnancy test. As we will
show later in Section V, we found that for a real-life dataset,
an attacker can re-identify the transaction of a particular
individual with 20% probability based on knowledge on two
purchased items. The probability increases to 40% with three
known items, and to over 90% with four items. To protect



Fig. 1. Purchase Transaction Log Example

Claire’s privacy, we must prevent the association of her QID
items to a particular sensitive item, with probability larger than
a certain threshold.

To address this privacy threat, one solution would be to
employ �-diversity [1]: a well-established paradigm in rela-
tional data privacy, which prevents sensitive attribute (i.e. item)
disclosure. �-diversity partitions the data into groups of records
(i.e. transactions in our case) such that � sensitive item values
are well-represented in each group. Currently, there exist two
broad categories of �-diversity techniques: generalization- and
permutation-based. Both categories assume fixed-schema data,
with a relatively low number of QID items. In our case, the
transactional data is represented as a table with one row for
each transaction t, and one column for each possible item.
For each transaction t, a certain column has value 1 if the
corresponding item belongs to t, and 0 otherwise.

An existing generalization method [2], [3], [4] would par-
tition the data into disjoint groups of transactions, such that
each group contains sufficient records with � distinct, well-
represented sensitive items. Then, all quasi-identifier values in
a group would be generalized to the entire group extent in the
QID space. If at least two transactions in a group have distinct
values in a certain column (i.e. one contains an item and the
other does not), then all information about that item in the
current group is lost. The QID used in this process includes
all possible items in the log. Due to the high-dimensionality of
the quasi-identifier, with the number of possible items in the
order of thousands, it is likely that any generalization method
would incur extremely high information loss, rendering the
data useless [5].

In contrast, a permutation method such as Anatomy [6]
would randomly pick groups of transactions with distinct

sensitive items, and permute these items among transactions,
to reduce the association probability between an individual
transaction and a particular sensitive item. However, the group
formation phase does not consider similarity among QID
values of transactions, hence correlations between QID and
sensitive items may be lost. This is undesirable, as it may
prevent the extraction of useful information from the data,
reducing its utility.

B. Contributions

We propose an anonymization technique which combines
the advantages of both generalization and permutation, and
also addresses the difficult challenge of high dimensionality.
First, we devise a novel representation of data which takes
advantage of its sparseness and preserves correlation. We
organize the data as a band matrix (Fig. 1b) by performing
permutations of rows and columns in the original table, such
that most non-zero entries are near the main diagonal. The
advantage of this representation is that neighboring rows have
high correlation, i.e. share a large number of common items.
Next, we propose an efficient heuristic to create good-quality
groups, which only needs to group together nearby transac-
tions, therefore reducing the search space of the solution. Our
group formation phase accounts for QID similarity, and builds
anonymized groups that preserve correlation.

In each anonymized group, sensitive items are separated
from the QID, and published in a separate summary table,
as shown in Fig. 1c. This publishing format is similar to
permutation methods, such as Anatomy. However, as opposed
to relational data, where all records have the same number
of sensitive attributes, a transaction can contain any number
of sensitive items. We elaborate this further in Section II. In
our example, Fig. 1c shows how two groups with high intra-
group correlation are formed: {Bob, David, Ellen}, all with
probability 1/3 of buying viagra, and {Andrea, Claire} with
probability of buying pregnancy test 1/2.

Intuitively, our approach addresses the concern of high data
dimensionality by anonymizing each group of transactions
according to a relevant quasi-identifier, consisting of items
that exist in the group. The underlying assumption is that
each transaction can be re-identified based on its items, which
are a small subset of the entire item space. This has the
potential of circumventing the dimensionality curse, by not
using a unique, high-dimensional QID item combination for all
groups. Although each transaction has a low number of items,
they are distributed in the entire item space, so the challenge
is how to effectively group together transactions with similar
QID. Our band matrix organization tackles this challenge by
placing transactions with similar QID in close proximity.

Our specific contributions are:

• we introduce a novel representation of transaction data
which takes advantage of data sparseness, preserves cor-
relations among items and arranges transactions with
similar QID in close proximity to each other

• we devise an efficient heuristic to create anonymized
groups with low information loss



• we evaluate experimentally our method with real dataset
workloads, and show that it clearly outperforms existing
state-of-the-art in both data utility and computational
overhead

The rest of the paper is organized as follows: in Section II,
we introduce fundamental concepts and definitions. In Section
III, we outline our proposed data organization technique,
and present effective methods to achieve it. In Section IV,
we present our heuristic to create anonymized groups of
transactions. In Section V, we experimentally evaluate our
technique. We survey related work in Section VI. We conclude
with directions for future work in Section VII.

II. BACKGROUND

Our objective is to anonymize data consisting of a set of
transactions T = {t1, t2, . . . , tn}, n = |T |. Each transaction
t ∈ T contains items from an item set I = {i1, i2, . . . , id},
d = |I|. We represent the data as a binary matrix A with n
rows and d columns, where

A[i][j] =
{

1, ij ∈ ti
0, ij /∈ ti

For instance, the matrix associated to the data in Fig. 1a is

A =




1 0 1 0 0 1
1 0 1 0 0 0
0 1 0 1 1 0
0 1 1 0 0 0
1 0 1 1 0 0




Among the set of items I , some are privacy-sensitive, such
as pregnancy test or viagra in our running example.

Definition 1 (Sensitive Items): The set S ∈ I of items that
represent a privacy threat if associated to a certain transaction,
constitutes the sensitive items set, S = {s1 . . . , sm}, m = |S|.

The rest of the items in I , such as wine, cream etc,
are not sensitive, in the sense that their association with a
certain individual is not detrimental. On the other hand, these
innocuous items can be used by an attacker to re-identify
individual transactions, as shown in our introductory section.
We denote these items by quasi-identifier (QID) items.

Definition 2 (Quasi-identifier Items): The set of items in I
that an attacker can gain knowledge on in order to re-identify
individual transactions constitute the set of quasi-identifiers.
Potentially, any non-sensitive item is a quasi-identifier, hence
Q = I�S = {q1, . . . , qd−m}.

We denote a transaction which contains items from S as
sensitive transaction, and one which contains only items from
Q as non-sensitive.

In previous work on privacy preservation of relational data,
the underlying assumption is that a single, fixed schema exists,
and all records abide the schema, therefore a single QID is
used for all records. However, such an approach is not suitable
for the problem at hand due to the high dimensionality of the
data. On the other hand, the data is sparse, and each transaction
can be re-identified based on a small number of items. For a
given transaction t ∈ T , we define the relevant quasi-identifier

Qt as the intersection of Q with the items in t. For instance,
in the example in Fig. 1, QBob = QDavid = {Wine,Meat}
and QClaire = {Cream, Strawberries}. In Section III, we
will show how to re-organize the data effectively, such that
transactions with similar relevant QID are in close proximity
to each other.

A. Privacy Requirements

Two main privacy-preserving paradigms have been estab-
lished for relational data: k-anonymity [7], which prevents
identification of individual records in the data, and �-diversity
[1], which prevents the association of an individual record
with a sensitive attribute value. �-diversity is a more suitable
paradigm, since it is the association of individuals with sen-
sitive information that ultimately threats privacy. Similarly, in
the case of transactional data, the privacy threat is defined as
the association of an individual transaction to a sensitive item.

Nevertheless, the privacy preservation of transactional data
is slightly different from its relational database counterpart,
where all records have the same number (usually one) of
sensitive attributes. In our case, some transactions may not
contain any sensitive item, hence are completely innocuous,
while others may have multiple sensitive items.

Definition 3 (Privacy): A privacy-preserving transforma-
tion of transaction set T has privacy degree p if the probability
of associating any transaction t ∈ T with a particular sensitive
item s ∈ S does not exceed 1/p.
This is similar to saying that the transaction of an individual
can be associated to a certain sensitive item with probability
at most 1/p among p − 1 other transactions.

Note that, the association of an individual with an item in
Q does not represent a privacy breach: there is no detrimental
information in the fact that Bob, for instance, has purchased
meat. For this particular reason, the items in Q can be
released directly, and we can employ a permutation-based
approach, similar to [6], for privacy preservation. This has
a considerable impact in reducing information loss, compared
to generalization-based approaches.

We enforce the privacy requirement by partitioning the set
T into disjoint sets of transactions, which we refer to as
anonymized groups. For each group G, we publish the exact
QID items, together with a summary of the frequencies of sen-
sitive items contained in G. In our running example (Fig. 1c)
the second group contains two transactions, corresponding
to Andrea and Claire, and one occurrence for sensitive item
pregnancy test. The probability of associating any transaction
in G to that item is 1/2. In general, let fG

1 . . . fG
m be the

number of occurrences for sensitive items s1 . . . sm in group
G. Then group G offers privacy degree

pG = min
i=1...m

|G|/fi

The privacy degree of an entire partitioning P of T is

pP = min
G∈P

pG

We further discuss aspects related to the utility of the data
transformed in accordance to given privacy degree p.



B. Utility Requirements

It is well-understood [8] that publishing privacy-sensitive
data is caught between the conflicting requirements of privacy
and utility. In order to preserve privacy of transactional data,
a certain amount of information loss is inherent. Nevertheless,
the data should maintain a reasonable degree of utility.

Transactional data is mainly utilized to derive certain pat-
terns, such as consumer purchasing habits. Returning to the
running example, we can observe there are two sorts of
patterns: those that involve items from Q alone, and those
that involve at least one item in S. For the former category,
thanks to the permutation-based publishing method we adopt,
the information derived from the anonymized data is identical
to that from the original data. For instance, we can derive that
half the customers that bought strawberries have also bought
cream.

On the other hand, when sensitive items are involved,
the information derived from the anonymized data is only
an estimation of the real one. In our running example, for
instance, by inspecting the second anonymized group (Fig. 1c)
we can infer with 50% probability that whoever buys cream
and strawberries also buys a pregnancy test, whereas from the
original data we can infer this with 100% probability. Patterns
can be expressed as queries of the form

SELECT COUNT (∗) FROM T

WHERE (SensitiveItem s is present) (1)

AND (q1 = val1) ∧ . . . ∧ (qr = valr)

The process of estimating the result of the query for each
anonymized group G, is referred to as data reconstruction.
Denote the number of occurrences of item s in G by a, and the
number of transactions that match the QID selection predicate
(last line of (1)) by b. Then the estimated result of the query,
assuming each permutation of sensitive items to each QID
combination in G is equally likely, is

a · b/|G| (2)

Note that, if all transactions in G have identical QID, then
either b = |G| or b = 0, and the reconstruction error is 0.
Ideally, to minimize reconstruction error, we need to minimize
|G|−b, hence include in each group transactions with similar,
and when possible identical, QID.

A meaningful way of modeling such queries that involve
sensitive items is to use a probability distribution function (pdf)
of an item s ∈ S over the space defined by a number of r
items in Q. In the running example, assume that a data analyst
wishes to find the correlation between pregnancy test and
quasi-identifier items cream and meat. Fig. 2 represents this
scenario: every cell corresponds to a combination of the QID
items, for instance (1, 0) corresponds to transactions which
contain cream but not meat, whereas (1, 1) to transactions
with both cream and meat. From the original data, we can
infer that all customers who bought cream but not meat have
also bought a pregnancy test. However, from the anonymized

Fig. 2. Data Reconstruction

data, we can only say that half of such customers have bought
a pregnancy test.

If the query to be evaluated includes r QID items, the total
number of cells is 2r, corresponding to all combinations when
an item is or is not present in a transaction (this is the same
as having a “group-by” query on items q1 . . . qr). The actual
pdf value of sensitive item s for a cell C is

ActsC =
Occurrences of s in C

Total Occurrences of s in T

The estimated pdf EstsC is computed similarly, except that
the numerator consists of eq.(2) summed over all groups that
intersect cell C. We determine the utility of the anonymized
data as the distance between the real and estimated pdf over
all cells, measured by KL-divergence, already established [8]
as a meaningful metric to evaluate the amount of information
loss incurred by data anonymization:

KL Divergence(Act,Est) =
∑

∀cell C

ActsC log
ActsC
EstsC

If Act is identical to Est, KL Divergence = 0.
With both privacy and utility issues clarified, we give our

Problem Statement. Given a set of transactions T containing
items from I , and a subset S ⊂ I of sensitive items, determine
a partitioning P of T into anonymized groups with privacy
degree at least p, such that the reconstruction error, measured
by KL-divergence, is minimized.

III. REDUCTION TO BAND MATRIX REPRESENTATION

As discussed in Section II-B, in order to minimize the
reconstruction error, it is necessary to group together trans-
actions with similar relevant QID. We organize the data (i.e.
matrix A) as a band matrix, so that consecutive rows are
likely to share a large number of common items. Band matrix
organization has been acknowledged as a beneficial mode to
represent sparse data in various scientific applications [9], [10].
A band matrix has the general form shown in Fig. 3, where
all elements of the matrix are 0, except for the main diagonal
d0, a number of U upper diagonals (d1 . . . dU ), and L lower
diagonals (d−1 . . . d−L). U represents the upper bandwidth



Fig. 3. Band Matrix Representation

Reverse Cuthill-McKee (RCM) Algorithm
Input: graph G(V,E) with adjacency matrix A
1. pick peripheral vertex v ∈ V (compute pseudo-diameter)
2. R = {v}
3. PrevLevel = R
4. while |R| < |V | do
5. CrtLevel = ∅
6. for i = 1 to |PrevLevel| do
7. Tmp = {v ∈ V |v /∈ R ∧ dist(PrevLevel[i], v) = 1}
8. sort Tmp in increasing order of vertex degree
9. append Tmp to CrtLevel
10. endfor
11. append CrtLevel to R
12. PrevLevel = CrtLevel
13. endwhile
14. output R in reverse order

Fig. 4. Reverse Cuthill-McKee Algorithm

of the matrix and L the lower bandwidth. Our objective is
to minimize the total bandwidth B = U + L + 1. A simple
Gaussian elimination algorithm can be employed to obtain an
upper or lower triangular matrix, where L = 0 or U = 0,
respectively. However, finding an optimal band matrix, i.e.
with minimum B, is NP-complete [11].

The Reverse Cuthill-McKee Algorithm. A general matrix
can be transformed into a band matrix by performing permu-
tations of rows and columns. Multiple heuristics have been
proposed to obtain band matrices with low bandwidth. The
most prominent is the Reverse Cuthill-McKee (RCM) algo-
rithm, a variation of the Cuthill-McKee algorithm [12]. RCM
works for square, symmetric matrices. Given sparse matrix A,
it builds graph G = (V,E), where V contains one vertex for
each matrix row, and there is an edge from vertex vi to vertex
vj for every non-zero element A[i][j]. If A is symmetric,
then G is undirected. RCM is based on the observation that
a permutation of rows of A corresponds to a re-labeling of
vertices for G. Given a re-labeling (permutation) δ of V (i.e.
a bijective application δ : {1 . . . |V |} → {1 . . . |V |}) , then
the bandwidth of G (hence of matrix A with rows permuted
according to δ) is

B(G) = max{|δ(v1) − δ(v2)| : (v1, v2) ∈ E}

Unsymmetric Matrix Bandwidth Reduction
Input: unsymmetric matrix A
1. compute symmetric matrix B = A × AT

2. δ = Reverse Cuthill-McKee(B)
3. A′ = permutation δ applied to A
4. output A′

Fig. 5. Unsymmetric Matrix Bandwidth Reduction

To determine a permutation that reduces B, RCM performs a
breadth-first (BFS) traversal starting from an initially chosen
root node. All nodes (i.e. rows) at the same distance from
the root in the traversal constitute a level set. At each step,
the vertices in the same level sharing the same parent are
sorted increasingly according to vertex degree. By reversing
the obtained order, we find the permutation that needs to be
applied to the rows of matrix A. The selection of the root
node is essential for the effectiveness of the transformation;
usually, the root is determined by finding a pseudo-diameter
of the graph (through an iterative process linear in the number
of vertices) and choosing one of the ends. Fig. 4 shows the
RCM algorithm pseudocode.

RCM is currently implemented in matrix routine libraries,
such as MATLAB. The computational complexity of the RCM
algorithm is O(|V |D log D), where D is the maximum degree
of any vertex in the adjacency list. More recently, a linear
time implementation to the size of adjacency list E has been
proposed in [13].

Bandwidth Reduction for Unsymmetric Matrices. RCM
only addresses the case of symmetric matrices. A recent work
[10] investigates several approaches to reduce the bandwidth
of unsymmetric matrices, based on the RCM algorithm. Two
methods can be employed to achieve this, and, given unsym-
metric matrix A, they consist of applying RCM to one of the
following symmetric matrices: (i) A + AT and (ii) A × AT .
The obtained permutation δ is then applied to A.

Method (i) is suitable mainly in cases where A is almost
symmetric. This method is rather inexpensive, but the obtained
result may not have good quality, especially if the original
matrix is far from symmetric. Method (ii) can be applied to
any arbitrary matrix. Computing A×AT incurs an additional
computational overhead, but the quality of the solution is much
better (i.e. the resulting bandwidth is considerably smaller).
Furthermore, note that we are not exactly performing a full
matrix multiplication, since we are only interested in non-zero
entries, therefore the overhead may not be substantial. For
these reasons, we only consider this method further. Fig. 5
shows the pseudocode of the band reduction algorithm for
unsymmetric matrices.

Evaluation of RCM. We exemplify the effectiveness of
the unsymmetric RCM algorithm using a synthetic workload,
which allows us to control the variation in data correlation,
and highlight its impact on the RCM technique. We use the
IBM Quest Market-Basket Synthetic Data Generator1 to obtain

1http://www.almaden.ibm.com/cs/projects/



datasets, and the MatView2 tool to visualize sparse matrices.
To facilitate visualization, we consider square matrices of 1000
transactions and 1000 items, with an average of 20 items per
transaction. We consider three degrees of data correlation (i.e.
correlation among patterns of items): 0.1, 0.5 and 0.9 (low,
medium and high correlation respectively). Fig. 6 shows the
original matrices on the left-hand side, and the transformed
matrices, using unsymmetric RCM, on the right-hand side.
For the original matrices, we can observe the varying degree
of data correlation: when correlation is high (Fig. 6c left), data
tends to cluster into vertical lines, corresponding to items that
appear in many transactions. Still, the items are distributed in
the entire item space among consecutive transactions, so the
representation does not properly capture the correlation.

On the right-hand side, we can observe how RCM captures
data correlation, arranging transactions with similar items in
close proximity. The larger the correlation, the more effec-
tive the bandwidth reduction is. Therefore, grouping together
neighboring transactions into anonymized groups is likely to
preserve the correlation between items, and hence increase
data utility.

For the problem we study, the number of transactions n is
likely to be larger than the number of items d. In this case, we
can easily obtain an n×n square matrix by padding it with 0
columns (i.e. “fake” items). The algorithm remains unchanged,
and the padding does not affect its complexity.

IV. ANONYMIZED GROUP FORMATION

Once the data is transformed according to RCM, the next
step is to create anonymized groups of transactions. To fulfill
the privacy requirement, each sensitive transaction needs to be
grouped with non-sensitive transactions, or sensitive ones with
different sensitive items. We propose CAHD (Correlation-
aware Anonymization of High-dimensional Data), a greedy
heuristic that capitalizes on the data correlation, and groups
together transactions that are close-by in the band matrix
representation.

Consider the example in Fig. 7, where non-sensitive transac-
tions are shown light-shaded, and sensitive ones dark-shaded.
CAHD scans transaction set T in row order, finds the first
sensitive transaction in the sequence, and attempts to form an
anonymizing group for it.

We say that two transactions are conflicting if they have
at least one common sensitive item. In our example, t0 and
t1 are conflicting, and are represented with similar hatching.
t2 is not in conflict with any of t0 or t1. Assume that we
want to anonymize t0 with privacy degree p. In that case, we
need to group it with at least p− 1 different transactions. We
choose to adopt a “one-occurrence-per-group” heuristic that
allows only one occurrence of each sensitive item in a group.
We will show shortly that, if a solution to the anonymization
problem with privacy degree p exists, then such an heuristic
will always find a solution.

2http://www.csm.ornl.gov/ kohl/MatView/

Fig. 6. Effectiveness of RCM Algorithm

CAHD works as follows: given sensitive transaction t0, a
candidate list (CL) is formed, with the αp transactions that
precede, respectively follow t0, and are not in conflict with t0
or with each other (conflicting transactions are “skipped” when
building CL). α ∈ N is a system parameter which restricts
the range of the search. Intuitively, the larger α, the better
the chance to include in CL transactions with similar items,
but at increased execution time. Nevertheless, as we show in
Section V, even a low α can yield good results, thanks to the
effective band matrix organization. Note that t1 is excluded
from CL(t0), and its predecessor (which is non-sensitive,
hence not in conflict with t0) is included. Then, out of the 2αp
transactions in CL(t0), the p−1 of them that have the largest
number of QID items in common with t0 are chosen to form an
anonymized group. The intuition is that, the more transactions
share the same QID, the smaller the reconstruction error is (see
eq. (2)). All selected transactions are then removed from T ,
and the process continues with the next sensitive transaction
in the order. Fig. 8 gives the pseudocode of CAHD.

Since we use a greedy heuristic, we must ensure that our
method finds a solution, i.e. at any time, forming a group
will not yield a remaining set of transactions that can not be



Fig. 7. Group Formation Heuristic

CAHD Group Formation Heuristic
Input: transaction set T , privacy degree p
1. initialize histogram H for each sensitive item s ∈ S
2. remaining = |T |
3. while (∃t ∈ T |t is sensitive) do
4. t = next sensitive transaction in T
5. CL(t) = non-conflicting αp pred. and αp succ. of t
6. G = {t} ∪ p − 1 trans. in CL(t) with closest QID to t
7. update H for each sensitive item in G
8. if (�s|H[s] · p > remaining)
9. remaining = remaining − |G|
10. else
11. roll back G and continue
12. end while
13. output remaining transactions as a single group

Fig. 8. CAHD Pseudocode

anonymized (for instance, if all remaining transactions share
one common sensitive item). For this reason, we maintain
a histogram with the number of remaining occurrences for
each sensitive item. The histogram is initialized when the
data is read (line 1), and is updated every time a new group
is formed (line 7). Upon validating a group, we check (line
8) that the remaining set of transactions satisfies the privacy
requirement. If not, the current group is not validated, and
a new group formation is attempted starting from the next
sensitive transaction in the sequence.

The algorithm stops when there are no more ungrouped
sensitive transactions remaining, or when no new groups can
be formed. If there remain un-grouped transactions, these are
published as a single group. It is guaranteed, due to our group
validation check, that this group satisfies the degree of privacy
p. Furthermore, if all remaining transactions are non-sensitive,
there is no information loss incurred if they are published as
a single group, regardless of their number, since we publish
the QID directly.

To implement efficiently the assembly of CL (i.e. find αp
non-conflicting transactions) we can employ a linked-list data
representation, where each transaction (list entry) points to its
predecessor and successor with a particular sensitive item. The
space requirement is O(m) (where m = |S|, i.e. constant) per
transaction, and the computational complexity of the algorithm
is O(pn).

TABLE I

DATASET CHARACTERISTICS

Transactions Items Max. length Avg. length
BMS1 59,602 497 267 2.5
BMS2 77,512 3,340 161 5.0

TABLE II

RE-IDENTIFICATION PROBABILITY

Number of Known QID Items
Dataset 00100 00200 00300 00400
BMS1 0.3% 9.5% 24.3% 50.0%
BMS2 0.8% 18.8% 41.6% 91.1%

V. EXPERIMENTAL EVALUATION

To evaluate our anonymization technique, we use a work-
load consisting of two representative real-world datasets, intro-
duced in [14]. BMS-WebView-1 (BMS1) and BMS-WebView-2
(BMS2) represent several months of transaction logs corre-
sponding to two on-line retailers3. Their characteristics are
presented in Table I.

First, we reinforce our motivation in Section I, and we mea-
sure the probability of re-identifying individual transactions
based on a number of known QID items. Table II shows the
identification probability based on a randomly chosen set of
QID items, with cardinality varying between 1 and 4. For the
sparser BMS2 dataset, the re-identification probability with
four known items is over 90%.

In the rest of the section, we evaluate the effectiveness
(i.e. utility) and efficiency (execution time) of CAHD. As
a competitor to our method, we consider a hybrid approach
which combines the strengths of the current state-of-the-art:
Mondrian [4] and Anatomy [6]. Mondrian is a generalization
method: it recursively divides the dataset, based on QID
values, until the privacy requirement does not allow any more
splits. Mondrian preserves locality in the QID space, but
because it generalizes the QID values within each group, it
may incur considerable information loss. On the other hand,
Anatomy is a permutation approach, which publishes directly
QID values. This is beneficial for utility; however, in the
process of group formation, Anatomy does not account for
QID proximity, therefore it may not preserve well correla-
tions. We compare against a combined method we denote by
PermMondrian (PM): similar to Mondrian, PM partitions the
dataset according to QID proximity. Nevertheless, it publishes
exact QID values, instead of generalizing them. Furthermore,
we use an enhanced split heuristic, compared to the original
one in [4], which considered only group cardinality. To allow
PM to obtain fine-grained groups that enhance utility, we take
into account the distribution of sensitive items in the resulting
groups upon each split: we favor splits with a balanced
distribution of sensitive items, since this increases the success
probability of subsequent split attempts. Otherwise, many
transactions with common sensitive items could be grouped

3These datasets have also been used as benchmarks in KDD-Cup 2000



 0

 1

 2

 3

 4  6  8  10  12  14  16  18  20

K
L-

D
iv

er
ge

nc
e

p

CAHD m=10 CAHD m=20 PM m=10 PM m=20

(a) BMS1

 0

 0.1

 0.2

 0.3

 0.4

 4  6  8  10  12  14  16  18  20

K
L-

D
iv

er
ge

nc
e

p

(b) BMS2

Fig. 9. Reconstruction Error vs p (r = 4)

together, increasing the frequency of a single item in a group,
hence disallowing further splits.

We vary the degree of privacy p in the range 4 − 20.
We randomly choose a number of sensitive items m (i.e.
cardinality of S) between 5 and 20, out of the entire set of
items I . We consider group-by queries as discussed in Section
II-B, and we vary the number r of QID items in the group-
by clause between 2 and 8. For each (p,m, r) triplet setting,
we generate 100 group-by queries by randomly selecting s
and q1 . . . qr, and we determine the average reconstruction
error (i.e. KL-divergence, with ideal value 0). Unless otherwise
specified, we set parameter α = 3 (see Section IV).

First, we fix r = 4 and vary the privacy degree p. Fig. 9
shows that CAHD outperforms PM for both datasets, by up to
a factor of 2. As expected, a higher privacy degree p increases
the reconstruction error, i.e. reduces data utility.

In the next experiment, we determine the utility variation
when the number of sensitive items m is varied. Fig. 10 shows
that, again, CAHD is superior to PM, for both p = 10 and
p = 20 settings. In fact, the utility given by CAHD for the
considerably more restrictive p = 20 setting, is superior to
that of PM for p = 10.

Next, we vary parameter r, for a fixed m = 10. Again, as
shown in Fig. 11, we outperform PM in all cases. Note that, the
larger the value of r, the larger the difference becomes between
the two methods. In practice, this translates into the fact that
PM is unable to preserve correlations among patterns of larger
length. Also, for r ≥ 3, CAHD with the more restrictive p =
20 setting outperforms even PM with p = 10.

Fig. 12 shows the execution time of CAHD and PM for
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Fig. 10. Reconstruction Error vs m (r = 4)

m = 20 and varying p, which is the most influential factor on
runtime performance. CAHD is time-efficient, with completion
time of at most 5 and 15sec (not including RCM execution
time) for the BMS1 and BMS2 datasets, respectively. A more
substantial overhead is incurred by RCM execution, which
requires 158 and respectively 457sec for the two datasets.
However, this overhead is only incurred for transforming the
input once, regardless of p values. PM only manages execution
times in the range of 300 and 1500sec for the two datasets,
respectively. Since PM is a top-down partitioning method,
it shows a slight decrease in computational overhead as p
increases.

Finally, we investigate the effect of varying parameter α,
which determines the search range of CAHD in the process of
assembling candidate lists. Fig. 13 shows how data utility and
execution time evolve with α for the BMS2 dataset, m = 10
(similar trends were observed for BMS1, we omit those results
for brevity): there is a slight decrease in information loss as
α increases (i.e. when the search range for candidate lists
expands). Nevertheless, the gain is not considerable, which
proves once again that the band matrix representation is able
to re-arrange highly-correlated transactions in close proximity.
On the other hand, execution time increases linearly with α.
We conclude that α values of 2 or 3 are a good compromise
in practice.

VI. RELATED WORK

Privacy-preserving data publishing has received consider-
able attention in recent years, especially in the context of
relational data. Ref. [15] employs random perturbation to
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prevent re-identification of records, by adding noise to the
data. Ref. [16] showed that an attacker could filter the random
noise, and hence breach data privacy, unless the noise is
correlated with the data. However, randomly perturbed data
is not “truthful” [17], in the sense that it contains records
which do not exist in the original data. Furthermore, random
perturbation may expose privacy of outliers when an attacker
has access to external knowledge.

Published data about individuals (microdata) may contain
quasi-identifier attributes (QID), such as age, or zipcode,
which may be joined with public databases (e.g. voting
registration lists) to re-identify individual records. To address
this threat, Sweeney [7] introduced k-anonymity, a privacy-
preserving paradigm which requires each record to be indis-
tinguishable among at least k − 1 other records with respect
to the set of QID attributes. Records with identical QID
values form an equivalence class, or anonymized group. k-
anonymity can be achieved through generalization, which
maps detailed attribute values to value ranges, and suppres-
sion, which removes certain attribute values or records from
the microdata. The process of data anonymization is called
recoding, and it inadvertently results in information loss.
Several privacy-preserving techniques have been proposed,
which attempt to minimize information loss, i.e. maximize
utility of the data. Ref. [2], [3] proposed optimal k-anonymity
solutions for single-dimensional recoding, which performs
value mapping independently for each attribute. Ref. [4] intro-
duced Mondrian, an heuristic solution for multi-dimensional
recoding, which performs mapping for the Cartesian product
of multiple attributes. Mondrian outperforms optimal single-
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dimensional solutions, due to its increased flexibility in form-
ing anonymized groups. Methods discussed so far perform
global recoding, where a particular detailed value is always
mapped to the same generalized value. In contrast, local
recoding allows distinct mappings across different anonymized
groups. Clustering-based local recoding methods are proposed
in [18], [19].

k-anonymity prevents re-identification of individual records,
but it is vulnerable to homogeneity attacks, where many (or all)
of the records in an anonymized group share the same sensitive
attribute (SA) value. �-diversity [1] addresses this vulnerabil-
ity, and creates anonymized groups in which at least � SA
values are “well-represented”. Any k-anonymity technique can
be adapted to account for SA value diversity, by changing
the group validation condition. Nevertheless, k-anonymity
techniques use generalization or suppression, and may result
in high information loss, especially for high-dimensional QID.
Ref. [20] proposes a framework for k-anonymous and �-
diverse transformations based on dimensionality mapping,
which outperforms other generalization techniques4. However,
dimensionality mapping is only effective for low-dimensional
QID, hence the method is not suitable for transactional data.

Anatomy [6] introduced a novel approach to achieve �-
diversity: instead of generalizing QID values, it decouples
the SA from its associated QID, and permutes the SA values
among records. Since QID are published directly, the infor-
mation loss is reduced. A similar approach is taken in [22].
However, neither of these methods account for correlation

4A similar dimensionality-mapping technique has been used for spatial
anonymity in [21]
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among QID and SA when forming anonymized groups. We
also adopt a permutation approach for transactional data,
but we create anonymized groups in a QID-centric fashion,
therefore preserving correlation and increasing data utility.
Furthermore, our novel data representation helps us tackle the
difficult challenge of high-dimensional QID.

Privacy-preservation of transactional data has been acknowl-
edged as an important problem in the data mining literature.
However, existing works on the topic [23], [24] focus on
publishing patterns, and not data. The patterns (or rules),
are mined directly from the original data, and the resulting
set of rules is sanitized to prevent privacy breaches. Such an
approach has two limitations: (i) the usability of the data is
constrained by the rules that the owner decides to disclose and
(ii) it is assumed that the data owner has the resources and
expertise to perform advanced data mining tasks, which may
not be the case in practice. Publishing the data, instead of
patterns, gives the recipient flexibility in choosing what rules
to mine, and also allows for other types of data analysis, such
as clustering. Furthermore, the processing cost does not have
to be bared by the data owner.

VII. CONCLUSIONS

In this paper, we propose CAHD, an effective anonymiza-
tion technique for sparse, high-dimensional data. CAHD relies
on a novel data representation, in the form of a band matrix,
which captures the correlation within the data. CAHD achieves
superior data utility compared to existing state-of-the-art, and
it also yields reduced computational overhead.

The necessity of anonymizing transactional data has been
recently emphasized with the release of the “Netflix Prize”

data5, containing movie ratings of 500, 000 subscribers. A
recent study [25] shows that an attacker can re-identify
80% of the subscribers based on knowledge about 6 reviewed
movies. In future work, we plan to address the problem
of anonymization of high-dimensional data for non-binary
databases. Another direction is to employ dimensionality-
reduction techniques for more effective anonymization.
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