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ON THE ANTI-SELF-DUALITY OF THE YANG-MILLS
CONNECTION OVER HIGHER DIMENSIONAL

KAEHLERIAN MANIFOLD
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1. Introduction.

Let $M$ be a Kaehler manifold of complex dimension $n\geqq 2$ , with a Kaehler
form $\Phi$ , where $\Phi$ is locally expressed by $\Phi=\sqrt{-1}\sum g_{\alpha\overline{\beta}}dz^{\alpha}\wedge d\overline{z}^{\beta}$ and a Kaehler
metric $g=\sum g_{\alpha}\beta^{dz^{\alpha}\otimes d\overline{z}^{\beta}}$ . A connection $A$ on a principal fibre bundle $P$ over
$M$ with the structure group $G$ is said to be Yang-Mills when it gives a critical
point of the Yang-Mills functional. It satisfies the Yang-Mills equation $d_{A}*F_{A}=0$

for the curvature $F_{A}$ . Thus with the Bianchi identity $d_{A}F_{A}=0$ Yang-Mills

connection is a connection whose curvature is harmonic with respect to the
covariant derivative $d_{A}$ .

When $M$ has complex dimension 2, $i$ . $e.$ , Kaehler surface, the Hodge $*$

operator determines a decomposition

$\Lambda^{2}T^{*}M=\Lambda_{+}^{2}\oplus\Lambda^{\underline{2}}$

of the space of 2-forms, where $\Lambda_{\pm}^{2}$ denotes the eigenspace subbundle of $*$ of
eigenvalue $\pm 1$ . Thus $*^{2}=id$ implies that the adjoint bundle $\mathfrak{g}_{P}=P\times Ad\mathfrak{g}$ valued
2-form $F_{A}=dA+(1/2)[A\wedge A]$ splits into $F^{+}=(1/2)(F_{A}+*F_{A})$ and $F^{-}=$

$(1/2)(F_{A}-*F_{A})$ , which are called the self-dual part and the anti-self-dual part of
$F_{A}$ respectively, where $\mathfrak{g}$ denotes the Lie algebra of $G$ . Thus a connection $A$

on a principal fibre bundle $P$ over a Kaehler surface $M$ being Yang-Mills is
equivalent to $d_{A}F^{+}=0$ or $d_{A}F^{-}=0$ .

But for a higher dimensional Kaehler manifold these formulae give us no
meaning. Thus instead of using Hodge $*$ operator let us introduce another
operator $\#$ , which is defined in section 2 such as $\#=*-1_{\circ}L^{(n-2)}/(n-2)$ !, where $L$

means the multiplication by $\Phi$ . Then a connection $A$ on a principal fibre bundle
$P$ over higher dimensional Kaehler manifold $M$ being Yang-Mills is equivalent
to $d_{A}\# F_{A}=0$ (cf. Proposition 3.1 (ii)).

Also let us define an operator $\#\sim$ such that $\sim\#$ is equal to $\#$ on $F^{2.0}+F^{0.2}+$
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$F_{0}^{1.1}$ , and $\#=\#/(n-1)\sim$ on $ F^{0}\otimes\Phi$ , where $F^{p.q}$ is the $(p, q)$-component and $F_{0}^{1.1}$

means the primitive $(1, 1)$ form and $F^{0}$ is O-form. Then we can consider the
self-duality and anti-self-duality of $F_{A}$ in the sense of $\# F^{+}=F^{+}\sim$ and $\# F^{-}=-F^{-}\sim$ ,
where the self-dual part is $ F^{+}=F^{2.0}+F^{0.2}+F^{0}\otimes\Phi$ and the anti-self-dual part $F^{-}$

is a form of type $(1, 1)$ orthogonal to Kaehler form $\Phi$ , that is, $F_{0}^{1.1}$ .
Then our anti-self-dual connection minimizes the Yang-Mills functional, and

then is a Yang-Mills connection (cf. Theorem 4.2).

Now we can state main theorems which give the curvature form conditions
for a Yang-Mills connection to be anti-self-dual, and which generalize some
results of M. Itoh for Kaehler surfaces [3].

THEOREM A. Let $M$ be a complex n-dimensional compact Kaehler manifold
with the sum of any two distinct eigenvalues of the Ricci tensor is positive. Let
$A$ be an irreducible Yang-Mills connection. If $[F^{2.0}\wedge F^{0.2}]=0$ , then $A$ is anti-
self-dual.

REMARK. M. Itoh [3] obtained the above result for a compact Kaehler
surface with positive scalar curvature.

With another commutative curvature condition we also have the following.

THEOREM B. Let $M$ be a compact Kaehler manifold with the same condition
as in Theorem A. If $[F^{2.0}\wedge F^{1.1}]=0$ and $[F^{0}\wedge F^{2.0}]=0$ , then $A$ is anti-self-dual.

The author would like to express his hearty thanks to Professor Mitsuhiro
Itoh for his valuable suggestion and encouragement to develop this paper and
to the referee for his kind comments.

2. Self-duality and anti-self-duality.

Let $M$ be an n-dimensional compact complex manifold with a Kaehler
metric $g$ . Let $\Phi$ be its Kaehler form. When $M$ is a compact Kaehler surface,

the Hodge $*operator$ is involutive. Thus naturally we can consider self-dual
2 form (or anti-self-dual 2 form). But in a higher dimensional manifold it gives
us no meaning. However H. J. Kim [4] defined the involutive operator $\#$ as
follows.

We denote by $A^{\prime}=\Sigma A^{p}$ the exterior algebra of all smooth real valued
forms on $M$. Now let us define the Lipschitz operator $L$ by $L\phi=\phi\wedge\Phi,$ $\phi\in A^{\prime}$

and the operator $\Lambda$ : $A^{\prime}\rightarrow A^{\prime}$ which is the adjoint of $L$ . Then it is well known
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that $*L$ , and $\Lambda$ satisfy the following relations

(2.1) $\Lambda=L^{*}=*^{-1_{\circ}}L\circ*$ , $(\Lambda L-L\Lambda)|_{A^{k}}=n-k$ , $\Lambda(\Phi)=n$ .

(2.2) $*^{2}|_{A^{k}}=(-1)^{k_{(}n-k)}$ .
(2.3) $*(\Phi^{k}/k!)=\Phi^{n-k}/(n-k)$ !, $k=0,1,$ $\cdots n$ .

We denote also by $A^{p.q}$ the space of $C^{\infty_{-}}(p, q)$ forms on $M$ and by $A_{0}^{p.q}$ the
space of primitive $(p, q)$ forms, that is,

$A_{0}^{p.q}=$ { $\alpha\in A^{p.q}|$ A $\alpha=0$ }.
Then

LEMMA 2.1 (R. $0$ . Well [7]). Let $k=p+q$ .
(i) if $k\geqq n$ , then $A_{0}^{p.q}=0$ .
(ii) if $k\geqq n$ , then $A_{0}^{p,q}=\{\alpha\in A^{p,q}|L^{n- k+1}\alpha=0\}$

$=\{\alpha\in A^{p.q}|C_{p,q}*L^{(n- k)}\alpha/(n-k)!=\alpha\}$ ,

where $C_{p,q}=(-1)^{pq}(\sqrt{-1})^{p^{2}-q^{2}}$ .

The space $A^{2}$ of 2-forms is decomposed as
$A^{2}=A^{2.0}+A^{0.2}+A_{0}^{1.1}+A_{\Phi}^{1.1}$

where $A_{\Phi}^{1.1}$ denotes the space of $(1, 1)$ type propotional to $\Phi$ . And let us now
consider the operator $\#$ which is defined by H. J. Kim:

$L^{(n-2)}/(n-2)$ ! $*-1=*$
$\#:A^{2}-\rightarrow A^{2(n-I)}\rightarrow A^{2}$ , $i$ . $e.,$ $\#=*-1\circ L^{(n-2)}/(n-2)$ !

Then we have the following from the definition of $\#$ and Lemma 2.1.

LEMMA 2.2. (i) $A_{0}^{1.1}=\{\alpha\in A^{2}|\#\alpha=-\alpha\}j$

(ii) $A^{2.0}+A^{0.2}=\{\alpha\in A^{2}|\#\alpha=\alpha\}$ ,

(iii) $A_{\Phi}^{1.1}=\{\alpha\subset-A^{2}|\#\alpha=(n-1)\alpha\}$ .

Now we define an operator

$\#\sim=\left\{\begin{array}{l}\# onA^{2.0}\perp A^{0.2}+A_{0}^{1.1}\\\#/(n-1) onA_{\Phi\prime}^{11}.\end{array}\right.$

Then we get $\#^{2}=id\sim$ which implies that $A^{2}$ is decomposed into the self-dual
part $A_{+}^{2}=A^{2.0}+A^{0,2}+A_{\Phi}^{1,1}$ and the anti-self-dual part $A_{0}^{1.1}$ . Hence the curvature
form $F_{A}$ also can be splitted into the self-dual part $ F^{+}=F^{2.0}+F^{0,2}+F^{0}\otimes\Phi$ and
the anti-self-dual part $F^{-}=F_{0}^{1.1},$ $i$ . $e.,$

$\# F^{+}=F^{+}\sim$ , and $\# F^{-}=-F^{-}\sim$ .
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3. Anti-self-duality of Yang-Mills connection.

Let $P$ be a principal fibre bundle over a compact Kaehler manifold $M$ with
a compact semi-simple Lie group $G$ . Let $A$ be a connection on $P$. Then we
get:

PROPOSITION 3.1. The following conditions are equivalent.
(i) $A$ is Yang-Mills $i$ . $e.,$ $d_{A}*F_{A}=0$ ,

(ii) $d_{A}\# F_{A}=0$ ,

(iii) $2\partial_{A}F^{2.0}+n\partial_{A}(F^{0}\otimes\Phi)=0$ ,
(iv) $\partial_{A}^{*}F^{2.0}=-ni\partial_{A}F^{0}/2(n-1)$ .

PROOF.
$(i)\Leftrightarrow(ii)$ It is well known that a connection $A$ being Yang-Mills if and only

if the curvature satisfies Yang-Mills equation $d_{A}*F_{A}=0$ . With $\delta_{A}\Phi^{n-2}=0$ the
Yang-Mills equation $d_{A}*F_{A}=0$ implies

$*d_{A}\# F_{A}=\delta_{A}(F_{A}\wedge\Phi^{n- 2})/(n-2)!=0$ ,

that is, $d_{A}\# F_{A}=0$ , where $\delta_{A}$ means the formal adjoint of $d_{A}$ such that $\delta_{A}=$

$-*d_{A}*$ .
Conversely $*d_{A}\# F_{A}=0$ gives $(\delta_{A}F_{A})\wedge\Phi^{n- 2}=0$ because $\delta_{A}\Phi^{n- 2}=0$ . Since the

nondegeneracy of $\Phi^{n-2}$ is invariant by taking an orthonormal dual basis, we
can assert that $(\delta_{A}F_{A})\wedge\Phi^{n-2}=0$ implies $\delta_{A}F_{A}=0$ , that is, $d_{A}*F_{A}=0$ . From this
fact a connection $A$ being Yang-Mills is equivalent to $d_{A}\# F_{A}=0$ .

(ii)e(iii) From Lemma 2.2 it follows that

$\# F_{A}=F^{2.0}+F^{0.2}-F_{0}^{1.1}+(n-1)(F^{0}\otimes\Phi)$ .

Then by the assumption (ii) we have that

$0=d_{A}\# F_{A}=(\partial_{A}+\partial_{A})(F^{2.0}-\vdash F^{0.2}-F_{0^{\prime}}^{I1}+(n-1)(F^{0}\otimes\Phi))$ ,

from which it follows that

(3.1) $\partial_{A}F^{0.2}-\partial_{A}F_{0}^{1.1}+(n-1)\partial_{A}(F^{0}\otimes\Phi)=0$ ,

(3.2) $\partial_{A}F^{2.0}-\partial_{A}F_{0}^{1.1}+(n-1)\partial_{A}(F^{0}\otimes\Phi)=0$ .
On the other hand, the Bianchi identity gives that

(3.3) $\partial_{A}F^{0.2}+\partial_{A}(F^{0}\otimes\Phi)+\partial_{A}F_{0}^{1.1}=0$ , (resp. $\partial_{A}F^{2.0}+\partial_{A}(F^{0}\otimes\Phi)+\partial_{A}F_{0}^{1.1}=0$).

Summing up (3.1) and (3.3), we obtain $2\partial_{A}F^{0.2}+n\partial_{A}(F^{0}\otimes\Phi)=0$ .
Conversely, it suffices to show that (3.1) holds since (3.1) and its conjugate
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part (3.2) is equivalent to $d_{A}\# F_{A}=0$ . Thus the left side of (3.1) becomes
$-(\partial_{A}F^{0.2}+\partial_{A}F_{0}^{1.1}+\partial_{A}(F^{0}\otimes\Phi))$ because of the assumption (iii). Thus it vanishes
from the Bianchi identity (3.3).

(iii)e(iv) The invariance of $F^{2.0}$ by $\#$ gives that

(3.4) $\frac{1}{(n-2)!}(\partial_{A}^{*}F^{2.0})\wedge\Phi^{n- 2}=-*\partial_{A}F^{2.0}$

Since $\#(F^{0}\otimes\Phi)=(n-1)(F^{0}\otimes\Phi)$ , we have that

(3.5) $*\partial_{A}(F^{0}\otimes\Phi)=\frac{1}{(n-1)!}*\partial_{A}*(F^{0}\otimes\Phi^{n- 1})=-\frac{1}{(n-1)!}(\partial_{A}^{*}F^{0}\otimes\Phi)\wedge\Phi^{n-2}$ ,

where we have used the definition of $\#$ and $\partial_{A}^{*}=-*\partial_{A}*$ .
Now we suppose the assumption (iii). Then (iii) implies $-*\partial_{A}F^{2.0}=$

$(n/2)*\partial_{A}(F^{0}\otimes\Phi)$ , from which, and using the invariance of the nondegeneracy

of $\Phi^{n-2}$ to (3.4) and (3.5), it follows that

$\partial_{A}^{*}F^{2.0}=-\frac{n}{2(n-1)}\partial_{A}^{*}(F^{0}\otimes\Phi)=-\frac{n}{2(n-1)}i\partial_{A}F^{0}$

Conversely, the condition (iv) gives $-*\overline{\partial}_{A}F^{2.0}=(n/2)*\partial_{A}(F^{0}\otimes\Phi)$ by virtue of
(3.4) and (3.5). Thus the condition (iii) holds immediately.

Note. M. Itoh obtained the above results for the case $n=2$ in the paper [3].

DEFINITION. A connection $A$ is said to be irreducible when it admits no
nontrivial covariantly constant Lie algebra valued O-form.

By using the above proposition we get the following.

COROLLARY 3.2. Let $A$ be an irreducible Yang-Mills connection and its cur-
vature is (1.1) type, then it is anti-self-dual.

PROOF. Anti-self-dual Yang-Mills connection is characterized by the self-
dual part $ F^{+}=F^{2.0}+F^{0.2}+F^{0}\otimes\Phi$ vanishes. Since $F$ is of type $(1, 1)$ , $F^{2.0}$ and
$F^{0.2}$ vanishes. By Proposition 3.1 (iii) $\partial_{A}(F^{0}\otimes\Phi)=0$ (or $\partial_{A}(F^{0}\otimes\Phi)=0$), which
implies $F^{0}\otimes\Phi=0$ by the irreducibility of $A$ . Thus the self-dual part $F^{+}$

vanishes.

Using Proposition 3.1, we also obtain the following Lemma

LEMMA 3.3. Let $A$ be a Yang-Mills connection. Then $\coprod_{A}F^{2.0}=$

$\frac{n}{2(n-1)}i[F^{0}\wedge F^{2.0}]$ , where $\coprod_{A}$ means $\partial_{A}\partial_{A}^{*}+\partial_{A}^{*}\partial_{A}$ .
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PROOF. By Proposition 3.1 (iv) we have $\square _{A}F^{20}=-i\partial_{A}\partial_{A}F^{0}\underline{n}$ . From
$2(n-1)$

this and the formula $d_{A}d_{A}F^{0}=[F_{A}\wedge F^{0}]$ we obtain the above fact.

Applying Ricci formula for the $\mathfrak{g}_{P}^{C}$-valued $(2, 0)$ form $\Psi$ , then we obtain ([12])

(3.6) $(\square _{A}\Psi)_{\mu\nu}=-\Sigma g^{\overline{\sigma}\tau}\nabla_{\overline{\sigma}}\nabla_{\tau}\Psi_{\mu\nu}-\Sigma g^{\overline{\sigma}\tau}[F_{\mu\overline{\sigma}}, \Psi_{\tau\nu}]+\Sigma g^{\overline{\sigma}\tau}[F_{\nu\overline{\sigma}}, \Psi_{\tau\mu}]$

$+\Sigma(R_{\mu^{\epsilon}}\Psi_{\epsilon\nu}-R_{\nu^{e}}\Psi_{\epsilon\mu})$ .
With this formula and Lemma 3.3 we will show here Theorem A in the

introduction.

PROOF OF THEOREM A. For the component $F^{2.0}$ of type $(2, 0)$ the above
formula (3.6) becomes

(3.7) $(\coprod_{A}F^{2.0})_{\mu\nu}=(\nabla_{A}^{*}\nabla_{A}F^{2.0})_{\mu\nu}-\Sigma g^{\overline{\sigma}\tau}[F_{\mu\overline{\sigma}}, F_{\tau\nu}]+\Sigma g^{\overline{\sigma}\tau}[F_{\nu\overline{\sigma}}, F_{\tau\mu}]+(\lambda_{\mu}+\lambda_{\nu})F_{\mu\nu}$ ,

where $\lambda_{\mu}$ means the eigenvalues of the Ricci operator $R$ .
Computing the inner product of $\coprod_{A}F^{2.0}$ and $F^{2.0}$ , then under the assumption

$[F^{2.0}\wedge F^{0.2}]=0$ we obtain the following integral formula

$\int_{M}(|\nabla_{A}F^{2.0}|^{2}+\Sigma_{\mu<\nu}(\lambda_{\mu}+\lambda_{\nu})|F_{\mu\nu^{0}}^{2}|^{2})dv=0$ .

Here we used Lemma 3.3 and the fact that $\langle\langle i[F^{0}\wedge F^{2,0}], F^{2,0}\rangle\rangle dv=\langle i[F^{0}\wedge F^{2,0}]$

$\wedge*F^{0.2}\rangle=\langle F^{0}, i[F^{2.0}\wedge F^{0.2}]\rangle=0$ . Thus $F^{2.0}$ vanishes because of $\Sigma_{\mu<\nu}(\lambda_{\mu}+\lambda_{\nu})>0$ .
So is $F^{0.2}$ . Hence Proposition 3.1 (iii) and the irreducibility of Yang-Mills con-
nection implies $F^{0}\otimes\Phi=0$ . This means $F=F_{0}^{1.1}$ . That is, $A$ is anti-self-dual.

Since $F^{1.1}=F^{0}\otimes\Phi+F_{0}^{1,1}$ , where $ F^{0}=(1/n)\langle F_{\dot{\Phi}}^{11}, \Phi\rangle$ , Lemma 3.3 and the
formula (3.7) give that

$(\nabla_{A}^{*}\nabla_{A}F^{2.0})_{\mu\nu}-\frac{5n-4}{2(n-1)}i[F^{0}, F_{\mu\nu}]+(\lambda_{\mu}+\lambda_{\nu})F_{\mu\nu}+\Sigma_{\sigma}([(F_{0})_{\mu\overline{\sigma}}, F_{\sigma\mu}]$

$-[(F_{0})_{\mu\overline{\sigma}}, F_{\sigma\nu}])=0$ .

Applying this formula, by the similar way as in Theorem A we have Theorem B.

DEFINITION. A connection on a complex n-dimensional Kaehler manifold
is said to be with harmonic curvature if $F^{2.0}$ is harmonic, $i$ . $e.,$ $\partial_{A}^{*}F^{2.0}=0$ .

Then a Yang-Mills connection with harmonic curvature by Proposition 3.1
(iv) satisfies that $F^{0}=0$ and $F^{1.1}=F_{0}^{1.1}$ . From this fact and Theorem $B$ we can
also assert that
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COROLLARY 3.4. Let $M$ be a compact Kaehler manifold with the same as-
sumption as in Theorem A. Let $A$ be an irreducible Yang-Mills connection with
harmonic curvature. If $[F_{0}^{1.1}\wedge F^{2.0}]=0$ , then $A$ is anti-self-dual.

4. Another characterization of anti-self-dual connection.

Let $P$ be a principal fibre bundle over compact Kaehler manifold $M$ with
structure group $G=SU(r)$ . And let $A$ be a connection in $P$. Then it is well
known that Yang-Mills functional $\mathfrak{Y}\mathfrak{M}(A)$ is given by

$\mathfrak{Y}\mathfrak{M}(A)=\frac{1}{2}\int_{M}(-Tr)(F\wedge*F)=\frac{1}{2}\int_{M}|F|^{2}\frac{\Phi^{n}}{n!}$ .

where $\Phi^{n}/n$ ! is the volume form of compact Kaehler manifold $M$.
Now we assert the following formula.

LEMMA 4.1.

$-TrF\wedge*F=TrF\bigwedge_{\backslash }F\wedge\frac{\Phi^{n-2}}{(n-2)!}+2|F^{2,0}+F^{0.2}|^{2}vol_{\Phi}+n|F^{0}\otimes\Phi|^{2}vol_{\Phi}$ ,

where $vol_{\Phi}=\Phi^{n}/n!$ .

PROOF. Since the curvature is decomposed as $F=F^{2.0}+F^{0.2}+F^{0}\otimes\Phi+F_{0}^{1.1}$ ,

Lemma 1.5 yields $\# F=*(F\wedge\frac{\Phi^{n- 2}}{(n-2)!})=F^{2.0}+F^{0.2}+(n-1)F^{0}\otimes\Phi-F_{0}^{1.1}$ . Then we

get

$*(F^{2.0}+F^{0.2})=(F^{2.0}+F^{0.2})\wedge\frac{\Phi^{n- 2}}{(n-2)!}$ , $(n-1)*(F^{0}\otimes\Phi)=(F^{0}\otimes\Phi)\wedge\frac{\Phi^{n- 2}}{(n-2)!}$ ,

$*F_{0}^{1.1}=-F_{0}^{1.1}\wedge\frac{\Phi^{n- 2}}{(n-2)!}$ .

Thus it follows that

$*F=(F^{2.0}+F^{0.2})\wedge\frac{\Phi^{n-2}}{(n-2)!}+F^{0}\otimes\frac{\Phi^{n-1}}{(n-1)!}-F_{0}^{1.1}$ A $\frac{\Phi^{n-2}}{(n-2)!}$

Then by a direct calculation we have

(4.1) $F\wedge*F=(F^{2.0}+F^{0.2})\wedge(F^{2.0}+F^{0.2})\wedge\frac{\Phi^{n-2}}{(n-2)!}+\frac{1}{(n-1)!}F^{0}\otimes F^{0}\Phi^{n}$

$-F_{0}^{1.1}\wedge F_{0}^{1,1}\wedge\frac{\Phi^{n- 2}}{(n-2)!}$ ,

(4.2) $TrF\wedge F\wedge\frac{\Phi^{n- 2}}{(n-2)!}=Tr(F^{2.0}+F^{0.2})\wedge(F^{2.0}+F^{0.2})\wedge\frac{\Phi^{n- 2}}{(n-2)!}$

$+TrF^{0}\otimes F^{0}\cdot\frac{\Phi^{n}}{(n-2)!}+TrF_{0}^{1}$ ‘ A $F_{0}^{1.1}\wedge\frac{\Phi^{n-2}}{(n-2)!}$ .
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Thus, combining (4.1) and (4.2), we obtain Lemma 4.1.

From the above Lemma 4.1 we obtain

THOREM 4.2. Let $M$ be a compact Kaehler manifold. Let $A$ be a connection
in the principal fibre bundle $P$ over $M$ with structure group $G=SU(r)$ . Then

$\mathfrak{Y}\mathfrak{M}(A)\geqq\frac{1}{2}\int_{M}C(P)\wedge\frac{\Phi^{n- 2}}{(n-2)!}$ , where $C(P)=TrF\wedge F=8\pi^{2}c_{2}(E),$ $E=P\times SU(r)C^{r}$ .

The equality holds if and only if $A$ is anti-self-dual.

REMARK. H. J. Kim showed that the Yang-Mills functional is bounded be-
low by a topological constant and this minimum is achieved if and only if the
curvature is Einstein ([4]).

References

[1] Atiyah, M.F., Hitchin, N.J. and Singer, I.M., Self-duality in four dimensional
Riemannian geometry, Proc. R. Soc. Lond. A. 362 (1978), 425-461.

[2] Itoh, M., On the moduli space of anti-self-dual Yang-Mills connection on Kaehler
surfaces, Pub. R. I. M. S. Kyoto 19 (1983), 15-32.

[3] Itoh, M., Yang-Mills connection over a complex surface and harmonic curvature,
Compositio Mathematica 62 (1987), 95-106.

[4] Kim, H.J., Curvatures and holomorphic vector bundle, P.H. D. thesis in Berkeley.
[5] Kobayashi, S., Differential geometry of complex vector bundles, Iwanami Shoten

and Princeton University Press (1987).
[6] Kodaira, K. and Morrow, J., Complex manifolds, Holt. Reinhalt and Winston (1971).
[7] Well, R.O. Jr., Differential Analysis on complex manifolds, Prentice-Hall, INC.

(1973).

Institute of Mathematics and Department of Mathematics
University of Tsukuba Andong University
Tsukuba-shi, 305, Japan Andong, 760-749, Korea


	ON THE ANTI-SELF-DUALITY ...
	1. Introduction.
	THEOREM A. ...
	THEOREM B. ...

	2. Self-duality and anti-self-duality.
	3. Anti-self-duality of ...
	4. Another characterization ...
	References


