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Abstract: In manufacturing engineering, it is common to use both symmetrical and asymmetrical

factorial designs along with regression techniques to model technological response variables, since

the in-advance prediction of their behavior is of great importance to determine the levels of variation

that lead to optimal response values to be obtained. For this purpose, regression techniques based on

the response surface method combined with a desirability function for multi-objective optimization

are commonly employed, since it is usual to find manufacturing processes that require simultaneous

optimization of several variables, which exhibit in many cases an opposite behavior. However, these

regression models are sometimes not accurate enough to predict the behavior of these response

variables, especially when they have significant non-linearities. To deal with this drawback, soft

computing techniques are very effective in overcoming the limitations of conventional regression

models. This present study is focused on the employment of a symmetrical design of experiments

along with a new desirability function, which is proposed in this study, and with soft computing

techniques based on fuzzy logic. It will be shown that more accurate results than those obtained from

regression techniques are obtained. Moreover, this new desirability function is analyzed in this study.

Keywords: FIS; ANFIS; DOE; regression; desirability function; modeling

1. Introduction

In manufacturing engineering, it is necessary to model the behavior of response vari-
ables as a function of several input variables in order to be able to select the most suitable
operating conditions in advance. However, this selection of optimal operating conditions
sometimes conflicts with the desired levels of variation for the response variables, since
the levels of the independent variables that can optimize a given output (for example,
the surface roughness or the wear of a tool) can conflict with those that optimize another
different one (for example, the material removal rate). Therefore, the optimal selection
of operating conditions is not an easy task and it is necessary to use statistical tools for
modeling of the response variables versus variations in the process parameters. This can
sometimes lead to a high number of experiments being carried out, and therefore it is
common practice to employ design of experiments techniques that allow, with a relatively
small number of experiments, some very useful information on the behavior of the vari-
ables under study to be obtained. In this way, response surface method (RSM), artificial
neuronal networks (ANN), fuzzy inference systems (FIS) [1,2], and adaptive neural fuzzy
inference system (ANFIS) [3] have been widely employed. With regard to fuzzy inference
systems, Takagi-Sugeno [1] and Mamdani [2] are the most commonly employed. Several
studies can be found in the literature dealing with the application of these aforementioned
techniques [4–6].

Fuzzy inference systems (FIS) have been employed in several scientific fields, for
example, dealing with modeling of material removal in abrasive belt grinding processes,
as shown in Pandiyan et al. [7], classification of defects, as shown in Versaci [8] and in
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Burrascano et al. [9], to improve talc pellet manufacturing processes [10] and to predict the
compressive strength of cement [11]. Further examples can be found in [12–14], among
many others. In order to use the above-mentioned models, it is quite common to employ
symmetric designs, in which all the factors have the same levels of variation as well as
asymmetric ones, where not all the factors have the same levels of variation [15,16]. In
manufacturing engineering 2k, 3k, and 4k symmetric designs are commonly used, because a
large amount of information is available from a relatively small number of experiments. As
a consequence of the technological interest of modeling output variables in manufacturing
processes, a large number of models have been developed in recent years based both
on conventional regression techniques and on the use of soft computing, both through
fuzzy inference systems and through neural networks, generally by using supervised
learning and feed forward networks. It should be underlined that when regression models
have high values in the coefficients of determination, they may approach the behavior of
response variables with relatively high accuracy. However, when the response variables
exhibit high non-linearities, conventional regression models are not capable of modeling
the behavior of output variables adequately and hence some other types of techniques
need to be employed.

Since it was first proposed by Harrington [17], and later modified by the classification
function of Derringer and Suich [18], the methodology of multiple optimization based on
the use of a desirability function, has been used in a large number of research studies for
the simultaneous optimization of response variables. In this present study a symmetrical 43

factorial design of experiments combined with an ANFIS and a new desirability function is
employed. The proposed function to transform the output responses is of an arctangent
type, which is analyzed in this present study. The ANFIS along with this new desirability
function will be used to determine the values that can approach the optimum value of the
independent variables that simultaneously optimize the response outputs.

As can be observed in Figure 1, three independent variables x1, x2, and x3 are varied in
order to show the values that optimize a desirability function by using a symmetric design
of experiments and an ANFIS, following the methodology shown in this present study.

Figure 1. Desirability function results using a symmetrical design of experiments (DOE)

and an ANFIS.

However, as previously mentioned if regression models are not capable of adequately
predicting the actual behavior of output variables some other techniques should be used.
Moreover, results obtained in this present study will be compared with those obtained with
the transformation proposed by Derringer and Suich [18], which is commonly employed
by several research studies found in the literature, as will be shown in the Section 3.

2. State of the Art

The research study of Harrington [17] showed how to optimize several variables
simultaneously by using a desirability function combined with an exponential classifi-
cation function. Subsequently, Derringer and Suich [18] proposed a transformation for
the optimization of multiple variables simultaneously using a desirability function and
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assuming that the estimated values are a continuous function of the dependent variables
and therefore the desirability function, which they obtain from the geometric mean of the
transformed variables in the interval [0,1], is a continuous function of the independent
variables [18]. As is stated in the research study of Del Castillo et al. [19], the desirabil-
ity function approach consists in using response surface methods to fit polynomials for
each response variable in order to have a single optimization problem. In their study
Del Castillo et al. [19] present modified desirability functions that are differentiable every-
where. This is important because it is quite common for the obtained overall desirability
functions obtained from RSM to be non-differentiable, especially when there are several
responses and design variables [20]. In the study of He and Zhu [20], the authors propose
a hybrid approach, which combines the genetic algorithm with the pattern search method,
to deal with this point. In Costa el al. [21] a review on different desirability methods is
carried out. Some other authors have proposed several transformation functions. For
example, an exponential transformation is suggested by Kim and Lin [22]. In another
study, Kros and Mastrangello [23] study the relationship between response types when
they are mixed (the larger the better, the smaller the better, and nominal the best). On the
other hand, Das et al. [24] employ a genetic algorithm-based optimization to determine
the tensile properties of a high-strength low-alloy steel, where multi-layer perceptron
ANNs are developed for the output responses and then a desirability function based on
employing a sigmoidal function is obtained [24] and Zong et al. [25] combine variations
due to noise factors and controllable factors. In another study developed by He et al. [26],
a robust desirability function approach to simultaneously optimize multiple responses is
proposed. Some other studies are those of Ribardo and Allen [27] that propose a method,
which is expressed as a function of the mean and standard deviation of the associated
criteria or quality characteristics; that of Wu and Chyu [28] which present an approach
to optimizing correlated multiple quality characteristics with asymmetric loss function,
that of Ortiz et al. [29] which proposes a multiple-response solution technique using a
genetic algorithm in conjunction with an unconstrained desirability function and that of
Pasandideh and Niaki [30] which models a multiple variable optimization problem by
using the desirability function approach and then they employ four genetic algorithm
methods to solve the problem.

On the other hand, Das [31] make use of the property of desirability function in
the neural network architecture and evaluate their performances. Three combinations of
transfer/desirability functions are analyzed in this study [31]. Lee and Kim [32] proposed
a desirability function defined as the average of the conventional desirability values based
on the probability distribution of the predicted response variable and in He et al. [33] a
robust methodology for response surface analysis, when there are several responses, is
studied. Moreover, in their study the authors propose a measure of robustness for second
order response surface models [33]. In Lee et al. [34], a desirability function method to
simultaneously optimize both the mean and variability of multiple responses is proposed.

Although the desirability function is a very interesting method to simultaneously
optimize several variables, the transformation into the desirability space should take the
preferences of the decision maker into account in order to obtain the optimal parameters as
stated by Fuller and Scherer [35].

Derringer and Suich [18] transformation has been widely employed over the last few
years. For example, the use of models based on the use of design of experiments along
with the response surface methodology using the Derringer and Suich methodology has
been employed in several research studies as shown in Vera et al. [36]. In the research
study of Padilla et al. [37] the authors carry out an analysis on the optimization of a spark
ignition engine. A 33 design of experiments (DOE) is conducted where the independent
variables are the revolutions, the load produced by a dynamometer, and an electrolyte
concentration and the response variables are torque, hydrocarbon emissions, and power.
In another study, Hur et al. [38] present the results of surface response optimization using
the desirability function with a central composite design to determine the design variables
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to control the distribution of flow rate in a cooling system employed in an electric vehicle.
On the other hand, Saleem et al. [39] consider the deflection angle, input power, and
micromirror temperature rise from the ambient as response variables to be simultaneously
optimized by using response surface models and a desirability function. The application of
design of experiments, response surface methodology and a desirability function is also
discussed by Akçay and Anagün [40] to model and optimize a manufacturing process. The
influence of cutting speed, feed rate, and depth of cut on the machinability characteristics
of Si optical lenses is analyzed by Jumare et al. [41]. These authors develop predictive
models in order to obtain minimum arithmetical mean roughness and tool wear as well as
maximum material removal rate using the desirability function approach [41].

Other studies such as that of Chahal et al. [42] show that RSM along with a desirability
function is effective in order to optimize surface roughness in end milling; Zhao et al. [43]
analyze the effect of welding parameters on the mechanical properties of welding bead
and welding heat input using a DOE and a desirability function and Kribes et al. [44] study
the effect of machining conditions on the obtained surface roughness in hard turning by
using response surface methodology and a desirability function. Some other studies which
employ the response surface methodology and a desirability function are Ahmad et al. [45]
that optimizes the recycling conditions of aluminum (AA6061) chips, Qazi et al. [46] that
analyzes the machinability of AA5005H34, and Osman et al. [47] that studies continuous
multi-pass friction stir welding to clad dissimilar materials. Cutting speed, feed rate, and
depth of cut are used as design parameters along with RSM and desirability function in
Laghari et al. [48] for modeling cutting forces in the machining of a composite material;
Pradhan et al. [49] analyze surface roughness in machining of Al/SiCp metal matrix
composite; optimization of friction surface deposition of stainless steel over medium
carbon steel is shown in Sahoo et al. [50] and in Du et al. [51] a multi-objective optimization
is carried out in the dry machining of a 304 stainless steel, among many others.

The number of studies that exist in the literature related to the combined application of
soft computing techniques and desirability functions is much lower. Among these studies,
it is worth mentioning that of Mostafaei [52] that employs ANFIS models for prediction
of biodiesel fuels cetane number using a desirability function, which employs a linear
transformation and a comparison of the developed models is performed by statistical
criteria. Another study is that of Labidi et al. [53] where ANN, RSM, and desirability
function are used to determine optimal machining conditions in the turning of a hardened
steel. On the other hand, Sengottuvel et al. [54] study the effects of various electrical
discharge machining input parameters as well as the influence of different tool geometry
on material removal rate, tool wear rate, and surface roughness. These authors also
develop a fuzzy inference system which is validated with experimental results. Another
study worth mentioning is that of Singh et al. [55] where the application of Taguchi’s
robust design coupled with fuzzy based desirability function approach for optimizing
multiple bead geometry parameters of submerged arc weldment is developed. Response
surface methodology and the desirability function results were also employed for modeling
Ti-6Al-4V milling under different lubrication conditions in the study of Paschoalinoto
et al. [56]. These authors also compared the statistical results with those obtained from
using supervised artificial neural networks and they found that both artificial neural
network and the experimental design predict similar results [56]. Tank et al. [57] use a
desirability function for each of the surface roughness parameters analyzed in the turning
of glass fiber reinforced with plastic and then employ a fuzzy inference system to determine
values of a characteristic index which then are used to find the signal to noise ratio. In the
research study of Salmasnia et al. [58] an approach for optimization of correlated multi-
response variables is analyzed. In their study an ANFIS is used as a tool for predicting
system behavior. On the other hand, the study of Gajera et al. [59] deals with the application
of response surface methodology with fuzzy-based desirability function approach in order
to optimize multiple process parameters in direct metal laser sintering, among others.



Symmetry 2021, 13, 897 5 of 29

3. Methodology

As shown in the review of the state of the art, statistical tools based on the design
of experiments and the response surface method have been widely used to model the
behavior of different response variables and it has also been shown that the use of a
desirability function based on RSM and the model proposed by Derringer and Suich [18]
have been commonly used in order to simultaneously optimize response variables, since
it is usual to find manufacturing processes that require simultaneous optimization of
several variables, which exhibit, in many cases, an opposite behavior. In manufacturing
processes, is it quite common for certain technological variables to have a more regular
response behavior and, therefore, they can be adequately modeled by methodologies such
as RSM, and, on the other hand, there also exist some other technological variables that
cannot be adequately modeled using conventional regression. These regression models
are sometimes not accurate enough to predict the behavior of these response variables,
especially when they have significant non-linearities.

In order to address these problems, in this present research study, the use of a new
desirability function which is based on the inverse tangent (arctangent) is first proposed to
classify the output responses of a design of experiments, so that for each of the response
functions f1, . . . , fn a transformed function that lies between [0,1] will be obtained from
Equation (1).

yj
trans f ormed−−−−−−→ ytj = c1 + c2 ∗ tan−1

(

aj ∗ yj + bj

)

(1)

where c1 and c2 are first adjusted so that the arctangent function lies between 0 and 1. This
is easily obtained from simultaneously solving for c1 and c2 the equations [1 = c1 + c2

π
2 ,

0 = c1 − c2
π
2 ] which yields to

[

c1 = 1
2 , c2 = 1

π

]

. Therefore, the transformation to be used

in this present study is given by Equation (2).

yj
trans f ormed−−−−−−→ ytj =

1

2
+

1

π
∗ tan−1

(

aj ∗ yj + bj

)

(2)

The values of constants aj and bj will be selected depending on the desired level for
each variable (maximize, minimize, or lying within a range of values).

In the event that the desired variation of an output response (yj) is its maximum value,
the constants of Equation (2) will be given by Equations (3) and (4).

aj =
1

Mj − cMj

(

HMj
− tan

(

π(tcMj
− 1

2

))

(3)

bj =
−1

Mj − cMj

(

HMj
∗ cMj

− Mj ∗ tan

(

π(tcMj
− 1

2

))

(4)

where cMj
for the case of a variable whose preferred level is the maximum (Mj) is defined

from Equation (5), where kcMj
is a constant which can be used to set cMj

at a specific point

(default value kcMj
= 1) and tcMj

is defined to fix the value of the arctangent at this point.

Moreover, the value of the constant HMj
is selected, for simplicity, to be a multiple of the

difference between the maximum
(

Mj

)

and the minimum (mj). Then HMj
is set by using

the constant kHMj
, as Equation (6) shows (however, this value could be selected in whatever

different way) and it is selected in order to set the transition of the output variable (ytj) to
the level of “1”. As previously mentioned, Mj and mj are the maximum and the minimum
levels of each variable. In this present study these values will be selected from the DOE,
however they could be whatever.

cMj
=

mj + kcMj
∗ Mj

1 + kcMj

(5)
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HMj
= kHMj

∗
(

Mj − mj

)

(6)

Analogously, if the preferred level of an output variable
(

yj

)

is the minimum, the aj,
bj and cj constants as well as Hmj

are obtained from Equations (7)–(10) respectively, so that
if the output variable is close to its minimum value (mj), then the transformed function
(ytj) will approach to “1” and, on the contrary, if the value of this variable approach the
maximum, in this case non-desirable value, then the transformed output will correspond
to a value close to “0”, where the sub-index “t” in the transformed variable (ytj) refers to
an output variable transformed by using the arctangent function, as previously shown.

aj =
1

mj − cmj

(

Hmj
− tan

(

π(tcmj
− 1

2

))

(7)

bj =
−1

mj − cmj

(

Hmj
∗ cmj

− mj ∗ tan

(

π(tcmj
− 1

2

))

(8)

cmj
=

kcmj
∗ mj + Mj

kcmj
+ 1

(9)

Hmj
= kHmj

∗
(

Mj − mj

)

(10)

As previously mentioned, (cMj
and cmj

), are defined from Equation (5), when the
preferred level of a variable is its maximum, and from Equation (9), when the preferred
level is its minimum. Moreover, a weighted average can be used to set (cMj

or cmj
) at a

specific point by using (kcMj
or kcmj

) constants, respectively. The influence of these constants

is shown in Figure 2. The H parameter
(

HMj
or Hmj

)

is used to select the transition to

the “1” value of the transformed variable. For a given value of kHMj
or kHmj

, the values of

tcMj
or tcMj

will be selected within the interval given by Equation (11) and by Equation (12),

respectively. The influence of tcMj
and tcmj

is shown in Figure 3.

0 ≤ tcMj
<

1

2
+

1

π
∗ tan−1

(

kHMj
∗
(

Mj − mj

)

)

(11)

0 ≤ tcmj
<

1

2
+

1

π
∗ tan−1

(

kHmj
∗
(

Mj − mj

)

)

(12)

Figure 2. Influence of (kcM and kcm ) constants over the arctangent transformation (a) to maximize an

output response and (b) to minimize an output response.
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Figure 3. Influence of (tcM and tcm ) constants of the arctangent transformation (a) to

maximize an output response, and (b) to minimize an output response.

Mj and mj are the maximum and the minimum levels of each variable, as previously
mentioned. If values of tcMj

and tcmj
are selected within the range given by

1

2
+

1

π
∗ tan−1

(

kHMj
∗
(

Mj − mj

)

)

≤
{

tcMj
or tcmj

}

≤ 1

The shape of the function will be inverted. It could have been possible to select values
higher than 1 but it makes no sense for the present parameter because its variation is desired

to be within the interval [0, 1]. Finally, the influence of the H-parameter
(

HMj
or Hmj

)

is

shown in Figure 4. If a given value of the t-parameter (tcMj
or tcMj

) is given, then the value

of kHMj
or kHmj

, which will define the value of HMj
or Hmj

, respectively should be selected

within the interval given by Equation (13) and by Equation (14), respectively.

kHMj
>

1

Mj − mj
tan

(

π

(

tcMj
− 1

2

))

(13)

kHmj
>

1

Mj − mj
tan

(

π

(

tcmj
− 1

2

))

(14)

Figure 4. Influence of (kHM
and kHm

) constants of the arctangent transformation (a) to maximize an

output response, and (b) to minimize an output response.

Therefore, the shape of the arctangent transformation can be adjusted by varying
(HMj

, Hmj
), (tcMj

, tcmj
) and (kHMj

, kHmj
) parameters whose influence is respectively shown

in Figures 2a, 3a, and 4a, in the case where the preferred level of a response variable is the
maximum, and in Figures 2b, 3b, and 4c, in the case where the preferred level of a response
variable is the minimum.
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If the output response has to be within a specified range [LB,UB], then it is possible to
combine two transformation functions similar to those shown in Figure 5a,b, so that the
result attained is shown in Figure 6, where LB and UB are both the lower bound and the
upper bound selected.

Figure 5. Arctangent transformation to (a) maximize a variable, (b) minimize a variable.

Figure 6. Arctangent transformation to keep a variable in a range (LB = Lower Bound,

UB = Upper Bound).

The shape of the transformed function shown in Figure 6 is obtained from Equation (15),
where the midpoint (LB + UB)/2 has been considered. However, this point could be
whatever within the specified range [LB,UB]

ytj = |1 − (yt1 + yt2)| (15)

However, if the output response has to be within the range defined by [LB, UB] and
the external values are not acceptable, it is possible to set a value of tcMj

and tcmk
close to

zero, so that results shown Figure 7 will be obtained and then by applying Equation (15)
the output shown Figure 8, is obtained.

As can be observed in Figure 8, the variable remains within the specified range. As
in the previous case, the shape of the transformed function shown in Figure 8 is obtained
from Equation (15).

Note that it could be possible to employ this arctangent function by selecting the levels
of the transition to “1” and “0” instead of the method shown below by employing two
H-parameter (one to adjust the transition to the “1” level and another to the “0” level). In
this case, the obtained values will be those shown in Figure 9. However, parametrization
shown in Figure 9 will not be used in this present study and the methodology previously
shown will be used instead.
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Figure 7. Arctangent transformation to (a) maximize a variable, where the value of tcMj
= 0 and to

(b) minimize a variable, where the value tcmk
= 0.

Figure 8. Arctangent transformation to keep a variable in a range (LB = Lower Bound;

UB = Upper Bound).

Figure 9. Arctangent transformation to (left) maximize a variable and (right) minimize a variable

by selecting the levels of transition to “0” and “1”, where and H1M = kH1M
(M1 − m1) and H2M =

kH2M
(M1 − m1) and H1m = kH1m

(M2 − m2) and H2m = kH2m
(M2 − m2). In the case shown in the

figure the same values have been selected [m, M] = [4, 10], (kH1
= 5, kH2

= 0.5).

Once the response variables have been transformed, a mean is selected to be maxi-
mized. As was previously shown in the state-of-the-art Section, most of the previously
published studies employ the geometric mean, shown by Equation (16). This mean was
proposed to be employed in the research study of Harrington [17] and later was used by
Derringer and Suich [18], among many others. Although other means could be used in this
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present study such as the harmonic one, in this present study the geometric mean will be
used, without weighting the functions.

Dgt = ( f1t ∗ f2t ∗ f3t)
1
3 (16)

A symmetric 43 DOE with three output responses, which will be simultaneously
optimized has been considered. However, it should be mentioned that this DOE as well
as the output responses could be whatever. From the above, in this present study, one of
the response variables is preferred to be at its minimum level, another response variable is
preferred to be at its maximum and the third output response has to be within a certain
range. With the proposed methodology, it is possible to approximate the optimum that
simultaneously optimizes the desired levels of variation of these functions within the range
of study under consideration. As shown in Section 2, this is usually done through the
use of models based on RSM and most of these studies employ the function proposed by
Derringer and Suich [18].

In the present study, the levels of variation of the input variables (process parameters)
have been varied into the range [−1, 1] as Table 1 shows. By using the DOE shown in
Table 1, the results shown in Table 2 are obtained for three output responses that have been
named f1, f2 y f3, respectively (these values have been generated by using three analytical
functions). It should be underlined that either an actual study case or any other function
could have been used to carry out this study. As can be observed in Table 2, 43 experiments
will be available. The values shown in Table 2 have been rounded to two decimal places.

Table 1. Factors and levels of the symmetrical DOE.

Design Factors Levels and Values

x1 −1 −1/3 1/3 1
x2 −1 −1/3 1/3 1
x3 −1 −1/3 1/3 1

Table 2. Values of the dependent variables using a symmetrical DOE.

Exp. f1 f2 f3 Exp. f1 f2 f3 Exp. f1 f2 f3 Exp. f1 f2 f3

1 3.27 3.10 7.72 17 3.18 3.32 5.72 33 3.12 5.21 5.19 49 3.13 19.74 5.05
2 3.09 2.96 6.40 18 3.04 3.19 5.37 34 3.01 5.08 5.10 50 3.02 19.60 5.03
3 3.04 8.34 5.72 19 3.01 8.57 5.19 35 2.99 10.46 5.05 51 3.00 24.98 5.01
4 3.02 19.93 5.37 20 3.01 20.15 5.10 36 3.00 22.04 5.03 52 3.00 36.57 5.01
5 7.09 8.14 21.08 21 6.11 8.27 9.24 37 5.91 9.33 6.12 53 6.50 17.48 5.29
6 4.59 8.01 13.26 22 4.43 8.13 7.18 38 4.23 9.20 5.57 54 4.15 17.35 5.15
7 3.51 13.39 9.24 23 3.45 13.51 6.12 39 3.32 14.58 5.29 55 3.26 22.73 5.08
8 3.17 24.97 7.18 24 3.13 25.10 5.57 40 3.06 26.16 5.15 56 3.04 34.31 5.04
9 10.65 7.31 21.08 25 7.40 7.44 9.24 41 7.71 8.50 6.12 57 11.94 16.65 5.29

10 8.29 7.18 13.26 26 6.39 7.30 7.18 42 6.95 8.36 5.57 58 10.31 16.51 5.15
11 5.27 12.56 9.24 27 4.89 12.68 6.12 43 5.68 13.74 5.29 59 7.51 21.89 5.08
12 3.47 24.14 7.18 28 3.61 24.26 5.57 44 4.37 25.33 5.15 60 5.14 33.48 5.04
13 5.78 8.10 7.72 29 4.11 8.32 5.72 45 4.65 10.21 5.19 61 8.70 24.74 5.05
14 4.23 7.96 6.40 30 3.38 8.19 5.37 46 4.43 10.08 5.10 62 9.82 24.60 5.03
15 2.39 13.34 5.72 31 2.41 13.57 5.19 47 4.39 15.46 5.05 63 12.57 29.98 5.01
16 2.24 24.93 5.37 32 1.69 25.15 5.10 48 5.19 27.04 5.03 64 18.14 41.57 5.01

Therefore, from the above, the proposed methodology shown in Equations (2)–(15) is
to be employed in order to simultaneously minimize the output response f1, maximize the
output response f2, and to keep the output response f3 within a given range. In order to
analyze a case study this range is considered to be [LB,UB] = [10,15], although any other
could be selected. The actual shape of the functions: f1, f2, and f3, used in this study to
generate the values of Table 2 is shown in Figures 10–12, respectively.
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Figure 10. Actual shape of f1 function.

Figure 11. Actual shape of f2 function.

Figure 12. Actual shape of f3 function.

From the symmetric DOE shown in Table 2, three regression models and three ANFIS
will be developed, and they will be used to determine the values that simultaneously
optimize f1, f2, and f3 functions. As will be shown later, regression is not able to adequately
model all the response variables. Therefore, in these cases the fact of optimizing surface
models which are not accurate enough may lead to erroneous values being obtained.
In order to overcome this drawback, soft computing techniques are a powerful tool for
modeling output responses. In this present study an ANFIS modeling is employed which
can predict the actual behavior of the output responses with higher accuracy than that
obtained by using conventional regression.

As previously mentioned, in this present study f1 is preferred to be set at its minimum
level, f2 at its maximum, and f3 has to be kept within a range given by a lower and upper
bound [LB, UB], any other combination could have been used, but the one analyzed is
considered general enough to show the proposed methodology. Moreover, results obtained
with the new proposed desirability function will be compared with those obtained with
that proposed by Derringer and Suich [18]. Additional data could be employed to validate
the models as suggested in [60]. However, this will not be considered in this present
study and all data from the symmetric 43 factorial DOE will be used to obtain both the
regression and the ANFIS models. As previously mentioned, if the regression model can
provide a highly-adjusted R-squared value, these models may be used. However, if more
accuracy is needed some other techniques such as those based on soft computing should
be considered [60].
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Summary of the Proposed Desirability Function

In order to summarize the proposed desirability function, this section is included.
The minimum and maximum ranges of variation for each variable will be first de-

termined. In the event where the preferred variation of a variable is the maximum, the
procedure shown in Equation (17) will be followed; in the case where the preferred varia-
tion is the minimum, that indicated in Equation (18) and if the variable has to be within a
specific interval [LB,UB] then the procedure shown in Equation (19) should be followed.
Once the variables have been transformed, then a mean is to be maximized, for example,
similar to that shown by Equation (16).

I f max (yj)
trans f orm to−−−−−−−→ ytj

= 1
2 + 1

π ∗ tan−1
(

aj ∗ yj + bj

)

where
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I f LB ≤ yj ≤ UB
trans f orm to→ ytj = |1 − (yt1 + yt2)|

where yt1 is a variable that has been trans f ormed as indicated in Equation (17)

[m1, M1] =
[

LB+UB
2 , UB

]

and yt2 is a variable that has been trans f ormed as indicated in Equation (18)

[m2, M2] =
[

LB, LB+UB
2

]

(19)

Although m1 and M2 values that are shown in Equation (19) could be selected in a
different way, in this study these values have been selected as they are shown.

Finally, once some or all of the transformation shown in Equation (17), Equation (18),
and Equation (19) have been carried out over the response variables, previously obtained
with the ANFIS, then an average with these transformed variables (geometric, harmonic,
etc) should be employed and it should be maximized. In this present study, the non-
weighted geometric mean is to be used.

In the case where, when maximizing or minimizing a variable, it is not possible to
obtain response values of this variable higher or lower than a given one, it is possible to
use the arctangent transformations which lead to shapes as shown in Figures 5–8. The
procedure to follow in these cases, consists in filtering said output responses, as follows.
Let us suppose that the desired level of a variable is at its maximum. In this case, first a
transformed variable

(

ftj1

)

is used to maximize it, according to Equation (17), and second
a transformed variable

(

ftj2

)

is used to limit the output response, according to Equation
(18); then, the resulting data will be filtered above the maximum (i.e, ftj = ftj1 ∗ ftj2).
Similarly, if the output response has to be minimized, first a transformed variable ( ftk1) is
used, according to Equation (18) and the output response is limited by using a transformed
varible ( ftk2), according to Equation (17), then the resulting data will be filtered below the
minimum (i.e., ftk = ftk1 ∗ ftk2). On the other hand, in the case where a variable

(

f j

)

has to
be maximized or minimized and at the same time has to be within a certain range. Then,
first a transformed variable ( fti1), according to Equation (17) or Equation (18) is used, and
second a transformed variable ( fti2) is used to keep the output response in the pre-set
interval, according to Equation (19).

The geometric mean is calculated according to Equation (20) (l = 1..m), where m is
the number of said variables and n is the total number of variables).

Dgt =

((

m

∏
l=1

ftl

)

ftm+1 ∗ ftm+2 ∗ . . . ∗ ftn

)
1
n

(20)

This process can be done if there are m variables that have to be maximized/minimized
and other restrictions also apply to them.

In order to simplify this present study, unconstrained restrictions will be considered
for the variables. That is to say, the output responses are allowed to take values higher or
lower, depending on the case, than those provided by the desired min and desired max
levels, which have been taken from the DOE, as Table 2 shows. However, they could be
restricted following the above-mentioned procedure.

4. Results and Discussion

This section presents the results obtained by modeling the response variables, first,
by means of using conventional regression. Given the limitations that such modeling
presents, an ANFIS will be used later to overcome these stated drawbacks. As shown
Section 2, it is very common to employ Derringer and Suich [18] desirability function for
multiple optimization of output responses. In this present study results obtained with this
desirability function and those obtained with the proposed one, which is based on the
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arctangent function, will be compared in order to simultaneously optimize three output
responses.

The use of models based on response surfaces, together with a desirability function,
is commonly used to model response variables in manufacturing engineering and to
solve a multiple optimization problem because it is possible to find a solution using
optimization methods. The proposed desirability function, based on a transformation
using the arctangent function, as previously shown, could also be employed with RSM and
optimization methods. In this case, t has to be higher than zero (t > 0). If necessary, a value
of t close to zero could be employed, for example, t = ε

(

10−3 . . . 10−5
)

would be enough
although, if necessary, it could be reduced. However, in the event that the regression
does not provide high values of the coefficient of determination, it is very likely that
these regression models will not provide accurate results and therefore it would be better
to employ other models for the output responses for example based on soft computing,
because, in this way, more accurate results can be obtained.

4.1. Regresion Model

Equation (21) shows the regression model that will be first employed to predict the
behavior of the output responses obtained from the DOE shown in Table 2. The full
regression models will be used instead of those obtained from the higher adj-R2, since the
fact of using the model adjusted to the degrees of freedom could eliminate some of the
independent variables.

y ∼ (a0 + a1 ∗ x1 + a2 ∗ x2 + a3 ∗ x3 + a4 ∗ x1 ∗ x2 + a5 ∗ x1 ∗ x3+
a6 ∗ x2 ∗ x3 + a7 ∗ x2

1 + a8 ∗ x2
2 + a9 ∗ x2

3)
(21)

Equation (22) shows that the validation metrics employed in this study are: mean
squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE),
where yj are the values provided by the DOE and ŷj are the predicted values. As previously

mentioned, the model which exhibit the higher coefficient of determination R2 is to be used.

MSE =
1

n

n

∑
j=1

(

yj − ŷj

)2
, RMSE =

√
MSE and MAE =

1

n

n

∑
j=1

∣

∣yj − ŷj

∣

∣ (22)

Tables 3–5 show the obtained results for f1, f2, and f3 functions, respectively. As can
be observed, regression results are not good enough for f1 and f3 functions and hence
these models will not be accurate to predict the behavior of these response variables. On
the other hand, the model obtained for f2 function could be used to approximately predict
the behavior of this output response which is a relatively simple equation. However, if
more accuracy is required, then other models should be used, for example those based on
soft computing.

Table 3. Regression results for the first output response.

f1 R2 RMSE MSE MAE

Regression 0.6273 1.7893 3.2015 1.2549

f1 = 4.4567 + 1.2109 ∗ x1 + 1.6519 ∗ x2 − 0.98981 ∗ x3 + 2.0487 ∗ x1 ∗ x2 + 0.85815∗x1 ∗ x3 + 0.07785 ∗ x2 ∗ x3 + 1.7958 ∗ x2
1 − 1.2473 ∗ x2

2 + 0.47391∗x2
3

Table 4. Regression results for the second output response.

f2 R2 RMSE MSE MAE

Regression 0.9523 1.9817 3.9273 1.6819

f2 = 8.7298 + 6.0665 ∗ x1 + 2.125 ∗ x2 + 8.3802 ∗ x3 − 0.00039405 ∗ x1 ∗ x2+0.00017002 ∗ x1 ∗ x3 − 0.00016849 ∗ x2 ∗ x3 + 6.2793 ∗ x2
1−0.053086 ∗ x2

2 + 6.5921 ∗ x2
3
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Table 5. Regression results for the third output response.

f3 R2 RMSE MSE MAE

Regression 0.6601 1.8221 3.3201 1.2238

f3 = 6.5491 − 2.1172 ∗ x1 + 5.8144e − 06 ∗ x2 − 1.3545 ∗ x3 + 2.75e − 06 ∗ x1 ∗ x2+1.8884 ∗ x1 ∗ x3 + 7.7464e − 07 ∗ x2 ∗ x3 + 1.7325 ∗ x2
1 − 2.4258 ∗ x2

2+0.63984 ∗ x2
3

Figure 13 shows the response surface obtained with the regression model of f1. Be-
cause the coefficient of determination of the regression is not very high, the results will
not be very reliable with this modeling. Therefore, the fact of considering an optimization
using a desirability function with this kind of functions may lead to values with a lack
of precision obtained. On the other hand, if it is compared with the actual shape of the
real surface of f1 function, which has been shown in Figure 10, the aforementioned can
be observed.

Figure 13. Response surface of f1 obtained with the regression model.

Table 4 shows the results obtained for the case of the second function considered in
this study. Figure 14 shows the response surface predicted by the regression model. In
this case, the function could be used to address the proposed problem since, although the
coefficient is not very high, it could give results close to the real optimum of the variable. It
may be seen that the shape of the response surface given by the regression model is more
similar to the actual shape of the function in this case than in the previous one.
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Figure 14. Response surface of f2 obtained with the regression model.

Table 5 shows the results obtained for the case of the third function considered in this
study and Figure 15 shows the response surface predicted by the regression model. In this
case, as with the first function, the regression model is not able to adequately predict the
behavior of the function, which can be observed when comparing the shape of the response
surface obtained with the regression model with the actual form of the function, which is
shown in Figure 12.

Figure 15. Response surface of f3 obtained with the regression model.
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Based on the above, although there are three polynomial models available with which
it is possible to use a desirability function and then obtain an optimum, this value will not
be precise and it may also occur that this optimum falls outside the limits established in
the optimization for some of the variables, as a consequence of the models thus developed;
therefore, not having high values of the regression determination coefficients, they will not
adequately predict the actual behavior of the response variables.

4.2. Adaptive Neuro Fuzzy Inference System (ANFIS) Modeling

In order to avoid the above-mentioned drawbacks of the regression models, soft
computing modeling based for example on artificial neuronal networks (ANNs) could be
used. In [61], different types of ANNs are shown. However, in this present study a FIS
which is later tuned by using an ANFIS is considered [3]. Specifically, a zero-order Sugeno
FIS is employed by using the Fuzzy Logic Toolbox™ of MATLABTM2020a [62], because the
de-fuzzification process for a Sugeno system is computationally more efficient compared
to that of a Mamdani system [62,63]. However, it should be stated that a Mamdani
FIS could have been used. Furthermore, the membership functions for fuzzification of
the independent variables are Gaussian as shown in Equation (23). These membership
functions have been developed from the methodology shown in [60], although some other
membership functions could have been used.

As previously mentioned, in the present study, no additional points will be used to
optimize the FIS models as suggested in [60]. It should be noted that if a greater number of
data is available to this end, then the ANFIS models obtained will be more reliable. In any
case, it can be observed in this section that the models that the ANFIS provide much better
results than those obtained with the regression.

µx = e
−(x−c)2

2σ2 (23)

The aggregation method is the sum of the fuzzy sets and the aggregated output is
obtained from the weighted average of all output rules, where product implication method
is used in Sugeno systems [62]. For the ith rule, the implication method is obtained from
Equations (24) and (25) shows the output of the FIS.

λj(x) = AndMethod
{

µj1(x1), . . . , µjn(xn)
}

(24)

{ f1, f2, f3} =
∑

Number o f rules
j=1 λj ∗ zj

∑
Number o f rules
j=1 λj

(25)

The created FIS will have a set of “l” rules of the form

I f (x1 is x1,i) and
(

x2 is x2,j

)

and (x3 is x3,k) then ([ f ] is outputl)

Figure 16 shows the structure of the ANFIS employed in this present study and
Figure 17 shows the response surfaces obtained with the ANFIS developed for the first
response variable and the values of the statistics employed are shown in Table 6. It can
be noted that they are much better than those obtained in the case of the regression for
this variable, which were shown in Table 3. Likewise, it can be observed that the ANFIS is
capable of adequately predicting the real form of the function despite not having optimized
the FIS with additional points.
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Figure 16. Adaptive neuro-fuzzy inference system (ANFIS).

Figure 17. Response surface of f1 obtained with the ANFIS model.

Table 6. ANFIS results for the first output response.

f1 R2 RMSE MSE MAE

ANFIS 1.0000 0.0050 2.4881 × 10−5 0.0039

A similar result is obtained for f2 function as can be observed both in Table 7 and in
Figure 18. Analogously to the previous case, results obtained with the ANFIS improve very
much on those obtained with the regression.
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Table 7. ANFIS results for the second output response.

f2 R2 RMSE MSE MAE

ANFIS 1.0000 7.9133 × 10−4 6.2621 × 10−7 6.5990 × 10−4

Figure 18. Response surface of f2 obtained with the ANFIS model.

Likewise, Table 8 and Figure 19 show the obtained results with the ANFIS for the case
of f3 function. It is observed that this function is now adequately modeled, contrary to that
observed with the regression model.

Table 8. ANFIS results for the third output response.

f3 R2 RMSE MSE MAE

ANFIS 1.0000 0.0038 1.4506 × 10−5 0.0033

As can be seen in the results obtained in this Section, the precision obtained with
the ANFIS models is much higher than that obtained with the regression. Therefore, the
prediction developed using ANFIS will be more accurate, especially for regression models
not having highly R-squared coefficients. It is worth mentioning the fact that the availability
of analytical models, such as those provided by the regression, makes it possible to employ
them with optimization algorithms when they are combined with a desirability function.
In that way, the desirability function based on the arctangent, which has been shown in
Section 3, could be employed to obtain a value that simultaneously optimizes the required
conditions by using a desirability function. As previously mentioned, in this case t has to
be higher than zero (t > 0). A value of t = ε 10−3 . . . 10−5 may be enough, if necessary, it
could be reduced. However, if regression models are not accurate it is preferrable either
to employ, as an approach, the values obtained directly from the DOE or to employ soft
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computing techniques. Because, if the regression models are not accurate, it is very likely
that the optimization will not be so either. In order to overcome this drawback, the ANFIS
models will be employed in order to approach the optimum of the functions by using a
desirability function.

Figure 19. Response surface of f3 obtained with the ANFIS model.

4.3. Analysis of the Case Study

In order to compare the results attained, the values obtained with the proposed
methodology will be compared with those obtained by using the transformation suggested
by Derringer and Suich [18]. The symmetrical DOE shown in Table 2 with three output
variables f1, f2, and f3 will be used. As previously mentioned, the preferred level of f1

is its minimum, the preferred level of f2 is its maximum and f3 has to be within a set
range, defined by a lower bound and by an upper bound. For example, [LB, UB] = [10, 15],
although this range could be whatever. In order to set the maximum and minimum level
of each variable, those provided by the DOE are considered, as shown in Table 9, although
they could be any other value.

Table 9. Ranges of the output responses.

Function Min Max

f1 1.69 18.14
f2 2.96 41.57
f3 5.01 21.08

Figure 20b1–b3 show how the data of the output variables obtained from the DOE
are classified by using the Derringer and Suich [18] transformation, where it has been
considered (r = 3; for one side transformation, s = t = 3, for two-side transformation and c =
(LB + UB)/2). Figure 20a1–a3 show these data classified by using the proposed arctangent
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transformation, in the case of minimizing f1, maximizing f2, and in order to keep f3 within
a certain range. Table 10 shows the values of the constants to transform the f1 and f2

outputs using the arctangent transformation. Where it was desired to weight the values
of f1. Hence the values shown in this table. On the other hand, to keep f3 within the
desired range [LB,UB] = [10,15], where kH = 5, kc = 1, tc = 10−5. However, other values
could have been used. As can be observed in Table 2 the range of values specified for f3

to stay within only has one output value of this variable although it is obtained in two
combinations of the independent variables.

Figure 20. Score of the response variables of the DOE using the arctangent transformation (sub index “t”) and that proposed

by Derringer and Suich [18] (sub index “d”).
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Table 10. Values of the constants to transform the f1 and f2 outputs.

Function Desired Level kcM1
tcM1

kHM1
m1 M1

f1 Max. 2 0.2 1 1.69 18.14

kcm2
tcm2

kHm2
m2 M2

f2 Min. 1 0.5 1 2.96 41.57

Table 11 shows the optimum values found directly with the data provided by the
symmetrical DOE, which is shown in Table 2, where Dgt refers to the desirability value
obtained with the arctangent transformation and Dgd that obtained by using Derringer
and Suich [18], both results are obtained by using the non-weighted geometric average.
However, it may occur that the DOE does not provide values within a certain range
for example, in this case study, within the range [15,20] or that we want to explore the
possibility of finding improved values, then if regression results are not accurate, as is the
present case, an ANFIS is to be used to overcome this drawback.

Table 11. Desirability values obtained from the DOE.

Exp. Dgt x1 x2 x3 f1 f2 f3

6 0.2201 −1 −1/3 −1/3 4.59 8.01 13.26

Exp. Dgd x1 x2 x3 f1 f2 f3

6 0.0750 −1 −1/3 −1/3 4.59 8.01 13.26

It could be possible to define a relative index to compare both desirability functions
(Dgt, Dgd) however this is not carried out in this study. As can be observed in Table 11
the optimal values that both functions find, using only the data provided by the DOE, are
the same which is logical as the number of points is not high enough to allow significant
differences to exist. In order to employ the ANFIS models, whenever the regression is not
accurate enough, first the initial DOE which was employed to develop these ANFIS models,
is discretized by using N points. In this study the same number of points has been employed
for each of the three independent variables, in order to have an “augmented-symmetrical
N3 design of experiments”, although the number of points to discretize each independent
variable could be different. From the above, the DOE is discretized as Equation (26) shows.
That is, N points are obtained within the range

[

min
(

xj

)

, max
(

xj

)]

.

xj = min
(

xj

)

:
max

(

xj

)

− min
(

xj

)

N − 1
: max

(

xj

)

(26)

First of all, all combinations of the data provided by Equation (26) are evaluated
making use of the previously developed ANFIS models, and hence N3 outputs will be
obtained for the response variables, which can be then combined to determine the optimum
value of a previously defined parameter, which is, in this present study the geometric mean.
This optimum value will be linked to a point, in this case, (x1, x2, x3) withing the selected
range and this will be the value that approximate to the optimum of the function. The
higher the number of the selected levels, the higher the accuracy of the approach. If N
is high enough the approach to the optimum will be accurate. A convergence criterion
could be established based, for example, on the convergence band obtained from the
optimal values found in each iteration with the desirability functions depending on the
number of points (N), among others. However, this is not considered in this study and the
optimal values are determined after considering a value of N high enough to observe the
convergence of the optimal values that provide the desirability functions in each iteration.
Figure 21a,b show the optimal values of the desirability function versus the number of
points (N) employed in the ANFIS (in this case N3 combinations of the variables, because
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there are three independent variables) where Dgt is the desirability function obtained
by using the geometric mean and the proposed transformation and Dgd the desirability
values obtained from the geometric mean and the methodology of Derringer and Suich [18].
Moreover, a comparison with the value provided by using the initial data of the DOE can
be observed in this figure for both desirability functions when using the ANFIS to generate
the values of the output responses. As can be observed, results attained improve those
obtained directly with the initial DOE.

Figure 21. Desirability functions versus the number of points (N) employed in the ANFIS.

Figure 22 show the transformed function by using the ANFIS models both with the
proposed desirability function and with that of Derringer and Suich [18].

Table 12 presents the optimal values found with the ANFIS. As can be observed in
Table 12, the optimum value with the proposed desirability function is obtained after
using N = 55 points, to be evaluated with the ANFIS models, that is (553 combinations
of the variables) and it leads to the values of [ f1, f2, f3]Dgt

= [4.5892, 12.9599, 10.0063]

which, in the case of this present study, are improved values, of the response variables,
compared with those obtained with Derringer and Suich [18] desirability function (after N
= 97 iterations, 973 combinations of the variables evaluated with the ANFIS models),which
leads to [ f1, f2, f3]Dgd

= [4.9343, 8.7416, 12.5005]. That is, with the proposed desirability

function f1 is more minimized and f2 is more maximized while f3 is kept within the
desired range, which may be a consequence of the weighting values employed in the
Derringer and Suich [18] transformation, which were fixed at (r = s = t = 3), as previously
mentioned. It may occur that other values of this transformation could lead to improved
results. Moreover, it is also likely that the attained results with the arctangent may also
vary if different constants of those shown in Table 10 were selected. However, this is not
analyzed in this present study.

Table 12. Results attained with the ANFIS models and the desirability functions.

Arctangent Dgt x1 x2 x3 f1 f2 f3

Num. Points: 55 0.2535 −1.0000 −0.0526 0.2982 4.5892 12.9599 10.0063

Actual values (i.e., obtained with the actual functions) 4.2857 11.6280 10.4535

Derringer & Suich Dgd x1 x2 x3 f1 f2 f3

Num. Points: 97 0.1202 −1.0000 −0.2121 −0.1717 4.9343 8.7416 12.5005

Actual values (i.e., obtained with the actual functions) 4.8071 8.1795 13.0183
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Figure 22. Transformation of the values of the response functions obtained by using the ANFIS (a1–a3) Using the proposed

desirability function and (b1–b3) using the Derringer and Suich [18] desirability function.

Results obtained with the regression models are shown in Table 13. As can be observed,
the results provided by the regression do not fit very well with the actual values of the
function and in the case of using the Derringer and Suich [18] desirability function are
outside specified tolerances for f3 since the tolerance range specified for this response
variable was 10 ≤ f3 ≤ 15.

Table 13. Results attained with the regression models and the desirability functions.

Arctangent x1 x2 x3 f1 f2 f3

Regression Results −1.0000 0.1489 0.1064 4.7649 10.2241 10.0073

Actual values (i.e., obtained with the actual functions) 5.7264 9.2598 11.3551

Derringer & Suich x1 x2 x3 f1 f2 f3

Regression Results −1.0000 0.8571 −1.0000 6.0402 8.9376 12.4994

Actual values (i.e., obtained with the actual functions) 7.0248 8.1123 9.6217
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Therefore, as shown in Tables 12 and 13 results obtained with the ANFIS are more
accurate than those provided by using the regression models. Moreover, in the case of using
regression models with lack of precision non-desirable results could be obtained as Table 13
shows. Table 14 presents a summary of the results obtained with the Derringer&Suich
desirability function [18] and the new proposed desirability function and Table 15 shows
the actual values of the functions used to generate the data shown in Table 2.

Table 14. Comparison of the results obtained.

f1 f2 f3

Derringer & Suich
ANFIS 4.9343 8.7416 12.5005

Regression 6.0402 8.9376 12.4994

Arctangent
ANFIS 4.5892 12.9599 10.0063

Regression 4.7649 10.2241 10.0073

Table 15. Actual values of f1, f2 and f3 functions.

f1 = 3 +
(x2

1−x2
2+x1∗x2∗ exp(x3)+2)

2−sin(x2)
2−sin(x3)

1+exp(x2
1−4∗x2+2∗x3)

f2 = 10 + (0.65 + x1)
3 ∗ exp

(

0.65 ∗ (x2
1 + x2

2

)

)− (x2 + 1.25 ∗ cos(π ∗ x2))
2 + 2∗(2 + x3)

2∗ sin(x3)

f3 = 5 + 1
exp(2∗x1+2∗x2

2+x3)

It should be mentioned that in this case study the desirability functions do not provide
high values due to the fact that f3 has to be kept within a certain range. Some other
combinations could lead to different values being found. For example, Figure 1 shows
the values of the proposed arctangent desirability function for a multiple optimization
problem where the preferred level of variation of f3 was selected to be the minimum value
instead of being fixed within a tolerance range and the maximum was the preferred level
for both f1 and f2. However, it may be that a technological interest exists in maintaining
an output response within a certain range while other variables are being simultaneously
optimized, and as has been shown in this present study, a design of experiments combined
with an ANFIS and a desirability function may obtain an accurate approach to the optimum
value even in the event that the DOE does not provide values in a certain range which
has to be selected for a variable to be kept within. On the other hand, as can be seen for
example in the research study of Derringer [64] it is often observed that when one property
improves, it is usually at the expense of others. By using the proposed methodology, it is
possible to have all available data attained by the ANFIS, that is, the combination of both
independent and dependent variables which lead to a specific desirability value and then
allow the user to select the most appropriate combination of the independent variables
(process parameters) which lead to reaching a certain value in the response variables.
Therefore, it could be possible to establish classes of desirability and several solutions can
be obtained instead of a single optimum since it may happen that several combinations
of the independent variables may lead to very close values and the fact of selecting the
better result could avoid some others being taken into account, which may, in turn, be of
technological interest.

Figures 23a–d and 24a–d show the desirability functions versus the number of vari-
ables in both cases examined in this present study as well as the values of the response
variables which correspond to a selected level of the desirability function (these figures
show the combination of the independent variables that lead to desirability function val-
ues being obtained that are higher than 80% of the maximum desirability value of each
desirability function respectively). Therefore, it is possible to see the desired levels of the
process parameters as well as their influence on the desirability function.
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Figure 23. Derringer and Suich [18] desirability function and response variables versus the independent variables, using the

ANFIS (only values within 80–100% of the maximum desirability value obtained with the Derringer and Suich desirability

function (maxDgd
= 0.1202) have been plotted).

Figure 24. Proposed desirability function and response variables versus the independent variables, using the ANFIS (only

values within 80–100% of the maximum desirability value obtained with the proposed desirability function (maxDgt
= 0.2534)

have been plotted).
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5. Conclusions

This present research study shows a methodology based on using a design of experi-
ments along with an ANFIS and a desirability function for simultaneous multiple response
optimization which can be applied to overcome the drawbacks of the regression techniques.

A new desirability function has been proposed and analyzed in this research study.
The proposed desirability function is based on the arctangent function and it may adopt
several shapes as a function of its parameters.

By using the proposed methodology, it could be possible to establish classes of de-
sirability along with the values of the process parameters and the responses variables
and then select the most appropriate ones with higher accuracy than that obtained by
conventional regression techniques.
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